Fri, 18 Jan 2013 17:03:48 +0000
experimental memory mapper, not quite working
philpem@40 | 1 | #include <stdio.h> |
philpem@40 | 2 | #include <stdlib.h> |
philpem@40 | 3 | #include <stdint.h> |
philpem@40 | 4 | #include <stdbool.h> |
philpem@59 | 5 | #include <assert.h> |
philpem@40 | 6 | #include "musashi/m68k.h" |
philpem@40 | 7 | #include "state.h" |
philpem@100 | 8 | #include "utils.h" |
philpem@40 | 9 | #include "memory.h" |
philpem@40 | 10 | |
philpem@119 | 11 | // The value which will be returned if the CPU attempts to read from empty memory |
philpem@119 | 12 | // TODO (FIXME?) - need to figure out if R/W ops wrap around. This seems to appease the UNIX kernel and P4TEST. |
philpem@119 | 13 | #define EMPTY 0xFFFFFFFFUL |
philpem@119 | 14 | // #define EMPTY 0x55555555UL |
philpem@119 | 15 | |
philpem@40 | 16 | /****************** |
philpem@40 | 17 | * Memory mapping |
philpem@40 | 18 | ******************/ |
philpem@40 | 19 | |
philpem@128 | 20 | /// Set a page bit |
philpem@128 | 21 | #define MAP_SET_PAGEBIT(addr, bit) state.map[(((addr) >> 12) & 0x3FF)*2] |= (bit << 2) |
philpem@128 | 22 | /// Clear a page bit |
philpem@128 | 23 | #define MAP_CLR_PAGEBIT(addr, bit) state.map[(((addr) >> 12) & 0x3FF)*2] &= ~(bit << 2) |
philpem@40 | 24 | |
philpem@40 | 25 | |
philpem@40 | 26 | /******************************************************** |
philpem@40 | 27 | * m68k memory read/write support functions for Musashi |
philpem@40 | 28 | ********************************************************/ |
philpem@40 | 29 | |
philpem@40 | 30 | /** |
philpem@40 | 31 | * @brief Check memory access permissions for a write operation. |
philpem@40 | 32 | * @note This used to be a single macro (merged with ACCESS_CHECK_RD), but |
philpem@40 | 33 | * gcc throws warnings when you have a return-with-value in a void |
philpem@40 | 34 | * function, even if the return-with-value is completely unreachable. |
philpem@40 | 35 | * Similarly it doesn't like it if you have a return without a value |
philpem@40 | 36 | * in a non-void function, even if it's impossible to ever reach the |
philpem@40 | 37 | * return-with-no-value. UGH! |
philpem@40 | 38 | */ |
philpem@59 | 39 | /*{{{ macro: ACCESS_CHECK_WR(address, bits)*/ |
philpem@59 | 40 | #define ACCESS_CHECK_WR(address, bits) \ |
philpem@59 | 41 | do { \ |
philpem@128 | 42 | if (access_check_cpu(address, bits, true)) { \ |
philpem@40 | 43 | return; \ |
philpem@40 | 44 | } \ |
philpem@70 | 45 | } while (0) |
philpem@59 | 46 | /*}}}*/ |
philpem@40 | 47 | |
philpem@40 | 48 | /** |
philpem@40 | 49 | * @brief Check memory access permissions for a read operation. |
philpem@40 | 50 | * @note This used to be a single macro (merged with ACCESS_CHECK_WR), but |
philpem@40 | 51 | * gcc throws warnings when you have a return-with-value in a void |
philpem@40 | 52 | * function, even if the return-with-value is completely unreachable. |
philpem@40 | 53 | * Similarly it doesn't like it if you have a return without a value |
philpem@40 | 54 | * in a non-void function, even if it's impossible to ever reach the |
philpem@40 | 55 | * return-with-no-value. UGH! |
philpem@40 | 56 | */ |
philpem@59 | 57 | /*{{{ macro: ACCESS_CHECK_RD(address, bits)*/ |
philpem@59 | 58 | #define ACCESS_CHECK_RD(address, bits) \ |
philpem@59 | 59 | do { \ |
philpem@128 | 60 | if (access_check_cpu(address, bits, false)) { \ |
philpem@128 | 61 | if (bits == 32) \ |
philpem@128 | 62 | return EMPTY & 0xFFFFFFFF; \ |
philpem@40 | 63 | else \ |
philpem@128 | 64 | return EMPTY & ((1UL << bits)-1); \ |
philpem@40 | 65 | } \ |
philpem@70 | 66 | } while (0) |
philpem@59 | 67 | /*}}}*/ |
philpem@40 | 68 | |
philpem@128 | 69 | |
philpem@128 | 70 | /** |
philpem@128 | 71 | * Update the page bits for a given memory address |
philpem@128 | 72 | * |
philpem@128 | 73 | * @param addr Memory address being accessed |
philpem@128 | 74 | * @param l7intr Set to <i>true</i> if a level-seven interrupt has been |
philpem@128 | 75 | * signalled (even if <b>ENABLE ERROR</b> isn't set). |
philpem@128 | 76 | * @param write Set to <i>true</i> if the address is being written to. |
philpem@128 | 77 | */ |
philpem@128 | 78 | static void update_page_bits(uint32_t addr, bool l7intr, bool write) |
philpem@112 | 79 | { |
philpem@128 | 80 | bool ps0_state = false; |
philpem@128 | 81 | |
philpem@128 | 82 | // Don't try and update pagebits for non-RAM addresses |
philpem@128 | 83 | if (addr > 0x3FFFFF) |
philpem@128 | 84 | return; |
philpem@128 | 85 | |
philpem@128 | 86 | if (l7intr) { |
philpem@128 | 87 | // if (!(MAP_PAGEBITS(addr) & PAGE_BIT_PS0)) { |
philpem@128 | 88 | // FIXME FUCKUP The ruddy TRM is wrong AGAIN! If above line is uncommented, Really Bad Things Happen. |
philpem@128 | 89 | if ((MAP_PAGEBITS(addr) & PAGE_BIT_PS0)) { |
philpem@128 | 90 | // Level 7 interrupt, PS0 clear, PS1 don't-care. Set PS0. |
philpem@128 | 91 | ps0_state = true; |
philpem@128 | 92 | } |
philpem@128 | 93 | } else { |
philpem@128 | 94 | // No L7 interrupt |
philpem@128 | 95 | if ((write && !(MAP_PAGEBITS(addr) & PAGE_BIT_PS1) && (MAP_PAGEBITS(addr) & PAGE_BIT_PS0)) || |
philpem@128 | 96 | (write && (MAP_PAGEBITS(addr) & PAGE_BIT_PS1) && !(MAP_PAGEBITS(addr) & PAGE_BIT_PS0))) |
philpem@128 | 97 | { |
philpem@128 | 98 | // No L7 interrupt, PS[1:0] = 0b01, write |
philpem@128 | 99 | // No L7 interrupt, PS[1:0] = 0b10, write |
philpem@128 | 100 | ps0_state = true; |
philpem@128 | 101 | } |
philpem@128 | 102 | } |
philpem@112 | 103 | |
philpem@128 | 104 | #ifdef MAPRAM_BIT_TEST |
philpem@128 | 105 | LOG("Starting Mapram Bit Test"); |
philpem@128 | 106 | state.map[0] = state.map[1] = 0; |
philpem@128 | 107 | LOG("Start = %04X %02X", MAPRAM_ADDR(0), MAP_PAGEBITS(0)); |
philpem@128 | 108 | MAP_SET_PAGEBIT(0, PAGE_BIT_WE); |
philpem@128 | 109 | LOG("Set WE = %04X %02X", MAPRAM_ADDR(0), MAP_PAGEBITS(0)); |
philpem@128 | 110 | MAP_SET_PAGEBIT(0, PAGE_BIT_PS1); |
philpem@128 | 111 | LOG("Set PS1 = %04X %02X", MAPRAM_ADDR(0), MAP_PAGEBITS(0)); |
philpem@128 | 112 | MAP_SET_PAGEBIT(0, PAGE_BIT_PS0); |
philpem@128 | 113 | LOG("Set PS0 = %04X %02X", MAPRAM_ADDR(0), MAP_PAGEBITS(0)); |
philpem@128 | 114 | |
philpem@128 | 115 | MAP_CLR_PAGEBIT(0, PAGE_BIT_WE); |
philpem@128 | 116 | LOG("Clr WE = %04X %02X", MAPRAM_ADDR(0), MAP_PAGEBITS(0)); |
philpem@128 | 117 | MAP_CLR_PAGEBIT(0, PAGE_BIT_PS1); |
philpem@128 | 118 | LOG("Clr PS1 = %04X %02X", MAPRAM_ADDR(0), MAP_PAGEBITS(0)); |
philpem@128 | 119 | MAP_CLR_PAGEBIT(0, PAGE_BIT_PS0); |
philpem@128 | 120 | LOG("Clr PS0 = %04X %02X", MAPRAM_ADDR(0), MAP_PAGEBITS(0)); |
philpem@128 | 121 | exit(-1); |
philpem@128 | 122 | #endif |
philpem@128 | 123 | |
philpem@128 | 124 | uint16_t old_pagebits = MAP_PAGEBITS(addr); |
philpem@112 | 125 | |
philpem@128 | 126 | // PS1 is always set on access |
philpem@128 | 127 | MAP_SET_PAGEBIT(addr, PAGE_BIT_PS1); |
philpem@128 | 128 | |
philpem@128 | 129 | uint16_t new_pagebit1 = MAP_PAGEBITS(addr); |
philpem@128 | 130 | |
philpem@128 | 131 | // Update PS0 |
philpem@128 | 132 | if (ps0_state) { |
philpem@128 | 133 | MAP_SET_PAGEBIT(addr, PAGE_BIT_PS0); |
philpem@128 | 134 | } else { |
philpem@128 | 135 | MAP_CLR_PAGEBIT(addr, PAGE_BIT_PS0); |
philpem@128 | 136 | } |
philpem@112 | 137 | |
philpem@128 | 138 | uint16_t new_pagebit2 = MAP_PAGEBITS(addr); |
philpem@128 | 139 | switch (addr) { |
philpem@128 | 140 | case 0x000000: |
philpem@128 | 141 | case 0x001000: |
philpem@128 | 142 | case 0x002000: |
philpem@128 | 143 | case 0x003000: |
philpem@128 | 144 | case 0x004000: |
philpem@128 | 145 | case 0x033000: |
philpem@128 | 146 | case 0x034000: |
philpem@128 | 147 | case 0x035000: |
philpem@128 | 148 | LOG("Addr %08X MapNew %04X Pagebit update -- ps0 %d, %02X => %02X => %02X", addr, MAPRAM_ADDR(addr), ps0_state, old_pagebits, new_pagebit1, new_pagebit2); |
philpem@128 | 149 | default: |
philpem@112 | 150 | break; |
philpem@112 | 151 | } |
philpem@128 | 152 | } |
philpem@128 | 153 | |
philpem@128 | 154 | bool access_check_dma(void) |
philpem@128 | 155 | { |
philpem@128 | 156 | // TODO FIXME BUGBUG Sanity check - Make sure DMAC is only accessing RAM addresses |
philpem@128 | 157 | |
philpem@128 | 158 | // DMA access check -- make sure the page is mapped in |
philpem@128 | 159 | if (!(MAP_PAGEBITS(state.dma_address) & PAGE_BIT_PS0) && !(MAP_PAGEBITS(state.dma_address) & PAGE_BIT_PS1)) { |
philpem@128 | 160 | // DMA access to page which is not mapped in. |
philpem@128 | 161 | // Level 7 interrupt, page fault, DMA invoked |
philpem@128 | 162 | state.genstat = 0xABFF |
philpem@128 | 163 | | (state.dma_reading ? 0x4000 : 0) |
philpem@128 | 164 | | (state.pie ? 0x0400 : 0); |
philpem@128 | 165 | |
philpem@128 | 166 | // XXX: Check all this stuff. |
philpem@112 | 167 | state.bsr0 = 0x3C00; |
philpem@112 | 168 | state.bsr0 |= (state.dma_address >> 16); |
philpem@112 | 169 | state.bsr1 = state.dma_address & 0xffff; |
philpem@128 | 170 | |
philpem@128 | 171 | // Update page bits for this transfer |
philpem@128 | 172 | update_page_bits(state.dma_address, true, !state.dma_reading); |
philpem@128 | 173 | |
philpem@128 | 174 | // XXX: is this right? |
philpem@128 | 175 | // Fire a Level 7 interrupt |
philpem@128 | 176 | /*if (state.ee)*/ m68k_set_irq(7); |
philpem@128 | 177 | |
philpem@128 | 178 | LOG("BUS ERROR FROM DMA: genstat=%04X, bsr0=%04X, bsr1=%04X\n", state.genstat, state.bsr0, state.bsr1); |
philpem@128 | 179 | return false; |
philpem@128 | 180 | } else { |
philpem@128 | 181 | // No errors. Just update the page bits. |
philpem@128 | 182 | update_page_bits(state.dma_address, false, !state.dma_reading); |
philpem@128 | 183 | return true; |
philpem@112 | 184 | } |
philpem@128 | 185 | } |
philpem@128 | 186 | |
philpem@128 | 187 | /** |
philpem@128 | 188 | * Check memory access permissions for a CPU memory access. |
philpem@128 | 189 | * |
philpem@128 | 190 | * @param addr Virtual memory address being accessed (from CPU address bus). |
philpem@128 | 191 | * @param bits Word size of this transfer (8, 16 or 32 bits). |
philpem@128 | 192 | * @param write <i>true</i> if this is a write operation, <i>false</i> if it is a read operation. |
philpem@128 | 193 | * @return <i>true</i> if the access was denied and a level-7 interrupt and/or bus error raised. |
philpem@128 | 194 | * <i>false</i> if the access was allowed. |
philpem@128 | 195 | */ |
philpem@128 | 196 | bool access_check_cpu(uint32_t addr, int bits, bool write) |
philpem@128 | 197 | { |
philpem@128 | 198 | bool supervisor = (m68k_get_reg(NULL, M68K_REG_SR) & 0x2000); |
philpem@128 | 199 | bool fault = false; |
philpem@128 | 200 | |
philpem@128 | 201 | // TODO FIXME BUGBUG? Do we need to check for supervisor access here? |
philpem@128 | 202 | if ((addr >= 0x000000) && (addr <= 0x3FFFFF) && !(MAP_PAGEBITS(addr) & PAGE_BIT_PS1) && !(MAP_PAGEBITS(addr) & PAGE_BIT_PS0)) { |
philpem@128 | 203 | // (A) Page Fault -- user access to page which is not mapped in |
philpem@128 | 204 | // Level 7 Interrupt, Bus Error, regs=PAGEFAULT |
philpem@128 | 205 | if (write) { |
philpem@128 | 206 | state.genstat = 0x8BFF | (state.pie ? 0x0400 : 0); |
philpem@128 | 207 | } else { |
philpem@128 | 208 | state.genstat = 0xCBFF | (state.pie ? 0x0400 : 0); |
philpem@128 | 209 | } |
philpem@128 | 210 | fault = true; |
philpem@128 | 211 | } else if (!supervisor && (addr >= 0x000000) && (addr <= 0x07FFFF)) { |
philpem@128 | 212 | // (B) User attempted to access the kernel |
philpem@128 | 213 | // Level 7 Interrupt, Bus Error, regs=KERNEL |
philpem@128 | 214 | if (write) { |
philpem@128 | 215 | // XXX: BUGBUG? Is this correct? |
philpem@128 | 216 | state.genstat = 0x9BFF | (state.pie ? 0x0400 : 0); |
philpem@128 | 217 | } else { |
philpem@128 | 218 | state.genstat = 0xDBFF | (state.pie ? 0x0400 : 0); |
philpem@128 | 219 | } |
philpem@128 | 220 | fault = true; |
philpem@128 | 221 | } else if (!supervisor && write && (addr >= 0x000000) && (addr <= 0x3FFFFF) && !(MAP_PAGEBITS(addr) & PAGE_BIT_WE)) { |
philpem@128 | 222 | // (C) User attempted to write to a page which is not write enabled |
philpem@128 | 223 | // Level 7 Interrupt, Bus Error, regs=WRITE_EN |
philpem@128 | 224 | if (write) { |
philpem@128 | 225 | // XXX: BUGBUG? Is this correct? |
philpem@128 | 226 | state.genstat = 0x9BFF | (state.pie ? 0x0400 : 0); |
philpem@128 | 227 | } else { |
philpem@128 | 228 | state.genstat = 0xDBFF | (state.pie ? 0x0400 : 0); |
philpem@128 | 229 | } |
philpem@128 | 230 | fault = true; |
philpem@128 | 231 | } else if (!supervisor && (addr >= 0x400000) && (addr <= 0xFFFFFF)) { |
philpem@128 | 232 | // (D) UIE - user I/O exception |
philpem@128 | 233 | // Bus Error only, regs=UIE |
philpem@128 | 234 | if (write) { |
philpem@128 | 235 | state.genstat = 0x9AFF | (state.pie ? 0x0400 : 0); |
philpem@128 | 236 | } else { |
philpem@128 | 237 | state.genstat = 0xDAFF | (state.pie ? 0x0400 : 0); |
philpem@128 | 238 | } |
philpem@128 | 239 | fault = true; |
philpem@128 | 240 | } |
philpem@128 | 241 | |
philpem@128 | 242 | // Update the page bits first |
philpem@128 | 243 | update_page_bits(addr, fault, write); |
philpem@128 | 244 | |
philpem@128 | 245 | if (fault) { |
philpem@128 | 246 | if (bits >= 16) |
philpem@128 | 247 | state.bsr0 = 0x7C00; |
philpem@128 | 248 | else |
philpem@128 | 249 | state.bsr0 = (addr & 1) ? 0x7E00 : 0x7D00; |
philpem@128 | 250 | // FIXME? Physical or virtual address here? |
philpem@128 | 251 | state.bsr0 |= (addr >> 16); |
philpem@128 | 252 | state.bsr1 = addr & 0xffff; |
philpem@128 | 253 | |
philpem@128 | 254 | LOG("CPU Bus Error or L7Intr while %s, vaddr %08X, map %08X, pagebits 0x%02X bsr0=%04X bsr1=%04X genstat=%04X", |
philpem@128 | 255 | write ? "writing" : "reading", addr, |
philpem@128 | 256 | MAPRAM_ADDR(addr & 0x3fffff), |
philpem@128 | 257 | MAP_PAGEBITS(addr & 0x3fffff), |
philpem@128 | 258 | state.bsr0, state.bsr1, state.genstat); |
philpem@128 | 259 | |
philpem@128 | 260 | // FIXME? BUGBUG? Does EE disable one or both of these? |
philpem@128 | 261 | // /*if (state.ee)*/ m68k_set_irq(7); |
philpem@128 | 262 | /*if (state.ee)*/ m68k_pulse_bus_error(); |
philpem@128 | 263 | } |
philpem@128 | 264 | |
philpem@128 | 265 | return fault; |
philpem@112 | 266 | } |
philpem@112 | 267 | |
philpem@40 | 268 | // Logging macros |
philpem@59 | 269 | #define LOG_NOT_HANDLED_R(bits) \ |
philpem@128 | 270 | if (!handled) fprintf(stderr, "unhandled read%02d, addr=0x%08X\n", bits, address); |
philpem@40 | 271 | |
philpem@59 | 272 | #define LOG_NOT_HANDLED_W(bits) \ |
philpem@128 | 273 | if (!handled) fprintf(stderr, "unhandled write%02d, addr=0x%08X, data=0x%08X\n", bits, address, data); |
philpem@59 | 274 | |
philpem@59 | 275 | /******************************************************** |
philpem@59 | 276 | * I/O read/write functions |
philpem@59 | 277 | ********************************************************/ |
philpem@40 | 278 | |
philpem@40 | 279 | /** |
philpem@59 | 280 | * Issue a warning if a read operation is made with an invalid size |
philpem@40 | 281 | */ |
philpem@66 | 282 | inline static void ENFORCE_SIZE(int bits, uint32_t address, bool read, int allowed, char *regname) |
philpem@40 | 283 | { |
philpem@59 | 284 | assert((bits == 8) || (bits == 16) || (bits == 32)); |
philpem@59 | 285 | if ((bits & allowed) == 0) { |
philpem@128 | 286 | LOG("WARNING: %s 0x%08X (%s) with invalid size %d!\n", read ? "read from" : "write to", address, regname, bits); |
philpem@59 | 287 | } |
philpem@59 | 288 | } |
philpem@59 | 289 | |
philpem@66 | 290 | inline static void ENFORCE_SIZE_R(int bits, uint32_t address, int allowed, char *regname) |
philpem@40 | 291 | { |
philpem@66 | 292 | ENFORCE_SIZE(bits, address, true, allowed, regname); |
philpem@66 | 293 | } |
philpem@66 | 294 | |
philpem@66 | 295 | inline static void ENFORCE_SIZE_W(int bits, uint32_t address, int allowed, char *regname) |
philpem@66 | 296 | { |
philpem@66 | 297 | ENFORCE_SIZE(bits, address, false, allowed, regname); |
philpem@66 | 298 | } |
philpem@66 | 299 | |
philpem@59 | 300 | void IoWrite(uint32_t address, uint32_t data, int bits)/*{{{*/ |
philpem@59 | 301 | { |
philpem@40 | 302 | bool handled = false; |
philpem@40 | 303 | |
philpem@59 | 304 | if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@40 | 305 | // I/O register space, zone A |
philpem@40 | 306 | switch (address & 0x0F0000) { |
philpem@40 | 307 | case 0x010000: // General Status Register |
philpem@59 | 308 | if (bits == 16) |
philpem@59 | 309 | state.genstat = (data & 0xffff); |
philpem@59 | 310 | else if (bits == 8) { |
philpem@59 | 311 | if (address & 0) |
philpem@59 | 312 | state.genstat = data; |
philpem@59 | 313 | else |
philpem@59 | 314 | state.genstat = data << 8; |
philpem@59 | 315 | } |
philpem@40 | 316 | handled = true; |
philpem@40 | 317 | break; |
philpem@40 | 318 | case 0x030000: // Bus Status Register 0 |
philpem@40 | 319 | break; |
philpem@40 | 320 | case 0x040000: // Bus Status Register 1 |
philpem@40 | 321 | break; |
philpem@40 | 322 | case 0x050000: // Phone status |
philpem@40 | 323 | break; |
philpem@40 | 324 | case 0x060000: // DMA Count |
philpem@66 | 325 | ENFORCE_SIZE_W(bits, address, 16, "DMACOUNT"); |
philpem@59 | 326 | state.dma_count = (data & 0x3FFF); |
philpem@59 | 327 | state.idmarw = ((data & 0x4000) == 0x4000); |
philpem@59 | 328 | state.dmaen = ((data & 0x8000) == 0x8000); |
philpem@59 | 329 | // This handles the "dummy DMA transfer" mentioned in the docs |
philpem@112 | 330 | // disabled because it causes the floppy test to fail |
philpem@112 | 331 | #if 0 |
philpem@112 | 332 | if (!state.idmarw){ |
philpem@112 | 333 | if (access_check_dma(true)){ |
philpem@112 | 334 | uint32_t newAddr = mapAddr(state.dma_address, true); |
philpem@112 | 335 | // RAM access |
philpem@112 | 336 | if (newAddr <= 0x1fffff) |
philpem@112 | 337 | WR16(state.base_ram, newAddr, state.base_ram_size - 1, 0xFF); |
philpem@112 | 338 | else if (address <= 0x3FFFFF) |
philpem@112 | 339 | WR16(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1, 0xFF); |
philpem@112 | 340 | } |
philpem@112 | 341 | } |
philpem@112 | 342 | #endif |
philpem@59 | 343 | state.dma_count++; |
philpem@53 | 344 | handled = true; |
philpem@40 | 345 | break; |
philpem@40 | 346 | case 0x070000: // Line Printer Status Register |
philpem@40 | 347 | break; |
philpem@40 | 348 | case 0x080000: // Real Time Clock |
philpem@128 | 349 | LOGS("REAL TIME CLOCK WRITE"); |
philpem@40 | 350 | break; |
philpem@40 | 351 | case 0x090000: // Phone registers |
philpem@40 | 352 | switch (address & 0x0FF000) { |
philpem@40 | 353 | case 0x090000: // Handset relay |
philpem@40 | 354 | case 0x098000: |
philpem@40 | 355 | break; |
philpem@40 | 356 | case 0x091000: // Line select 2 |
philpem@40 | 357 | case 0x099000: |
philpem@40 | 358 | break; |
philpem@40 | 359 | case 0x092000: // Hook relay 1 |
philpem@40 | 360 | case 0x09A000: |
philpem@40 | 361 | break; |
philpem@40 | 362 | case 0x093000: // Hook relay 2 |
philpem@40 | 363 | case 0x09B000: |
philpem@40 | 364 | break; |
philpem@40 | 365 | case 0x094000: // Line 1 hold |
philpem@40 | 366 | case 0x09C000: |
philpem@40 | 367 | break; |
philpem@40 | 368 | case 0x095000: // Line 2 hold |
philpem@40 | 369 | case 0x09D000: |
philpem@40 | 370 | break; |
philpem@40 | 371 | case 0x096000: // Line 1 A-lead |
philpem@40 | 372 | case 0x09E000: |
philpem@40 | 373 | break; |
philpem@40 | 374 | case 0x097000: // Line 2 A-lead |
philpem@40 | 375 | case 0x09F000: |
philpem@40 | 376 | break; |
philpem@40 | 377 | } |
philpem@40 | 378 | break; |
philpem@59 | 379 | case 0x0A0000: // Miscellaneous Control Register |
philpem@66 | 380 | ENFORCE_SIZE_W(bits, address, 16, "MISCCON"); |
philpem@59 | 381 | // TODO: handle the ctrl bits properly |
philpem@97 | 382 | if (data & 0x8000){ |
philpem@97 | 383 | state.timer_enabled = 1; |
philpem@97 | 384 | }else{ |
philpem@97 | 385 | state.timer_enabled = 0; |
philpem@97 | 386 | state.timer_asserted = 0; |
philpem@97 | 387 | } |
philpem@59 | 388 | state.dma_reading = (data & 0x4000); |
philpem@72 | 389 | if (state.leds != ((~data & 0xF00) >> 8)) { |
philpem@72 | 390 | state.leds = (~data & 0xF00) >> 8; |
philpem@117 | 391 | #ifdef SHOW_LEDS |
philpem@72 | 392 | printf("LEDs: %s %s %s %s\n", |
philpem@72 | 393 | (state.leds & 8) ? "R" : "-", |
philpem@72 | 394 | (state.leds & 4) ? "G" : "-", |
philpem@72 | 395 | (state.leds & 2) ? "Y" : "-", |
philpem@72 | 396 | (state.leds & 1) ? "R" : "-"); |
philpem@117 | 397 | #endif |
philpem@72 | 398 | } |
philpem@46 | 399 | handled = true; |
philpem@40 | 400 | break; |
philpem@40 | 401 | case 0x0B0000: // TM/DIALWR |
philpem@40 | 402 | break; |
philpem@59 | 403 | case 0x0C0000: // Clear Status Register |
philpem@59 | 404 | state.genstat = 0xFFFF; |
philpem@59 | 405 | state.bsr0 = 0xFFFF; |
philpem@59 | 406 | state.bsr1 = 0xFFFF; |
philpem@43 | 407 | handled = true; |
philpem@40 | 408 | break; |
philpem@40 | 409 | case 0x0D0000: // DMA Address Register |
philpem@59 | 410 | if (address & 0x004000) { |
philpem@59 | 411 | // A14 high -- set most significant bits |
philpem@59 | 412 | state.dma_address = (state.dma_address & 0x1fe) | ((address & 0x3ffe) << 8); |
philpem@59 | 413 | } else { |
philpem@59 | 414 | // A14 low -- set least significant bits |
philpem@59 | 415 | state.dma_address = (state.dma_address & 0x3ffe00) | (address & 0x1fe); |
philpem@59 | 416 | } |
philpem@59 | 417 | handled = true; |
philpem@40 | 418 | break; |
philpem@40 | 419 | case 0x0E0000: // Disk Control Register |
philpem@112 | 420 | { |
philpem@112 | 421 | bool fd_selected; |
philpem@112 | 422 | bool hd_selected; |
philpem@112 | 423 | ENFORCE_SIZE_W(bits, address, 16, "DISKCON"); |
philpem@112 | 424 | // B7 = FDD controller reset |
philpem@112 | 425 | if ((data & 0x80) == 0) wd2797_reset(&state.fdc_ctx); |
philpem@112 | 426 | // B6 = drive 0 select |
philpem@112 | 427 | fd_selected = (data & 0x40) != 0; |
philpem@112 | 428 | // B5 = motor enable -- TODO |
philpem@112 | 429 | // B4 = HDD controller reset |
philpem@112 | 430 | if ((data & 0x10) == 0) wd2010_reset(&state.hdc_ctx); |
philpem@112 | 431 | // B3 = HDD0 select |
philpem@112 | 432 | hd_selected = (data & 0x08) != 0; |
philpem@112 | 433 | // B2,1,0 = HDD0 head select -- TODO? |
philpem@112 | 434 | if (hd_selected && !state.hd_selected){ |
philpem@112 | 435 | state.fd_selected = false; |
philpem@112 | 436 | state.hd_selected = true; |
philpem@112 | 437 | }else if (fd_selected && !state.fd_selected){ |
philpem@112 | 438 | state.hd_selected = false; |
philpem@112 | 439 | state.fd_selected = true; |
philpem@112 | 440 | } |
philpem@112 | 441 | handled = true; |
philpem@112 | 442 | break; |
philpem@112 | 443 | } |
philpem@40 | 444 | case 0x0F0000: // Line Printer Data Register |
philpem@40 | 445 | break; |
philpem@40 | 446 | } |
philpem@40 | 447 | } else if ((address >= 0xC00000) && (address <= 0xFFFFFF)) { |
philpem@40 | 448 | // I/O register space, zone B |
philpem@40 | 449 | switch (address & 0xF00000) { |
philpem@40 | 450 | case 0xC00000: // Expansion slots |
philpem@40 | 451 | case 0xD00000: |
philpem@40 | 452 | switch (address & 0xFC0000) { |
philpem@40 | 453 | case 0xC00000: // Expansion slot 0 |
philpem@40 | 454 | case 0xC40000: // Expansion slot 1 |
philpem@40 | 455 | case 0xC80000: // Expansion slot 2 |
philpem@40 | 456 | case 0xCC0000: // Expansion slot 3 |
philpem@40 | 457 | case 0xD00000: // Expansion slot 4 |
philpem@40 | 458 | case 0xD40000: // Expansion slot 5 |
philpem@40 | 459 | case 0xD80000: // Expansion slot 6 |
philpem@40 | 460 | case 0xDC0000: // Expansion slot 7 |
philpem@59 | 461 | fprintf(stderr, "NOTE: WR%d to expansion card space, addr=0x%08X, data=0x%08X\n", bits, address, data); |
philpem@59 | 462 | handled = true; |
philpem@40 | 463 | break; |
philpem@40 | 464 | } |
philpem@40 | 465 | break; |
philpem@40 | 466 | case 0xE00000: // HDC, FDC, MCR2 and RTC data bits |
philpem@40 | 467 | case 0xF00000: |
philpem@40 | 468 | switch (address & 0x070000) { |
philpem@112 | 469 | case 0x000000: // [ef][08]xxxx ==> WD2010 hard disc controller |
philpem@112 | 470 | wd2010_write_reg(&state.hdc_ctx, (address >> 1) & 7, data); |
philpem@112 | 471 | handled = true; |
philpem@40 | 472 | break; |
philpem@40 | 473 | case 0x010000: // [ef][19]xxxx ==> WD2797 floppy disc controller |
philpem@112 | 474 | /*ENFORCE_SIZE_W(bits, address, 16, "FDC REGISTERS");*/ |
philpem@59 | 475 | wd2797_write_reg(&state.fdc_ctx, (address >> 1) & 3, data); |
philpem@52 | 476 | handled = true; |
philpem@40 | 477 | break; |
philpem@40 | 478 | case 0x020000: // [ef][2a]xxxx ==> Miscellaneous Control Register 2 |
philpem@116 | 479 | // MCR2 - UNIX PC Rev. P5.1 HDD head select b3 and potential HDD#2 select |
philpem@116 | 480 | wd2010_write_reg(&state.hdc_ctx, UNIXPC_REG_MCR2, data); |
philpem@116 | 481 | handled = true; |
philpem@40 | 482 | break; |
philpem@40 | 483 | case 0x030000: // [ef][3b]xxxx ==> Real Time Clock data bits |
philpem@128 | 484 | LOGS("REAL TIME CLOCK DATA WRITE"); |
philpem@40 | 485 | break; |
philpem@40 | 486 | case 0x040000: // [ef][4c]xxxx ==> General Control Register |
philpem@40 | 487 | switch (address & 0x077000) { |
philpem@40 | 488 | case 0x040000: // [ef][4c][08]xxx ==> EE |
philpem@102 | 489 | // Error Enable. If =0, Level7 intrs and bus errors are masked. |
philpem@102 | 490 | ENFORCE_SIZE_W(bits, address, 16, "EE"); |
philpem@102 | 491 | state.ee = ((data & 0x8000) == 0x8000); |
philpem@102 | 492 | handled = true; |
philpem@59 | 493 | break; |
philpem@44 | 494 | case 0x041000: // [ef][4c][19]xxx ==> PIE |
philpem@66 | 495 | ENFORCE_SIZE_W(bits, address, 16, "PIE"); |
philpem@59 | 496 | state.pie = ((data & 0x8000) == 0x8000); |
philpem@59 | 497 | handled = true; |
philpem@59 | 498 | break; |
philpem@40 | 499 | case 0x042000: // [ef][4c][2A]xxx ==> BP |
philpem@59 | 500 | break; |
philpem@40 | 501 | case 0x043000: // [ef][4c][3B]xxx ==> ROMLMAP |
philpem@66 | 502 | ENFORCE_SIZE_W(bits, address, 16, "ROMLMAP"); |
philpem@59 | 503 | state.romlmap = ((data & 0x8000) == 0x8000); |
philpem@44 | 504 | handled = true; |
philpem@40 | 505 | break; |
philpem@59 | 506 | case 0x044000: // [ef][4c][4C]xxx ==> L1 MODEM |
philpem@66 | 507 | ENFORCE_SIZE_W(bits, address, 16, "L1 MODEM"); |
philpem@59 | 508 | break; |
philpem@59 | 509 | case 0x045000: // [ef][4c][5D]xxx ==> L2 MODEM |
philpem@66 | 510 | ENFORCE_SIZE_W(bits, address, 16, "L2 MODEM"); |
philpem@59 | 511 | break; |
philpem@59 | 512 | case 0x046000: // [ef][4c][6E]xxx ==> D/N CONNECT |
philpem@66 | 513 | ENFORCE_SIZE_W(bits, address, 16, "D/N CONNECT"); |
philpem@59 | 514 | break; |
philpem@59 | 515 | case 0x047000: // [ef][4c][7F]xxx ==> Whole screen reverse video |
philpem@66 | 516 | ENFORCE_SIZE_W(bits, address, 16, "WHOLE SCREEN REVERSE VIDEO"); |
philpem@40 | 517 | break; |
philpem@40 | 518 | } |
philpem@40 | 519 | case 0x050000: // [ef][5d]xxxx ==> 8274 |
philpem@40 | 520 | break; |
philpem@40 | 521 | case 0x060000: // [ef][6e]xxxx ==> Control regs |
philpem@40 | 522 | switch (address & 0x07F000) { |
philpem@40 | 523 | default: |
philpem@40 | 524 | break; |
philpem@40 | 525 | } |
philpem@40 | 526 | break; |
philpem@40 | 527 | case 0x070000: // [ef][7f]xxxx ==> 6850 Keyboard Controller |
philpem@84 | 528 | // TODO: figure out which sizes are valid (probably just 8 and 16) |
philpem@84 | 529 | // ENFORCE_SIZE_W(bits, address, 16, "KEYBOARD CONTROLLER"); |
philpem@93 | 530 | if (bits == 8) { |
philpem@128 | 531 | #ifdef LOG_KEYBOARD_WRITES |
philpem@128 | 532 | LOG("KBD WR %02X => %02X\n", (address >> 1) & 3, data); |
philpem@128 | 533 | #endif |
philpem@93 | 534 | keyboard_write(&state.kbd, (address >> 1) & 3, data); |
philpem@93 | 535 | handled = true; |
philpem@93 | 536 | } else if (bits == 16) { |
philpem@128 | 537 | #ifdef LOG_KEYBOARD_WRITES |
philpem@128 | 538 | LOG("KBD WR %02X => %04X\n", (address >> 1) & 3, data); |
philpem@128 | 539 | #endif |
philpem@93 | 540 | keyboard_write(&state.kbd, (address >> 1) & 3, data >> 8); |
philpem@93 | 541 | handled = true; |
philpem@93 | 542 | } |
philpem@40 | 543 | break; |
philpem@40 | 544 | } |
philpem@40 | 545 | } |
philpem@40 | 546 | } |
philpem@40 | 547 | |
philpem@64 | 548 | LOG_NOT_HANDLED_W(bits); |
philpem@59 | 549 | }/*}}}*/ |
philpem@40 | 550 | |
philpem@59 | 551 | uint32_t IoRead(uint32_t address, int bits)/*{{{*/ |
philpem@59 | 552 | { |
philpem@59 | 553 | bool handled = false; |
philpem@119 | 554 | uint32_t data = EMPTY & 0xFFFFFFFF; |
philpem@40 | 555 | |
philpem@59 | 556 | if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@40 | 557 | // I/O register space, zone A |
philpem@40 | 558 | switch (address & 0x0F0000) { |
philpem@40 | 559 | case 0x010000: // General Status Register |
philpem@116 | 560 | /* ENFORCE_SIZE_R(bits, address, 16, "GENSTAT"); */ |
philpem@116 | 561 | if (bits == 32) { |
philpem@116 | 562 | return ((uint32_t)state.genstat << 16) + (uint32_t)state.genstat; |
philpem@116 | 563 | } else if (bits == 16) { |
philpem@116 | 564 | return (uint16_t)state.genstat; |
philpem@116 | 565 | } else { |
philpem@116 | 566 | return (uint8_t)(state.genstat & 0xff); |
philpem@116 | 567 | } |
philpem@40 | 568 | break; |
philpem@40 | 569 | case 0x030000: // Bus Status Register 0 |
philpem@66 | 570 | ENFORCE_SIZE_R(bits, address, 16, "BSR0"); |
philpem@59 | 571 | return ((uint32_t)state.bsr0 << 16) + (uint32_t)state.bsr0; |
philpem@40 | 572 | break; |
philpem@40 | 573 | case 0x040000: // Bus Status Register 1 |
philpem@66 | 574 | ENFORCE_SIZE_R(bits, address, 16, "BSR1"); |
philpem@59 | 575 | return ((uint32_t)state.bsr1 << 16) + (uint32_t)state.bsr1; |
philpem@40 | 576 | break; |
philpem@40 | 577 | case 0x050000: // Phone status |
philpem@66 | 578 | ENFORCE_SIZE_R(bits, address, 8 | 16, "PHONE STATUS"); |
philpem@40 | 579 | break; |
philpem@40 | 580 | case 0x060000: // DMA Count |
philpem@55 | 581 | // TODO: U/OERR- is always inactive (bit set)... or should it be = DMAEN+? |
philpem@55 | 582 | // Bit 14 is always unused, so leave it set |
philpem@66 | 583 | ENFORCE_SIZE_R(bits, address, 16, "DMACOUNT"); |
philpem@59 | 584 | return (state.dma_count & 0x3fff) | 0xC000; |
philpem@40 | 585 | break; |
philpem@40 | 586 | case 0x070000: // Line Printer Status Register |
philpem@53 | 587 | data = 0x00120012; // no parity error, no line printer error, no irqs from FDD or HDD |
philpem@78 | 588 | data |= wd2797_get_irq(&state.fdc_ctx) ? 0x00080008 : 0; |
philpem@112 | 589 | data |= wd2010_get_irq(&state.hdc_ctx) ? 0x00040004 : 0; |
philpem@59 | 590 | return data; |
philpem@40 | 591 | break; |
philpem@40 | 592 | case 0x080000: // Real Time Clock |
philpem@128 | 593 | LOGS("REAL TIME CLOCK READ"); |
philpem@40 | 594 | break; |
philpem@40 | 595 | case 0x090000: // Phone registers |
philpem@40 | 596 | switch (address & 0x0FF000) { |
philpem@40 | 597 | case 0x090000: // Handset relay |
philpem@40 | 598 | case 0x098000: |
philpem@40 | 599 | break; |
philpem@40 | 600 | case 0x091000: // Line select 2 |
philpem@40 | 601 | case 0x099000: |
philpem@40 | 602 | break; |
philpem@40 | 603 | case 0x092000: // Hook relay 1 |
philpem@40 | 604 | case 0x09A000: |
philpem@40 | 605 | break; |
philpem@40 | 606 | case 0x093000: // Hook relay 2 |
philpem@40 | 607 | case 0x09B000: |
philpem@40 | 608 | break; |
philpem@40 | 609 | case 0x094000: // Line 1 hold |
philpem@40 | 610 | case 0x09C000: |
philpem@40 | 611 | break; |
philpem@40 | 612 | case 0x095000: // Line 2 hold |
philpem@40 | 613 | case 0x09D000: |
philpem@40 | 614 | break; |
philpem@40 | 615 | case 0x096000: // Line 1 A-lead |
philpem@40 | 616 | case 0x09E000: |
philpem@40 | 617 | break; |
philpem@40 | 618 | case 0x097000: // Line 2 A-lead |
philpem@40 | 619 | case 0x09F000: |
philpem@40 | 620 | break; |
philpem@40 | 621 | } |
philpem@40 | 622 | break; |
philpem@46 | 623 | case 0x0A0000: // Miscellaneous Control Register -- write only! |
philpem@46 | 624 | handled = true; |
philpem@40 | 625 | break; |
philpem@40 | 626 | case 0x0B0000: // TM/DIALWR |
philpem@40 | 627 | break; |
philpem@46 | 628 | case 0x0C0000: // Clear Status Register -- write only! |
philpem@43 | 629 | handled = true; |
philpem@40 | 630 | break; |
philpem@40 | 631 | case 0x0D0000: // DMA Address Register |
philpem@40 | 632 | break; |
philpem@40 | 633 | case 0x0E0000: // Disk Control Register |
philpem@40 | 634 | break; |
philpem@40 | 635 | case 0x0F0000: // Line Printer Data Register |
philpem@40 | 636 | break; |
philpem@40 | 637 | } |
philpem@40 | 638 | } else if ((address >= 0xC00000) && (address <= 0xFFFFFF)) { |
philpem@40 | 639 | // I/O register space, zone B |
philpem@40 | 640 | switch (address & 0xF00000) { |
philpem@40 | 641 | case 0xC00000: // Expansion slots |
philpem@40 | 642 | case 0xD00000: |
philpem@40 | 643 | switch (address & 0xFC0000) { |
philpem@40 | 644 | case 0xC00000: // Expansion slot 0 |
philpem@40 | 645 | case 0xC40000: // Expansion slot 1 |
philpem@40 | 646 | case 0xC80000: // Expansion slot 2 |
philpem@40 | 647 | case 0xCC0000: // Expansion slot 3 |
philpem@40 | 648 | case 0xD00000: // Expansion slot 4 |
philpem@40 | 649 | case 0xD40000: // Expansion slot 5 |
philpem@40 | 650 | case 0xD80000: // Expansion slot 6 |
philpem@40 | 651 | case 0xDC0000: // Expansion slot 7 |
philpem@65 | 652 | fprintf(stderr, "NOTE: RD%d from expansion card space, addr=0x%08X\n", bits, address); |
philpem@65 | 653 | handled = true; |
philpem@40 | 654 | break; |
philpem@40 | 655 | } |
philpem@40 | 656 | break; |
philpem@40 | 657 | case 0xE00000: // HDC, FDC, MCR2 and RTC data bits |
philpem@40 | 658 | case 0xF00000: |
philpem@40 | 659 | switch (address & 0x070000) { |
philpem@40 | 660 | case 0x000000: // [ef][08]xxxx ==> WD1010 hard disc controller |
philpem@112 | 661 | return (wd2010_read_reg(&state.hdc_ctx, (address >> 1) & 7)); |
philpem@112 | 662 | |
philpem@40 | 663 | break; |
philpem@40 | 664 | case 0x010000: // [ef][19]xxxx ==> WD2797 floppy disc controller |
philpem@112 | 665 | /*ENFORCE_SIZE_R(bits, address, 16, "FDC REGISTERS");*/ |
philpem@59 | 666 | return wd2797_read_reg(&state.fdc_ctx, (address >> 1) & 3); |
philpem@40 | 667 | break; |
philpem@40 | 668 | case 0x020000: // [ef][2a]xxxx ==> Miscellaneous Control Register 2 |
philpem@40 | 669 | break; |
philpem@40 | 670 | case 0x030000: // [ef][3b]xxxx ==> Real Time Clock data bits |
philpem@128 | 671 | LOGS("REAL TIME CLOCK DATA READ"); |
philpem@40 | 672 | break; |
philpem@40 | 673 | case 0x040000: // [ef][4c]xxxx ==> General Control Register |
philpem@40 | 674 | switch (address & 0x077000) { |
philpem@40 | 675 | case 0x040000: // [ef][4c][08]xxx ==> EE |
philpem@44 | 676 | case 0x041000: // [ef][4c][19]xxx ==> PIE |
philpem@40 | 677 | case 0x042000: // [ef][4c][2A]xxx ==> BP |
philpem@40 | 678 | case 0x043000: // [ef][4c][3B]xxx ==> ROMLMAP |
philpem@40 | 679 | case 0x044000: // [ef][4c][4C]xxx ==> L1 MODEM |
philpem@40 | 680 | case 0x045000: // [ef][4c][5D]xxx ==> L2 MODEM |
philpem@40 | 681 | case 0x046000: // [ef][4c][6E]xxx ==> D/N CONNECT |
philpem@44 | 682 | // All write-only registers... TODO: bus error? |
philpem@44 | 683 | handled = true; |
philpem@40 | 684 | break; |
philpem@44 | 685 | case 0x047000: // [ef][4c][7F]xxx ==> Whole screen reverse video [FIXME: not in TRM] |
philpem@40 | 686 | break; |
philpem@40 | 687 | } |
philpem@40 | 688 | break; |
philpem@40 | 689 | case 0x050000: // [ef][5d]xxxx ==> 8274 |
philpem@40 | 690 | break; |
philpem@40 | 691 | case 0x060000: // [ef][6e]xxxx ==> Control regs |
philpem@40 | 692 | switch (address & 0x07F000) { |
philpem@40 | 693 | default: |
philpem@40 | 694 | break; |
philpem@40 | 695 | } |
philpem@40 | 696 | break; |
philpem@40 | 697 | case 0x070000: // [ef][7f]xxxx ==> 6850 Keyboard Controller |
philpem@84 | 698 | // TODO: figure out which sizes are valid (probably just 8 and 16) |
philpem@84 | 699 | //ENFORCE_SIZE_R(bits, address, 16, "KEYBOARD CONTROLLER"); |
philpem@84 | 700 | { |
philpem@93 | 701 | if (bits == 8) { |
philpem@93 | 702 | return keyboard_read(&state.kbd, (address >> 1) & 3); |
philpem@93 | 703 | } else { |
philpem@93 | 704 | return keyboard_read(&state.kbd, (address >> 1) & 3) << 8; |
philpem@93 | 705 | } |
philpem@84 | 706 | return data; |
philpem@84 | 707 | } |
philpem@40 | 708 | break; |
philpem@40 | 709 | } |
philpem@40 | 710 | } |
philpem@40 | 711 | } |
philpem@40 | 712 | |
philpem@64 | 713 | LOG_NOT_HANDLED_R(bits); |
philpem@64 | 714 | |
philpem@59 | 715 | return data; |
philpem@59 | 716 | }/*}}}*/ |
philpem@40 | 717 | |
philpem@59 | 718 | |
philpem@59 | 719 | /******************************************************** |
philpem@59 | 720 | * m68k memory read/write support functions for Musashi |
philpem@59 | 721 | ********************************************************/ |
philpem@59 | 722 | |
philpem@59 | 723 | /** |
philpem@59 | 724 | * @brief Read M68K memory, 32-bit |
philpem@59 | 725 | */ |
philpem@59 | 726 | uint32_t m68k_read_memory_32(uint32_t address)/*{{{*/ |
philpem@59 | 727 | { |
philpem@119 | 728 | uint32_t data = EMPTY & 0xFFFFFFFF; |
philpem@59 | 729 | |
philpem@59 | 730 | // If ROMLMAP is set, force system to access ROM |
philpem@59 | 731 | if (!state.romlmap) |
philpem@59 | 732 | address |= 0x800000; |
philpem@59 | 733 | |
philpem@59 | 734 | // Check access permissions |
philpem@59 | 735 | ACCESS_CHECK_RD(address, 32); |
philpem@59 | 736 | |
philpem@59 | 737 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@59 | 738 | // ROM access |
philpem@60 | 739 | return RD32(state.rom, address, ROM_SIZE - 1); |
philpem@60 | 740 | } else if (address <= 0x3fffff) { |
philpem@59 | 741 | // RAM access |
philpem@128 | 742 | uint32_t newAddr = MAP_ADDR(address); |
philpem@128 | 743 | |
philpem@63 | 744 | if (newAddr <= 0x1fffff) { |
philpem@119 | 745 | if (newAddr >= state.base_ram_size) |
philpem@119 | 746 | return EMPTY & 0xffffffff; |
philpem@119 | 747 | else |
philpem@119 | 748 | return RD32(state.base_ram, newAddr, state.base_ram_size - 1); |
philpem@63 | 749 | } else { |
philpem@119 | 750 | if ((newAddr <= (state.exp_ram_size + 0x200000 - 1)) && (newAddr >= 0x200000)) |
philpem@63 | 751 | return RD32(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1); |
philpem@63 | 752 | else |
philpem@119 | 753 | return EMPTY & 0xffffffff; |
philpem@63 | 754 | } |
philpem@59 | 755 | } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@59 | 756 | // I/O register space, zone A |
philpem@59 | 757 | switch (address & 0x0F0000) { |
philpem@59 | 758 | case 0x000000: // Map RAM access |
philpem@59 | 759 | if (address > 0x4007FF) fprintf(stderr, "NOTE: RD32 from MapRAM mirror, addr=0x%08X\n", address); |
philpem@60 | 760 | return RD32(state.map, address, 0x7FF); |
philpem@59 | 761 | break; |
philpem@59 | 762 | case 0x020000: // Video RAM |
philpem@59 | 763 | if (address > 0x427FFF) fprintf(stderr, "NOTE: RD32 from VideoRAM mirror, addr=0x%08X\n", address); |
philpem@60 | 764 | return RD32(state.vram, address, 0x7FFF); |
philpem@59 | 765 | break; |
philpem@59 | 766 | default: |
philpem@60 | 767 | return IoRead(address, 32); |
philpem@59 | 768 | } |
philpem@59 | 769 | } else { |
philpem@60 | 770 | return IoRead(address, 32); |
philpem@59 | 771 | } |
philpem@59 | 772 | |
philpem@40 | 773 | return data; |
philpem@59 | 774 | }/*}}}*/ |
philpem@40 | 775 | |
philpem@40 | 776 | /** |
philpem@40 | 777 | * @brief Read M68K memory, 16-bit |
philpem@40 | 778 | */ |
philpem@59 | 779 | uint32_t m68k_read_memory_16(uint32_t address)/*{{{*/ |
philpem@40 | 780 | { |
philpem@119 | 781 | uint16_t data = EMPTY & 0xFFFF; |
philpem@40 | 782 | |
philpem@40 | 783 | // If ROMLMAP is set, force system to access ROM |
philpem@40 | 784 | if (!state.romlmap) |
philpem@40 | 785 | address |= 0x800000; |
philpem@40 | 786 | |
philpem@40 | 787 | // Check access permissions |
philpem@40 | 788 | ACCESS_CHECK_RD(address, 16); |
philpem@40 | 789 | |
philpem@40 | 790 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@40 | 791 | // ROM access |
philpem@40 | 792 | data = RD16(state.rom, address, ROM_SIZE - 1); |
philpem@60 | 793 | } else if (address <= 0x3fffff) { |
philpem@40 | 794 | // RAM access |
philpem@128 | 795 | uint32_t newAddr = MAP_ADDR(address); |
philpem@128 | 796 | |
philpem@63 | 797 | if (newAddr <= 0x1fffff) { |
philpem@119 | 798 | if (newAddr >= state.base_ram_size) |
philpem@119 | 799 | return EMPTY & 0xffff; |
philpem@119 | 800 | else |
philpem@119 | 801 | return RD16(state.base_ram, newAddr, state.base_ram_size - 1); |
philpem@63 | 802 | } else { |
philpem@119 | 803 | if ((newAddr <= (state.exp_ram_size + 0x200000 - 1)) && (newAddr >= 0x200000)) |
philpem@63 | 804 | return RD16(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1); |
philpem@63 | 805 | else |
philpem@119 | 806 | return EMPTY & 0xffff; |
philpem@63 | 807 | } |
philpem@40 | 808 | } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@40 | 809 | // I/O register space, zone A |
philpem@40 | 810 | switch (address & 0x0F0000) { |
philpem@40 | 811 | case 0x000000: // Map RAM access |
philpem@40 | 812 | if (address > 0x4007FF) fprintf(stderr, "NOTE: RD16 from MapRAM mirror, addr=0x%08X\n", address); |
philpem@40 | 813 | data = RD16(state.map, address, 0x7FF); |
philpem@40 | 814 | break; |
philpem@40 | 815 | case 0x020000: // Video RAM |
philpem@40 | 816 | if (address > 0x427FFF) fprintf(stderr, "NOTE: RD16 from VideoRAM mirror, addr=0x%08X\n", address); |
philpem@40 | 817 | data = RD16(state.vram, address, 0x7FFF); |
philpem@40 | 818 | break; |
philpem@59 | 819 | default: |
philpem@59 | 820 | data = IoRead(address, 16); |
philpem@40 | 821 | } |
philpem@59 | 822 | } else { |
philpem@59 | 823 | data = IoRead(address, 16); |
philpem@40 | 824 | } |
philpem@40 | 825 | |
philpem@40 | 826 | return data; |
philpem@59 | 827 | }/*}}}*/ |
philpem@40 | 828 | |
philpem@40 | 829 | /** |
philpem@40 | 830 | * @brief Read M68K memory, 8-bit |
philpem@40 | 831 | */ |
philpem@59 | 832 | uint32_t m68k_read_memory_8(uint32_t address)/*{{{*/ |
philpem@40 | 833 | { |
philpem@119 | 834 | uint8_t data = EMPTY & 0xFF; |
philpem@40 | 835 | |
philpem@40 | 836 | // If ROMLMAP is set, force system to access ROM |
philpem@40 | 837 | if (!state.romlmap) |
philpem@40 | 838 | address |= 0x800000; |
philpem@40 | 839 | |
philpem@40 | 840 | // Check access permissions |
philpem@40 | 841 | ACCESS_CHECK_RD(address, 8); |
philpem@40 | 842 | |
philpem@40 | 843 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@40 | 844 | // ROM access |
philpem@40 | 845 | data = RD8(state.rom, address, ROM_SIZE - 1); |
philpem@60 | 846 | } else if (address <= 0x3fffff) { |
philpem@40 | 847 | // RAM access |
philpem@128 | 848 | uint32_t newAddr = MAP_ADDR(address); |
philpem@128 | 849 | |
philpem@63 | 850 | if (newAddr <= 0x1fffff) { |
philpem@119 | 851 | if (newAddr >= state.base_ram_size) |
philpem@119 | 852 | return EMPTY & 0xff; |
philpem@119 | 853 | else |
philpem@119 | 854 | return RD8(state.base_ram, newAddr, state.base_ram_size - 1); |
philpem@63 | 855 | } else { |
philpem@119 | 856 | if ((newAddr <= (state.exp_ram_size + 0x200000 - 1)) && (newAddr >= 0x200000)) |
philpem@63 | 857 | return RD8(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1); |
philpem@63 | 858 | else |
philpem@119 | 859 | return EMPTY & 0xff; |
philpem@63 | 860 | } |
philpem@40 | 861 | } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@40 | 862 | // I/O register space, zone A |
philpem@40 | 863 | switch (address & 0x0F0000) { |
philpem@40 | 864 | case 0x000000: // Map RAM access |
philpem@40 | 865 | if (address > 0x4007FF) fprintf(stderr, "NOTE: RD8 from MapRAM mirror, addr=0x%08X\n", address); |
philpem@40 | 866 | data = RD8(state.map, address, 0x7FF); |
philpem@40 | 867 | break; |
philpem@40 | 868 | case 0x020000: // Video RAM |
philpem@40 | 869 | if (address > 0x427FFF) fprintf(stderr, "NOTE: RD8 from VideoRAM mirror, addr=0x%08X\n", address); |
philpem@40 | 870 | data = RD8(state.vram, address, 0x7FFF); |
philpem@40 | 871 | break; |
philpem@59 | 872 | default: |
philpem@59 | 873 | data = IoRead(address, 8); |
philpem@40 | 874 | } |
philpem@59 | 875 | } else { |
philpem@59 | 876 | data = IoRead(address, 8); |
philpem@40 | 877 | } |
philpem@40 | 878 | |
philpem@40 | 879 | return data; |
philpem@59 | 880 | }/*}}}*/ |
philpem@40 | 881 | |
philpem@40 | 882 | /** |
philpem@40 | 883 | * @brief Write M68K memory, 32-bit |
philpem@40 | 884 | */ |
philpem@59 | 885 | void m68k_write_memory_32(uint32_t address, uint32_t value)/*{{{*/ |
philpem@40 | 886 | { |
philpem@40 | 887 | // If ROMLMAP is set, force system to access ROM |
philpem@40 | 888 | if (!state.romlmap) |
philpem@40 | 889 | address |= 0x800000; |
philpem@40 | 890 | |
philpem@40 | 891 | // Check access permissions |
philpem@40 | 892 | ACCESS_CHECK_WR(address, 32); |
philpem@40 | 893 | |
philpem@40 | 894 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@40 | 895 | // ROM access |
philpem@60 | 896 | } else if (address <= 0x3FFFFF) { |
philpem@40 | 897 | // RAM access |
philpem@128 | 898 | uint32_t newAddr = MAP_ADDR(address); |
philpem@128 | 899 | |
philpem@119 | 900 | if (newAddr <= 0x1fffff) { |
philpem@119 | 901 | if (newAddr < state.base_ram_size) { |
philpem@119 | 902 | WR32(state.base_ram, newAddr, state.base_ram_size - 1, value); |
philpem@119 | 903 | } |
philpem@119 | 904 | } else { |
philpem@119 | 905 | if ((newAddr - 0x200000) < state.exp_ram_size) { |
philpem@119 | 906 | WR32(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1, value); |
philpem@119 | 907 | } |
philpem@119 | 908 | } |
philpem@40 | 909 | } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@40 | 910 | // I/O register space, zone A |
philpem@40 | 911 | switch (address & 0x0F0000) { |
philpem@40 | 912 | case 0x000000: // Map RAM access |
philpem@105 | 913 | if (address > 0x4007FF) fprintf(stderr, "NOTE: WR32 to MapRAM mirror, addr=0x%08X\n", address); |
philpem@40 | 914 | WR32(state.map, address, 0x7FF, value); |
philpem@40 | 915 | break; |
philpem@40 | 916 | case 0x020000: // Video RAM |
philpem@105 | 917 | if (address > 0x427FFF) fprintf(stderr, "NOTE: WR32 to VideoRAM mirror, addr=0x%08X\n", address); |
philpem@40 | 918 | WR32(state.vram, address, 0x7FFF, value); |
philpem@40 | 919 | break; |
philpem@59 | 920 | default: |
philpem@59 | 921 | IoWrite(address, value, 32); |
philpem@40 | 922 | } |
philpem@59 | 923 | } else { |
philpem@59 | 924 | IoWrite(address, value, 32); |
philpem@40 | 925 | } |
philpem@59 | 926 | }/*}}}*/ |
philpem@40 | 927 | |
philpem@40 | 928 | /** |
philpem@40 | 929 | * @brief Write M68K memory, 16-bit |
philpem@40 | 930 | */ |
philpem@59 | 931 | void m68k_write_memory_16(uint32_t address, uint32_t value)/*{{{*/ |
philpem@40 | 932 | { |
philpem@40 | 933 | // If ROMLMAP is set, force system to access ROM |
philpem@40 | 934 | if (!state.romlmap) |
philpem@40 | 935 | address |= 0x800000; |
philpem@40 | 936 | |
philpem@40 | 937 | // Check access permissions |
philpem@40 | 938 | ACCESS_CHECK_WR(address, 16); |
philpem@40 | 939 | |
philpem@40 | 940 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@40 | 941 | // ROM access |
philpem@60 | 942 | } else if (address <= 0x3FFFFF) { |
philpem@40 | 943 | // RAM access |
philpem@128 | 944 | uint32_t newAddr = MAP_ADDR(address); |
philpem@112 | 945 | |
philpem@119 | 946 | if (newAddr <= 0x1fffff) { |
philpem@119 | 947 | if (newAddr < state.base_ram_size) { |
philpem@119 | 948 | WR16(state.base_ram, newAddr, state.base_ram_size - 1, value); |
philpem@119 | 949 | } |
philpem@119 | 950 | } else { |
philpem@119 | 951 | if ((newAddr - 0x200000) < state.exp_ram_size) { |
philpem@119 | 952 | WR16(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1, value); |
philpem@119 | 953 | } |
philpem@119 | 954 | } |
philpem@40 | 955 | } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@40 | 956 | // I/O register space, zone A |
philpem@40 | 957 | switch (address & 0x0F0000) { |
philpem@40 | 958 | case 0x000000: // Map RAM access |
philpem@40 | 959 | if (address > 0x4007FF) fprintf(stderr, "NOTE: WR16 to MapRAM mirror, addr=0x%08X, data=0x%04X\n", address, value); |
philpem@40 | 960 | WR16(state.map, address, 0x7FF, value); |
philpem@40 | 961 | break; |
philpem@40 | 962 | case 0x020000: // Video RAM |
philpem@40 | 963 | if (address > 0x427FFF) fprintf(stderr, "NOTE: WR16 to VideoRAM mirror, addr=0x%08X, data=0x%04X\n", address, value); |
philpem@40 | 964 | WR16(state.vram, address, 0x7FFF, value); |
philpem@40 | 965 | break; |
philpem@59 | 966 | default: |
philpem@59 | 967 | IoWrite(address, value, 16); |
philpem@40 | 968 | } |
philpem@59 | 969 | } else { |
philpem@59 | 970 | IoWrite(address, value, 16); |
philpem@40 | 971 | } |
philpem@59 | 972 | }/*}}}*/ |
philpem@40 | 973 | |
philpem@40 | 974 | /** |
philpem@40 | 975 | * @brief Write M68K memory, 8-bit |
philpem@40 | 976 | */ |
philpem@59 | 977 | void m68k_write_memory_8(uint32_t address, uint32_t value)/*{{{*/ |
philpem@40 | 978 | { |
philpem@40 | 979 | // If ROMLMAP is set, force system to access ROM |
philpem@40 | 980 | if (!state.romlmap) |
philpem@40 | 981 | address |= 0x800000; |
philpem@40 | 982 | |
philpem@40 | 983 | // Check access permissions |
philpem@40 | 984 | ACCESS_CHECK_WR(address, 8); |
philpem@40 | 985 | |
philpem@40 | 986 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@40 | 987 | // ROM access (read only!) |
philpem@60 | 988 | } else if (address <= 0x3FFFFF) { |
philpem@40 | 989 | // RAM access |
philpem@128 | 990 | uint32_t newAddr = MAP_ADDR(address); |
philpem@128 | 991 | |
philpem@119 | 992 | if (newAddr <= 0x1fffff) { |
philpem@119 | 993 | if (newAddr < state.base_ram_size) { |
philpem@119 | 994 | WR8(state.base_ram, newAddr, state.base_ram_size - 1, value); |
philpem@119 | 995 | } |
philpem@119 | 996 | } else { |
philpem@119 | 997 | if ((newAddr - 0x200000) < state.exp_ram_size) { |
philpem@119 | 998 | WR8(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1, value); |
philpem@119 | 999 | } |
philpem@119 | 1000 | } |
philpem@40 | 1001 | } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@40 | 1002 | // I/O register space, zone A |
philpem@40 | 1003 | switch (address & 0x0F0000) { |
philpem@40 | 1004 | case 0x000000: // Map RAM access |
philpem@59 | 1005 | if (address > 0x4007FF) fprintf(stderr, "NOTE: WR8 to MapRAM mirror, addr=0x%08X, data=0x%04X\n", address, value); |
philpem@40 | 1006 | WR8(state.map, address, 0x7FF, value); |
philpem@40 | 1007 | break; |
philpem@40 | 1008 | case 0x020000: // Video RAM |
philpem@59 | 1009 | if (address > 0x427FFF) fprintf(stderr, "NOTE: WR8 to VideoRAM mirror, addr=0x%08X, data=0x%04X\n", address, value); |
philpem@40 | 1010 | WR8(state.vram, address, 0x7FFF, value); |
philpem@40 | 1011 | break; |
philpem@59 | 1012 | default: |
philpem@59 | 1013 | IoWrite(address, value, 8); |
philpem@40 | 1014 | } |
philpem@59 | 1015 | } else { |
philpem@59 | 1016 | IoWrite(address, value, 8); |
philpem@40 | 1017 | } |
philpem@59 | 1018 | }/*}}}*/ |
philpem@40 | 1019 | |
philpem@40 | 1020 | |
philpem@40 | 1021 | // for the disassembler |
philpem@121 | 1022 | uint32_t m68k_read_disassembler_32(uint32_t addr) |
philpem@121 | 1023 | { |
philpem@121 | 1024 | if (addr < 0x400000) { |
philpem@128 | 1025 | // XXX FIXME BUGBUG update this to use the new mapper macros! |
philpem@121 | 1026 | uint16_t page = (addr >> 12) & 0x3FF; |
philpem@121 | 1027 | uint32_t new_page_addr = MAPRAM(page) & 0x3FF; |
philpem@121 | 1028 | uint32_t newAddr = (new_page_addr << 12) + (addr & 0xFFF); |
philpem@121 | 1029 | if (newAddr <= 0x1fffff) { |
philpem@121 | 1030 | if (newAddr >= state.base_ram_size) |
philpem@121 | 1031 | return EMPTY; |
philpem@121 | 1032 | else |
philpem@121 | 1033 | return RD32(state.base_ram, newAddr, state.base_ram_size - 1); |
philpem@121 | 1034 | } else { |
philpem@121 | 1035 | if ((newAddr <= (state.exp_ram_size + 0x200000 - 1)) && (newAddr >= 0x200000)) |
philpem@121 | 1036 | return RD32(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1); |
philpem@121 | 1037 | else |
philpem@121 | 1038 | return EMPTY; |
philpem@121 | 1039 | } |
philpem@121 | 1040 | } else { |
philpem@128 | 1041 | LOG("WARNING: Disassembler RD32 out of range 0x%08X\n", addr); |
philpem@121 | 1042 | return EMPTY; |
philpem@121 | 1043 | } |
philpem@121 | 1044 | } |
philpem@40 | 1045 | |
philpem@121 | 1046 | uint32_t m68k_read_disassembler_16(uint32_t addr) |
philpem@121 | 1047 | { |
philpem@121 | 1048 | if (addr < 0x400000) { |
philpem@121 | 1049 | uint16_t page = (addr >> 12) & 0x3FF; |
philpem@121 | 1050 | uint32_t new_page_addr = MAPRAM(page) & 0x3FF; |
philpem@121 | 1051 | uint32_t newAddr = (new_page_addr << 12) + (addr & 0xFFF); |
philpem@121 | 1052 | if (newAddr <= 0x1fffff) { |
philpem@121 | 1053 | if (newAddr >= state.base_ram_size) |
philpem@121 | 1054 | return EMPTY & 0xffff; |
philpem@121 | 1055 | else |
philpem@121 | 1056 | return RD16(state.base_ram, newAddr, state.base_ram_size - 1); |
philpem@121 | 1057 | } else { |
philpem@121 | 1058 | if ((newAddr <= (state.exp_ram_size + 0x200000 - 1)) && (newAddr >= 0x200000)) |
philpem@121 | 1059 | return RD16(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1); |
philpem@121 | 1060 | else |
philpem@121 | 1061 | return EMPTY & 0xffff; |
philpem@121 | 1062 | } |
philpem@121 | 1063 | } else { |
philpem@128 | 1064 | LOG("WARNING: Disassembler RD16 out of range 0x%08X\n", addr); |
philpem@121 | 1065 | return EMPTY & 0xffff; |
philpem@121 | 1066 | } |
philpem@121 | 1067 | } |
philpem@121 | 1068 | |
philpem@121 | 1069 | uint32_t m68k_read_disassembler_8 (uint32_t addr) |
philpem@121 | 1070 | { |
philpem@121 | 1071 | if (addr < 0x400000) { |
philpem@121 | 1072 | uint16_t page = (addr >> 12) & 0x3FF; |
philpem@121 | 1073 | uint32_t new_page_addr = MAPRAM(page) & 0x3FF; |
philpem@121 | 1074 | uint32_t newAddr = (new_page_addr << 12) + (addr & 0xFFF); |
philpem@121 | 1075 | if (newAddr <= 0x1fffff) { |
philpem@121 | 1076 | if (newAddr >= state.base_ram_size) |
philpem@121 | 1077 | return EMPTY & 0xff; |
philpem@121 | 1078 | else |
philpem@121 | 1079 | return RD8(state.base_ram, newAddr, state.base_ram_size - 1); |
philpem@121 | 1080 | } else { |
philpem@121 | 1081 | if ((newAddr <= (state.exp_ram_size + 0x200000 - 1)) && (newAddr >= 0x200000)) |
philpem@121 | 1082 | return RD8(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1); |
philpem@121 | 1083 | else |
philpem@121 | 1084 | return EMPTY & 0xff; |
philpem@121 | 1085 | } |
philpem@121 | 1086 | } else { |
philpem@128 | 1087 | LOG("WARNING: Disassembler RD8 out of range 0x%08X\n", addr); |
philpem@121 | 1088 | return EMPTY & 0xff; |
philpem@121 | 1089 | } |
philpem@121 | 1090 | } |
philpem@121 | 1091 |