Fri, 18 Apr 2014 01:34:20 -0600
added RTC emulation (attempts to set the date are ignored, and the year is currently hardcoded to 1987 because UNIX PC SysV has a few Y2K bugs)
philpem@40 | 1 | #include <stdio.h> |
philpem@40 | 2 | #include <stdlib.h> |
philpem@40 | 3 | #include <stdint.h> |
philpem@40 | 4 | #include <stdbool.h> |
philpem@59 | 5 | #include <assert.h> |
philpem@40 | 6 | #include "musashi/m68k.h" |
philpem@40 | 7 | #include "state.h" |
philpem@100 | 8 | #include "utils.h" |
philpem@40 | 9 | #include "memory.h" |
philpem@40 | 10 | |
philpem@119 | 11 | // The value which will be returned if the CPU attempts to read from empty memory |
philpem@119 | 12 | // TODO (FIXME?) - need to figure out if R/W ops wrap around. This seems to appease the UNIX kernel and P4TEST. |
philpem@119 | 13 | #define EMPTY 0xFFFFFFFFUL |
philpem@129 | 14 | //#define EMPTY 0x55555555UL |
philpem@129 | 15 | //#define EMPTY 0x00000000UL |
philpem@119 | 16 | |
philpem@40 | 17 | /****************** |
philpem@40 | 18 | * Memory mapping |
philpem@40 | 19 | ******************/ |
philpem@40 | 20 | |
philpem@40 | 21 | #define MAPRAM(addr) (((uint16_t)state.map[addr*2] << 8) + ((uint16_t)state.map[(addr*2)+1])) |
philpem@40 | 22 | |
andrew@150 | 23 | static uint32_t map_address_debug(uint32_t addr) |
andrew@150 | 24 | { |
andrew@150 | 25 | uint16_t page = (addr >> 12) & 0x3FF; |
andrew@150 | 26 | |
andrew@150 | 27 | // Look it up in the map RAM and get the physical page address |
andrew@150 | 28 | uint32_t new_page_addr = MAPRAM(page) & 0x3FF; |
andrew@150 | 29 | return (new_page_addr << 12) + (addr & 0xFFF); |
andrew@150 | 30 | } |
andrew@150 | 31 | |
philpem@59 | 32 | uint32_t mapAddr(uint32_t addr, bool writing)/*{{{*/ |
philpem@40 | 33 | { |
philpem@40 | 34 | if (addr < 0x400000) { |
philpem@40 | 35 | // RAM access. Check against the Map RAM |
philpem@40 | 36 | // Start by getting the original page address |
philpem@40 | 37 | uint16_t page = (addr >> 12) & 0x3FF; |
philpem@40 | 38 | |
philpem@40 | 39 | // Look it up in the map RAM and get the physical page address |
philpem@40 | 40 | uint32_t new_page_addr = MAPRAM(page) & 0x3FF; |
philpem@40 | 41 | |
philpem@40 | 42 | // Update the Page Status bits |
philpem@40 | 43 | uint8_t pagebits = (MAPRAM(page) >> 13) & 0x03; |
philpem@100 | 44 | // Pagebits -- |
philpem@100 | 45 | // 0 = not present |
philpem@100 | 46 | // 1 = present but not accessed |
philpem@100 | 47 | // 2 = present, accessed (read from) |
philpem@100 | 48 | // 3 = present, dirty (written to) |
philpem@100 | 49 | switch (pagebits) { |
philpem@100 | 50 | case 0: |
philpem@100 | 51 | // Page not present |
philpem@100 | 52 | // This should cause a page fault |
philpem@100 | 53 | LOGS("Whoa! Pagebit update, when the page is not present!"); |
philpem@100 | 54 | break; |
philpem@100 | 55 | |
philpem@100 | 56 | case 1: |
philpem@100 | 57 | // Page present -- first access |
philpem@104 | 58 | state.map[page*2] &= 0x9F; // turn off "present" bit (but not write enable!) |
philpem@100 | 59 | if (writing) |
philpem@100 | 60 | state.map[page*2] |= 0x60; // Page written to (dirty) |
philpem@100 | 61 | else |
philpem@100 | 62 | state.map[page*2] |= 0x40; // Page accessed but not written |
philpem@100 | 63 | break; |
philpem@100 | 64 | |
philpem@100 | 65 | case 2: |
philpem@100 | 66 | case 3: |
philpem@100 | 67 | // Page present, 2nd or later access |
philpem@100 | 68 | if (writing) |
philpem@100 | 69 | state.map[page*2] |= 0x60; // Page written to (dirty) |
philpem@100 | 70 | break; |
philpem@40 | 71 | } |
philpem@40 | 72 | |
philpem@40 | 73 | // Return the address with the new physical page spliced in |
philpem@40 | 74 | return (new_page_addr << 12) + (addr & 0xFFF); |
philpem@40 | 75 | } else { |
philpem@40 | 76 | // I/O, VRAM or MapRAM space; no mapping is performed or required |
philpem@40 | 77 | // TODO: assert here? |
philpem@40 | 78 | return addr; |
philpem@40 | 79 | } |
philpem@59 | 80 | }/*}}}*/ |
philpem@40 | 81 | |
andrew@150 | 82 | MEM_STATUS checkMemoryAccess(uint32_t addr, bool writing, bool dma)/*{{{*/ |
philpem@40 | 83 | { |
philpem@104 | 84 | // Get the page bits for this page. |
philpem@104 | 85 | uint16_t page = (addr >> 12) & 0x3FF; |
philpem@104 | 86 | uint8_t pagebits = (MAPRAM(page) >> 13) & 0x07; |
philpem@104 | 87 | |
philpem@104 | 88 | // Check page is present (but only for RAM zone) |
philpem@104 | 89 | if ((addr < 0x400000) && ((pagebits & 0x03) == 0)) { |
philpem@104 | 90 | LOG("Page not mapped in: addr %08X, page %04X, mapbits %04X", addr, page, MAPRAM(page)); |
philpem@104 | 91 | return MEM_PAGEFAULT; |
philpem@104 | 92 | } |
philpem@104 | 93 | |
philpem@40 | 94 | // Are we in Supervisor mode? |
andrew@150 | 95 | if (dma || (m68k_get_reg(NULL, M68K_REG_SR) & 0x2000)) |
philpem@40 | 96 | // Yes. We can do anything we like. |
philpem@40 | 97 | return MEM_ALLOWED; |
philpem@40 | 98 | |
philpem@40 | 99 | // If we're here, then we must be in User mode. |
philpem@40 | 100 | // Check that the user didn't access memory outside of the RAM area |
philpem@106 | 101 | if (addr >= 0x400000) { |
philpem@106 | 102 | LOGS("User accessed privileged memory"); |
philpem@40 | 103 | return MEM_UIE; |
philpem@106 | 104 | } |
philpem@40 | 105 | |
philpem@40 | 106 | // User attempt to access the kernel |
philpem@40 | 107 | // A19, A20, A21, A22 low (kernel access): RAM addr before paging; not in Supervisor mode |
andrew@150 | 108 | if (((addr >> 19) & 0x0F) == 0 && !(!writing && addr <= 0x1000)) { |
philpem@106 | 109 | LOGS("Attempt by user code to access kernel space"); |
philpem@40 | 110 | return MEM_KERNEL; |
philpem@106 | 111 | } |
philpem@40 | 112 | |
philpem@40 | 113 | // Check page is write enabled |
philpem@106 | 114 | if (writing && ((pagebits & 0x04) == 0)) { |
philpem@106 | 115 | LOG("Page not write enabled: inaddr %08X, page %04X, mapram %04X [%02X %02X], pagebits %d", |
philpem@106 | 116 | addr, page, MAPRAM(page), state.map[page*2], state.map[(page*2)+1], pagebits); |
philpem@40 | 117 | return MEM_PAGE_NO_WE; |
philpem@106 | 118 | } |
philpem@40 | 119 | // Page access allowed. |
philpem@40 | 120 | return MEM_ALLOWED; |
philpem@59 | 121 | }/*}}}*/ |
philpem@40 | 122 | |
andrew@150 | 123 | #define _ACCESS_CHECK_WR_BYTE(address) \ |
philpem@59 | 124 | do { \ |
andrew@150 | 125 | switch (st = checkMemoryAccess(address, true, false)) { \ |
philpem@40 | 126 | case MEM_ALLOWED: \ |
philpem@40 | 127 | /* Access allowed */ \ |
philpem@40 | 128 | break; \ |
philpem@40 | 129 | case MEM_PAGEFAULT: \ |
philpem@40 | 130 | /* Page fault */ \ |
philpem@44 | 131 | state.genstat = 0x8BFF | (state.pie ? 0x0400 : 0); \ |
philpem@40 | 132 | fault = true; \ |
philpem@40 | 133 | break; \ |
philpem@40 | 134 | case MEM_UIE: \ |
philpem@40 | 135 | /* User access to memory above 4MB */ \ |
philpem@44 | 136 | state.genstat = 0x9AFF | (state.pie ? 0x0400 : 0); \ |
philpem@40 | 137 | fault = true; \ |
philpem@40 | 138 | break; \ |
philpem@40 | 139 | case MEM_KERNEL: \ |
philpem@40 | 140 | case MEM_PAGE_NO_WE: \ |
philpem@40 | 141 | /* kernel access or page not write enabled */ \ |
philpem@112 | 142 | /* XXX: is this the correct value? */ \ |
philpem@112 | 143 | state.genstat = 0x9BFF | (state.pie ? 0x0400 : 0); \ |
philpem@40 | 144 | fault = true; \ |
philpem@40 | 145 | break; \ |
philpem@40 | 146 | } \ |
andrew@150 | 147 | }while (0) |
andrew@150 | 148 | |
andrew@150 | 149 | |
andrew@150 | 150 | |
andrew@150 | 151 | /******************************************************** |
andrew@150 | 152 | * m68k memory read/write support functions for Musashi |
andrew@150 | 153 | ********************************************************/ |
andrew@150 | 154 | |
andrew@150 | 155 | /** |
andrew@150 | 156 | * @brief Check memory access permissions for a write operation. |
andrew@150 | 157 | * @note This used to be a single macro (merged with ACCESS_CHECK_RD), but |
andrew@150 | 158 | * gcc throws warnings when you have a return-with-value in a void |
andrew@150 | 159 | * function, even if the return-with-value is completely unreachable. |
andrew@150 | 160 | * Similarly it doesn't like it if you have a return without a value |
andrew@150 | 161 | * in a non-void function, even if it's impossible to ever reach the |
andrew@150 | 162 | * return-with-no-value. UGH! |
andrew@150 | 163 | */ |
andrew@150 | 164 | /*{{{ macro: ACCESS_CHECK_WR(address, bits)*/ |
andrew@150 | 165 | #define ACCESS_CHECK_WR(address, bits) \ |
andrew@150 | 166 | do { \ |
andrew@150 | 167 | bool fault = false; \ |
andrew@150 | 168 | MEM_STATUS st; \ |
andrew@150 | 169 | _ACCESS_CHECK_WR_BYTE(address); \ |
andrew@150 | 170 | if (!fault && bits == 32 \ |
andrew@150 | 171 | && ((address + 3) & ~0xfff) != ((address & ~0xfff))){ \ |
andrew@150 | 172 | _ACCESS_CHECK_WR_BYTE(address + 3); \ |
andrew@150 | 173 | } \ |
philpem@40 | 174 | if (fault) { \ |
philpem@40 | 175 | if (bits >= 16) \ |
philpem@68 | 176 | state.bsr0 = 0x7C00; \ |
philpem@40 | 177 | else \ |
philpem@108 | 178 | state.bsr0 = (address & 1) ? 0x7E00 : 0x7D00; \ |
philpem@40 | 179 | state.bsr0 |= (address >> 16); \ |
philpem@40 | 180 | state.bsr1 = address & 0xffff; \ |
philpem@103 | 181 | LOG("Bus Error while writing, addr %08X, statcode %d", address, st); \ |
philpem@103 | 182 | if (state.ee) m68k_pulse_bus_error(); \ |
philpem@40 | 183 | return; \ |
philpem@40 | 184 | } \ |
philpem@70 | 185 | } while (0) |
philpem@59 | 186 | /*}}}*/ |
philpem@40 | 187 | |
andrew@150 | 188 | #define _ACCESS_CHECK_RD_BYTE(address) \ |
philpem@59 | 189 | do { \ |
andrew@150 | 190 | switch (st = checkMemoryAccess(address, false, false)) { \ |
philpem@40 | 191 | case MEM_ALLOWED: \ |
philpem@40 | 192 | /* Access allowed */ \ |
philpem@40 | 193 | break; \ |
philpem@40 | 194 | case MEM_PAGEFAULT: \ |
philpem@40 | 195 | /* Page fault */ \ |
philpem@44 | 196 | state.genstat = 0xCBFF | (state.pie ? 0x0400 : 0); \ |
philpem@40 | 197 | fault = true; \ |
philpem@40 | 198 | break; \ |
philpem@40 | 199 | case MEM_UIE: \ |
philpem@40 | 200 | /* User access to memory above 4MB */ \ |
philpem@44 | 201 | state.genstat = 0xDAFF | (state.pie ? 0x0400 : 0); \ |
philpem@40 | 202 | fault = true; \ |
philpem@40 | 203 | break; \ |
philpem@40 | 204 | case MEM_KERNEL: \ |
philpem@40 | 205 | case MEM_PAGE_NO_WE: \ |
philpem@40 | 206 | /* kernel access or page not write enabled */ \ |
philpem@112 | 207 | /* XXX: is this the correct value? */ \ |
philpem@112 | 208 | state.genstat = 0xDBFF | (state.pie ? 0x0400 : 0); \ |
philpem@40 | 209 | fault = true; \ |
philpem@40 | 210 | break; \ |
philpem@40 | 211 | } \ |
andrew@150 | 212 | } while (0) |
andrew@150 | 213 | |
andrew@150 | 214 | /** |
andrew@150 | 215 | * @brief Check memory access permissions for a read operation. |
andrew@150 | 216 | * @note This used to be a single macro (merged with ACCESS_CHECK_WR), but |
andrew@150 | 217 | * gcc throws warnings when you have a return-with-value in a void |
andrew@150 | 218 | * function, even if the return-with-value is completely unreachable. |
andrew@150 | 219 | * Similarly it doesn't like it if you have a return without a value |
andrew@150 | 220 | * in a non-void function, even if it's impossible to ever reach the |
andrew@150 | 221 | * return-with-no-value. UGH! |
andrew@150 | 222 | */ |
andrew@150 | 223 | /*{{{ macro: ACCESS_CHECK_RD(address, bits)*/ |
andrew@150 | 224 | #define ACCESS_CHECK_RD(address, bits) \ |
andrew@150 | 225 | do { \ |
andrew@150 | 226 | bool fault = false; \ |
andrew@150 | 227 | uint32_t faultAddr = address; \ |
andrew@150 | 228 | MEM_STATUS st; \ |
andrew@150 | 229 | _ACCESS_CHECK_RD_BYTE(address); \ |
andrew@150 | 230 | if (!fault && bits == 32 \ |
andrew@150 | 231 | && ((address + 2) & ~0xfff) != (address & ~0xfff)){ \ |
andrew@150 | 232 | _ACCESS_CHECK_RD_BYTE(address + 2); \ |
andrew@150 | 233 | if (fault) faultAddr = address + 2; \ |
andrew@150 | 234 | } \ |
philpem@40 | 235 | \ |
philpem@40 | 236 | if (fault) { \ |
philpem@40 | 237 | if (bits >= 16) \ |
philpem@68 | 238 | state.bsr0 = 0x7C00; \ |
philpem@40 | 239 | else \ |
andrew@150 | 240 | state.bsr0 = (faultAddr & 1) ? 0x7E00 : 0x7D00; \ |
andrew@150 | 241 | state.bsr0 |= (faultAddr >> 16); \ |
andrew@150 | 242 | state.bsr1 = faultAddr & 0xffff; \ |
andrew@150 | 243 | LOG("Bus Error while reading, addr %08X, statcode %d", faultAddr, st); \ |
philpem@103 | 244 | if (state.ee) m68k_pulse_bus_error(); \ |
philpem@136 | 245 | if (bits >= 32) \ |
philpem@119 | 246 | return EMPTY & 0xFFFFFFFF; \ |
philpem@113 | 247 | else \ |
philpem@136 | 248 | return EMPTY & ((1ULL << bits)-1); \ |
philpem@40 | 249 | } \ |
philpem@70 | 250 | } while (0) |
philpem@59 | 251 | /*}}}*/ |
philpem@40 | 252 | |
philpem@112 | 253 | bool access_check_dma(int reading) |
philpem@112 | 254 | { |
philpem@112 | 255 | // Check memory access permissions |
philpem@139 | 256 | bool access_ok = false; |
andrew@150 | 257 | switch (checkMemoryAccess(state.dma_address, !reading, true)) { |
philpem@112 | 258 | case MEM_PAGEFAULT: |
philpem@112 | 259 | // Page fault |
philpem@112 | 260 | state.genstat = 0xABFF |
philpem@112 | 261 | | (reading ? 0x4000 : 0) |
philpem@112 | 262 | | (state.pie ? 0x0400 : 0); |
philpem@112 | 263 | access_ok = false; |
philpem@112 | 264 | break; |
philpem@112 | 265 | |
philpem@112 | 266 | case MEM_UIE: |
philpem@112 | 267 | // User access to memory above 4MB |
philpem@112 | 268 | // FIXME? Shouldn't be possible with DMA... assert this? |
philpem@112 | 269 | state.genstat = 0xBAFF |
philpem@112 | 270 | | (reading ? 0x4000 : 0) |
philpem@112 | 271 | | (state.pie ? 0x0400 : 0); |
philpem@112 | 272 | access_ok = false; |
philpem@112 | 273 | break; |
philpem@112 | 274 | |
philpem@112 | 275 | case MEM_KERNEL: |
philpem@112 | 276 | case MEM_PAGE_NO_WE: |
philpem@112 | 277 | // Kernel access or page not write enabled |
philpem@112 | 278 | /* XXX: is this correct? */ |
philpem@112 | 279 | state.genstat = 0xBBFF |
philpem@112 | 280 | | (reading ? 0x4000 : 0) |
philpem@112 | 281 | | (state.pie ? 0x0400 : 0); |
philpem@112 | 282 | access_ok = false; |
philpem@112 | 283 | break; |
philpem@112 | 284 | |
philpem@112 | 285 | case MEM_ALLOWED: |
philpem@112 | 286 | access_ok = true; |
philpem@112 | 287 | break; |
philpem@112 | 288 | } |
philpem@112 | 289 | if (!access_ok) { |
philpem@112 | 290 | state.bsr0 = 0x3C00; |
philpem@112 | 291 | state.bsr0 |= (state.dma_address >> 16); |
philpem@112 | 292 | state.bsr1 = state.dma_address & 0xffff; |
philpem@112 | 293 | if (state.ee) m68k_set_irq(7); |
philpem@112 | 294 | printf("BUS ERROR FROM DMA: genstat=%04X, bsr0=%04X, bsr1=%04X\n", state.genstat, state.bsr0, state.bsr1); |
philpem@112 | 295 | } |
philpem@112 | 296 | return (access_ok); |
philpem@112 | 297 | } |
philpem@112 | 298 | |
philpem@40 | 299 | // Logging macros |
philpem@59 | 300 | #define LOG_NOT_HANDLED_R(bits) \ |
philpem@64 | 301 | if (!handled) printf("unhandled read%02d, addr=0x%08X\n", bits, address); |
philpem@40 | 302 | |
philpem@59 | 303 | #define LOG_NOT_HANDLED_W(bits) \ |
philpem@64 | 304 | if (!handled) printf("unhandled write%02d, addr=0x%08X, data=0x%08X\n", bits, address, data); |
philpem@59 | 305 | |
philpem@59 | 306 | /******************************************************** |
philpem@59 | 307 | * I/O read/write functions |
philpem@59 | 308 | ********************************************************/ |
philpem@40 | 309 | |
philpem@40 | 310 | /** |
philpem@59 | 311 | * Issue a warning if a read operation is made with an invalid size |
philpem@40 | 312 | */ |
philpem@66 | 313 | inline static void ENFORCE_SIZE(int bits, uint32_t address, bool read, int allowed, char *regname) |
philpem@40 | 314 | { |
philpem@59 | 315 | assert((bits == 8) || (bits == 16) || (bits == 32)); |
philpem@59 | 316 | if ((bits & allowed) == 0) { |
philpem@66 | 317 | printf("WARNING: %s 0x%08X (%s) with invalid size %d!\n", read ? "read from" : "write to", address, regname, bits); |
philpem@59 | 318 | } |
philpem@59 | 319 | } |
philpem@59 | 320 | |
philpem@66 | 321 | inline static void ENFORCE_SIZE_R(int bits, uint32_t address, int allowed, char *regname) |
philpem@40 | 322 | { |
philpem@66 | 323 | ENFORCE_SIZE(bits, address, true, allowed, regname); |
philpem@66 | 324 | } |
philpem@66 | 325 | |
philpem@66 | 326 | inline static void ENFORCE_SIZE_W(int bits, uint32_t address, int allowed, char *regname) |
philpem@66 | 327 | { |
philpem@66 | 328 | ENFORCE_SIZE(bits, address, false, allowed, regname); |
philpem@66 | 329 | } |
philpem@66 | 330 | |
philpem@59 | 331 | void IoWrite(uint32_t address, uint32_t data, int bits)/*{{{*/ |
philpem@59 | 332 | { |
philpem@40 | 333 | bool handled = false; |
philpem@40 | 334 | |
philpem@59 | 335 | if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@40 | 336 | // I/O register space, zone A |
philpem@40 | 337 | switch (address & 0x0F0000) { |
philpem@40 | 338 | case 0x010000: // General Status Register |
philpem@59 | 339 | if (bits == 16) |
philpem@59 | 340 | state.genstat = (data & 0xffff); |
philpem@59 | 341 | else if (bits == 8) { |
philpem@59 | 342 | if (address & 0) |
philpem@59 | 343 | state.genstat = data; |
philpem@59 | 344 | else |
philpem@59 | 345 | state.genstat = data << 8; |
philpem@59 | 346 | } |
philpem@40 | 347 | handled = true; |
philpem@40 | 348 | break; |
philpem@40 | 349 | case 0x030000: // Bus Status Register 0 |
philpem@40 | 350 | break; |
philpem@40 | 351 | case 0x040000: // Bus Status Register 1 |
philpem@40 | 352 | break; |
philpem@40 | 353 | case 0x050000: // Phone status |
philpem@40 | 354 | break; |
philpem@40 | 355 | case 0x060000: // DMA Count |
philpem@66 | 356 | ENFORCE_SIZE_W(bits, address, 16, "DMACOUNT"); |
philpem@59 | 357 | state.dma_count = (data & 0x3FFF); |
philpem@59 | 358 | state.idmarw = ((data & 0x4000) == 0x4000); |
philpem@59 | 359 | state.dmaen = ((data & 0x8000) == 0x8000); |
philpem@59 | 360 | // This handles the "dummy DMA transfer" mentioned in the docs |
philpem@112 | 361 | // disabled because it causes the floppy test to fail |
philpem@112 | 362 | #if 0 |
philpem@112 | 363 | if (!state.idmarw){ |
philpem@112 | 364 | if (access_check_dma(true)){ |
philpem@112 | 365 | uint32_t newAddr = mapAddr(state.dma_address, true); |
philpem@112 | 366 | // RAM access |
philpem@112 | 367 | if (newAddr <= 0x1fffff) |
philpem@112 | 368 | WR16(state.base_ram, newAddr, state.base_ram_size - 1, 0xFF); |
philpem@112 | 369 | else if (address <= 0x3FFFFF) |
philpem@112 | 370 | WR16(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1, 0xFF); |
philpem@112 | 371 | } |
philpem@112 | 372 | } |
philpem@112 | 373 | #endif |
philpem@59 | 374 | state.dma_count++; |
philpem@53 | 375 | handled = true; |
philpem@40 | 376 | break; |
philpem@40 | 377 | case 0x070000: // Line Printer Status Register |
philpem@40 | 378 | break; |
philpem@40 | 379 | case 0x080000: // Real Time Clock |
andrew@151 | 380 | ENFORCE_SIZE_W(bits, address, 16, "RTCWRITE"); |
andrew@151 | 381 | /*printf("IoWrite RTCWRITE %x\n", data);*/ |
andrew@151 | 382 | tc8250_set_chip_enable(&state.rtc_ctx, data & 0x8000); |
andrew@151 | 383 | tc8250_set_address_latch_enable(&state.rtc_ctx, data & 0x4000); |
andrew@151 | 384 | tc8250_set_write_enable(&state.rtc_ctx, data & 0x2000); |
andrew@151 | 385 | tc8250_write_reg(&state.rtc_ctx, (data & 0x0F00) >> 8); |
andrew@151 | 386 | handled = true; |
philpem@40 | 387 | break; |
philpem@40 | 388 | case 0x090000: // Phone registers |
philpem@40 | 389 | switch (address & 0x0FF000) { |
philpem@40 | 390 | case 0x090000: // Handset relay |
philpem@40 | 391 | case 0x098000: |
philpem@40 | 392 | break; |
philpem@40 | 393 | case 0x091000: // Line select 2 |
philpem@40 | 394 | case 0x099000: |
philpem@40 | 395 | break; |
philpem@40 | 396 | case 0x092000: // Hook relay 1 |
philpem@40 | 397 | case 0x09A000: |
philpem@40 | 398 | break; |
philpem@40 | 399 | case 0x093000: // Hook relay 2 |
philpem@40 | 400 | case 0x09B000: |
philpem@40 | 401 | break; |
philpem@40 | 402 | case 0x094000: // Line 1 hold |
philpem@40 | 403 | case 0x09C000: |
philpem@40 | 404 | break; |
philpem@40 | 405 | case 0x095000: // Line 2 hold |
philpem@40 | 406 | case 0x09D000: |
philpem@40 | 407 | break; |
philpem@40 | 408 | case 0x096000: // Line 1 A-lead |
philpem@40 | 409 | case 0x09E000: |
philpem@40 | 410 | break; |
philpem@40 | 411 | case 0x097000: // Line 2 A-lead |
philpem@40 | 412 | case 0x09F000: |
philpem@40 | 413 | break; |
philpem@40 | 414 | } |
philpem@40 | 415 | break; |
philpem@59 | 416 | case 0x0A0000: // Miscellaneous Control Register |
philpem@66 | 417 | ENFORCE_SIZE_W(bits, address, 16, "MISCCON"); |
philpem@59 | 418 | // TODO: handle the ctrl bits properly |
philpem@97 | 419 | if (data & 0x8000){ |
philpem@97 | 420 | state.timer_enabled = 1; |
philpem@97 | 421 | }else{ |
philpem@97 | 422 | state.timer_enabled = 0; |
philpem@97 | 423 | state.timer_asserted = 0; |
philpem@97 | 424 | } |
philpem@59 | 425 | state.dma_reading = (data & 0x4000); |
philpem@72 | 426 | if (state.leds != ((~data & 0xF00) >> 8)) { |
philpem@72 | 427 | state.leds = (~data & 0xF00) >> 8; |
philpem@117 | 428 | #ifdef SHOW_LEDS |
philpem@72 | 429 | printf("LEDs: %s %s %s %s\n", |
philpem@72 | 430 | (state.leds & 8) ? "R" : "-", |
philpem@72 | 431 | (state.leds & 4) ? "G" : "-", |
philpem@72 | 432 | (state.leds & 2) ? "Y" : "-", |
philpem@72 | 433 | (state.leds & 1) ? "R" : "-"); |
philpem@117 | 434 | #endif |
philpem@72 | 435 | } |
philpem@46 | 436 | handled = true; |
philpem@40 | 437 | break; |
philpem@40 | 438 | case 0x0B0000: // TM/DIALWR |
philpem@40 | 439 | break; |
philpem@59 | 440 | case 0x0C0000: // Clear Status Register |
philpem@59 | 441 | state.genstat = 0xFFFF; |
philpem@59 | 442 | state.bsr0 = 0xFFFF; |
philpem@59 | 443 | state.bsr1 = 0xFFFF; |
philpem@43 | 444 | handled = true; |
philpem@40 | 445 | break; |
philpem@40 | 446 | case 0x0D0000: // DMA Address Register |
philpem@59 | 447 | if (address & 0x004000) { |
philpem@59 | 448 | // A14 high -- set most significant bits |
philpem@59 | 449 | state.dma_address = (state.dma_address & 0x1fe) | ((address & 0x3ffe) << 8); |
philpem@59 | 450 | } else { |
philpem@59 | 451 | // A14 low -- set least significant bits |
philpem@59 | 452 | state.dma_address = (state.dma_address & 0x3ffe00) | (address & 0x1fe); |
philpem@59 | 453 | } |
philpem@59 | 454 | handled = true; |
philpem@40 | 455 | break; |
philpem@40 | 456 | case 0x0E0000: // Disk Control Register |
philpem@112 | 457 | { |
philpem@112 | 458 | bool fd_selected; |
philpem@112 | 459 | bool hd_selected; |
philpem@112 | 460 | ENFORCE_SIZE_W(bits, address, 16, "DISKCON"); |
philpem@112 | 461 | // B7 = FDD controller reset |
philpem@112 | 462 | if ((data & 0x80) == 0) wd2797_reset(&state.fdc_ctx); |
philpem@112 | 463 | // B6 = drive 0 select |
philpem@112 | 464 | fd_selected = (data & 0x40) != 0; |
philpem@112 | 465 | // B5 = motor enable -- TODO |
philpem@112 | 466 | // B4 = HDD controller reset |
philpem@112 | 467 | if ((data & 0x10) == 0) wd2010_reset(&state.hdc_ctx); |
philpem@112 | 468 | // B3 = HDD0 select |
philpem@112 | 469 | hd_selected = (data & 0x08) != 0; |
philpem@112 | 470 | // B2,1,0 = HDD0 head select -- TODO? |
philpem@112 | 471 | if (hd_selected && !state.hd_selected){ |
philpem@112 | 472 | state.fd_selected = false; |
philpem@112 | 473 | state.hd_selected = true; |
philpem@112 | 474 | }else if (fd_selected && !state.fd_selected){ |
philpem@112 | 475 | state.hd_selected = false; |
philpem@112 | 476 | state.fd_selected = true; |
philpem@112 | 477 | } |
philpem@112 | 478 | handled = true; |
philpem@112 | 479 | break; |
philpem@112 | 480 | } |
philpem@40 | 481 | case 0x0F0000: // Line Printer Data Register |
philpem@40 | 482 | break; |
philpem@40 | 483 | } |
philpem@40 | 484 | } else if ((address >= 0xC00000) && (address <= 0xFFFFFF)) { |
philpem@40 | 485 | // I/O register space, zone B |
philpem@40 | 486 | switch (address & 0xF00000) { |
philpem@40 | 487 | case 0xC00000: // Expansion slots |
philpem@40 | 488 | case 0xD00000: |
philpem@40 | 489 | switch (address & 0xFC0000) { |
philpem@40 | 490 | case 0xC00000: // Expansion slot 0 |
philpem@40 | 491 | case 0xC40000: // Expansion slot 1 |
philpem@40 | 492 | case 0xC80000: // Expansion slot 2 |
philpem@40 | 493 | case 0xCC0000: // Expansion slot 3 |
philpem@40 | 494 | case 0xD00000: // Expansion slot 4 |
philpem@40 | 495 | case 0xD40000: // Expansion slot 5 |
philpem@40 | 496 | case 0xD80000: // Expansion slot 6 |
philpem@40 | 497 | case 0xDC0000: // Expansion slot 7 |
philpem@59 | 498 | fprintf(stderr, "NOTE: WR%d to expansion card space, addr=0x%08X, data=0x%08X\n", bits, address, data); |
philpem@59 | 499 | handled = true; |
philpem@40 | 500 | break; |
philpem@40 | 501 | } |
philpem@40 | 502 | break; |
philpem@40 | 503 | case 0xE00000: // HDC, FDC, MCR2 and RTC data bits |
philpem@40 | 504 | case 0xF00000: |
philpem@40 | 505 | switch (address & 0x070000) { |
philpem@112 | 506 | case 0x000000: // [ef][08]xxxx ==> WD2010 hard disc controller |
philpem@112 | 507 | wd2010_write_reg(&state.hdc_ctx, (address >> 1) & 7, data); |
philpem@112 | 508 | handled = true; |
philpem@40 | 509 | break; |
philpem@40 | 510 | case 0x010000: // [ef][19]xxxx ==> WD2797 floppy disc controller |
philpem@112 | 511 | /*ENFORCE_SIZE_W(bits, address, 16, "FDC REGISTERS");*/ |
philpem@59 | 512 | wd2797_write_reg(&state.fdc_ctx, (address >> 1) & 3, data); |
philpem@52 | 513 | handled = true; |
philpem@40 | 514 | break; |
philpem@40 | 515 | case 0x020000: // [ef][2a]xxxx ==> Miscellaneous Control Register 2 |
philpem@116 | 516 | // MCR2 - UNIX PC Rev. P5.1 HDD head select b3 and potential HDD#2 select |
philpem@116 | 517 | wd2010_write_reg(&state.hdc_ctx, UNIXPC_REG_MCR2, data); |
philpem@116 | 518 | handled = true; |
philpem@40 | 519 | break; |
philpem@40 | 520 | case 0x030000: // [ef][3b]xxxx ==> Real Time Clock data bits |
philpem@40 | 521 | break; |
philpem@40 | 522 | case 0x040000: // [ef][4c]xxxx ==> General Control Register |
philpem@40 | 523 | switch (address & 0x077000) { |
philpem@40 | 524 | case 0x040000: // [ef][4c][08]xxx ==> EE |
philpem@102 | 525 | // Error Enable. If =0, Level7 intrs and bus errors are masked. |
philpem@102 | 526 | ENFORCE_SIZE_W(bits, address, 16, "EE"); |
philpem@102 | 527 | state.ee = ((data & 0x8000) == 0x8000); |
philpem@102 | 528 | handled = true; |
philpem@59 | 529 | break; |
philpem@44 | 530 | case 0x041000: // [ef][4c][19]xxx ==> PIE |
philpem@66 | 531 | ENFORCE_SIZE_W(bits, address, 16, "PIE"); |
philpem@59 | 532 | state.pie = ((data & 0x8000) == 0x8000); |
philpem@59 | 533 | handled = true; |
philpem@59 | 534 | break; |
philpem@40 | 535 | case 0x042000: // [ef][4c][2A]xxx ==> BP |
philpem@59 | 536 | break; |
philpem@40 | 537 | case 0x043000: // [ef][4c][3B]xxx ==> ROMLMAP |
philpem@66 | 538 | ENFORCE_SIZE_W(bits, address, 16, "ROMLMAP"); |
philpem@59 | 539 | state.romlmap = ((data & 0x8000) == 0x8000); |
philpem@44 | 540 | handled = true; |
philpem@40 | 541 | break; |
philpem@59 | 542 | case 0x044000: // [ef][4c][4C]xxx ==> L1 MODEM |
philpem@66 | 543 | ENFORCE_SIZE_W(bits, address, 16, "L1 MODEM"); |
philpem@59 | 544 | break; |
philpem@59 | 545 | case 0x045000: // [ef][4c][5D]xxx ==> L2 MODEM |
philpem@66 | 546 | ENFORCE_SIZE_W(bits, address, 16, "L2 MODEM"); |
philpem@59 | 547 | break; |
philpem@59 | 548 | case 0x046000: // [ef][4c][6E]xxx ==> D/N CONNECT |
philpem@66 | 549 | ENFORCE_SIZE_W(bits, address, 16, "D/N CONNECT"); |
philpem@59 | 550 | break; |
philpem@59 | 551 | case 0x047000: // [ef][4c][7F]xxx ==> Whole screen reverse video |
philpem@66 | 552 | ENFORCE_SIZE_W(bits, address, 16, "WHOLE SCREEN REVERSE VIDEO"); |
philpem@40 | 553 | break; |
philpem@40 | 554 | } |
philpem@40 | 555 | case 0x050000: // [ef][5d]xxxx ==> 8274 |
philpem@40 | 556 | break; |
philpem@40 | 557 | case 0x060000: // [ef][6e]xxxx ==> Control regs |
philpem@40 | 558 | switch (address & 0x07F000) { |
philpem@40 | 559 | default: |
philpem@40 | 560 | break; |
philpem@40 | 561 | } |
philpem@40 | 562 | break; |
philpem@40 | 563 | case 0x070000: // [ef][7f]xxxx ==> 6850 Keyboard Controller |
philpem@84 | 564 | // TODO: figure out which sizes are valid (probably just 8 and 16) |
philpem@84 | 565 | // ENFORCE_SIZE_W(bits, address, 16, "KEYBOARD CONTROLLER"); |
philpem@93 | 566 | if (bits == 8) { |
philpem@93 | 567 | printf("KBD WR %02X => %02X\n", (address >> 1) & 3, data); |
philpem@93 | 568 | keyboard_write(&state.kbd, (address >> 1) & 3, data); |
philpem@93 | 569 | handled = true; |
philpem@93 | 570 | } else if (bits == 16) { |
philpem@93 | 571 | printf("KBD WR %02X => %04X\n", (address >> 1) & 3, data); |
philpem@93 | 572 | keyboard_write(&state.kbd, (address >> 1) & 3, data >> 8); |
philpem@93 | 573 | handled = true; |
philpem@93 | 574 | } |
philpem@40 | 575 | break; |
philpem@40 | 576 | } |
philpem@40 | 577 | } |
philpem@40 | 578 | } |
philpem@40 | 579 | |
philpem@64 | 580 | LOG_NOT_HANDLED_W(bits); |
philpem@59 | 581 | }/*}}}*/ |
philpem@40 | 582 | |
philpem@59 | 583 | uint32_t IoRead(uint32_t address, int bits)/*{{{*/ |
philpem@59 | 584 | { |
philpem@59 | 585 | bool handled = false; |
philpem@119 | 586 | uint32_t data = EMPTY & 0xFFFFFFFF; |
philpem@40 | 587 | |
philpem@59 | 588 | if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@40 | 589 | // I/O register space, zone A |
philpem@40 | 590 | switch (address & 0x0F0000) { |
philpem@40 | 591 | case 0x010000: // General Status Register |
philpem@116 | 592 | /* ENFORCE_SIZE_R(bits, address, 16, "GENSTAT"); */ |
philpem@116 | 593 | if (bits == 32) { |
philpem@116 | 594 | return ((uint32_t)state.genstat << 16) + (uint32_t)state.genstat; |
philpem@116 | 595 | } else if (bits == 16) { |
philpem@116 | 596 | return (uint16_t)state.genstat; |
philpem@116 | 597 | } else { |
philpem@116 | 598 | return (uint8_t)(state.genstat & 0xff); |
philpem@116 | 599 | } |
philpem@40 | 600 | break; |
philpem@40 | 601 | case 0x030000: // Bus Status Register 0 |
philpem@66 | 602 | ENFORCE_SIZE_R(bits, address, 16, "BSR0"); |
philpem@59 | 603 | return ((uint32_t)state.bsr0 << 16) + (uint32_t)state.bsr0; |
philpem@40 | 604 | break; |
philpem@40 | 605 | case 0x040000: // Bus Status Register 1 |
philpem@66 | 606 | ENFORCE_SIZE_R(bits, address, 16, "BSR1"); |
philpem@59 | 607 | return ((uint32_t)state.bsr1 << 16) + (uint32_t)state.bsr1; |
philpem@40 | 608 | break; |
philpem@40 | 609 | case 0x050000: // Phone status |
philpem@66 | 610 | ENFORCE_SIZE_R(bits, address, 8 | 16, "PHONE STATUS"); |
philpem@40 | 611 | break; |
philpem@40 | 612 | case 0x060000: // DMA Count |
philpem@55 | 613 | // TODO: U/OERR- is always inactive (bit set)... or should it be = DMAEN+? |
philpem@55 | 614 | // Bit 14 is always unused, so leave it set |
philpem@66 | 615 | ENFORCE_SIZE_R(bits, address, 16, "DMACOUNT"); |
philpem@59 | 616 | return (state.dma_count & 0x3fff) | 0xC000; |
philpem@40 | 617 | break; |
philpem@40 | 618 | case 0x070000: // Line Printer Status Register |
philpem@53 | 619 | data = 0x00120012; // no parity error, no line printer error, no irqs from FDD or HDD |
philpem@78 | 620 | data |= wd2797_get_irq(&state.fdc_ctx) ? 0x00080008 : 0; |
philpem@112 | 621 | data |= wd2010_get_irq(&state.hdc_ctx) ? 0x00040004 : 0; |
philpem@59 | 622 | return data; |
philpem@40 | 623 | break; |
philpem@40 | 624 | case 0x080000: // Real Time Clock |
philpem@59 | 625 | printf("READ NOTIMP: Realtime Clock\n"); |
philpem@40 | 626 | break; |
philpem@40 | 627 | case 0x090000: // Phone registers |
philpem@40 | 628 | switch (address & 0x0FF000) { |
philpem@40 | 629 | case 0x090000: // Handset relay |
philpem@40 | 630 | case 0x098000: |
philpem@40 | 631 | break; |
philpem@40 | 632 | case 0x091000: // Line select 2 |
philpem@40 | 633 | case 0x099000: |
philpem@40 | 634 | break; |
philpem@40 | 635 | case 0x092000: // Hook relay 1 |
philpem@40 | 636 | case 0x09A000: |
philpem@40 | 637 | break; |
philpem@40 | 638 | case 0x093000: // Hook relay 2 |
philpem@40 | 639 | case 0x09B000: |
philpem@40 | 640 | break; |
philpem@40 | 641 | case 0x094000: // Line 1 hold |
philpem@40 | 642 | case 0x09C000: |
philpem@40 | 643 | break; |
philpem@40 | 644 | case 0x095000: // Line 2 hold |
philpem@40 | 645 | case 0x09D000: |
philpem@40 | 646 | break; |
philpem@40 | 647 | case 0x096000: // Line 1 A-lead |
philpem@40 | 648 | case 0x09E000: |
philpem@40 | 649 | break; |
philpem@40 | 650 | case 0x097000: // Line 2 A-lead |
philpem@40 | 651 | case 0x09F000: |
philpem@40 | 652 | break; |
philpem@40 | 653 | } |
philpem@40 | 654 | break; |
philpem@46 | 655 | case 0x0A0000: // Miscellaneous Control Register -- write only! |
philpem@46 | 656 | handled = true; |
philpem@40 | 657 | break; |
philpem@40 | 658 | case 0x0B0000: // TM/DIALWR |
philpem@40 | 659 | break; |
philpem@46 | 660 | case 0x0C0000: // Clear Status Register -- write only! |
philpem@43 | 661 | handled = true; |
philpem@40 | 662 | break; |
philpem@40 | 663 | case 0x0D0000: // DMA Address Register |
philpem@40 | 664 | break; |
philpem@40 | 665 | case 0x0E0000: // Disk Control Register |
philpem@40 | 666 | break; |
philpem@40 | 667 | case 0x0F0000: // Line Printer Data Register |
philpem@40 | 668 | break; |
philpem@40 | 669 | } |
philpem@40 | 670 | } else if ((address >= 0xC00000) && (address <= 0xFFFFFF)) { |
philpem@40 | 671 | // I/O register space, zone B |
philpem@40 | 672 | switch (address & 0xF00000) { |
philpem@40 | 673 | case 0xC00000: // Expansion slots |
philpem@40 | 674 | case 0xD00000: |
philpem@40 | 675 | switch (address & 0xFC0000) { |
philpem@40 | 676 | case 0xC00000: // Expansion slot 0 |
philpem@40 | 677 | case 0xC40000: // Expansion slot 1 |
philpem@40 | 678 | case 0xC80000: // Expansion slot 2 |
philpem@40 | 679 | case 0xCC0000: // Expansion slot 3 |
philpem@40 | 680 | case 0xD00000: // Expansion slot 4 |
philpem@40 | 681 | case 0xD40000: // Expansion slot 5 |
philpem@40 | 682 | case 0xD80000: // Expansion slot 6 |
philpem@40 | 683 | case 0xDC0000: // Expansion slot 7 |
philpem@65 | 684 | fprintf(stderr, "NOTE: RD%d from expansion card space, addr=0x%08X\n", bits, address); |
philpem@65 | 685 | handled = true; |
philpem@40 | 686 | break; |
philpem@40 | 687 | } |
philpem@40 | 688 | break; |
philpem@40 | 689 | case 0xE00000: // HDC, FDC, MCR2 and RTC data bits |
philpem@40 | 690 | case 0xF00000: |
philpem@40 | 691 | switch (address & 0x070000) { |
philpem@40 | 692 | case 0x000000: // [ef][08]xxxx ==> WD1010 hard disc controller |
philpem@112 | 693 | return (wd2010_read_reg(&state.hdc_ctx, (address >> 1) & 7)); |
philpem@112 | 694 | |
philpem@40 | 695 | break; |
philpem@40 | 696 | case 0x010000: // [ef][19]xxxx ==> WD2797 floppy disc controller |
philpem@112 | 697 | /*ENFORCE_SIZE_R(bits, address, 16, "FDC REGISTERS");*/ |
philpem@59 | 698 | return wd2797_read_reg(&state.fdc_ctx, (address >> 1) & 3); |
philpem@40 | 699 | break; |
philpem@40 | 700 | case 0x020000: // [ef][2a]xxxx ==> Miscellaneous Control Register 2 |
philpem@40 | 701 | break; |
philpem@40 | 702 | case 0x030000: // [ef][3b]xxxx ==> Real Time Clock data bits |
andrew@151 | 703 | return (tc8250_read_reg(&state.rtc_ctx)); |
philpem@40 | 704 | case 0x040000: // [ef][4c]xxxx ==> General Control Register |
philpem@40 | 705 | switch (address & 0x077000) { |
philpem@40 | 706 | case 0x040000: // [ef][4c][08]xxx ==> EE |
philpem@44 | 707 | case 0x041000: // [ef][4c][19]xxx ==> PIE |
philpem@40 | 708 | case 0x042000: // [ef][4c][2A]xxx ==> BP |
philpem@40 | 709 | case 0x043000: // [ef][4c][3B]xxx ==> ROMLMAP |
philpem@40 | 710 | case 0x044000: // [ef][4c][4C]xxx ==> L1 MODEM |
philpem@40 | 711 | case 0x045000: // [ef][4c][5D]xxx ==> L2 MODEM |
philpem@40 | 712 | case 0x046000: // [ef][4c][6E]xxx ==> D/N CONNECT |
philpem@44 | 713 | // All write-only registers... TODO: bus error? |
philpem@44 | 714 | handled = true; |
philpem@40 | 715 | break; |
philpem@44 | 716 | case 0x047000: // [ef][4c][7F]xxx ==> Whole screen reverse video [FIXME: not in TRM] |
philpem@40 | 717 | break; |
philpem@40 | 718 | } |
philpem@40 | 719 | break; |
philpem@40 | 720 | case 0x050000: // [ef][5d]xxxx ==> 8274 |
philpem@40 | 721 | break; |
philpem@40 | 722 | case 0x060000: // [ef][6e]xxxx ==> Control regs |
philpem@40 | 723 | switch (address & 0x07F000) { |
philpem@40 | 724 | default: |
philpem@40 | 725 | break; |
philpem@40 | 726 | } |
philpem@40 | 727 | break; |
philpem@40 | 728 | case 0x070000: // [ef][7f]xxxx ==> 6850 Keyboard Controller |
philpem@84 | 729 | // TODO: figure out which sizes are valid (probably just 8 and 16) |
philpem@84 | 730 | //ENFORCE_SIZE_R(bits, address, 16, "KEYBOARD CONTROLLER"); |
philpem@84 | 731 | { |
philpem@93 | 732 | if (bits == 8) { |
philpem@93 | 733 | return keyboard_read(&state.kbd, (address >> 1) & 3); |
philpem@93 | 734 | } else { |
philpem@93 | 735 | return keyboard_read(&state.kbd, (address >> 1) & 3) << 8; |
philpem@93 | 736 | } |
philpem@84 | 737 | return data; |
philpem@84 | 738 | } |
philpem@40 | 739 | break; |
philpem@40 | 740 | } |
philpem@40 | 741 | } |
philpem@40 | 742 | } |
philpem@40 | 743 | |
philpem@64 | 744 | LOG_NOT_HANDLED_R(bits); |
philpem@64 | 745 | |
philpem@59 | 746 | return data; |
philpem@59 | 747 | }/*}}}*/ |
philpem@40 | 748 | |
philpem@59 | 749 | |
philpem@59 | 750 | /******************************************************** |
philpem@59 | 751 | * m68k memory read/write support functions for Musashi |
philpem@59 | 752 | ********************************************************/ |
philpem@59 | 753 | |
andrew@150 | 754 | |
andrew@150 | 755 | static uint16_t ram_read_16(uint32_t address) |
andrew@150 | 756 | { |
andrew@150 | 757 | if (address <= 0x1fffff) { |
andrew@150 | 758 | // Base memory wraps around |
andrew@150 | 759 | return RD16(state.base_ram, address, state.base_ram_size - 1); |
andrew@150 | 760 | } else { |
andrew@150 | 761 | if ((address <= (state.exp_ram_size + 0x200000 - 1)) && (address >= 0x200000)){ |
andrew@150 | 762 | return RD16(state.exp_ram, address - 0x200000, state.exp_ram_size - 1); |
andrew@150 | 763 | }else |
andrew@150 | 764 | return EMPTY & 0xffff; |
andrew@150 | 765 | } |
andrew@150 | 766 | } |
andrew@150 | 767 | |
philpem@59 | 768 | /** |
philpem@59 | 769 | * @brief Read M68K memory, 32-bit |
philpem@59 | 770 | */ |
philpem@59 | 771 | uint32_t m68k_read_memory_32(uint32_t address)/*{{{*/ |
philpem@59 | 772 | { |
philpem@119 | 773 | uint32_t data = EMPTY & 0xFFFFFFFF; |
philpem@59 | 774 | |
philpem@59 | 775 | // If ROMLMAP is set, force system to access ROM |
philpem@59 | 776 | if (!state.romlmap) |
philpem@59 | 777 | address |= 0x800000; |
philpem@59 | 778 | |
philpem@59 | 779 | // Check access permissions |
philpem@59 | 780 | ACCESS_CHECK_RD(address, 32); |
philpem@59 | 781 | |
philpem@59 | 782 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@59 | 783 | // ROM access |
philpem@60 | 784 | return RD32(state.rom, address, ROM_SIZE - 1); |
philpem@60 | 785 | } else if (address <= 0x3fffff) { |
philpem@59 | 786 | // RAM access |
philpem@60 | 787 | uint32_t newAddr = mapAddr(address, false); |
andrew@150 | 788 | // Base memory wraps around |
andrew@150 | 789 | data = ((ram_read_16(newAddr) << 16) | |
andrew@150 | 790 | ram_read_16(mapAddr(address + 2, false))); |
andrew@150 | 791 | |
andrew@150 | 792 | return (data); |
philpem@59 | 793 | } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@59 | 794 | // I/O register space, zone A |
philpem@59 | 795 | switch (address & 0x0F0000) { |
philpem@59 | 796 | case 0x000000: // Map RAM access |
philpem@59 | 797 | if (address > 0x4007FF) fprintf(stderr, "NOTE: RD32 from MapRAM mirror, addr=0x%08X\n", address); |
philpem@60 | 798 | return RD32(state.map, address, 0x7FF); |
philpem@59 | 799 | break; |
philpem@59 | 800 | case 0x020000: // Video RAM |
philpem@59 | 801 | if (address > 0x427FFF) fprintf(stderr, "NOTE: RD32 from VideoRAM mirror, addr=0x%08X\n", address); |
philpem@60 | 802 | return RD32(state.vram, address, 0x7FFF); |
philpem@59 | 803 | break; |
philpem@59 | 804 | default: |
philpem@60 | 805 | return IoRead(address, 32); |
philpem@59 | 806 | } |
philpem@59 | 807 | } else { |
philpem@60 | 808 | return IoRead(address, 32); |
philpem@59 | 809 | } |
philpem@59 | 810 | |
philpem@40 | 811 | return data; |
philpem@59 | 812 | }/*}}}*/ |
philpem@40 | 813 | |
philpem@40 | 814 | /** |
philpem@40 | 815 | * @brief Read M68K memory, 16-bit |
philpem@40 | 816 | */ |
philpem@59 | 817 | uint32_t m68k_read_memory_16(uint32_t address)/*{{{*/ |
philpem@40 | 818 | { |
philpem@119 | 819 | uint16_t data = EMPTY & 0xFFFF; |
philpem@40 | 820 | |
philpem@40 | 821 | // If ROMLMAP is set, force system to access ROM |
philpem@40 | 822 | if (!state.romlmap) |
philpem@40 | 823 | address |= 0x800000; |
philpem@40 | 824 | |
philpem@40 | 825 | // Check access permissions |
philpem@40 | 826 | ACCESS_CHECK_RD(address, 16); |
philpem@40 | 827 | |
philpem@40 | 828 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@40 | 829 | // ROM access |
philpem@40 | 830 | data = RD16(state.rom, address, ROM_SIZE - 1); |
philpem@60 | 831 | } else if (address <= 0x3fffff) { |
philpem@40 | 832 | // RAM access |
philpem@60 | 833 | uint32_t newAddr = mapAddr(address, false); |
philpem@63 | 834 | if (newAddr <= 0x1fffff) { |
philpem@129 | 835 | // Base memory wraps around |
philpem@129 | 836 | return RD16(state.base_ram, newAddr, state.base_ram_size - 1); |
philpem@63 | 837 | } else { |
philpem@119 | 838 | if ((newAddr <= (state.exp_ram_size + 0x200000 - 1)) && (newAddr >= 0x200000)) |
philpem@63 | 839 | return RD16(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1); |
philpem@63 | 840 | else |
philpem@119 | 841 | return EMPTY & 0xffff; |
philpem@63 | 842 | } |
philpem@40 | 843 | } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@40 | 844 | // I/O register space, zone A |
philpem@40 | 845 | switch (address & 0x0F0000) { |
philpem@40 | 846 | case 0x000000: // Map RAM access |
philpem@40 | 847 | if (address > 0x4007FF) fprintf(stderr, "NOTE: RD16 from MapRAM mirror, addr=0x%08X\n", address); |
philpem@40 | 848 | data = RD16(state.map, address, 0x7FF); |
philpem@40 | 849 | break; |
philpem@40 | 850 | case 0x020000: // Video RAM |
philpem@40 | 851 | if (address > 0x427FFF) fprintf(stderr, "NOTE: RD16 from VideoRAM mirror, addr=0x%08X\n", address); |
philpem@40 | 852 | data = RD16(state.vram, address, 0x7FFF); |
philpem@40 | 853 | break; |
philpem@59 | 854 | default: |
philpem@59 | 855 | data = IoRead(address, 16); |
philpem@40 | 856 | } |
philpem@59 | 857 | } else { |
philpem@59 | 858 | data = IoRead(address, 16); |
philpem@40 | 859 | } |
philpem@40 | 860 | |
philpem@40 | 861 | return data; |
philpem@59 | 862 | }/*}}}*/ |
philpem@40 | 863 | |
philpem@40 | 864 | /** |
philpem@40 | 865 | * @brief Read M68K memory, 8-bit |
philpem@40 | 866 | */ |
philpem@59 | 867 | uint32_t m68k_read_memory_8(uint32_t address)/*{{{*/ |
philpem@40 | 868 | { |
philpem@119 | 869 | uint8_t data = EMPTY & 0xFF; |
philpem@40 | 870 | |
philpem@40 | 871 | // If ROMLMAP is set, force system to access ROM |
philpem@40 | 872 | if (!state.romlmap) |
philpem@40 | 873 | address |= 0x800000; |
philpem@40 | 874 | |
philpem@40 | 875 | // Check access permissions |
philpem@40 | 876 | ACCESS_CHECK_RD(address, 8); |
philpem@40 | 877 | |
philpem@40 | 878 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@40 | 879 | // ROM access |
philpem@40 | 880 | data = RD8(state.rom, address, ROM_SIZE - 1); |
philpem@60 | 881 | } else if (address <= 0x3fffff) { |
philpem@40 | 882 | // RAM access |
philpem@60 | 883 | uint32_t newAddr = mapAddr(address, false); |
philpem@63 | 884 | if (newAddr <= 0x1fffff) { |
philpem@129 | 885 | // Base memory wraps around |
philpem@129 | 886 | return RD8(state.base_ram, newAddr, state.base_ram_size - 1); |
philpem@63 | 887 | } else { |
philpem@119 | 888 | if ((newAddr <= (state.exp_ram_size + 0x200000 - 1)) && (newAddr >= 0x200000)) |
philpem@63 | 889 | return RD8(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1); |
philpem@63 | 890 | else |
philpem@119 | 891 | return EMPTY & 0xff; |
philpem@63 | 892 | } |
philpem@40 | 893 | } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@40 | 894 | // I/O register space, zone A |
philpem@40 | 895 | switch (address & 0x0F0000) { |
philpem@40 | 896 | case 0x000000: // Map RAM access |
philpem@40 | 897 | if (address > 0x4007FF) fprintf(stderr, "NOTE: RD8 from MapRAM mirror, addr=0x%08X\n", address); |
philpem@40 | 898 | data = RD8(state.map, address, 0x7FF); |
philpem@40 | 899 | break; |
philpem@40 | 900 | case 0x020000: // Video RAM |
philpem@40 | 901 | if (address > 0x427FFF) fprintf(stderr, "NOTE: RD8 from VideoRAM mirror, addr=0x%08X\n", address); |
philpem@40 | 902 | data = RD8(state.vram, address, 0x7FFF); |
philpem@40 | 903 | break; |
philpem@59 | 904 | default: |
philpem@59 | 905 | data = IoRead(address, 8); |
philpem@40 | 906 | } |
philpem@59 | 907 | } else { |
philpem@59 | 908 | data = IoRead(address, 8); |
philpem@40 | 909 | } |
philpem@40 | 910 | |
philpem@40 | 911 | return data; |
philpem@59 | 912 | }/*}}}*/ |
philpem@40 | 913 | |
andrew@150 | 914 | |
andrew@150 | 915 | static void ram_write_16(uint32_t address, uint32_t value)/*{{{*/ |
andrew@150 | 916 | { |
andrew@150 | 917 | if (address <= 0x1fffff) { |
andrew@150 | 918 | if (address < state.base_ram_size) { |
andrew@150 | 919 | WR16(state.base_ram, address, state.base_ram_size - 1, value); |
andrew@150 | 920 | } |
andrew@150 | 921 | } else { |
andrew@150 | 922 | if ((address - 0x200000) < state.exp_ram_size) { |
andrew@150 | 923 | WR16(state.exp_ram, address - 0x200000, state.exp_ram_size - 1, value); |
andrew@150 | 924 | } |
andrew@150 | 925 | } |
andrew@150 | 926 | } |
andrew@150 | 927 | |
philpem@40 | 928 | /** |
philpem@40 | 929 | * @brief Write M68K memory, 32-bit |
philpem@40 | 930 | */ |
philpem@59 | 931 | void m68k_write_memory_32(uint32_t address, uint32_t value)/*{{{*/ |
philpem@40 | 932 | { |
philpem@40 | 933 | // If ROMLMAP is set, force system to access ROM |
philpem@40 | 934 | if (!state.romlmap) |
philpem@40 | 935 | address |= 0x800000; |
philpem@40 | 936 | |
philpem@40 | 937 | // Check access permissions |
philpem@40 | 938 | ACCESS_CHECK_WR(address, 32); |
philpem@40 | 939 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@40 | 940 | // ROM access |
philpem@60 | 941 | } else if (address <= 0x3FFFFF) { |
philpem@40 | 942 | // RAM access |
philpem@60 | 943 | uint32_t newAddr = mapAddr(address, true); |
andrew@150 | 944 | ram_write_16(newAddr, (value & 0xffff0000) >> 16); |
andrew@150 | 945 | ram_write_16(mapAddr(address + 2, true), (value & 0xffff)); |
philpem@40 | 946 | } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@40 | 947 | // I/O register space, zone A |
philpem@40 | 948 | switch (address & 0x0F0000) { |
philpem@40 | 949 | case 0x000000: // Map RAM access |
philpem@105 | 950 | if (address > 0x4007FF) fprintf(stderr, "NOTE: WR32 to MapRAM mirror, addr=0x%08X\n", address); |
philpem@40 | 951 | WR32(state.map, address, 0x7FF, value); |
philpem@40 | 952 | break; |
philpem@40 | 953 | case 0x020000: // Video RAM |
philpem@105 | 954 | if (address > 0x427FFF) fprintf(stderr, "NOTE: WR32 to VideoRAM mirror, addr=0x%08X\n", address); |
philpem@40 | 955 | WR32(state.vram, address, 0x7FFF, value); |
philpem@40 | 956 | break; |
philpem@59 | 957 | default: |
philpem@59 | 958 | IoWrite(address, value, 32); |
philpem@40 | 959 | } |
philpem@59 | 960 | } else { |
philpem@59 | 961 | IoWrite(address, value, 32); |
philpem@40 | 962 | } |
philpem@59 | 963 | }/*}}}*/ |
philpem@40 | 964 | |
philpem@40 | 965 | /** |
philpem@40 | 966 | * @brief Write M68K memory, 16-bit |
philpem@40 | 967 | */ |
philpem@59 | 968 | void m68k_write_memory_16(uint32_t address, uint32_t value)/*{{{*/ |
philpem@40 | 969 | { |
philpem@40 | 970 | // If ROMLMAP is set, force system to access ROM |
philpem@40 | 971 | if (!state.romlmap) |
philpem@40 | 972 | address |= 0x800000; |
philpem@40 | 973 | |
philpem@40 | 974 | // Check access permissions |
philpem@40 | 975 | ACCESS_CHECK_WR(address, 16); |
philpem@40 | 976 | |
philpem@40 | 977 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@40 | 978 | // ROM access |
philpem@60 | 979 | } else if (address <= 0x3FFFFF) { |
philpem@40 | 980 | // RAM access |
philpem@60 | 981 | uint32_t newAddr = mapAddr(address, true); |
philpem@112 | 982 | |
philpem@119 | 983 | if (newAddr <= 0x1fffff) { |
philpem@119 | 984 | if (newAddr < state.base_ram_size) { |
philpem@119 | 985 | WR16(state.base_ram, newAddr, state.base_ram_size - 1, value); |
philpem@119 | 986 | } |
philpem@119 | 987 | } else { |
philpem@119 | 988 | if ((newAddr - 0x200000) < state.exp_ram_size) { |
philpem@119 | 989 | WR16(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1, value); |
philpem@119 | 990 | } |
philpem@119 | 991 | } |
philpem@40 | 992 | } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@40 | 993 | // I/O register space, zone A |
philpem@40 | 994 | switch (address & 0x0F0000) { |
philpem@40 | 995 | case 0x000000: // Map RAM access |
philpem@40 | 996 | if (address > 0x4007FF) fprintf(stderr, "NOTE: WR16 to MapRAM mirror, addr=0x%08X, data=0x%04X\n", address, value); |
philpem@40 | 997 | WR16(state.map, address, 0x7FF, value); |
philpem@40 | 998 | break; |
philpem@40 | 999 | case 0x020000: // Video RAM |
philpem@40 | 1000 | if (address > 0x427FFF) fprintf(stderr, "NOTE: WR16 to VideoRAM mirror, addr=0x%08X, data=0x%04X\n", address, value); |
philpem@40 | 1001 | WR16(state.vram, address, 0x7FFF, value); |
philpem@40 | 1002 | break; |
philpem@59 | 1003 | default: |
philpem@59 | 1004 | IoWrite(address, value, 16); |
philpem@40 | 1005 | } |
philpem@59 | 1006 | } else { |
philpem@59 | 1007 | IoWrite(address, value, 16); |
philpem@40 | 1008 | } |
philpem@59 | 1009 | }/*}}}*/ |
philpem@40 | 1010 | |
philpem@40 | 1011 | /** |
philpem@40 | 1012 | * @brief Write M68K memory, 8-bit |
philpem@40 | 1013 | */ |
philpem@59 | 1014 | void m68k_write_memory_8(uint32_t address, uint32_t value)/*{{{*/ |
philpem@40 | 1015 | { |
philpem@40 | 1016 | // If ROMLMAP is set, force system to access ROM |
philpem@40 | 1017 | if (!state.romlmap) |
philpem@40 | 1018 | address |= 0x800000; |
philpem@40 | 1019 | |
philpem@40 | 1020 | // Check access permissions |
philpem@40 | 1021 | ACCESS_CHECK_WR(address, 8); |
philpem@40 | 1022 | |
philpem@40 | 1023 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@40 | 1024 | // ROM access (read only!) |
philpem@60 | 1025 | } else if (address <= 0x3FFFFF) { |
philpem@40 | 1026 | // RAM access |
philpem@60 | 1027 | uint32_t newAddr = mapAddr(address, true); |
philpem@119 | 1028 | if (newAddr <= 0x1fffff) { |
philpem@119 | 1029 | if (newAddr < state.base_ram_size) { |
philpem@119 | 1030 | WR8(state.base_ram, newAddr, state.base_ram_size - 1, value); |
philpem@119 | 1031 | } |
philpem@119 | 1032 | } else { |
philpem@119 | 1033 | if ((newAddr - 0x200000) < state.exp_ram_size) { |
philpem@119 | 1034 | WR8(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1, value); |
philpem@119 | 1035 | } |
philpem@119 | 1036 | } |
philpem@40 | 1037 | } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@40 | 1038 | // I/O register space, zone A |
philpem@40 | 1039 | switch (address & 0x0F0000) { |
philpem@40 | 1040 | case 0x000000: // Map RAM access |
philpem@59 | 1041 | if (address > 0x4007FF) fprintf(stderr, "NOTE: WR8 to MapRAM mirror, addr=0x%08X, data=0x%04X\n", address, value); |
philpem@40 | 1042 | WR8(state.map, address, 0x7FF, value); |
philpem@40 | 1043 | break; |
philpem@40 | 1044 | case 0x020000: // Video RAM |
philpem@59 | 1045 | if (address > 0x427FFF) fprintf(stderr, "NOTE: WR8 to VideoRAM mirror, addr=0x%08X, data=0x%04X\n", address, value); |
philpem@40 | 1046 | WR8(state.vram, address, 0x7FFF, value); |
philpem@40 | 1047 | break; |
philpem@59 | 1048 | default: |
philpem@59 | 1049 | IoWrite(address, value, 8); |
philpem@40 | 1050 | } |
philpem@59 | 1051 | } else { |
philpem@59 | 1052 | IoWrite(address, value, 8); |
philpem@40 | 1053 | } |
philpem@59 | 1054 | }/*}}}*/ |
philpem@40 | 1055 | |
philpem@40 | 1056 | |
philpem@40 | 1057 | // for the disassembler |
philpem@121 | 1058 | uint32_t m68k_read_disassembler_32(uint32_t addr) |
philpem@121 | 1059 | { |
philpem@121 | 1060 | if (addr < 0x400000) { |
andrew@150 | 1061 | uint32_t newAddrHigh, newAddrLow; |
andrew@150 | 1062 | newAddrHigh = map_address_debug(addr); |
andrew@150 | 1063 | newAddrLow = map_address_debug(addr + 2); |
andrew@150 | 1064 | return ((ram_read_16(newAddrHigh) << 16) | |
andrew@150 | 1065 | ram_read_16(newAddrLow)); |
andrew@150 | 1066 | |
philpem@121 | 1067 | } else { |
philpem@121 | 1068 | printf(">>> WARNING Disassembler RD32 out of range 0x%08X\n", addr); |
philpem@121 | 1069 | return EMPTY; |
philpem@121 | 1070 | } |
philpem@121 | 1071 | } |
philpem@40 | 1072 | |
philpem@121 | 1073 | uint32_t m68k_read_disassembler_16(uint32_t addr) |
philpem@121 | 1074 | { |
philpem@121 | 1075 | if (addr < 0x400000) { |
philpem@121 | 1076 | uint16_t page = (addr >> 12) & 0x3FF; |
philpem@121 | 1077 | uint32_t new_page_addr = MAPRAM(page) & 0x3FF; |
philpem@121 | 1078 | uint32_t newAddr = (new_page_addr << 12) + (addr & 0xFFF); |
philpem@121 | 1079 | if (newAddr <= 0x1fffff) { |
philpem@121 | 1080 | if (newAddr >= state.base_ram_size) |
philpem@121 | 1081 | return EMPTY & 0xffff; |
philpem@121 | 1082 | else |
philpem@121 | 1083 | return RD16(state.base_ram, newAddr, state.base_ram_size - 1); |
philpem@121 | 1084 | } else { |
philpem@121 | 1085 | if ((newAddr <= (state.exp_ram_size + 0x200000 - 1)) && (newAddr >= 0x200000)) |
philpem@121 | 1086 | return RD16(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1); |
philpem@121 | 1087 | else |
philpem@121 | 1088 | return EMPTY & 0xffff; |
philpem@121 | 1089 | } |
philpem@121 | 1090 | } else { |
philpem@121 | 1091 | printf(">>> WARNING Disassembler RD16 out of range 0x%08X\n", addr); |
philpem@121 | 1092 | return EMPTY & 0xffff; |
philpem@121 | 1093 | } |
philpem@121 | 1094 | } |
philpem@121 | 1095 | |
philpem@121 | 1096 | uint32_t m68k_read_disassembler_8 (uint32_t addr) |
philpem@121 | 1097 | { |
philpem@121 | 1098 | if (addr < 0x400000) { |
philpem@121 | 1099 | uint16_t page = (addr >> 12) & 0x3FF; |
philpem@121 | 1100 | uint32_t new_page_addr = MAPRAM(page) & 0x3FF; |
philpem@121 | 1101 | uint32_t newAddr = (new_page_addr << 12) + (addr & 0xFFF); |
philpem@121 | 1102 | if (newAddr <= 0x1fffff) { |
philpem@121 | 1103 | if (newAddr >= state.base_ram_size) |
philpem@121 | 1104 | return EMPTY & 0xff; |
philpem@121 | 1105 | else |
philpem@121 | 1106 | return RD8(state.base_ram, newAddr, state.base_ram_size - 1); |
philpem@121 | 1107 | } else { |
philpem@121 | 1108 | if ((newAddr <= (state.exp_ram_size + 0x200000 - 1)) && (newAddr >= 0x200000)) |
philpem@121 | 1109 | return RD8(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1); |
philpem@121 | 1110 | else |
philpem@121 | 1111 | return EMPTY & 0xff; |
philpem@121 | 1112 | } |
philpem@121 | 1113 | } else { |
philpem@121 | 1114 | printf(">>> WARNING Disassembler RD8 out of range 0x%08X\n", addr); |
philpem@121 | 1115 | return EMPTY & 0xff; |
philpem@121 | 1116 | } |
philpem@121 | 1117 | } |
philpem@121 | 1118 |