Fri, 12 Apr 2013 12:34:32 +0100
Fix read-after-write logic
In some cases (notably reading from a page after having written to it), the
mapper may change the pagestate from "accessed and written" ("dirty"; PS0,PS1)
to "accessed but not written" (clean; PS1,!PS0). This should never, ever, EVER
happen. Once a page is dirty, it remains so until the 68k clears the DIRTY
bit.
Once again, this wonderful bit of logic was missing from the TRM.
philpem@40 | 1 | #include <stdio.h> |
philpem@40 | 2 | #include <stdlib.h> |
philpem@40 | 3 | #include <stdint.h> |
philpem@40 | 4 | #include <stdbool.h> |
philpem@59 | 5 | #include <assert.h> |
philpem@40 | 6 | #include "musashi/m68k.h" |
philpem@40 | 7 | #include "state.h" |
philpem@100 | 8 | #include "utils.h" |
philpem@40 | 9 | #include "memory.h" |
philpem@40 | 10 | |
philpem@119 | 11 | // The value which will be returned if the CPU attempts to read from empty memory |
philpem@119 | 12 | // TODO (FIXME?) - need to figure out if R/W ops wrap around. This seems to appease the UNIX kernel and P4TEST. |
philpem@119 | 13 | #define EMPTY 0xFFFFFFFFUL |
philpem@129 | 14 | //#define EMPTY 0x55555555UL |
philpem@129 | 15 | //#define EMPTY 0x00000000UL |
philpem@119 | 16 | |
philpem@40 | 17 | /****************** |
philpem@40 | 18 | * Memory mapping |
philpem@40 | 19 | ******************/ |
philpem@40 | 20 | |
philpem@128 | 21 | /// Set a page bit |
philpem@133 | 22 | #define MAP_SET_PAGEBIT(addr, bit) state.map[(MAP_ADDR_TO_PAGE(addr))*2] |= ((uint8_t)bit << 2) |
philpem@128 | 23 | /// Clear a page bit |
philpem@133 | 24 | #define MAP_CLR_PAGEBIT(addr, bit) state.map[(MAP_ADDR_TO_PAGE(addr))*2] &= ~((uint8_t)bit << 2) |
philpem@40 | 25 | |
philpem@40 | 26 | |
philpem@40 | 27 | /******************************************************** |
philpem@40 | 28 | * m68k memory read/write support functions for Musashi |
philpem@40 | 29 | ********************************************************/ |
philpem@40 | 30 | |
philpem@40 | 31 | /** |
philpem@40 | 32 | * @brief Check memory access permissions for a write operation. |
philpem@40 | 33 | * @note This used to be a single macro (merged with ACCESS_CHECK_RD), but |
philpem@40 | 34 | * gcc throws warnings when you have a return-with-value in a void |
philpem@40 | 35 | * function, even if the return-with-value is completely unreachable. |
philpem@40 | 36 | * Similarly it doesn't like it if you have a return without a value |
philpem@40 | 37 | * in a non-void function, even if it's impossible to ever reach the |
philpem@40 | 38 | * return-with-no-value. UGH! |
philpem@40 | 39 | */ |
philpem@59 | 40 | /*{{{ macro: ACCESS_CHECK_WR(address, bits)*/ |
philpem@59 | 41 | #define ACCESS_CHECK_WR(address, bits) \ |
philpem@59 | 42 | do { \ |
philpem@128 | 43 | if (access_check_cpu(address, bits, true)) { \ |
philpem@40 | 44 | return; \ |
philpem@40 | 45 | } \ |
philpem@70 | 46 | } while (0) |
philpem@59 | 47 | /*}}}*/ |
philpem@40 | 48 | |
philpem@40 | 49 | /** |
philpem@40 | 50 | * @brief Check memory access permissions for a read operation. |
philpem@40 | 51 | * @note This used to be a single macro (merged with ACCESS_CHECK_WR), but |
philpem@40 | 52 | * gcc throws warnings when you have a return-with-value in a void |
philpem@40 | 53 | * function, even if the return-with-value is completely unreachable. |
philpem@40 | 54 | * Similarly it doesn't like it if you have a return without a value |
philpem@40 | 55 | * in a non-void function, even if it's impossible to ever reach the |
philpem@40 | 56 | * return-with-no-value. UGH! |
philpem@40 | 57 | */ |
philpem@59 | 58 | /*{{{ macro: ACCESS_CHECK_RD(address, bits)*/ |
philpem@59 | 59 | #define ACCESS_CHECK_RD(address, bits) \ |
philpem@59 | 60 | do { \ |
philpem@128 | 61 | if (access_check_cpu(address, bits, false)) { \ |
philpem@128 | 62 | if (bits == 32) \ |
philpem@128 | 63 | return EMPTY & 0xFFFFFFFF; \ |
philpem@40 | 64 | else \ |
philpem@128 | 65 | return EMPTY & ((1UL << bits)-1); \ |
philpem@40 | 66 | } \ |
philpem@70 | 67 | } while (0) |
philpem@59 | 68 | /*}}}*/ |
philpem@40 | 69 | |
philpem@128 | 70 | |
philpem@128 | 71 | /** |
philpem@128 | 72 | * Update the page bits for a given memory address |
philpem@128 | 73 | * |
philpem@128 | 74 | * @param addr Memory address being accessed |
philpem@128 | 75 | * @param l7intr Set to <i>true</i> if a level-seven interrupt has been |
philpem@128 | 76 | * signalled (even if <b>ENABLE ERROR</b> isn't set). |
philpem@128 | 77 | * @param write Set to <i>true</i> if the address is being written to. |
philpem@128 | 78 | */ |
philpem@128 | 79 | static void update_page_bits(uint32_t addr, bool l7intr, bool write) |
philpem@112 | 80 | { |
philpem@128 | 81 | bool ps0_state = false; |
philpem@128 | 82 | |
philpem@128 | 83 | // Don't try and update pagebits for non-RAM addresses |
philpem@128 | 84 | if (addr > 0x3FFFFF) |
philpem@128 | 85 | return; |
philpem@128 | 86 | |
philpem@128 | 87 | if (l7intr) { |
philpem@128 | 88 | // if (!(MAP_PAGEBITS(addr) & PAGE_BIT_PS0)) { |
philpem@128 | 89 | // FIXME FUCKUP The ruddy TRM is wrong AGAIN! If above line is uncommented, Really Bad Things Happen. |
philpem@128 | 90 | if ((MAP_PAGEBITS(addr) & PAGE_BIT_PS0)) { |
philpem@128 | 91 | // Level 7 interrupt, PS0 clear, PS1 don't-care. Set PS0. |
philpem@128 | 92 | ps0_state = true; |
philpem@128 | 93 | } |
philpem@128 | 94 | } else { |
philpem@128 | 95 | // No L7 interrupt |
philpem@128 | 96 | if ((write && !(MAP_PAGEBITS(addr) & PAGE_BIT_PS1) && (MAP_PAGEBITS(addr) & PAGE_BIT_PS0)) || |
philpem@140 | 97 | (write && (MAP_PAGEBITS(addr) & PAGE_BIT_PS1) && !(MAP_PAGEBITS(addr) & PAGE_BIT_PS0)) || |
philpem@140 | 98 | ( (MAP_PAGEBITS(addr) & PAGE_BIT_PS1) && (MAP_PAGEBITS(addr) & PAGE_BIT_PS0))) /* NOTE -- Once again, this case was missing from the PAL equations in the TRM... */ |
philpem@128 | 99 | { |
philpem@128 | 100 | // No L7 interrupt, PS[1:0] = 0b01, write |
philpem@128 | 101 | // No L7 interrupt, PS[1:0] = 0b10, write |
philpem@128 | 102 | ps0_state = true; |
philpem@128 | 103 | } |
philpem@128 | 104 | } |
philpem@112 | 105 | |
philpem@128 | 106 | #ifdef MAPRAM_BIT_TEST |
philpem@128 | 107 | LOG("Starting Mapram Bit Test"); |
philpem@128 | 108 | state.map[0] = state.map[1] = 0; |
philpem@128 | 109 | LOG("Start = %04X %02X", MAPRAM_ADDR(0), MAP_PAGEBITS(0)); |
philpem@128 | 110 | MAP_SET_PAGEBIT(0, PAGE_BIT_WE); |
philpem@128 | 111 | LOG("Set WE = %04X %02X", MAPRAM_ADDR(0), MAP_PAGEBITS(0)); |
philpem@128 | 112 | MAP_SET_PAGEBIT(0, PAGE_BIT_PS1); |
philpem@128 | 113 | LOG("Set PS1 = %04X %02X", MAPRAM_ADDR(0), MAP_PAGEBITS(0)); |
philpem@128 | 114 | MAP_SET_PAGEBIT(0, PAGE_BIT_PS0); |
philpem@128 | 115 | LOG("Set PS0 = %04X %02X", MAPRAM_ADDR(0), MAP_PAGEBITS(0)); |
philpem@128 | 116 | |
philpem@128 | 117 | MAP_CLR_PAGEBIT(0, PAGE_BIT_WE); |
philpem@128 | 118 | LOG("Clr WE = %04X %02X", MAPRAM_ADDR(0), MAP_PAGEBITS(0)); |
philpem@128 | 119 | MAP_CLR_PAGEBIT(0, PAGE_BIT_PS1); |
philpem@128 | 120 | LOG("Clr PS1 = %04X %02X", MAPRAM_ADDR(0), MAP_PAGEBITS(0)); |
philpem@128 | 121 | MAP_CLR_PAGEBIT(0, PAGE_BIT_PS0); |
philpem@128 | 122 | LOG("Clr PS0 = %04X %02X", MAPRAM_ADDR(0), MAP_PAGEBITS(0)); |
philpem@128 | 123 | exit(-1); |
philpem@128 | 124 | #endif |
philpem@128 | 125 | |
philpem@128 | 126 | uint16_t old_pagebits = MAP_PAGEBITS(addr); |
philpem@112 | 127 | |
philpem@128 | 128 | // PS1 is always set on access |
philpem@128 | 129 | MAP_SET_PAGEBIT(addr, PAGE_BIT_PS1); |
philpem@128 | 130 | |
philpem@128 | 131 | uint16_t new_pagebit1 = MAP_PAGEBITS(addr); |
philpem@128 | 132 | |
philpem@128 | 133 | // Update PS0 |
philpem@128 | 134 | if (ps0_state) { |
philpem@128 | 135 | MAP_SET_PAGEBIT(addr, PAGE_BIT_PS0); |
philpem@128 | 136 | } else { |
philpem@128 | 137 | MAP_CLR_PAGEBIT(addr, PAGE_BIT_PS0); |
philpem@128 | 138 | } |
philpem@112 | 139 | |
philpem@128 | 140 | uint16_t new_pagebit2 = MAP_PAGEBITS(addr); |
philpem@128 | 141 | switch (addr) { |
philpem@128 | 142 | case 0x000000: |
philpem@128 | 143 | case 0x001000: |
philpem@128 | 144 | case 0x002000: |
philpem@128 | 145 | case 0x003000: |
philpem@128 | 146 | case 0x004000: |
philpem@128 | 147 | case 0x033000: |
philpem@128 | 148 | case 0x034000: |
philpem@128 | 149 | case 0x035000: |
philpem@128 | 150 | LOG("Addr %08X MapNew %04X Pagebit update -- ps0 %d, %02X => %02X => %02X", addr, MAPRAM_ADDR(addr), ps0_state, old_pagebits, new_pagebit1, new_pagebit2); |
philpem@128 | 151 | default: |
philpem@112 | 152 | break; |
philpem@112 | 153 | } |
philpem@128 | 154 | } |
philpem@128 | 155 | |
philpem@128 | 156 | bool access_check_dma(void) |
philpem@128 | 157 | { |
philpem@128 | 158 | // TODO FIXME BUGBUG Sanity check - Make sure DMAC is only accessing RAM addresses |
philpem@128 | 159 | |
philpem@128 | 160 | // DMA access check -- make sure the page is mapped in |
philpem@128 | 161 | if (!(MAP_PAGEBITS(state.dma_address) & PAGE_BIT_PS0) && !(MAP_PAGEBITS(state.dma_address) & PAGE_BIT_PS1)) { |
philpem@128 | 162 | // DMA access to page which is not mapped in. |
philpem@128 | 163 | // Level 7 interrupt, page fault, DMA invoked |
philpem@128 | 164 | state.genstat = 0xABFF |
philpem@128 | 165 | | (state.dma_reading ? 0x4000 : 0) |
philpem@128 | 166 | | (state.pie ? 0x0400 : 0); |
philpem@128 | 167 | |
philpem@128 | 168 | // XXX: Check all this stuff. |
philpem@112 | 169 | state.bsr0 = 0x3C00; |
philpem@112 | 170 | state.bsr0 |= (state.dma_address >> 16); |
philpem@112 | 171 | state.bsr1 = state.dma_address & 0xffff; |
philpem@128 | 172 | |
philpem@128 | 173 | // Update page bits for this transfer |
philpem@128 | 174 | update_page_bits(state.dma_address, true, !state.dma_reading); |
philpem@128 | 175 | |
philpem@128 | 176 | // XXX: is this right? |
philpem@128 | 177 | // Fire a Level 7 interrupt |
philpem@128 | 178 | /*if (state.ee)*/ m68k_set_irq(7); |
philpem@128 | 179 | |
philpem@128 | 180 | LOG("BUS ERROR FROM DMA: genstat=%04X, bsr0=%04X, bsr1=%04X\n", state.genstat, state.bsr0, state.bsr1); |
philpem@128 | 181 | return false; |
philpem@128 | 182 | } else { |
philpem@128 | 183 | // No errors. Just update the page bits. |
philpem@128 | 184 | update_page_bits(state.dma_address, false, !state.dma_reading); |
philpem@128 | 185 | return true; |
philpem@112 | 186 | } |
philpem@128 | 187 | } |
philpem@128 | 188 | |
philpem@128 | 189 | /** |
philpem@128 | 190 | * Check memory access permissions for a CPU memory access. |
philpem@128 | 191 | * |
philpem@128 | 192 | * @param addr Virtual memory address being accessed (from CPU address bus). |
philpem@128 | 193 | * @param bits Word size of this transfer (8, 16 or 32 bits). |
philpem@128 | 194 | * @param write <i>true</i> if this is a write operation, <i>false</i> if it is a read operation. |
philpem@128 | 195 | * @return <i>true</i> if the access was denied and a level-7 interrupt and/or bus error raised. |
philpem@128 | 196 | * <i>false</i> if the access was allowed. |
philpem@128 | 197 | */ |
philpem@128 | 198 | bool access_check_cpu(uint32_t addr, int bits, bool write) |
philpem@128 | 199 | { |
philpem@128 | 200 | bool supervisor = (m68k_get_reg(NULL, M68K_REG_SR) & 0x2000); |
philpem@128 | 201 | bool fault = false; |
philpem@128 | 202 | |
philpem@128 | 203 | // TODO FIXME BUGBUG? Do we need to check for supervisor access here? |
philpem@128 | 204 | if ((addr >= 0x000000) && (addr <= 0x3FFFFF) && !(MAP_PAGEBITS(addr) & PAGE_BIT_PS1) && !(MAP_PAGEBITS(addr) & PAGE_BIT_PS0)) { |
philpem@128 | 205 | // (A) Page Fault -- user access to page which is not mapped in |
philpem@128 | 206 | // Level 7 Interrupt, Bus Error, regs=PAGEFAULT |
philpem@128 | 207 | if (write) { |
philpem@128 | 208 | state.genstat = 0x8BFF | (state.pie ? 0x0400 : 0); |
philpem@128 | 209 | } else { |
philpem@128 | 210 | state.genstat = 0xCBFF | (state.pie ? 0x0400 : 0); |
philpem@128 | 211 | } |
philpem@128 | 212 | fault = true; |
philpem@128 | 213 | } else if (!supervisor && (addr >= 0x000000) && (addr <= 0x07FFFF)) { |
philpem@128 | 214 | // (B) User attempted to access the kernel |
philpem@128 | 215 | // Level 7 Interrupt, Bus Error, regs=KERNEL |
philpem@128 | 216 | if (write) { |
philpem@128 | 217 | // XXX: BUGBUG? Is this correct? |
philpem@128 | 218 | state.genstat = 0x9BFF | (state.pie ? 0x0400 : 0); |
philpem@128 | 219 | } else { |
philpem@128 | 220 | state.genstat = 0xDBFF | (state.pie ? 0x0400 : 0); |
philpem@128 | 221 | } |
philpem@128 | 222 | fault = true; |
philpem@128 | 223 | } else if (!supervisor && write && (addr >= 0x000000) && (addr <= 0x3FFFFF) && !(MAP_PAGEBITS(addr) & PAGE_BIT_WE)) { |
philpem@128 | 224 | // (C) User attempted to write to a page which is not write enabled |
philpem@128 | 225 | // Level 7 Interrupt, Bus Error, regs=WRITE_EN |
philpem@128 | 226 | if (write) { |
philpem@128 | 227 | // XXX: BUGBUG? Is this correct? |
philpem@128 | 228 | state.genstat = 0x9BFF | (state.pie ? 0x0400 : 0); |
philpem@128 | 229 | } else { |
philpem@128 | 230 | state.genstat = 0xDBFF | (state.pie ? 0x0400 : 0); |
philpem@128 | 231 | } |
philpem@128 | 232 | fault = true; |
philpem@128 | 233 | } else if (!supervisor && (addr >= 0x400000) && (addr <= 0xFFFFFF)) { |
philpem@128 | 234 | // (D) UIE - user I/O exception |
philpem@128 | 235 | // Bus Error only, regs=UIE |
philpem@128 | 236 | if (write) { |
philpem@128 | 237 | state.genstat = 0x9AFF | (state.pie ? 0x0400 : 0); |
philpem@128 | 238 | } else { |
philpem@128 | 239 | state.genstat = 0xDAFF | (state.pie ? 0x0400 : 0); |
philpem@128 | 240 | } |
philpem@128 | 241 | fault = true; |
philpem@128 | 242 | } |
philpem@128 | 243 | |
philpem@128 | 244 | // Update the page bits first |
philpem@128 | 245 | update_page_bits(addr, fault, write); |
philpem@128 | 246 | |
philpem@128 | 247 | if (fault) { |
philpem@128 | 248 | if (bits >= 16) |
philpem@128 | 249 | state.bsr0 = 0x7C00; |
philpem@128 | 250 | else |
philpem@128 | 251 | state.bsr0 = (addr & 1) ? 0x7E00 : 0x7D00; |
philpem@128 | 252 | // FIXME? Physical or virtual address here? |
philpem@128 | 253 | state.bsr0 |= (addr >> 16); |
philpem@128 | 254 | state.bsr1 = addr & 0xffff; |
philpem@128 | 255 | |
philpem@128 | 256 | LOG("CPU Bus Error or L7Intr while %s, vaddr %08X, map %08X, pagebits 0x%02X bsr0=%04X bsr1=%04X genstat=%04X", |
philpem@128 | 257 | write ? "writing" : "reading", addr, |
philpem@128 | 258 | MAPRAM_ADDR(addr & 0x3fffff), |
philpem@128 | 259 | MAP_PAGEBITS(addr & 0x3fffff), |
philpem@128 | 260 | state.bsr0, state.bsr1, state.genstat); |
philpem@128 | 261 | |
philpem@128 | 262 | // FIXME? BUGBUG? Does EE disable one or both of these? |
philpem@128 | 263 | // /*if (state.ee)*/ m68k_set_irq(7); |
philpem@128 | 264 | /*if (state.ee)*/ m68k_pulse_bus_error(); |
philpem@128 | 265 | } |
philpem@128 | 266 | |
philpem@128 | 267 | return fault; |
philpem@112 | 268 | } |
philpem@112 | 269 | |
philpem@40 | 270 | // Logging macros |
philpem@59 | 271 | #define LOG_NOT_HANDLED_R(bits) \ |
philpem@128 | 272 | if (!handled) fprintf(stderr, "unhandled read%02d, addr=0x%08X\n", bits, address); |
philpem@40 | 273 | |
philpem@59 | 274 | #define LOG_NOT_HANDLED_W(bits) \ |
philpem@128 | 275 | if (!handled) fprintf(stderr, "unhandled write%02d, addr=0x%08X, data=0x%08X\n", bits, address, data); |
philpem@59 | 276 | |
philpem@59 | 277 | /******************************************************** |
philpem@59 | 278 | * I/O read/write functions |
philpem@59 | 279 | ********************************************************/ |
philpem@40 | 280 | |
philpem@40 | 281 | /** |
philpem@59 | 282 | * Issue a warning if a read operation is made with an invalid size |
philpem@40 | 283 | */ |
philpem@66 | 284 | inline static void ENFORCE_SIZE(int bits, uint32_t address, bool read, int allowed, char *regname) |
philpem@40 | 285 | { |
philpem@59 | 286 | assert((bits == 8) || (bits == 16) || (bits == 32)); |
philpem@59 | 287 | if ((bits & allowed) == 0) { |
philpem@128 | 288 | LOG("WARNING: %s 0x%08X (%s) with invalid size %d!\n", read ? "read from" : "write to", address, regname, bits); |
philpem@59 | 289 | } |
philpem@59 | 290 | } |
philpem@59 | 291 | |
philpem@66 | 292 | inline static void ENFORCE_SIZE_R(int bits, uint32_t address, int allowed, char *regname) |
philpem@40 | 293 | { |
philpem@66 | 294 | ENFORCE_SIZE(bits, address, true, allowed, regname); |
philpem@66 | 295 | } |
philpem@66 | 296 | |
philpem@66 | 297 | inline static void ENFORCE_SIZE_W(int bits, uint32_t address, int allowed, char *regname) |
philpem@66 | 298 | { |
philpem@66 | 299 | ENFORCE_SIZE(bits, address, false, allowed, regname); |
philpem@66 | 300 | } |
philpem@66 | 301 | |
philpem@59 | 302 | void IoWrite(uint32_t address, uint32_t data, int bits)/*{{{*/ |
philpem@59 | 303 | { |
philpem@40 | 304 | bool handled = false; |
philpem@40 | 305 | |
philpem@59 | 306 | if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@40 | 307 | // I/O register space, zone A |
philpem@40 | 308 | switch (address & 0x0F0000) { |
philpem@40 | 309 | case 0x010000: // General Status Register |
philpem@59 | 310 | if (bits == 16) |
philpem@59 | 311 | state.genstat = (data & 0xffff); |
philpem@59 | 312 | else if (bits == 8) { |
philpem@59 | 313 | if (address & 0) |
philpem@59 | 314 | state.genstat = data; |
philpem@59 | 315 | else |
philpem@59 | 316 | state.genstat = data << 8; |
philpem@59 | 317 | } |
philpem@40 | 318 | handled = true; |
philpem@40 | 319 | break; |
philpem@40 | 320 | case 0x030000: // Bus Status Register 0 |
philpem@40 | 321 | break; |
philpem@40 | 322 | case 0x040000: // Bus Status Register 1 |
philpem@40 | 323 | break; |
philpem@40 | 324 | case 0x050000: // Phone status |
philpem@40 | 325 | break; |
philpem@40 | 326 | case 0x060000: // DMA Count |
philpem@66 | 327 | ENFORCE_SIZE_W(bits, address, 16, "DMACOUNT"); |
philpem@59 | 328 | state.dma_count = (data & 0x3FFF); |
philpem@59 | 329 | state.idmarw = ((data & 0x4000) == 0x4000); |
philpem@59 | 330 | state.dmaen = ((data & 0x8000) == 0x8000); |
philpem@59 | 331 | // This handles the "dummy DMA transfer" mentioned in the docs |
philpem@112 | 332 | // disabled because it causes the floppy test to fail |
philpem@112 | 333 | #if 0 |
philpem@112 | 334 | if (!state.idmarw){ |
philpem@112 | 335 | if (access_check_dma(true)){ |
philpem@112 | 336 | uint32_t newAddr = mapAddr(state.dma_address, true); |
philpem@112 | 337 | // RAM access |
philpem@112 | 338 | if (newAddr <= 0x1fffff) |
philpem@112 | 339 | WR16(state.base_ram, newAddr, state.base_ram_size - 1, 0xFF); |
philpem@112 | 340 | else if (address <= 0x3FFFFF) |
philpem@112 | 341 | WR16(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1, 0xFF); |
philpem@112 | 342 | } |
philpem@112 | 343 | } |
philpem@112 | 344 | #endif |
philpem@59 | 345 | state.dma_count++; |
philpem@53 | 346 | handled = true; |
philpem@40 | 347 | break; |
philpem@40 | 348 | case 0x070000: // Line Printer Status Register |
philpem@40 | 349 | break; |
philpem@40 | 350 | case 0x080000: // Real Time Clock |
philpem@128 | 351 | LOGS("REAL TIME CLOCK WRITE"); |
philpem@40 | 352 | break; |
philpem@40 | 353 | case 0x090000: // Phone registers |
philpem@40 | 354 | switch (address & 0x0FF000) { |
philpem@40 | 355 | case 0x090000: // Handset relay |
philpem@40 | 356 | case 0x098000: |
philpem@40 | 357 | break; |
philpem@40 | 358 | case 0x091000: // Line select 2 |
philpem@40 | 359 | case 0x099000: |
philpem@40 | 360 | break; |
philpem@40 | 361 | case 0x092000: // Hook relay 1 |
philpem@40 | 362 | case 0x09A000: |
philpem@40 | 363 | break; |
philpem@40 | 364 | case 0x093000: // Hook relay 2 |
philpem@40 | 365 | case 0x09B000: |
philpem@40 | 366 | break; |
philpem@40 | 367 | case 0x094000: // Line 1 hold |
philpem@40 | 368 | case 0x09C000: |
philpem@40 | 369 | break; |
philpem@40 | 370 | case 0x095000: // Line 2 hold |
philpem@40 | 371 | case 0x09D000: |
philpem@40 | 372 | break; |
philpem@40 | 373 | case 0x096000: // Line 1 A-lead |
philpem@40 | 374 | case 0x09E000: |
philpem@40 | 375 | break; |
philpem@40 | 376 | case 0x097000: // Line 2 A-lead |
philpem@40 | 377 | case 0x09F000: |
philpem@40 | 378 | break; |
philpem@40 | 379 | } |
philpem@40 | 380 | break; |
philpem@59 | 381 | case 0x0A0000: // Miscellaneous Control Register |
philpem@66 | 382 | ENFORCE_SIZE_W(bits, address, 16, "MISCCON"); |
philpem@59 | 383 | // TODO: handle the ctrl bits properly |
philpem@97 | 384 | if (data & 0x8000){ |
philpem@97 | 385 | state.timer_enabled = 1; |
philpem@97 | 386 | }else{ |
philpem@97 | 387 | state.timer_enabled = 0; |
philpem@97 | 388 | state.timer_asserted = 0; |
philpem@97 | 389 | } |
philpem@59 | 390 | state.dma_reading = (data & 0x4000); |
philpem@72 | 391 | if (state.leds != ((~data & 0xF00) >> 8)) { |
philpem@72 | 392 | state.leds = (~data & 0xF00) >> 8; |
philpem@117 | 393 | #ifdef SHOW_LEDS |
philpem@72 | 394 | printf("LEDs: %s %s %s %s\n", |
philpem@72 | 395 | (state.leds & 8) ? "R" : "-", |
philpem@72 | 396 | (state.leds & 4) ? "G" : "-", |
philpem@72 | 397 | (state.leds & 2) ? "Y" : "-", |
philpem@72 | 398 | (state.leds & 1) ? "R" : "-"); |
philpem@117 | 399 | #endif |
philpem@72 | 400 | } |
philpem@46 | 401 | handled = true; |
philpem@40 | 402 | break; |
philpem@40 | 403 | case 0x0B0000: // TM/DIALWR |
philpem@40 | 404 | break; |
philpem@59 | 405 | case 0x0C0000: // Clear Status Register |
philpem@59 | 406 | state.genstat = 0xFFFF; |
philpem@59 | 407 | state.bsr0 = 0xFFFF; |
philpem@59 | 408 | state.bsr1 = 0xFFFF; |
philpem@43 | 409 | handled = true; |
philpem@40 | 410 | break; |
philpem@40 | 411 | case 0x0D0000: // DMA Address Register |
philpem@59 | 412 | if (address & 0x004000) { |
philpem@59 | 413 | // A14 high -- set most significant bits |
philpem@59 | 414 | state.dma_address = (state.dma_address & 0x1fe) | ((address & 0x3ffe) << 8); |
philpem@59 | 415 | } else { |
philpem@59 | 416 | // A14 low -- set least significant bits |
philpem@59 | 417 | state.dma_address = (state.dma_address & 0x3ffe00) | (address & 0x1fe); |
philpem@59 | 418 | } |
philpem@59 | 419 | handled = true; |
philpem@40 | 420 | break; |
philpem@40 | 421 | case 0x0E0000: // Disk Control Register |
philpem@112 | 422 | { |
philpem@112 | 423 | bool fd_selected; |
philpem@112 | 424 | bool hd_selected; |
philpem@112 | 425 | ENFORCE_SIZE_W(bits, address, 16, "DISKCON"); |
philpem@112 | 426 | // B7 = FDD controller reset |
philpem@112 | 427 | if ((data & 0x80) == 0) wd2797_reset(&state.fdc_ctx); |
philpem@112 | 428 | // B6 = drive 0 select |
philpem@112 | 429 | fd_selected = (data & 0x40) != 0; |
philpem@112 | 430 | // B5 = motor enable -- TODO |
philpem@112 | 431 | // B4 = HDD controller reset |
philpem@112 | 432 | if ((data & 0x10) == 0) wd2010_reset(&state.hdc_ctx); |
philpem@112 | 433 | // B3 = HDD0 select |
philpem@112 | 434 | hd_selected = (data & 0x08) != 0; |
philpem@112 | 435 | // B2,1,0 = HDD0 head select -- TODO? |
philpem@112 | 436 | if (hd_selected && !state.hd_selected){ |
philpem@112 | 437 | state.fd_selected = false; |
philpem@112 | 438 | state.hd_selected = true; |
philpem@112 | 439 | }else if (fd_selected && !state.fd_selected){ |
philpem@112 | 440 | state.hd_selected = false; |
philpem@112 | 441 | state.fd_selected = true; |
philpem@112 | 442 | } |
philpem@112 | 443 | handled = true; |
philpem@112 | 444 | break; |
philpem@112 | 445 | } |
philpem@40 | 446 | case 0x0F0000: // Line Printer Data Register |
philpem@40 | 447 | break; |
philpem@40 | 448 | } |
philpem@40 | 449 | } else if ((address >= 0xC00000) && (address <= 0xFFFFFF)) { |
philpem@40 | 450 | // I/O register space, zone B |
philpem@40 | 451 | switch (address & 0xF00000) { |
philpem@40 | 452 | case 0xC00000: // Expansion slots |
philpem@40 | 453 | case 0xD00000: |
philpem@40 | 454 | switch (address & 0xFC0000) { |
philpem@40 | 455 | case 0xC00000: // Expansion slot 0 |
philpem@40 | 456 | case 0xC40000: // Expansion slot 1 |
philpem@40 | 457 | case 0xC80000: // Expansion slot 2 |
philpem@40 | 458 | case 0xCC0000: // Expansion slot 3 |
philpem@40 | 459 | case 0xD00000: // Expansion slot 4 |
philpem@40 | 460 | case 0xD40000: // Expansion slot 5 |
philpem@40 | 461 | case 0xD80000: // Expansion slot 6 |
philpem@40 | 462 | case 0xDC0000: // Expansion slot 7 |
philpem@59 | 463 | fprintf(stderr, "NOTE: WR%d to expansion card space, addr=0x%08X, data=0x%08X\n", bits, address, data); |
philpem@59 | 464 | handled = true; |
philpem@40 | 465 | break; |
philpem@40 | 466 | } |
philpem@40 | 467 | break; |
philpem@40 | 468 | case 0xE00000: // HDC, FDC, MCR2 and RTC data bits |
philpem@40 | 469 | case 0xF00000: |
philpem@40 | 470 | switch (address & 0x070000) { |
philpem@112 | 471 | case 0x000000: // [ef][08]xxxx ==> WD2010 hard disc controller |
philpem@112 | 472 | wd2010_write_reg(&state.hdc_ctx, (address >> 1) & 7, data); |
philpem@112 | 473 | handled = true; |
philpem@40 | 474 | break; |
philpem@40 | 475 | case 0x010000: // [ef][19]xxxx ==> WD2797 floppy disc controller |
philpem@112 | 476 | /*ENFORCE_SIZE_W(bits, address, 16, "FDC REGISTERS");*/ |
philpem@59 | 477 | wd2797_write_reg(&state.fdc_ctx, (address >> 1) & 3, data); |
philpem@52 | 478 | handled = true; |
philpem@40 | 479 | break; |
philpem@40 | 480 | case 0x020000: // [ef][2a]xxxx ==> Miscellaneous Control Register 2 |
philpem@116 | 481 | // MCR2 - UNIX PC Rev. P5.1 HDD head select b3 and potential HDD#2 select |
philpem@116 | 482 | wd2010_write_reg(&state.hdc_ctx, UNIXPC_REG_MCR2, data); |
philpem@116 | 483 | handled = true; |
philpem@40 | 484 | break; |
philpem@40 | 485 | case 0x030000: // [ef][3b]xxxx ==> Real Time Clock data bits |
philpem@128 | 486 | LOGS("REAL TIME CLOCK DATA WRITE"); |
philpem@40 | 487 | break; |
philpem@40 | 488 | case 0x040000: // [ef][4c]xxxx ==> General Control Register |
philpem@40 | 489 | switch (address & 0x077000) { |
philpem@40 | 490 | case 0x040000: // [ef][4c][08]xxx ==> EE |
philpem@102 | 491 | // Error Enable. If =0, Level7 intrs and bus errors are masked. |
philpem@102 | 492 | ENFORCE_SIZE_W(bits, address, 16, "EE"); |
philpem@102 | 493 | state.ee = ((data & 0x8000) == 0x8000); |
philpem@102 | 494 | handled = true; |
philpem@59 | 495 | break; |
philpem@44 | 496 | case 0x041000: // [ef][4c][19]xxx ==> PIE |
philpem@66 | 497 | ENFORCE_SIZE_W(bits, address, 16, "PIE"); |
philpem@59 | 498 | state.pie = ((data & 0x8000) == 0x8000); |
philpem@59 | 499 | handled = true; |
philpem@59 | 500 | break; |
philpem@40 | 501 | case 0x042000: // [ef][4c][2A]xxx ==> BP |
philpem@59 | 502 | break; |
philpem@40 | 503 | case 0x043000: // [ef][4c][3B]xxx ==> ROMLMAP |
philpem@66 | 504 | ENFORCE_SIZE_W(bits, address, 16, "ROMLMAP"); |
philpem@59 | 505 | state.romlmap = ((data & 0x8000) == 0x8000); |
philpem@44 | 506 | handled = true; |
philpem@40 | 507 | break; |
philpem@59 | 508 | case 0x044000: // [ef][4c][4C]xxx ==> L1 MODEM |
philpem@66 | 509 | ENFORCE_SIZE_W(bits, address, 16, "L1 MODEM"); |
philpem@59 | 510 | break; |
philpem@59 | 511 | case 0x045000: // [ef][4c][5D]xxx ==> L2 MODEM |
philpem@66 | 512 | ENFORCE_SIZE_W(bits, address, 16, "L2 MODEM"); |
philpem@59 | 513 | break; |
philpem@59 | 514 | case 0x046000: // [ef][4c][6E]xxx ==> D/N CONNECT |
philpem@66 | 515 | ENFORCE_SIZE_W(bits, address, 16, "D/N CONNECT"); |
philpem@59 | 516 | break; |
philpem@59 | 517 | case 0x047000: // [ef][4c][7F]xxx ==> Whole screen reverse video |
philpem@66 | 518 | ENFORCE_SIZE_W(bits, address, 16, "WHOLE SCREEN REVERSE VIDEO"); |
philpem@40 | 519 | break; |
philpem@40 | 520 | } |
philpem@40 | 521 | case 0x050000: // [ef][5d]xxxx ==> 8274 |
philpem@40 | 522 | break; |
philpem@40 | 523 | case 0x060000: // [ef][6e]xxxx ==> Control regs |
philpem@40 | 524 | switch (address & 0x07F000) { |
philpem@40 | 525 | default: |
philpem@40 | 526 | break; |
philpem@40 | 527 | } |
philpem@40 | 528 | break; |
philpem@40 | 529 | case 0x070000: // [ef][7f]xxxx ==> 6850 Keyboard Controller |
philpem@84 | 530 | // TODO: figure out which sizes are valid (probably just 8 and 16) |
philpem@84 | 531 | // ENFORCE_SIZE_W(bits, address, 16, "KEYBOARD CONTROLLER"); |
philpem@93 | 532 | if (bits == 8) { |
philpem@128 | 533 | #ifdef LOG_KEYBOARD_WRITES |
philpem@128 | 534 | LOG("KBD WR %02X => %02X\n", (address >> 1) & 3, data); |
philpem@128 | 535 | #endif |
philpem@93 | 536 | keyboard_write(&state.kbd, (address >> 1) & 3, data); |
philpem@93 | 537 | handled = true; |
philpem@93 | 538 | } else if (bits == 16) { |
philpem@128 | 539 | #ifdef LOG_KEYBOARD_WRITES |
philpem@128 | 540 | LOG("KBD WR %02X => %04X\n", (address >> 1) & 3, data); |
philpem@128 | 541 | #endif |
philpem@93 | 542 | keyboard_write(&state.kbd, (address >> 1) & 3, data >> 8); |
philpem@93 | 543 | handled = true; |
philpem@93 | 544 | } |
philpem@40 | 545 | break; |
philpem@40 | 546 | } |
philpem@40 | 547 | } |
philpem@40 | 548 | } |
philpem@40 | 549 | |
philpem@64 | 550 | LOG_NOT_HANDLED_W(bits); |
philpem@59 | 551 | }/*}}}*/ |
philpem@40 | 552 | |
philpem@59 | 553 | uint32_t IoRead(uint32_t address, int bits)/*{{{*/ |
philpem@59 | 554 | { |
philpem@59 | 555 | bool handled = false; |
philpem@119 | 556 | uint32_t data = EMPTY & 0xFFFFFFFF; |
philpem@40 | 557 | |
philpem@59 | 558 | if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@40 | 559 | // I/O register space, zone A |
philpem@40 | 560 | switch (address & 0x0F0000) { |
philpem@40 | 561 | case 0x010000: // General Status Register |
philpem@116 | 562 | /* ENFORCE_SIZE_R(bits, address, 16, "GENSTAT"); */ |
philpem@116 | 563 | if (bits == 32) { |
philpem@116 | 564 | return ((uint32_t)state.genstat << 16) + (uint32_t)state.genstat; |
philpem@116 | 565 | } else if (bits == 16) { |
philpem@116 | 566 | return (uint16_t)state.genstat; |
philpem@116 | 567 | } else { |
philpem@116 | 568 | return (uint8_t)(state.genstat & 0xff); |
philpem@116 | 569 | } |
philpem@40 | 570 | break; |
philpem@40 | 571 | case 0x030000: // Bus Status Register 0 |
philpem@66 | 572 | ENFORCE_SIZE_R(bits, address, 16, "BSR0"); |
philpem@59 | 573 | return ((uint32_t)state.bsr0 << 16) + (uint32_t)state.bsr0; |
philpem@40 | 574 | break; |
philpem@40 | 575 | case 0x040000: // Bus Status Register 1 |
philpem@66 | 576 | ENFORCE_SIZE_R(bits, address, 16, "BSR1"); |
philpem@59 | 577 | return ((uint32_t)state.bsr1 << 16) + (uint32_t)state.bsr1; |
philpem@40 | 578 | break; |
philpem@40 | 579 | case 0x050000: // Phone status |
philpem@66 | 580 | ENFORCE_SIZE_R(bits, address, 8 | 16, "PHONE STATUS"); |
philpem@40 | 581 | break; |
philpem@40 | 582 | case 0x060000: // DMA Count |
philpem@55 | 583 | // TODO: U/OERR- is always inactive (bit set)... or should it be = DMAEN+? |
philpem@55 | 584 | // Bit 14 is always unused, so leave it set |
philpem@66 | 585 | ENFORCE_SIZE_R(bits, address, 16, "DMACOUNT"); |
philpem@59 | 586 | return (state.dma_count & 0x3fff) | 0xC000; |
philpem@40 | 587 | break; |
philpem@40 | 588 | case 0x070000: // Line Printer Status Register |
philpem@53 | 589 | data = 0x00120012; // no parity error, no line printer error, no irqs from FDD or HDD |
philpem@78 | 590 | data |= wd2797_get_irq(&state.fdc_ctx) ? 0x00080008 : 0; |
philpem@112 | 591 | data |= wd2010_get_irq(&state.hdc_ctx) ? 0x00040004 : 0; |
philpem@59 | 592 | return data; |
philpem@40 | 593 | break; |
philpem@40 | 594 | case 0x080000: // Real Time Clock |
philpem@128 | 595 | LOGS("REAL TIME CLOCK READ"); |
philpem@40 | 596 | break; |
philpem@40 | 597 | case 0x090000: // Phone registers |
philpem@40 | 598 | switch (address & 0x0FF000) { |
philpem@40 | 599 | case 0x090000: // Handset relay |
philpem@40 | 600 | case 0x098000: |
philpem@40 | 601 | break; |
philpem@40 | 602 | case 0x091000: // Line select 2 |
philpem@40 | 603 | case 0x099000: |
philpem@40 | 604 | break; |
philpem@40 | 605 | case 0x092000: // Hook relay 1 |
philpem@40 | 606 | case 0x09A000: |
philpem@40 | 607 | break; |
philpem@40 | 608 | case 0x093000: // Hook relay 2 |
philpem@40 | 609 | case 0x09B000: |
philpem@40 | 610 | break; |
philpem@40 | 611 | case 0x094000: // Line 1 hold |
philpem@40 | 612 | case 0x09C000: |
philpem@40 | 613 | break; |
philpem@40 | 614 | case 0x095000: // Line 2 hold |
philpem@40 | 615 | case 0x09D000: |
philpem@40 | 616 | break; |
philpem@40 | 617 | case 0x096000: // Line 1 A-lead |
philpem@40 | 618 | case 0x09E000: |
philpem@40 | 619 | break; |
philpem@40 | 620 | case 0x097000: // Line 2 A-lead |
philpem@40 | 621 | case 0x09F000: |
philpem@40 | 622 | break; |
philpem@40 | 623 | } |
philpem@40 | 624 | break; |
philpem@46 | 625 | case 0x0A0000: // Miscellaneous Control Register -- write only! |
philpem@46 | 626 | handled = true; |
philpem@40 | 627 | break; |
philpem@40 | 628 | case 0x0B0000: // TM/DIALWR |
philpem@40 | 629 | break; |
philpem@46 | 630 | case 0x0C0000: // Clear Status Register -- write only! |
philpem@43 | 631 | handled = true; |
philpem@40 | 632 | break; |
philpem@40 | 633 | case 0x0D0000: // DMA Address Register |
philpem@40 | 634 | break; |
philpem@40 | 635 | case 0x0E0000: // Disk Control Register |
philpem@40 | 636 | break; |
philpem@40 | 637 | case 0x0F0000: // Line Printer Data Register |
philpem@40 | 638 | break; |
philpem@40 | 639 | } |
philpem@40 | 640 | } else if ((address >= 0xC00000) && (address <= 0xFFFFFF)) { |
philpem@40 | 641 | // I/O register space, zone B |
philpem@40 | 642 | switch (address & 0xF00000) { |
philpem@40 | 643 | case 0xC00000: // Expansion slots |
philpem@40 | 644 | case 0xD00000: |
philpem@40 | 645 | switch (address & 0xFC0000) { |
philpem@40 | 646 | case 0xC00000: // Expansion slot 0 |
philpem@40 | 647 | case 0xC40000: // Expansion slot 1 |
philpem@40 | 648 | case 0xC80000: // Expansion slot 2 |
philpem@40 | 649 | case 0xCC0000: // Expansion slot 3 |
philpem@40 | 650 | case 0xD00000: // Expansion slot 4 |
philpem@40 | 651 | case 0xD40000: // Expansion slot 5 |
philpem@40 | 652 | case 0xD80000: // Expansion slot 6 |
philpem@40 | 653 | case 0xDC0000: // Expansion slot 7 |
philpem@65 | 654 | fprintf(stderr, "NOTE: RD%d from expansion card space, addr=0x%08X\n", bits, address); |
philpem@65 | 655 | handled = true; |
philpem@40 | 656 | break; |
philpem@40 | 657 | } |
philpem@40 | 658 | break; |
philpem@40 | 659 | case 0xE00000: // HDC, FDC, MCR2 and RTC data bits |
philpem@40 | 660 | case 0xF00000: |
philpem@40 | 661 | switch (address & 0x070000) { |
philpem@40 | 662 | case 0x000000: // [ef][08]xxxx ==> WD1010 hard disc controller |
philpem@112 | 663 | return (wd2010_read_reg(&state.hdc_ctx, (address >> 1) & 7)); |
philpem@112 | 664 | |
philpem@40 | 665 | break; |
philpem@40 | 666 | case 0x010000: // [ef][19]xxxx ==> WD2797 floppy disc controller |
philpem@112 | 667 | /*ENFORCE_SIZE_R(bits, address, 16, "FDC REGISTERS");*/ |
philpem@59 | 668 | return wd2797_read_reg(&state.fdc_ctx, (address >> 1) & 3); |
philpem@40 | 669 | break; |
philpem@40 | 670 | case 0x020000: // [ef][2a]xxxx ==> Miscellaneous Control Register 2 |
philpem@40 | 671 | break; |
philpem@40 | 672 | case 0x030000: // [ef][3b]xxxx ==> Real Time Clock data bits |
philpem@128 | 673 | LOGS("REAL TIME CLOCK DATA READ"); |
philpem@40 | 674 | break; |
philpem@40 | 675 | case 0x040000: // [ef][4c]xxxx ==> General Control Register |
philpem@40 | 676 | switch (address & 0x077000) { |
philpem@40 | 677 | case 0x040000: // [ef][4c][08]xxx ==> EE |
philpem@44 | 678 | case 0x041000: // [ef][4c][19]xxx ==> PIE |
philpem@40 | 679 | case 0x042000: // [ef][4c][2A]xxx ==> BP |
philpem@40 | 680 | case 0x043000: // [ef][4c][3B]xxx ==> ROMLMAP |
philpem@40 | 681 | case 0x044000: // [ef][4c][4C]xxx ==> L1 MODEM |
philpem@40 | 682 | case 0x045000: // [ef][4c][5D]xxx ==> L2 MODEM |
philpem@40 | 683 | case 0x046000: // [ef][4c][6E]xxx ==> D/N CONNECT |
philpem@44 | 684 | // All write-only registers... TODO: bus error? |
philpem@44 | 685 | handled = true; |
philpem@40 | 686 | break; |
philpem@44 | 687 | case 0x047000: // [ef][4c][7F]xxx ==> Whole screen reverse video [FIXME: not in TRM] |
philpem@40 | 688 | break; |
philpem@40 | 689 | } |
philpem@40 | 690 | break; |
philpem@40 | 691 | case 0x050000: // [ef][5d]xxxx ==> 8274 |
philpem@40 | 692 | break; |
philpem@40 | 693 | case 0x060000: // [ef][6e]xxxx ==> Control regs |
philpem@40 | 694 | switch (address & 0x07F000) { |
philpem@40 | 695 | default: |
philpem@40 | 696 | break; |
philpem@40 | 697 | } |
philpem@40 | 698 | break; |
philpem@40 | 699 | case 0x070000: // [ef][7f]xxxx ==> 6850 Keyboard Controller |
philpem@84 | 700 | // TODO: figure out which sizes are valid (probably just 8 and 16) |
philpem@84 | 701 | //ENFORCE_SIZE_R(bits, address, 16, "KEYBOARD CONTROLLER"); |
philpem@84 | 702 | { |
philpem@93 | 703 | if (bits == 8) { |
philpem@93 | 704 | return keyboard_read(&state.kbd, (address >> 1) & 3); |
philpem@93 | 705 | } else { |
philpem@93 | 706 | return keyboard_read(&state.kbd, (address >> 1) & 3) << 8; |
philpem@93 | 707 | } |
philpem@84 | 708 | return data; |
philpem@84 | 709 | } |
philpem@40 | 710 | break; |
philpem@40 | 711 | } |
philpem@40 | 712 | } |
philpem@40 | 713 | } |
philpem@40 | 714 | |
philpem@64 | 715 | LOG_NOT_HANDLED_R(bits); |
philpem@64 | 716 | |
philpem@59 | 717 | return data; |
philpem@59 | 718 | }/*}}}*/ |
philpem@40 | 719 | |
philpem@59 | 720 | |
philpem@59 | 721 | /******************************************************** |
philpem@59 | 722 | * m68k memory read/write support functions for Musashi |
philpem@59 | 723 | ********************************************************/ |
philpem@59 | 724 | |
philpem@59 | 725 | /** |
philpem@59 | 726 | * @brief Read M68K memory, 32-bit |
philpem@59 | 727 | */ |
philpem@59 | 728 | uint32_t m68k_read_memory_32(uint32_t address)/*{{{*/ |
philpem@59 | 729 | { |
philpem@119 | 730 | uint32_t data = EMPTY & 0xFFFFFFFF; |
philpem@59 | 731 | |
philpem@59 | 732 | // If ROMLMAP is set, force system to access ROM |
philpem@59 | 733 | if (!state.romlmap) |
philpem@59 | 734 | address |= 0x800000; |
philpem@59 | 735 | |
philpem@59 | 736 | // Check access permissions |
philpem@59 | 737 | ACCESS_CHECK_RD(address, 32); |
philpem@59 | 738 | |
philpem@59 | 739 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@59 | 740 | // ROM access |
philpem@60 | 741 | return RD32(state.rom, address, ROM_SIZE - 1); |
philpem@60 | 742 | } else if (address <= 0x3fffff) { |
philpem@59 | 743 | // RAM access |
philpem@128 | 744 | uint32_t newAddr = MAP_ADDR(address); |
philpem@128 | 745 | |
philpem@63 | 746 | if (newAddr <= 0x1fffff) { |
philpem@129 | 747 | // Base memory wraps around |
philpem@129 | 748 | return RD32(state.base_ram, newAddr, state.base_ram_size - 1); |
philpem@63 | 749 | } else { |
philpem@119 | 750 | if ((newAddr <= (state.exp_ram_size + 0x200000 - 1)) && (newAddr >= 0x200000)) |
philpem@63 | 751 | return RD32(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1); |
philpem@63 | 752 | else |
philpem@119 | 753 | return EMPTY & 0xffffffff; |
philpem@63 | 754 | } |
philpem@59 | 755 | } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@59 | 756 | // I/O register space, zone A |
philpem@59 | 757 | switch (address & 0x0F0000) { |
philpem@59 | 758 | case 0x000000: // Map RAM access |
philpem@59 | 759 | if (address > 0x4007FF) fprintf(stderr, "NOTE: RD32 from MapRAM mirror, addr=0x%08X\n", address); |
philpem@60 | 760 | return RD32(state.map, address, 0x7FF); |
philpem@59 | 761 | break; |
philpem@59 | 762 | case 0x020000: // Video RAM |
philpem@59 | 763 | if (address > 0x427FFF) fprintf(stderr, "NOTE: RD32 from VideoRAM mirror, addr=0x%08X\n", address); |
philpem@60 | 764 | return RD32(state.vram, address, 0x7FFF); |
philpem@59 | 765 | break; |
philpem@59 | 766 | default: |
philpem@60 | 767 | return IoRead(address, 32); |
philpem@59 | 768 | } |
philpem@59 | 769 | } else { |
philpem@60 | 770 | return IoRead(address, 32); |
philpem@59 | 771 | } |
philpem@59 | 772 | |
philpem@40 | 773 | return data; |
philpem@59 | 774 | }/*}}}*/ |
philpem@40 | 775 | |
philpem@40 | 776 | /** |
philpem@40 | 777 | * @brief Read M68K memory, 16-bit |
philpem@40 | 778 | */ |
philpem@59 | 779 | uint32_t m68k_read_memory_16(uint32_t address)/*{{{*/ |
philpem@40 | 780 | { |
philpem@119 | 781 | uint16_t data = EMPTY & 0xFFFF; |
philpem@40 | 782 | |
philpem@40 | 783 | // If ROMLMAP is set, force system to access ROM |
philpem@40 | 784 | if (!state.romlmap) |
philpem@40 | 785 | address |= 0x800000; |
philpem@40 | 786 | |
philpem@40 | 787 | // Check access permissions |
philpem@40 | 788 | ACCESS_CHECK_RD(address, 16); |
philpem@40 | 789 | |
philpem@40 | 790 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@40 | 791 | // ROM access |
philpem@40 | 792 | data = RD16(state.rom, address, ROM_SIZE - 1); |
philpem@60 | 793 | } else if (address <= 0x3fffff) { |
philpem@40 | 794 | // RAM access |
philpem@128 | 795 | uint32_t newAddr = MAP_ADDR(address); |
philpem@128 | 796 | |
philpem@63 | 797 | if (newAddr <= 0x1fffff) { |
philpem@129 | 798 | // Base memory wraps around |
philpem@129 | 799 | return RD16(state.base_ram, newAddr, state.base_ram_size - 1); |
philpem@63 | 800 | } else { |
philpem@119 | 801 | if ((newAddr <= (state.exp_ram_size + 0x200000 - 1)) && (newAddr >= 0x200000)) |
philpem@63 | 802 | return RD16(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1); |
philpem@63 | 803 | else |
philpem@119 | 804 | return EMPTY & 0xffff; |
philpem@63 | 805 | } |
philpem@40 | 806 | } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@40 | 807 | // I/O register space, zone A |
philpem@40 | 808 | switch (address & 0x0F0000) { |
philpem@40 | 809 | case 0x000000: // Map RAM access |
philpem@40 | 810 | if (address > 0x4007FF) fprintf(stderr, "NOTE: RD16 from MapRAM mirror, addr=0x%08X\n", address); |
philpem@40 | 811 | data = RD16(state.map, address, 0x7FF); |
philpem@40 | 812 | break; |
philpem@40 | 813 | case 0x020000: // Video RAM |
philpem@40 | 814 | if (address > 0x427FFF) fprintf(stderr, "NOTE: RD16 from VideoRAM mirror, addr=0x%08X\n", address); |
philpem@40 | 815 | data = RD16(state.vram, address, 0x7FFF); |
philpem@40 | 816 | break; |
philpem@59 | 817 | default: |
philpem@59 | 818 | data = IoRead(address, 16); |
philpem@40 | 819 | } |
philpem@59 | 820 | } else { |
philpem@59 | 821 | data = IoRead(address, 16); |
philpem@40 | 822 | } |
philpem@40 | 823 | |
philpem@40 | 824 | return data; |
philpem@59 | 825 | }/*}}}*/ |
philpem@40 | 826 | |
philpem@40 | 827 | /** |
philpem@40 | 828 | * @brief Read M68K memory, 8-bit |
philpem@40 | 829 | */ |
philpem@59 | 830 | uint32_t m68k_read_memory_8(uint32_t address)/*{{{*/ |
philpem@40 | 831 | { |
philpem@119 | 832 | uint8_t data = EMPTY & 0xFF; |
philpem@40 | 833 | |
philpem@40 | 834 | // If ROMLMAP is set, force system to access ROM |
philpem@40 | 835 | if (!state.romlmap) |
philpem@40 | 836 | address |= 0x800000; |
philpem@40 | 837 | |
philpem@40 | 838 | // Check access permissions |
philpem@40 | 839 | ACCESS_CHECK_RD(address, 8); |
philpem@40 | 840 | |
philpem@40 | 841 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@40 | 842 | // ROM access |
philpem@40 | 843 | data = RD8(state.rom, address, ROM_SIZE - 1); |
philpem@60 | 844 | } else if (address <= 0x3fffff) { |
philpem@40 | 845 | // RAM access |
philpem@128 | 846 | uint32_t newAddr = MAP_ADDR(address); |
philpem@128 | 847 | |
philpem@63 | 848 | if (newAddr <= 0x1fffff) { |
philpem@129 | 849 | // Base memory wraps around |
philpem@129 | 850 | return RD8(state.base_ram, newAddr, state.base_ram_size - 1); |
philpem@63 | 851 | } else { |
philpem@119 | 852 | if ((newAddr <= (state.exp_ram_size + 0x200000 - 1)) && (newAddr >= 0x200000)) |
philpem@63 | 853 | return RD8(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1); |
philpem@63 | 854 | else |
philpem@119 | 855 | return EMPTY & 0xff; |
philpem@63 | 856 | } |
philpem@40 | 857 | } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@40 | 858 | // I/O register space, zone A |
philpem@40 | 859 | switch (address & 0x0F0000) { |
philpem@40 | 860 | case 0x000000: // Map RAM access |
philpem@40 | 861 | if (address > 0x4007FF) fprintf(stderr, "NOTE: RD8 from MapRAM mirror, addr=0x%08X\n", address); |
philpem@40 | 862 | data = RD8(state.map, address, 0x7FF); |
philpem@40 | 863 | break; |
philpem@40 | 864 | case 0x020000: // Video RAM |
philpem@40 | 865 | if (address > 0x427FFF) fprintf(stderr, "NOTE: RD8 from VideoRAM mirror, addr=0x%08X\n", address); |
philpem@40 | 866 | data = RD8(state.vram, address, 0x7FFF); |
philpem@40 | 867 | break; |
philpem@59 | 868 | default: |
philpem@59 | 869 | data = IoRead(address, 8); |
philpem@40 | 870 | } |
philpem@59 | 871 | } else { |
philpem@59 | 872 | data = IoRead(address, 8); |
philpem@40 | 873 | } |
philpem@40 | 874 | |
philpem@40 | 875 | return data; |
philpem@59 | 876 | }/*}}}*/ |
philpem@40 | 877 | |
philpem@40 | 878 | /** |
philpem@40 | 879 | * @brief Write M68K memory, 32-bit |
philpem@40 | 880 | */ |
philpem@59 | 881 | void m68k_write_memory_32(uint32_t address, uint32_t value)/*{{{*/ |
philpem@40 | 882 | { |
philpem@40 | 883 | // If ROMLMAP is set, force system to access ROM |
philpem@40 | 884 | if (!state.romlmap) |
philpem@40 | 885 | address |= 0x800000; |
philpem@40 | 886 | |
philpem@40 | 887 | // Check access permissions |
philpem@40 | 888 | ACCESS_CHECK_WR(address, 32); |
philpem@40 | 889 | |
philpem@40 | 890 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@40 | 891 | // ROM access |
philpem@60 | 892 | } else if (address <= 0x3FFFFF) { |
philpem@40 | 893 | // RAM access |
philpem@128 | 894 | uint32_t newAddr = MAP_ADDR(address); |
philpem@128 | 895 | |
philpem@119 | 896 | if (newAddr <= 0x1fffff) { |
philpem@119 | 897 | if (newAddr < state.base_ram_size) { |
philpem@119 | 898 | WR32(state.base_ram, newAddr, state.base_ram_size - 1, value); |
philpem@119 | 899 | } |
philpem@119 | 900 | } else { |
philpem@119 | 901 | if ((newAddr - 0x200000) < state.exp_ram_size) { |
philpem@119 | 902 | WR32(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1, value); |
philpem@119 | 903 | } |
philpem@119 | 904 | } |
philpem@40 | 905 | } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@40 | 906 | // I/O register space, zone A |
philpem@40 | 907 | switch (address & 0x0F0000) { |
philpem@40 | 908 | case 0x000000: // Map RAM access |
philpem@105 | 909 | if (address > 0x4007FF) fprintf(stderr, "NOTE: WR32 to MapRAM mirror, addr=0x%08X\n", address); |
philpem@40 | 910 | WR32(state.map, address, 0x7FF, value); |
philpem@40 | 911 | break; |
philpem@40 | 912 | case 0x020000: // Video RAM |
philpem@105 | 913 | if (address > 0x427FFF) fprintf(stderr, "NOTE: WR32 to VideoRAM mirror, addr=0x%08X\n", address); |
philpem@40 | 914 | WR32(state.vram, address, 0x7FFF, value); |
philpem@40 | 915 | break; |
philpem@59 | 916 | default: |
philpem@59 | 917 | IoWrite(address, value, 32); |
philpem@40 | 918 | } |
philpem@59 | 919 | } else { |
philpem@59 | 920 | IoWrite(address, value, 32); |
philpem@40 | 921 | } |
philpem@59 | 922 | }/*}}}*/ |
philpem@40 | 923 | |
philpem@40 | 924 | /** |
philpem@40 | 925 | * @brief Write M68K memory, 16-bit |
philpem@40 | 926 | */ |
philpem@59 | 927 | void m68k_write_memory_16(uint32_t address, uint32_t value)/*{{{*/ |
philpem@40 | 928 | { |
philpem@40 | 929 | // If ROMLMAP is set, force system to access ROM |
philpem@40 | 930 | if (!state.romlmap) |
philpem@40 | 931 | address |= 0x800000; |
philpem@40 | 932 | |
philpem@40 | 933 | // Check access permissions |
philpem@40 | 934 | ACCESS_CHECK_WR(address, 16); |
philpem@40 | 935 | |
philpem@40 | 936 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@40 | 937 | // ROM access |
philpem@60 | 938 | } else if (address <= 0x3FFFFF) { |
philpem@40 | 939 | // RAM access |
philpem@128 | 940 | uint32_t newAddr = MAP_ADDR(address); |
philpem@112 | 941 | |
philpem@119 | 942 | if (newAddr <= 0x1fffff) { |
philpem@119 | 943 | if (newAddr < state.base_ram_size) { |
philpem@119 | 944 | WR16(state.base_ram, newAddr, state.base_ram_size - 1, value); |
philpem@119 | 945 | } |
philpem@119 | 946 | } else { |
philpem@119 | 947 | if ((newAddr - 0x200000) < state.exp_ram_size) { |
philpem@119 | 948 | WR16(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1, value); |
philpem@119 | 949 | } |
philpem@119 | 950 | } |
philpem@40 | 951 | } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@40 | 952 | // I/O register space, zone A |
philpem@40 | 953 | switch (address & 0x0F0000) { |
philpem@40 | 954 | case 0x000000: // Map RAM access |
philpem@40 | 955 | if (address > 0x4007FF) fprintf(stderr, "NOTE: WR16 to MapRAM mirror, addr=0x%08X, data=0x%04X\n", address, value); |
philpem@40 | 956 | WR16(state.map, address, 0x7FF, value); |
philpem@40 | 957 | break; |
philpem@40 | 958 | case 0x020000: // Video RAM |
philpem@40 | 959 | if (address > 0x427FFF) fprintf(stderr, "NOTE: WR16 to VideoRAM mirror, addr=0x%08X, data=0x%04X\n", address, value); |
philpem@40 | 960 | WR16(state.vram, address, 0x7FFF, value); |
philpem@40 | 961 | break; |
philpem@59 | 962 | default: |
philpem@59 | 963 | IoWrite(address, value, 16); |
philpem@40 | 964 | } |
philpem@59 | 965 | } else { |
philpem@59 | 966 | IoWrite(address, value, 16); |
philpem@40 | 967 | } |
philpem@59 | 968 | }/*}}}*/ |
philpem@40 | 969 | |
philpem@40 | 970 | /** |
philpem@40 | 971 | * @brief Write M68K memory, 8-bit |
philpem@40 | 972 | */ |
philpem@59 | 973 | void m68k_write_memory_8(uint32_t address, uint32_t value)/*{{{*/ |
philpem@40 | 974 | { |
philpem@40 | 975 | // If ROMLMAP is set, force system to access ROM |
philpem@40 | 976 | if (!state.romlmap) |
philpem@40 | 977 | address |= 0x800000; |
philpem@40 | 978 | |
philpem@40 | 979 | // Check access permissions |
philpem@40 | 980 | ACCESS_CHECK_WR(address, 8); |
philpem@40 | 981 | |
philpem@40 | 982 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@40 | 983 | // ROM access (read only!) |
philpem@60 | 984 | } else if (address <= 0x3FFFFF) { |
philpem@40 | 985 | // RAM access |
philpem@128 | 986 | uint32_t newAddr = MAP_ADDR(address); |
philpem@128 | 987 | |
philpem@119 | 988 | if (newAddr <= 0x1fffff) { |
philpem@119 | 989 | if (newAddr < state.base_ram_size) { |
philpem@119 | 990 | WR8(state.base_ram, newAddr, state.base_ram_size - 1, value); |
philpem@119 | 991 | } |
philpem@119 | 992 | } else { |
philpem@119 | 993 | if ((newAddr - 0x200000) < state.exp_ram_size) { |
philpem@119 | 994 | WR8(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1, value); |
philpem@119 | 995 | } |
philpem@119 | 996 | } |
philpem@40 | 997 | } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@40 | 998 | // I/O register space, zone A |
philpem@40 | 999 | switch (address & 0x0F0000) { |
philpem@40 | 1000 | case 0x000000: // Map RAM access |
philpem@59 | 1001 | if (address > 0x4007FF) fprintf(stderr, "NOTE: WR8 to MapRAM mirror, addr=0x%08X, data=0x%04X\n", address, value); |
philpem@40 | 1002 | WR8(state.map, address, 0x7FF, value); |
philpem@40 | 1003 | break; |
philpem@40 | 1004 | case 0x020000: // Video RAM |
philpem@59 | 1005 | if (address > 0x427FFF) fprintf(stderr, "NOTE: WR8 to VideoRAM mirror, addr=0x%08X, data=0x%04X\n", address, value); |
philpem@40 | 1006 | WR8(state.vram, address, 0x7FFF, value); |
philpem@40 | 1007 | break; |
philpem@59 | 1008 | default: |
philpem@59 | 1009 | IoWrite(address, value, 8); |
philpem@40 | 1010 | } |
philpem@59 | 1011 | } else { |
philpem@59 | 1012 | IoWrite(address, value, 8); |
philpem@40 | 1013 | } |
philpem@59 | 1014 | }/*}}}*/ |
philpem@40 | 1015 | |
philpem@40 | 1016 | |
philpem@40 | 1017 | // for the disassembler |
philpem@121 | 1018 | uint32_t m68k_read_disassembler_32(uint32_t addr) |
philpem@121 | 1019 | { |
philpem@121 | 1020 | if (addr < 0x400000) { |
philpem@128 | 1021 | // XXX FIXME BUGBUG update this to use the new mapper macros! |
philpem@121 | 1022 | uint16_t page = (addr >> 12) & 0x3FF; |
philpem@121 | 1023 | uint32_t new_page_addr = MAPRAM(page) & 0x3FF; |
philpem@121 | 1024 | uint32_t newAddr = (new_page_addr << 12) + (addr & 0xFFF); |
philpem@121 | 1025 | if (newAddr <= 0x1fffff) { |
philpem@121 | 1026 | if (newAddr >= state.base_ram_size) |
philpem@121 | 1027 | return EMPTY; |
philpem@121 | 1028 | else |
philpem@121 | 1029 | return RD32(state.base_ram, newAddr, state.base_ram_size - 1); |
philpem@121 | 1030 | } else { |
philpem@121 | 1031 | if ((newAddr <= (state.exp_ram_size + 0x200000 - 1)) && (newAddr >= 0x200000)) |
philpem@121 | 1032 | return RD32(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1); |
philpem@121 | 1033 | else |
philpem@121 | 1034 | return EMPTY; |
philpem@121 | 1035 | } |
philpem@121 | 1036 | } else { |
philpem@128 | 1037 | LOG("WARNING: Disassembler RD32 out of range 0x%08X\n", addr); |
philpem@121 | 1038 | return EMPTY; |
philpem@121 | 1039 | } |
philpem@121 | 1040 | } |
philpem@40 | 1041 | |
philpem@121 | 1042 | uint32_t m68k_read_disassembler_16(uint32_t addr) |
philpem@121 | 1043 | { |
philpem@121 | 1044 | if (addr < 0x400000) { |
philpem@121 | 1045 | uint16_t page = (addr >> 12) & 0x3FF; |
philpem@121 | 1046 | uint32_t new_page_addr = MAPRAM(page) & 0x3FF; |
philpem@121 | 1047 | uint32_t newAddr = (new_page_addr << 12) + (addr & 0xFFF); |
philpem@121 | 1048 | if (newAddr <= 0x1fffff) { |
philpem@121 | 1049 | if (newAddr >= state.base_ram_size) |
philpem@121 | 1050 | return EMPTY & 0xffff; |
philpem@121 | 1051 | else |
philpem@121 | 1052 | return RD16(state.base_ram, newAddr, state.base_ram_size - 1); |
philpem@121 | 1053 | } else { |
philpem@121 | 1054 | if ((newAddr <= (state.exp_ram_size + 0x200000 - 1)) && (newAddr >= 0x200000)) |
philpem@121 | 1055 | return RD16(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1); |
philpem@121 | 1056 | else |
philpem@121 | 1057 | return EMPTY & 0xffff; |
philpem@121 | 1058 | } |
philpem@121 | 1059 | } else { |
philpem@128 | 1060 | LOG("WARNING: Disassembler RD16 out of range 0x%08X\n", addr); |
philpem@121 | 1061 | return EMPTY & 0xffff; |
philpem@121 | 1062 | } |
philpem@121 | 1063 | } |
philpem@121 | 1064 | |
philpem@121 | 1065 | uint32_t m68k_read_disassembler_8 (uint32_t addr) |
philpem@121 | 1066 | { |
philpem@121 | 1067 | if (addr < 0x400000) { |
philpem@121 | 1068 | uint16_t page = (addr >> 12) & 0x3FF; |
philpem@121 | 1069 | uint32_t new_page_addr = MAPRAM(page) & 0x3FF; |
philpem@121 | 1070 | uint32_t newAddr = (new_page_addr << 12) + (addr & 0xFFF); |
philpem@121 | 1071 | if (newAddr <= 0x1fffff) { |
philpem@121 | 1072 | if (newAddr >= state.base_ram_size) |
philpem@121 | 1073 | return EMPTY & 0xff; |
philpem@121 | 1074 | else |
philpem@121 | 1075 | return RD8(state.base_ram, newAddr, state.base_ram_size - 1); |
philpem@121 | 1076 | } else { |
philpem@121 | 1077 | if ((newAddr <= (state.exp_ram_size + 0x200000 - 1)) && (newAddr >= 0x200000)) |
philpem@121 | 1078 | return RD8(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1); |
philpem@121 | 1079 | else |
philpem@121 | 1080 | return EMPTY & 0xff; |
philpem@121 | 1081 | } |
philpem@121 | 1082 | } else { |
philpem@128 | 1083 | LOG("WARNING: Disassembler RD8 out of range 0x%08X\n", addr); |
philpem@121 | 1084 | return EMPTY & 0xff; |
philpem@121 | 1085 | } |
philpem@121 | 1086 | } |
philpem@121 | 1087 |