Thu, 03 Mar 2011 13:05:21 +0000
Fix broken pagebit update code (was failing S4TEST 19 Map Translation test)
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <stdint.h>
4 #include <stdbool.h>
5 #include <assert.h>
6 #include "musashi/m68k.h"
7 #include "state.h"
8 #include "utils.h"
9 #include "memory.h"
11 /******************
12 * Memory mapping
13 ******************/
15 #define MAPRAM(addr) (((uint16_t)state.map[addr*2] << 8) + ((uint16_t)state.map[(addr*2)+1]))
17 uint32_t mapAddr(uint32_t addr, bool writing)/*{{{*/
18 {
19 if (addr < 0x400000) {
20 // RAM access. Check against the Map RAM
21 // Start by getting the original page address
22 uint16_t page = (addr >> 12) & 0x3FF;
24 // Look it up in the map RAM and get the physical page address
25 uint32_t new_page_addr = MAPRAM(page) & 0x3FF;
27 // Update the Page Status bits
28 uint8_t pagebits = (MAPRAM(page) >> 13) & 0x03;
29 // Pagebits --
30 // 0 = not present
31 // 1 = present but not accessed
32 // 2 = present, accessed (read from)
33 // 3 = present, dirty (written to)
34 switch (pagebits) {
35 case 0:
36 // Page not present
37 // This should cause a page fault
38 LOGS("Whoa! Pagebit update, when the page is not present!");
39 break;
41 case 1:
42 // Page present -- first access
43 state.map[page*2] &= 0x1F; // turn off "present" bit
44 if (writing)
45 state.map[page*2] |= 0x60; // Page written to (dirty)
46 else
47 state.map[page*2] |= 0x40; // Page accessed but not written
48 break;
50 case 2:
51 case 3:
52 // Page present, 2nd or later access
53 if (writing)
54 state.map[page*2] |= 0x60; // Page written to (dirty)
55 break;
56 }
58 // Return the address with the new physical page spliced in
59 return (new_page_addr << 12) + (addr & 0xFFF);
60 } else {
61 // I/O, VRAM or MapRAM space; no mapping is performed or required
62 // TODO: assert here?
63 return addr;
64 }
65 }/*}}}*/
67 MEM_STATUS checkMemoryAccess(uint32_t addr, bool writing)/*{{{*/
68 {
69 // Are we in Supervisor mode?
70 if (m68k_get_reg(NULL, M68K_REG_SR) & 0x2000)
71 // Yes. We can do anything we like.
72 return MEM_ALLOWED;
74 // If we're here, then we must be in User mode.
75 // Check that the user didn't access memory outside of the RAM area
76 if (addr >= 0x400000)
77 return MEM_UIE;
79 // This leaves us with Page Fault checking. Get the page bits for this page.
80 uint16_t page = (addr >> 12) & 0x3FF;
81 uint8_t pagebits = (MAPRAM(page) >> 13) & 0x07;
83 // Check page is present
84 if ((pagebits & 0x03) == 0)
85 return MEM_PAGEFAULT;
87 // User attempt to access the kernel
88 // A19, A20, A21, A22 low (kernel access): RAM addr before paging; not in Supervisor mode
89 if (((addr >> 19) & 0x0F) == 0)
90 return MEM_KERNEL;
92 // Check page is write enabled
93 if (writing && ((pagebits & 0x04) == 0))
94 return MEM_PAGE_NO_WE;
96 // Page access allowed.
97 return MEM_ALLOWED;
98 }/*}}}*/
100 #undef MAPRAM
103 /********************************************************
104 * m68k memory read/write support functions for Musashi
105 ********************************************************/
107 /**
108 * @brief Check memory access permissions for a write operation.
109 * @note This used to be a single macro (merged with ACCESS_CHECK_RD), but
110 * gcc throws warnings when you have a return-with-value in a void
111 * function, even if the return-with-value is completely unreachable.
112 * Similarly it doesn't like it if you have a return without a value
113 * in a non-void function, even if it's impossible to ever reach the
114 * return-with-no-value. UGH!
115 */
116 /*{{{ macro: ACCESS_CHECK_WR(address, bits)*/
117 #define ACCESS_CHECK_WR(address, bits) \
118 do { \
119 bool fault = false; \
120 /* MEM_STATUS st; */ \
121 switch (checkMemoryAccess(address, true)) { \
122 case MEM_ALLOWED: \
123 /* Access allowed */ \
124 break; \
125 case MEM_PAGEFAULT: \
126 /* Page fault */ \
127 state.genstat = 0x8BFF | (state.pie ? 0x0400 : 0); \
128 fault = true; \
129 break; \
130 case MEM_UIE: \
131 /* User access to memory above 4MB */ \
132 state.genstat = 0x9AFF | (state.pie ? 0x0400 : 0); \
133 fault = true; \
134 break; \
135 case MEM_KERNEL: \
136 case MEM_PAGE_NO_WE: \
137 /* kernel access or page not write enabled */ \
138 /* FIXME: which regs need setting? */ \
139 fault = true; \
140 break; \
141 } \
142 \
143 if (fault) { \
144 if (bits >= 16) \
145 state.bsr0 = 0x7C00; \
146 else \
147 state.bsr0 = (address & 1) ? 0x7D00 : 0x7E00; \
148 state.bsr0 |= (address >> 16); \
149 state.bsr1 = address & 0xffff; \
150 printf("ERR: BusError WR\n"); \
151 m68k_pulse_bus_error(); \
152 return; \
153 } \
154 } while (0)
155 /*}}}*/
157 /**
158 * @brief Check memory access permissions for a read operation.
159 * @note This used to be a single macro (merged with ACCESS_CHECK_WR), but
160 * gcc throws warnings when you have a return-with-value in a void
161 * function, even if the return-with-value is completely unreachable.
162 * Similarly it doesn't like it if you have a return without a value
163 * in a non-void function, even if it's impossible to ever reach the
164 * return-with-no-value. UGH!
165 */
166 /*{{{ macro: ACCESS_CHECK_RD(address, bits)*/
167 #define ACCESS_CHECK_RD(address, bits) \
168 do { \
169 bool fault = false; \
170 /* MEM_STATUS st; */ \
171 switch (checkMemoryAccess(address, false)) { \
172 case MEM_ALLOWED: \
173 /* Access allowed */ \
174 break; \
175 case MEM_PAGEFAULT: \
176 /* Page fault */ \
177 state.genstat = 0xCBFF | (state.pie ? 0x0400 : 0); \
178 fault = true; \
179 break; \
180 case MEM_UIE: \
181 /* User access to memory above 4MB */ \
182 state.genstat = 0xDAFF | (state.pie ? 0x0400 : 0); \
183 fault = true; \
184 break; \
185 case MEM_KERNEL: \
186 case MEM_PAGE_NO_WE: \
187 /* kernel access or page not write enabled */ \
188 /* FIXME: which regs need setting? */ \
189 fault = true; \
190 break; \
191 } \
192 \
193 if (fault) { \
194 if (bits >= 16) \
195 state.bsr0 = 0x7C00; \
196 else \
197 state.bsr0 = (address & 1) ? 0x7D00 : 0x7E00; \
198 state.bsr0 |= (address >> 16); \
199 state.bsr1 = address & 0xffff; \
200 printf("ERR: BusError RD\n"); \
201 m68k_pulse_bus_error(); \
202 return 0xFFFFFFFF; \
203 } \
204 } while (0)
205 /*}}}*/
207 // Logging macros
208 #define LOG_NOT_HANDLED_R(bits) \
209 if (!handled) printf("unhandled read%02d, addr=0x%08X\n", bits, address);
211 #define LOG_NOT_HANDLED_W(bits) \
212 if (!handled) printf("unhandled write%02d, addr=0x%08X, data=0x%08X\n", bits, address, data);
214 /********************************************************
215 * I/O read/write functions
216 ********************************************************/
218 /**
219 * Issue a warning if a read operation is made with an invalid size
220 */
221 inline static void ENFORCE_SIZE(int bits, uint32_t address, bool read, int allowed, char *regname)
222 {
223 assert((bits == 8) || (bits == 16) || (bits == 32));
224 if ((bits & allowed) == 0) {
225 printf("WARNING: %s 0x%08X (%s) with invalid size %d!\n", read ? "read from" : "write to", address, regname, bits);
226 }
227 }
229 inline static void ENFORCE_SIZE_R(int bits, uint32_t address, int allowed, char *regname)
230 {
231 ENFORCE_SIZE(bits, address, true, allowed, regname);
232 }
234 inline static void ENFORCE_SIZE_W(int bits, uint32_t address, int allowed, char *regname)
235 {
236 ENFORCE_SIZE(bits, address, false, allowed, regname);
237 }
239 void IoWrite(uint32_t address, uint32_t data, int bits)/*{{{*/
240 {
241 bool handled = false;
243 if ((address >= 0x400000) && (address <= 0x7FFFFF)) {
244 // I/O register space, zone A
245 switch (address & 0x0F0000) {
246 case 0x010000: // General Status Register
247 if (bits == 16)
248 state.genstat = (data & 0xffff);
249 else if (bits == 8) {
250 if (address & 0)
251 state.genstat = data;
252 else
253 state.genstat = data << 8;
254 }
255 handled = true;
256 break;
257 case 0x030000: // Bus Status Register 0
258 break;
259 case 0x040000: // Bus Status Register 1
260 break;
261 case 0x050000: // Phone status
262 break;
263 case 0x060000: // DMA Count
264 ENFORCE_SIZE_W(bits, address, 16, "DMACOUNT");
265 state.dma_count = (data & 0x3FFF);
266 state.idmarw = ((data & 0x4000) == 0x4000);
267 state.dmaen = ((data & 0x8000) == 0x8000);
268 // This handles the "dummy DMA transfer" mentioned in the docs
269 // TODO: access check, peripheral access
270 if (!state.idmarw)
271 WR32(state.base_ram, mapAddr(address, true), state.base_ram_size - 1, 0xDEAD);
272 state.dma_count++;
273 handled = true;
274 break;
275 case 0x070000: // Line Printer Status Register
276 break;
277 case 0x080000: // Real Time Clock
278 break;
279 case 0x090000: // Phone registers
280 switch (address & 0x0FF000) {
281 case 0x090000: // Handset relay
282 case 0x098000:
283 break;
284 case 0x091000: // Line select 2
285 case 0x099000:
286 break;
287 case 0x092000: // Hook relay 1
288 case 0x09A000:
289 break;
290 case 0x093000: // Hook relay 2
291 case 0x09B000:
292 break;
293 case 0x094000: // Line 1 hold
294 case 0x09C000:
295 break;
296 case 0x095000: // Line 2 hold
297 case 0x09D000:
298 break;
299 case 0x096000: // Line 1 A-lead
300 case 0x09E000:
301 break;
302 case 0x097000: // Line 2 A-lead
303 case 0x09F000:
304 break;
305 }
306 break;
307 case 0x0A0000: // Miscellaneous Control Register
308 ENFORCE_SIZE_W(bits, address, 16, "MISCCON");
309 // TODO: handle the ctrl bits properly
310 // TODO: &0x8000 --> dismiss 60hz intr
311 if (data & 0x8000){
312 state.timer_enabled = 1;
313 }else{
314 state.timer_enabled = 0;
315 state.timer_asserted = 0;
316 }
317 state.dma_reading = (data & 0x4000);
318 if (state.leds != ((~data & 0xF00) >> 8)) {
319 state.leds = (~data & 0xF00) >> 8;
320 printf("LEDs: %s %s %s %s\n",
321 (state.leds & 8) ? "R" : "-",
322 (state.leds & 4) ? "G" : "-",
323 (state.leds & 2) ? "Y" : "-",
324 (state.leds & 1) ? "R" : "-");
325 }
326 handled = true;
327 break;
328 case 0x0B0000: // TM/DIALWR
329 break;
330 case 0x0C0000: // Clear Status Register
331 state.genstat = 0xFFFF;
332 state.bsr0 = 0xFFFF;
333 state.bsr1 = 0xFFFF;
334 handled = true;
335 break;
336 case 0x0D0000: // DMA Address Register
337 if (address & 0x004000) {
338 // A14 high -- set most significant bits
339 state.dma_address = (state.dma_address & 0x1fe) | ((address & 0x3ffe) << 8);
340 } else {
341 // A14 low -- set least significant bits
342 state.dma_address = (state.dma_address & 0x3ffe00) | (address & 0x1fe);
343 }
344 handled = true;
345 break;
346 case 0x0E0000: // Disk Control Register
347 ENFORCE_SIZE_W(bits, address, 16, "DISKCON");
348 // B7 = FDD controller reset
349 if ((data & 0x80) == 0) wd2797_reset(&state.fdc_ctx);
350 // B6 = drive 0 select -- TODO
351 // B5 = motor enable -- TODO
352 // B4 = HDD controller reset -- TODO
353 // B3 = HDD0 select -- TODO
354 // B2,1,0 = HDD0 head select
355 handled = true;
356 break;
357 case 0x0F0000: // Line Printer Data Register
358 break;
359 }
360 } else if ((address >= 0xC00000) && (address <= 0xFFFFFF)) {
361 // I/O register space, zone B
362 switch (address & 0xF00000) {
363 case 0xC00000: // Expansion slots
364 case 0xD00000:
365 switch (address & 0xFC0000) {
366 case 0xC00000: // Expansion slot 0
367 case 0xC40000: // Expansion slot 1
368 case 0xC80000: // Expansion slot 2
369 case 0xCC0000: // Expansion slot 3
370 case 0xD00000: // Expansion slot 4
371 case 0xD40000: // Expansion slot 5
372 case 0xD80000: // Expansion slot 6
373 case 0xDC0000: // Expansion slot 7
374 fprintf(stderr, "NOTE: WR%d to expansion card space, addr=0x%08X, data=0x%08X\n", bits, address, data);
375 handled = true;
376 break;
377 }
378 break;
379 case 0xE00000: // HDC, FDC, MCR2 and RTC data bits
380 case 0xF00000:
381 switch (address & 0x070000) {
382 case 0x000000: // [ef][08]xxxx ==> WD1010 hard disc controller
383 break;
384 case 0x010000: // [ef][19]xxxx ==> WD2797 floppy disc controller
385 ENFORCE_SIZE_W(bits, address, 16, "FDC REGISTERS");
386 wd2797_write_reg(&state.fdc_ctx, (address >> 1) & 3, data);
387 handled = true;
388 break;
389 case 0x020000: // [ef][2a]xxxx ==> Miscellaneous Control Register 2
390 break;
391 case 0x030000: // [ef][3b]xxxx ==> Real Time Clock data bits
392 break;
393 case 0x040000: // [ef][4c]xxxx ==> General Control Register
394 switch (address & 0x077000) {
395 case 0x040000: // [ef][4c][08]xxx ==> EE
396 break;
397 case 0x041000: // [ef][4c][19]xxx ==> PIE
398 ENFORCE_SIZE_W(bits, address, 16, "PIE");
399 state.pie = ((data & 0x8000) == 0x8000);
400 handled = true;
401 break;
402 case 0x042000: // [ef][4c][2A]xxx ==> BP
403 break;
404 case 0x043000: // [ef][4c][3B]xxx ==> ROMLMAP
405 ENFORCE_SIZE_W(bits, address, 16, "ROMLMAP");
406 state.romlmap = ((data & 0x8000) == 0x8000);
407 handled = true;
408 break;
409 case 0x044000: // [ef][4c][4C]xxx ==> L1 MODEM
410 ENFORCE_SIZE_W(bits, address, 16, "L1 MODEM");
411 break;
412 case 0x045000: // [ef][4c][5D]xxx ==> L2 MODEM
413 ENFORCE_SIZE_W(bits, address, 16, "L2 MODEM");
414 break;
415 case 0x046000: // [ef][4c][6E]xxx ==> D/N CONNECT
416 ENFORCE_SIZE_W(bits, address, 16, "D/N CONNECT");
417 break;
418 case 0x047000: // [ef][4c][7F]xxx ==> Whole screen reverse video
419 ENFORCE_SIZE_W(bits, address, 16, "WHOLE SCREEN REVERSE VIDEO");
420 break;
421 }
422 case 0x050000: // [ef][5d]xxxx ==> 8274
423 break;
424 case 0x060000: // [ef][6e]xxxx ==> Control regs
425 switch (address & 0x07F000) {
426 default:
427 break;
428 }
429 break;
430 case 0x070000: // [ef][7f]xxxx ==> 6850 Keyboard Controller
431 // TODO: figure out which sizes are valid (probably just 8 and 16)
432 // ENFORCE_SIZE_W(bits, address, 16, "KEYBOARD CONTROLLER");
433 if (bits == 8) {
434 printf("KBD WR %02X => %02X\n", (address >> 1) & 3, data);
435 keyboard_write(&state.kbd, (address >> 1) & 3, data);
436 handled = true;
437 } else if (bits == 16) {
438 printf("KBD WR %02X => %04X\n", (address >> 1) & 3, data);
439 keyboard_write(&state.kbd, (address >> 1) & 3, data >> 8);
440 handled = true;
441 }
442 break;
443 }
444 }
445 }
447 LOG_NOT_HANDLED_W(bits);
448 }/*}}}*/
450 uint32_t IoRead(uint32_t address, int bits)/*{{{*/
451 {
452 bool handled = false;
453 uint32_t data = 0xFFFFFFFF;
455 if ((address >= 0x400000) && (address <= 0x7FFFFF)) {
456 // I/O register space, zone A
457 switch (address & 0x0F0000) {
458 case 0x010000: // General Status Register
459 ENFORCE_SIZE_R(bits, address, 16, "GENSTAT");
460 return ((uint32_t)state.genstat << 16) + (uint32_t)state.genstat;
461 break;
462 case 0x030000: // Bus Status Register 0
463 ENFORCE_SIZE_R(bits, address, 16, "BSR0");
464 return ((uint32_t)state.bsr0 << 16) + (uint32_t)state.bsr0;
465 break;
466 case 0x040000: // Bus Status Register 1
467 ENFORCE_SIZE_R(bits, address, 16, "BSR1");
468 return ((uint32_t)state.bsr1 << 16) + (uint32_t)state.bsr1;
469 break;
470 case 0x050000: // Phone status
471 ENFORCE_SIZE_R(bits, address, 8 | 16, "PHONE STATUS");
472 break;
473 case 0x060000: // DMA Count
474 // TODO: U/OERR- is always inactive (bit set)... or should it be = DMAEN+?
475 // Bit 14 is always unused, so leave it set
476 ENFORCE_SIZE_R(bits, address, 16, "DMACOUNT");
477 return (state.dma_count & 0x3fff) | 0xC000;
478 break;
479 case 0x070000: // Line Printer Status Register
480 data = 0x00120012; // no parity error, no line printer error, no irqs from FDD or HDD
481 data |= wd2797_get_irq(&state.fdc_ctx) ? 0x00080008 : 0;
482 return data;
483 break;
484 case 0x080000: // Real Time Clock
485 printf("READ NOTIMP: Realtime Clock\n");
486 break;
487 case 0x090000: // Phone registers
488 switch (address & 0x0FF000) {
489 case 0x090000: // Handset relay
490 case 0x098000:
491 break;
492 case 0x091000: // Line select 2
493 case 0x099000:
494 break;
495 case 0x092000: // Hook relay 1
496 case 0x09A000:
497 break;
498 case 0x093000: // Hook relay 2
499 case 0x09B000:
500 break;
501 case 0x094000: // Line 1 hold
502 case 0x09C000:
503 break;
504 case 0x095000: // Line 2 hold
505 case 0x09D000:
506 break;
507 case 0x096000: // Line 1 A-lead
508 case 0x09E000:
509 break;
510 case 0x097000: // Line 2 A-lead
511 case 0x09F000:
512 break;
513 }
514 break;
515 case 0x0A0000: // Miscellaneous Control Register -- write only!
516 handled = true;
517 break;
518 case 0x0B0000: // TM/DIALWR
519 break;
520 case 0x0C0000: // Clear Status Register -- write only!
521 handled = true;
522 break;
523 case 0x0D0000: // DMA Address Register
524 break;
525 case 0x0E0000: // Disk Control Register
526 break;
527 case 0x0F0000: // Line Printer Data Register
528 break;
529 }
530 } else if ((address >= 0xC00000) && (address <= 0xFFFFFF)) {
531 // I/O register space, zone B
532 switch (address & 0xF00000) {
533 case 0xC00000: // Expansion slots
534 case 0xD00000:
535 switch (address & 0xFC0000) {
536 case 0xC00000: // Expansion slot 0
537 case 0xC40000: // Expansion slot 1
538 case 0xC80000: // Expansion slot 2
539 case 0xCC0000: // Expansion slot 3
540 case 0xD00000: // Expansion slot 4
541 case 0xD40000: // Expansion slot 5
542 case 0xD80000: // Expansion slot 6
543 case 0xDC0000: // Expansion slot 7
544 fprintf(stderr, "NOTE: RD%d from expansion card space, addr=0x%08X\n", bits, address);
545 handled = true;
546 break;
547 }
548 break;
549 case 0xE00000: // HDC, FDC, MCR2 and RTC data bits
550 case 0xF00000:
551 switch (address & 0x070000) {
552 case 0x000000: // [ef][08]xxxx ==> WD1010 hard disc controller
553 break;
554 case 0x010000: // [ef][19]xxxx ==> WD2797 floppy disc controller
555 ENFORCE_SIZE_R(bits, address, 16, "FDC REGISTERS");
556 return wd2797_read_reg(&state.fdc_ctx, (address >> 1) & 3);
557 break;
558 case 0x020000: // [ef][2a]xxxx ==> Miscellaneous Control Register 2
559 break;
560 case 0x030000: // [ef][3b]xxxx ==> Real Time Clock data bits
561 break;
562 case 0x040000: // [ef][4c]xxxx ==> General Control Register
563 switch (address & 0x077000) {
564 case 0x040000: // [ef][4c][08]xxx ==> EE
565 case 0x041000: // [ef][4c][19]xxx ==> PIE
566 case 0x042000: // [ef][4c][2A]xxx ==> BP
567 case 0x043000: // [ef][4c][3B]xxx ==> ROMLMAP
568 case 0x044000: // [ef][4c][4C]xxx ==> L1 MODEM
569 case 0x045000: // [ef][4c][5D]xxx ==> L2 MODEM
570 case 0x046000: // [ef][4c][6E]xxx ==> D/N CONNECT
571 // All write-only registers... TODO: bus error?
572 handled = true;
573 break;
574 case 0x047000: // [ef][4c][7F]xxx ==> Whole screen reverse video [FIXME: not in TRM]
575 break;
576 }
577 break;
578 case 0x050000: // [ef][5d]xxxx ==> 8274
579 break;
580 case 0x060000: // [ef][6e]xxxx ==> Control regs
581 switch (address & 0x07F000) {
582 default:
583 break;
584 }
585 break;
586 case 0x070000: // [ef][7f]xxxx ==> 6850 Keyboard Controller
587 // TODO: figure out which sizes are valid (probably just 8 and 16)
588 //ENFORCE_SIZE_R(bits, address, 16, "KEYBOARD CONTROLLER");
589 {
590 if (bits == 8) {
591 return keyboard_read(&state.kbd, (address >> 1) & 3);
592 } else {
593 return keyboard_read(&state.kbd, (address >> 1) & 3) << 8;
594 }
595 return data;
596 }
597 break;
598 }
599 }
600 }
602 LOG_NOT_HANDLED_R(bits);
604 return data;
605 }/*}}}*/
608 /********************************************************
609 * m68k memory read/write support functions for Musashi
610 ********************************************************/
612 /**
613 * @brief Read M68K memory, 32-bit
614 */
615 uint32_t m68k_read_memory_32(uint32_t address)/*{{{*/
616 {
617 uint32_t data = 0xFFFFFFFF;
619 // If ROMLMAP is set, force system to access ROM
620 if (!state.romlmap)
621 address |= 0x800000;
623 // Check access permissions
624 ACCESS_CHECK_RD(address, 32);
626 if ((address >= 0x800000) && (address <= 0xBFFFFF)) {
627 // ROM access
628 return RD32(state.rom, address, ROM_SIZE - 1);
629 } else if (address <= 0x3fffff) {
630 // RAM access
631 uint32_t newAddr = mapAddr(address, false);
632 if (newAddr <= 0x1fffff) {
633 return RD32(state.base_ram, newAddr, state.base_ram_size - 1);
634 } else {
635 if (newAddr <= (state.exp_ram_size + 0x200000 - 1))
636 return RD32(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1);
637 else
638 return 0xffffffff;
639 }
640 } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) {
641 // I/O register space, zone A
642 switch (address & 0x0F0000) {
643 case 0x000000: // Map RAM access
644 if (address > 0x4007FF) fprintf(stderr, "NOTE: RD32 from MapRAM mirror, addr=0x%08X\n", address);
645 return RD32(state.map, address, 0x7FF);
646 break;
647 case 0x020000: // Video RAM
648 if (address > 0x427FFF) fprintf(stderr, "NOTE: RD32 from VideoRAM mirror, addr=0x%08X\n", address);
649 return RD32(state.vram, address, 0x7FFF);
650 break;
651 default:
652 return IoRead(address, 32);
653 }
654 } else {
655 return IoRead(address, 32);
656 }
658 return data;
659 }/*}}}*/
661 /**
662 * @brief Read M68K memory, 16-bit
663 */
664 uint32_t m68k_read_memory_16(uint32_t address)/*{{{*/
665 {
666 uint16_t data = 0xFFFF;
668 // If ROMLMAP is set, force system to access ROM
669 if (!state.romlmap)
670 address |= 0x800000;
672 // Check access permissions
673 ACCESS_CHECK_RD(address, 16);
675 if ((address >= 0x800000) && (address <= 0xBFFFFF)) {
676 // ROM access
677 data = RD16(state.rom, address, ROM_SIZE - 1);
678 } else if (address <= 0x3fffff) {
679 // RAM access
680 uint32_t newAddr = mapAddr(address, false);
681 if (newAddr <= 0x1fffff) {
682 return RD16(state.base_ram, newAddr, state.base_ram_size - 1);
683 } else {
684 if (newAddr <= (state.exp_ram_size + 0x200000 - 1))
685 return RD16(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1);
686 else
687 return 0xffff;
688 }
689 } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) {
690 // I/O register space, zone A
691 switch (address & 0x0F0000) {
692 case 0x000000: // Map RAM access
693 if (address > 0x4007FF) fprintf(stderr, "NOTE: RD16 from MapRAM mirror, addr=0x%08X\n", address);
694 data = RD16(state.map, address, 0x7FF);
695 break;
696 case 0x020000: // Video RAM
697 if (address > 0x427FFF) fprintf(stderr, "NOTE: RD16 from VideoRAM mirror, addr=0x%08X\n", address);
698 data = RD16(state.vram, address, 0x7FFF);
699 break;
700 default:
701 data = IoRead(address, 16);
702 }
703 } else {
704 data = IoRead(address, 16);
705 }
707 return data;
708 }/*}}}*/
710 /**
711 * @brief Read M68K memory, 8-bit
712 */
713 uint32_t m68k_read_memory_8(uint32_t address)/*{{{*/
714 {
715 uint8_t data = 0xFF;
717 // If ROMLMAP is set, force system to access ROM
718 if (!state.romlmap)
719 address |= 0x800000;
721 // Check access permissions
722 ACCESS_CHECK_RD(address, 8);
724 if ((address >= 0x800000) && (address <= 0xBFFFFF)) {
725 // ROM access
726 data = RD8(state.rom, address, ROM_SIZE - 1);
727 } else if (address <= 0x3fffff) {
728 // RAM access
729 uint32_t newAddr = mapAddr(address, false);
730 if (newAddr <= 0x1fffff) {
731 return RD8(state.base_ram, newAddr, state.base_ram_size - 1);
732 } else {
733 if (newAddr <= (state.exp_ram_size + 0x200000 - 1))
734 return RD8(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1);
735 else
736 return 0xff;
737 }
738 } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) {
739 // I/O register space, zone A
740 switch (address & 0x0F0000) {
741 case 0x000000: // Map RAM access
742 if (address > 0x4007FF) fprintf(stderr, "NOTE: RD8 from MapRAM mirror, addr=0x%08X\n", address);
743 data = RD8(state.map, address, 0x7FF);
744 break;
745 case 0x020000: // Video RAM
746 if (address > 0x427FFF) fprintf(stderr, "NOTE: RD8 from VideoRAM mirror, addr=0x%08X\n", address);
747 data = RD8(state.vram, address, 0x7FFF);
748 break;
749 default:
750 data = IoRead(address, 8);
751 }
752 } else {
753 data = IoRead(address, 8);
754 }
756 return data;
757 }/*}}}*/
759 /**
760 * @brief Write M68K memory, 32-bit
761 */
762 void m68k_write_memory_32(uint32_t address, uint32_t value)/*{{{*/
763 {
764 // If ROMLMAP is set, force system to access ROM
765 if (!state.romlmap)
766 address |= 0x800000;
768 // Check access permissions
769 ACCESS_CHECK_WR(address, 32);
771 if ((address >= 0x800000) && (address <= 0xBFFFFF)) {
772 // ROM access
773 } else if (address <= 0x3FFFFF) {
774 // RAM access
775 uint32_t newAddr = mapAddr(address, true);
776 if (newAddr <= 0x1fffff)
777 WR32(state.base_ram, newAddr, state.base_ram_size - 1, value);
778 else
779 WR32(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1, value);
780 } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) {
781 // I/O register space, zone A
782 switch (address & 0x0F0000) {
783 case 0x000000: // Map RAM access
784 if (address > 0x4007FF) fprintf(stderr, "NOTE: RD32 from MapRAM mirror, addr=0x%08X\n", address);
785 WR32(state.map, address, 0x7FF, value);
786 break;
787 case 0x020000: // Video RAM
788 if (address > 0x427FFF) fprintf(stderr, "NOTE: RD32 from VideoRAM mirror, addr=0x%08X\n", address);
789 WR32(state.vram, address, 0x7FFF, value);
790 break;
791 default:
792 IoWrite(address, value, 32);
793 }
794 } else {
795 IoWrite(address, value, 32);
796 }
797 }/*}}}*/
799 /**
800 * @brief Write M68K memory, 16-bit
801 */
802 void m68k_write_memory_16(uint32_t address, uint32_t value)/*{{{*/
803 {
804 // If ROMLMAP is set, force system to access ROM
805 if (!state.romlmap)
806 address |= 0x800000;
808 // Check access permissions
809 ACCESS_CHECK_WR(address, 16);
811 if ((address >= 0x800000) && (address <= 0xBFFFFF)) {
812 // ROM access
813 } else if (address <= 0x3FFFFF) {
814 // RAM access
815 uint32_t newAddr = mapAddr(address, true);
816 if (newAddr <= 0x1fffff)
817 WR16(state.base_ram, newAddr, state.base_ram_size - 1, value);
818 else
819 WR16(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1, value);
820 } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) {
821 // I/O register space, zone A
822 switch (address & 0x0F0000) {
823 case 0x000000: // Map RAM access
824 if (address > 0x4007FF) fprintf(stderr, "NOTE: WR16 to MapRAM mirror, addr=0x%08X, data=0x%04X\n", address, value);
825 WR16(state.map, address, 0x7FF, value);
826 break;
827 case 0x020000: // Video RAM
828 if (address > 0x427FFF) fprintf(stderr, "NOTE: WR16 to VideoRAM mirror, addr=0x%08X, data=0x%04X\n", address, value);
829 WR16(state.vram, address, 0x7FFF, value);
830 break;
831 default:
832 IoWrite(address, value, 16);
833 }
834 } else {
835 IoWrite(address, value, 16);
836 }
837 }/*}}}*/
839 /**
840 * @brief Write M68K memory, 8-bit
841 */
842 void m68k_write_memory_8(uint32_t address, uint32_t value)/*{{{*/
843 {
844 // If ROMLMAP is set, force system to access ROM
845 if (!state.romlmap)
846 address |= 0x800000;
848 // Check access permissions
849 ACCESS_CHECK_WR(address, 8);
851 if ((address >= 0x800000) && (address <= 0xBFFFFF)) {
852 // ROM access (read only!)
853 } else if (address <= 0x3FFFFF) {
854 // RAM access
855 uint32_t newAddr = mapAddr(address, true);
856 if (newAddr <= 0x1fffff)
857 WR8(state.base_ram, newAddr, state.base_ram_size - 1, value);
858 else
859 WR8(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1, value);
860 } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) {
861 // I/O register space, zone A
862 switch (address & 0x0F0000) {
863 case 0x000000: // Map RAM access
864 if (address > 0x4007FF) fprintf(stderr, "NOTE: WR8 to MapRAM mirror, addr=0x%08X, data=0x%04X\n", address, value);
865 WR8(state.map, address, 0x7FF, value);
866 break;
867 case 0x020000: // Video RAM
868 if (address > 0x427FFF) fprintf(stderr, "NOTE: WR8 to VideoRAM mirror, addr=0x%08X, data=0x%04X\n", address, value);
869 WR8(state.vram, address, 0x7FFF, value);
870 break;
871 default:
872 IoWrite(address, value, 8);
873 }
874 } else {
875 IoWrite(address, value, 8);
876 }
877 }/*}}}*/
880 // for the disassembler
881 uint32_t m68k_read_disassembler_32(uint32_t addr) { return m68k_read_memory_32(addr); }
882 uint32_t m68k_read_disassembler_16(uint32_t addr) { return m68k_read_memory_16(addr); }
883 uint32_t m68k_read_disassembler_8 (uint32_t addr) { return m68k_read_memory_8 (addr); }