Fri, 18 Jan 2013 17:03:48 +0000
experimental memory mapper, not quite working
Makefile | file | annotate | diff | revisions | |
src/main.c | file | annotate | diff | revisions | |
src/memory.c | file | annotate | diff | revisions | |
src/memory.h | file | annotate | diff | revisions | |
src/musashi/m68kcpu.h | file | annotate | diff | revisions | |
src/wd2010.c | file | annotate | diff | revisions |
1.1 --- a/Makefile Wed Jan 16 00:41:51 2013 +0000 1.2 +++ b/Makefile Fri Jan 18 17:03:48 2013 +0000 1.3 @@ -167,7 +167,7 @@ 1.4 MAKE = make 1.5 CC = gcc 1.6 CXX = g++ 1.7 -CFLAGS = -Wall -pedantic -std=gnu99 $(EXT_CFLAGS) 1.8 +CFLAGS = -Wall -pedantic -std=gnu99 $(EXT_CFLAGS) -DWD2010_SEEK_DELAY=1 -DSHOW_LEDS -DDEBUG_MAP 1.9 CXXFLAGS= -Wall -pedantic -std=gnu++0x $(EXT_CXXFLAGS) 1.10 LDFLAGS = $(EXT_LDFLAGS) 1.11 RM = rm
2.1 --- a/src/main.c Wed Jan 16 00:41:51 2013 +0000 2.2 +++ b/src/main.c Fri Jan 18 17:03:48 2013 +0000 2.3 @@ -291,49 +291,50 @@ 2.4 }else{ 2.5 printf("ERROR: DMA attempt with no drive selected!\n"); 2.6 } 2.7 - if (!access_check_dma(state.dma_reading)) { 2.8 - break; 2.9 - } 2.10 - uint32_t newAddr; 2.11 - // Map logical address to a physical RAM address 2.12 - newAddr = mapAddr(state.dma_address, !state.dma_reading); 2.13 + 2.14 + if (access_check_dma()) { 2.15 + 2.16 + uint32_t newAddr; 2.17 + // Map logical address to a physical RAM address 2.18 + newAddr = MAP_ADDR(state.dma_address); 2.19 2.20 - if (!state.dma_reading) { 2.21 - // Data available. Get it from the FDC or HDC. 2.22 - if (state.fd_selected) { 2.23 - d = wd2797_read_reg(&state.fdc_ctx, WD2797_REG_DATA); 2.24 - d <<= 8; 2.25 - d += wd2797_read_reg(&state.fdc_ctx, WD2797_REG_DATA); 2.26 - }else if (state.hd_selected) { 2.27 - d = wd2010_read_data(&state.hdc_ctx); 2.28 - d <<= 8; 2.29 - d += wd2010_read_data(&state.hdc_ctx); 2.30 - } 2.31 - if (newAddr <= 0x1FFFFF) { 2.32 - WR16(state.base_ram, newAddr, state.base_ram_size - 1, d); 2.33 - } else if (newAddr >= 0x200000) { 2.34 - WR16(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1, d); 2.35 - } 2.36 - } else { 2.37 - // Data write to FDC or HDC. 2.38 + if (!state.dma_reading) { 2.39 + // Data available. Get it from the FDC or HDC. 2.40 + if (state.fd_selected) { 2.41 + d = wd2797_read_reg(&state.fdc_ctx, WD2797_REG_DATA); 2.42 + d <<= 8; 2.43 + d += wd2797_read_reg(&state.fdc_ctx, WD2797_REG_DATA); 2.44 + }else if (state.hd_selected) { 2.45 + d = wd2010_read_data(&state.hdc_ctx); 2.46 + d <<= 8; 2.47 + d += wd2010_read_data(&state.hdc_ctx); 2.48 + } 2.49 + if (newAddr <= 0x1FFFFF) { 2.50 + WR16(state.base_ram, newAddr, state.base_ram_size - 1, d); 2.51 + } else if (newAddr >= 0x200000) { 2.52 + WR16(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1, d); 2.53 + } 2.54 + } else { 2.55 + // Data write to FDC or HDC. 2.56 2.57 - // Get the data from RAM 2.58 - if (newAddr <= 0x1fffff) { 2.59 - d = RD16(state.base_ram, newAddr, state.base_ram_size - 1); 2.60 - } else { 2.61 - if (newAddr <= (state.exp_ram_size + 0x200000 - 1)) 2.62 - d = RD16(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1); 2.63 - else 2.64 - d = 0xffff; 2.65 - } 2.66 + // Get the data from RAM 2.67 + if (newAddr <= 0x1fffff) { 2.68 + d = RD16(state.base_ram, newAddr, state.base_ram_size - 1); 2.69 + } else { 2.70 + if (newAddr <= (state.exp_ram_size + 0x200000 - 1)) 2.71 + d = RD16(state.exp_ram, newAddr - 0x200000, state.exp_ram_size - 1); 2.72 + else 2.73 + d = 0xffff; 2.74 + } 2.75 2.76 - // Send the data to the FDD or HDD 2.77 - if (state.fd_selected){ 2.78 - wd2797_write_reg(&state.fdc_ctx, WD2797_REG_DATA, (d >> 8)); 2.79 - wd2797_write_reg(&state.fdc_ctx, WD2797_REG_DATA, (d & 0xff)); 2.80 - }else if (state.hd_selected){ 2.81 - wd2010_write_data(&state.hdc_ctx, (d >> 8)); 2.82 - wd2010_write_data(&state.hdc_ctx, (d & 0xff)); 2.83 + // Send the data to the FDD or HDD 2.84 + if (state.fd_selected){ 2.85 + wd2797_write_reg(&state.fdc_ctx, WD2797_REG_DATA, (d >> 8)); 2.86 + wd2797_write_reg(&state.fdc_ctx, WD2797_REG_DATA, (d & 0xff)); 2.87 + }else if (state.hd_selected){ 2.88 + wd2010_write_data(&state.hdc_ctx, (d >> 8)); 2.89 + wd2010_write_data(&state.hdc_ctx, (d & 0xff)); 2.90 + } 2.91 } 2.92 } 2.93
3.1 --- a/src/memory.c Wed Jan 16 00:41:51 2013 +0000 3.2 +++ b/src/memory.c Fri Jan 18 17:03:48 2013 +0000 3.3 @@ -17,100 +17,10 @@ 3.4 * Memory mapping 3.5 ******************/ 3.6 3.7 -#define MAPRAM(addr) (((uint16_t)state.map[addr*2] << 8) + ((uint16_t)state.map[(addr*2)+1])) 3.8 - 3.9 -uint32_t mapAddr(uint32_t addr, bool writing)/*{{{*/ 3.10 -{ 3.11 - if (addr < 0x400000) { 3.12 - // RAM access. Check against the Map RAM 3.13 - // Start by getting the original page address 3.14 - uint16_t page = (addr >> 12) & 0x3FF; 3.15 - 3.16 - // Look it up in the map RAM and get the physical page address 3.17 - uint32_t new_page_addr = MAPRAM(page) & 0x3FF; 3.18 - 3.19 - // Update the Page Status bits 3.20 - uint8_t pagebits = (MAPRAM(page) >> 13) & 0x03; 3.21 - // Pagebits -- 3.22 - // 0 = not present 3.23 - // 1 = present but not accessed 3.24 - // 2 = present, accessed (read from) 3.25 - // 3 = present, dirty (written to) 3.26 - switch (pagebits) { 3.27 - case 0: 3.28 - // Page not present 3.29 - // This should cause a page fault 3.30 - LOGS("Whoa! Pagebit update, when the page is not present!"); 3.31 - break; 3.32 - 3.33 - case 1: 3.34 - // Page present -- first access 3.35 - state.map[page*2] &= 0x9F; // turn off "present" bit (but not write enable!) 3.36 - if (writing) 3.37 - state.map[page*2] |= 0x60; // Page written to (dirty) 3.38 - else 3.39 - state.map[page*2] |= 0x40; // Page accessed but not written 3.40 - break; 3.41 - 3.42 - case 2: 3.43 - case 3: 3.44 - // Page present, 2nd or later access 3.45 - if (writing) 3.46 - state.map[page*2] |= 0x60; // Page written to (dirty) 3.47 - break; 3.48 - } 3.49 - 3.50 - // Return the address with the new physical page spliced in 3.51 - return (new_page_addr << 12) + (addr & 0xFFF); 3.52 - } else { 3.53 - // I/O, VRAM or MapRAM space; no mapping is performed or required 3.54 - // TODO: assert here? 3.55 - return addr; 3.56 - } 3.57 -}/*}}}*/ 3.58 - 3.59 -MEM_STATUS checkMemoryAccess(uint32_t addr, bool writing)/*{{{*/ 3.60 -{ 3.61 - // Get the page bits for this page. 3.62 - uint16_t page = (addr >> 12) & 0x3FF; 3.63 - uint8_t pagebits = (MAPRAM(page) >> 13) & 0x07; 3.64 - 3.65 - // Check page is present (but only for RAM zone) 3.66 - if ((addr < 0x400000) && ((pagebits & 0x03) == 0)) { 3.67 - LOG("Page not mapped in: addr %08X, page %04X, mapbits %04X", addr, page, MAPRAM(page)); 3.68 - return MEM_PAGEFAULT; 3.69 - } 3.70 - 3.71 - // Are we in Supervisor mode? 3.72 - if (m68k_get_reg(NULL, M68K_REG_SR) & 0x2000) 3.73 - // Yes. We can do anything we like. 3.74 - return MEM_ALLOWED; 3.75 - 3.76 - // If we're here, then we must be in User mode. 3.77 - // Check that the user didn't access memory outside of the RAM area 3.78 - if (addr >= 0x400000) { 3.79 - LOGS("User accessed privileged memory"); 3.80 - return MEM_UIE; 3.81 - } 3.82 - 3.83 - // User attempt to access the kernel 3.84 - // A19, A20, A21, A22 low (kernel access): RAM addr before paging; not in Supervisor mode 3.85 - if (((addr >> 19) & 0x0F) == 0) { 3.86 - LOGS("Attempt by user code to access kernel space"); 3.87 - return MEM_KERNEL; 3.88 - } 3.89 - 3.90 - // Check page is write enabled 3.91 - if (writing && ((pagebits & 0x04) == 0)) { 3.92 - LOG("Page not write enabled: inaddr %08X, page %04X, mapram %04X [%02X %02X], pagebits %d", 3.93 - addr, page, MAPRAM(page), state.map[page*2], state.map[(page*2)+1], pagebits); 3.94 - return MEM_PAGE_NO_WE; 3.95 - } 3.96 - 3.97 - // Page access allowed. 3.98 - return MEM_ALLOWED; 3.99 -}/*}}}*/ 3.100 - 3.101 +/// Set a page bit 3.102 +#define MAP_SET_PAGEBIT(addr, bit) state.map[(((addr) >> 12) & 0x3FF)*2] |= (bit << 2) 3.103 +/// Clear a page bit 3.104 +#define MAP_CLR_PAGEBIT(addr, bit) state.map[(((addr) >> 12) & 0x3FF)*2] &= ~(bit << 2) 3.105 3.106 3.107 /******************************************************** 3.108 @@ -129,40 +39,7 @@ 3.109 /*{{{ macro: ACCESS_CHECK_WR(address, bits)*/ 3.110 #define ACCESS_CHECK_WR(address, bits) \ 3.111 do { \ 3.112 - bool fault = false; \ 3.113 - MEM_STATUS st; \ 3.114 - switch (st = checkMemoryAccess(address, true)) { \ 3.115 - case MEM_ALLOWED: \ 3.116 - /* Access allowed */ \ 3.117 - break; \ 3.118 - case MEM_PAGEFAULT: \ 3.119 - /* Page fault */ \ 3.120 - state.genstat = 0x8BFF | (state.pie ? 0x0400 : 0); \ 3.121 - fault = true; \ 3.122 - break; \ 3.123 - case MEM_UIE: \ 3.124 - /* User access to memory above 4MB */ \ 3.125 - state.genstat = 0x9AFF | (state.pie ? 0x0400 : 0); \ 3.126 - fault = true; \ 3.127 - break; \ 3.128 - case MEM_KERNEL: \ 3.129 - case MEM_PAGE_NO_WE: \ 3.130 - /* kernel access or page not write enabled */ \ 3.131 - /* XXX: is this the correct value? */ \ 3.132 - state.genstat = 0x9BFF | (state.pie ? 0x0400 : 0); \ 3.133 - fault = true; \ 3.134 - break; \ 3.135 - } \ 3.136 - \ 3.137 - if (fault) { \ 3.138 - if (bits >= 16) \ 3.139 - state.bsr0 = 0x7C00; \ 3.140 - else \ 3.141 - state.bsr0 = (address & 1) ? 0x7E00 : 0x7D00; \ 3.142 - state.bsr0 |= (address >> 16); \ 3.143 - state.bsr1 = address & 0xffff; \ 3.144 - LOG("Bus Error while writing, addr %08X, statcode %d", address, st); \ 3.145 - if (state.ee) m68k_pulse_bus_error(); \ 3.146 + if (access_check_cpu(address, bits, true)) { \ 3.147 return; \ 3.148 } \ 3.149 } while (0) 3.150 @@ -180,100 +57,220 @@ 3.151 /*{{{ macro: ACCESS_CHECK_RD(address, bits)*/ 3.152 #define ACCESS_CHECK_RD(address, bits) \ 3.153 do { \ 3.154 - bool fault = false; \ 3.155 - MEM_STATUS st; \ 3.156 - switch (st = checkMemoryAccess(address, false)) { \ 3.157 - case MEM_ALLOWED: \ 3.158 - /* Access allowed */ \ 3.159 - break; \ 3.160 - case MEM_PAGEFAULT: \ 3.161 - /* Page fault */ \ 3.162 - state.genstat = 0xCBFF | (state.pie ? 0x0400 : 0); \ 3.163 - fault = true; \ 3.164 - break; \ 3.165 - case MEM_UIE: \ 3.166 - /* User access to memory above 4MB */ \ 3.167 - state.genstat = 0xDAFF | (state.pie ? 0x0400 : 0); \ 3.168 - fault = true; \ 3.169 - break; \ 3.170 - case MEM_KERNEL: \ 3.171 - case MEM_PAGE_NO_WE: \ 3.172 - /* kernel access or page not write enabled */ \ 3.173 - /* XXX: is this the correct value? */ \ 3.174 - state.genstat = 0xDBFF | (state.pie ? 0x0400 : 0); \ 3.175 - fault = true; \ 3.176 - break; \ 3.177 - } \ 3.178 - \ 3.179 - if (fault) { \ 3.180 - if (bits >= 16) \ 3.181 - state.bsr0 = 0x7C00; \ 3.182 + if (access_check_cpu(address, bits, false)) { \ 3.183 + if (bits == 32) \ 3.184 + return EMPTY & 0xFFFFFFFF; \ 3.185 else \ 3.186 - state.bsr0 = (address & 1) ? 0x7E00 : 0x7D00; \ 3.187 - state.bsr0 |= (address >> 16); \ 3.188 - state.bsr1 = address & 0xffff; \ 3.189 - LOG("Bus Error while reading, addr %08X, statcode %d", address, st); \ 3.190 - if (state.ee) m68k_pulse_bus_error(); \ 3.191 - if (bits == 32) \ 3.192 - return EMPTY & 0xFFFFFFFF; \ 3.193 - else \ 3.194 - return EMPTY & ((1UL << bits)-1); \ 3.195 + return EMPTY & ((1UL << bits)-1); \ 3.196 } \ 3.197 } while (0) 3.198 /*}}}*/ 3.199 3.200 -bool access_check_dma(int reading) 3.201 + 3.202 +/** 3.203 + * Update the page bits for a given memory address 3.204 + * 3.205 + * @param addr Memory address being accessed 3.206 + * @param l7intr Set to <i>true</i> if a level-seven interrupt has been 3.207 + * signalled (even if <b>ENABLE ERROR</b> isn't set). 3.208 + * @param write Set to <i>true</i> if the address is being written to. 3.209 + */ 3.210 +static void update_page_bits(uint32_t addr, bool l7intr, bool write) 3.211 { 3.212 - // Check memory access permissions 3.213 - bool access_ok; 3.214 - switch (checkMemoryAccess(state.dma_address, !reading)) { 3.215 - case MEM_PAGEFAULT: 3.216 - // Page fault 3.217 - state.genstat = 0xABFF 3.218 - | (reading ? 0x4000 : 0) 3.219 - | (state.pie ? 0x0400 : 0); 3.220 - access_ok = false; 3.221 - break; 3.222 + bool ps0_state = false; 3.223 + 3.224 + // Don't try and update pagebits for non-RAM addresses 3.225 + if (addr > 0x3FFFFF) 3.226 + return; 3.227 + 3.228 + if (l7intr) { 3.229 +// if (!(MAP_PAGEBITS(addr) & PAGE_BIT_PS0)) { 3.230 + // FIXME FUCKUP The ruddy TRM is wrong AGAIN! If above line is uncommented, Really Bad Things Happen. 3.231 + if ((MAP_PAGEBITS(addr) & PAGE_BIT_PS0)) { 3.232 + // Level 7 interrupt, PS0 clear, PS1 don't-care. Set PS0. 3.233 + ps0_state = true; 3.234 + } 3.235 + } else { 3.236 + // No L7 interrupt 3.237 + if ((write && !(MAP_PAGEBITS(addr) & PAGE_BIT_PS1) && (MAP_PAGEBITS(addr) & PAGE_BIT_PS0)) || 3.238 + (write && (MAP_PAGEBITS(addr) & PAGE_BIT_PS1) && !(MAP_PAGEBITS(addr) & PAGE_BIT_PS0))) 3.239 + { 3.240 + // No L7 interrupt, PS[1:0] = 0b01, write 3.241 + // No L7 interrupt, PS[1:0] = 0b10, write 3.242 + ps0_state = true; 3.243 + } 3.244 + } 3.245 3.246 - case MEM_UIE: 3.247 - // User access to memory above 4MB 3.248 - // FIXME? Shouldn't be possible with DMA... assert this? 3.249 - state.genstat = 0xBAFF 3.250 - | (reading ? 0x4000 : 0) 3.251 - | (state.pie ? 0x0400 : 0); 3.252 - access_ok = false; 3.253 - break; 3.254 +#ifdef MAPRAM_BIT_TEST 3.255 + LOG("Starting Mapram Bit Test"); 3.256 + state.map[0] = state.map[1] = 0; 3.257 + LOG("Start = %04X %02X", MAPRAM_ADDR(0), MAP_PAGEBITS(0)); 3.258 + MAP_SET_PAGEBIT(0, PAGE_BIT_WE); 3.259 + LOG("Set WE = %04X %02X", MAPRAM_ADDR(0), MAP_PAGEBITS(0)); 3.260 + MAP_SET_PAGEBIT(0, PAGE_BIT_PS1); 3.261 + LOG("Set PS1 = %04X %02X", MAPRAM_ADDR(0), MAP_PAGEBITS(0)); 3.262 + MAP_SET_PAGEBIT(0, PAGE_BIT_PS0); 3.263 + LOG("Set PS0 = %04X %02X", MAPRAM_ADDR(0), MAP_PAGEBITS(0)); 3.264 + 3.265 + MAP_CLR_PAGEBIT(0, PAGE_BIT_WE); 3.266 + LOG("Clr WE = %04X %02X", MAPRAM_ADDR(0), MAP_PAGEBITS(0)); 3.267 + MAP_CLR_PAGEBIT(0, PAGE_BIT_PS1); 3.268 + LOG("Clr PS1 = %04X %02X", MAPRAM_ADDR(0), MAP_PAGEBITS(0)); 3.269 + MAP_CLR_PAGEBIT(0, PAGE_BIT_PS0); 3.270 + LOG("Clr PS0 = %04X %02X", MAPRAM_ADDR(0), MAP_PAGEBITS(0)); 3.271 + exit(-1); 3.272 +#endif 3.273 + 3.274 + uint16_t old_pagebits = MAP_PAGEBITS(addr); 3.275 3.276 - case MEM_KERNEL: 3.277 - case MEM_PAGE_NO_WE: 3.278 - // Kernel access or page not write enabled 3.279 - /* XXX: is this correct? */ 3.280 - state.genstat = 0xBBFF 3.281 - | (reading ? 0x4000 : 0) 3.282 - | (state.pie ? 0x0400 : 0); 3.283 - access_ok = false; 3.284 - break; 3.285 + // PS1 is always set on access 3.286 + MAP_SET_PAGEBIT(addr, PAGE_BIT_PS1); 3.287 + 3.288 + uint16_t new_pagebit1 = MAP_PAGEBITS(addr); 3.289 + 3.290 + // Update PS0 3.291 + if (ps0_state) { 3.292 + MAP_SET_PAGEBIT(addr, PAGE_BIT_PS0); 3.293 + } else { 3.294 + MAP_CLR_PAGEBIT(addr, PAGE_BIT_PS0); 3.295 + } 3.296 3.297 - case MEM_ALLOWED: 3.298 - access_ok = true; 3.299 + uint16_t new_pagebit2 = MAP_PAGEBITS(addr); 3.300 + switch (addr) { 3.301 + case 0x000000: 3.302 + case 0x001000: 3.303 + case 0x002000: 3.304 + case 0x003000: 3.305 + case 0x004000: 3.306 + case 0x033000: 3.307 + case 0x034000: 3.308 + case 0x035000: 3.309 + LOG("Addr %08X MapNew %04X Pagebit update -- ps0 %d, %02X => %02X => %02X", addr, MAPRAM_ADDR(addr), ps0_state, old_pagebits, new_pagebit1, new_pagebit2); 3.310 + default: 3.311 break; 3.312 } 3.313 - if (!access_ok) { 3.314 +} 3.315 + 3.316 +bool access_check_dma(void) 3.317 +{ 3.318 + // TODO FIXME BUGBUG Sanity check - Make sure DMAC is only accessing RAM addresses 3.319 + 3.320 + // DMA access check -- make sure the page is mapped in 3.321 + if (!(MAP_PAGEBITS(state.dma_address) & PAGE_BIT_PS0) && !(MAP_PAGEBITS(state.dma_address) & PAGE_BIT_PS1)) { 3.322 + // DMA access to page which is not mapped in. 3.323 + // Level 7 interrupt, page fault, DMA invoked 3.324 + state.genstat = 0xABFF 3.325 + | (state.dma_reading ? 0x4000 : 0) 3.326 + | (state.pie ? 0x0400 : 0); 3.327 + 3.328 + // XXX: Check all this stuff. 3.329 state.bsr0 = 0x3C00; 3.330 state.bsr0 |= (state.dma_address >> 16); 3.331 state.bsr1 = state.dma_address & 0xffff; 3.332 - if (state.ee) m68k_set_irq(7); 3.333 - printf("BUS ERROR FROM DMA: genstat=%04X, bsr0=%04X, bsr1=%04X\n", state.genstat, state.bsr0, state.bsr1); 3.334 + 3.335 + // Update page bits for this transfer 3.336 + update_page_bits(state.dma_address, true, !state.dma_reading); 3.337 + 3.338 + // XXX: is this right? 3.339 + // Fire a Level 7 interrupt 3.340 + /*if (state.ee)*/ m68k_set_irq(7); 3.341 + 3.342 + LOG("BUS ERROR FROM DMA: genstat=%04X, bsr0=%04X, bsr1=%04X\n", state.genstat, state.bsr0, state.bsr1); 3.343 + return false; 3.344 + } else { 3.345 + // No errors. Just update the page bits. 3.346 + update_page_bits(state.dma_address, false, !state.dma_reading); 3.347 + return true; 3.348 } 3.349 - return (access_ok); 3.350 +} 3.351 + 3.352 +/** 3.353 + * Check memory access permissions for a CPU memory access. 3.354 + * 3.355 + * @param addr Virtual memory address being accessed (from CPU address bus). 3.356 + * @param bits Word size of this transfer (8, 16 or 32 bits). 3.357 + * @param write <i>true</i> if this is a write operation, <i>false</i> if it is a read operation. 3.358 + * @return <i>true</i> if the access was denied and a level-7 interrupt and/or bus error raised. 3.359 + * <i>false</i> if the access was allowed. 3.360 + */ 3.361 +bool access_check_cpu(uint32_t addr, int bits, bool write) 3.362 +{ 3.363 + bool supervisor = (m68k_get_reg(NULL, M68K_REG_SR) & 0x2000); 3.364 + bool fault = false; 3.365 + 3.366 + // TODO FIXME BUGBUG? Do we need to check for supervisor access here? 3.367 + if ((addr >= 0x000000) && (addr <= 0x3FFFFF) && !(MAP_PAGEBITS(addr) & PAGE_BIT_PS1) && !(MAP_PAGEBITS(addr) & PAGE_BIT_PS0)) { 3.368 + // (A) Page Fault -- user access to page which is not mapped in 3.369 + // Level 7 Interrupt, Bus Error, regs=PAGEFAULT 3.370 + if (write) { 3.371 + state.genstat = 0x8BFF | (state.pie ? 0x0400 : 0); 3.372 + } else { 3.373 + state.genstat = 0xCBFF | (state.pie ? 0x0400 : 0); 3.374 + } 3.375 + fault = true; 3.376 + } else if (!supervisor && (addr >= 0x000000) && (addr <= 0x07FFFF)) { 3.377 + // (B) User attempted to access the kernel 3.378 + // Level 7 Interrupt, Bus Error, regs=KERNEL 3.379 + if (write) { 3.380 + // XXX: BUGBUG? Is this correct? 3.381 + state.genstat = 0x9BFF | (state.pie ? 0x0400 : 0); 3.382 + } else { 3.383 + state.genstat = 0xDBFF | (state.pie ? 0x0400 : 0); 3.384 + } 3.385 + fault = true; 3.386 + } else if (!supervisor && write && (addr >= 0x000000) && (addr <= 0x3FFFFF) && !(MAP_PAGEBITS(addr) & PAGE_BIT_WE)) { 3.387 + // (C) User attempted to write to a page which is not write enabled 3.388 + // Level 7 Interrupt, Bus Error, regs=WRITE_EN 3.389 + if (write) { 3.390 + // XXX: BUGBUG? Is this correct? 3.391 + state.genstat = 0x9BFF | (state.pie ? 0x0400 : 0); 3.392 + } else { 3.393 + state.genstat = 0xDBFF | (state.pie ? 0x0400 : 0); 3.394 + } 3.395 + fault = true; 3.396 + } else if (!supervisor && (addr >= 0x400000) && (addr <= 0xFFFFFF)) { 3.397 + // (D) UIE - user I/O exception 3.398 + // Bus Error only, regs=UIE 3.399 + if (write) { 3.400 + state.genstat = 0x9AFF | (state.pie ? 0x0400 : 0); 3.401 + } else { 3.402 + state.genstat = 0xDAFF | (state.pie ? 0x0400 : 0); 3.403 + } 3.404 + fault = true; 3.405 + } 3.406 + 3.407 + // Update the page bits first 3.408 + update_page_bits(addr, fault, write); 3.409 + 3.410 + if (fault) { 3.411 + if (bits >= 16) 3.412 + state.bsr0 = 0x7C00; 3.413 + else 3.414 + state.bsr0 = (addr & 1) ? 0x7E00 : 0x7D00; 3.415 + // FIXME? Physical or virtual address here? 3.416 + state.bsr0 |= (addr >> 16); 3.417 + state.bsr1 = addr & 0xffff; 3.418 + 3.419 + LOG("CPU Bus Error or L7Intr while %s, vaddr %08X, map %08X, pagebits 0x%02X bsr0=%04X bsr1=%04X genstat=%04X", 3.420 + write ? "writing" : "reading", addr, 3.421 + MAPRAM_ADDR(addr & 0x3fffff), 3.422 + MAP_PAGEBITS(addr & 0x3fffff), 3.423 + state.bsr0, state.bsr1, state.genstat); 3.424 + 3.425 + // FIXME? BUGBUG? Does EE disable one or both of these? 3.426 + // /*if (state.ee)*/ m68k_set_irq(7); 3.427 + /*if (state.ee)*/ m68k_pulse_bus_error(); 3.428 + } 3.429 + 3.430 + return fault; 3.431 } 3.432 3.433 // Logging macros 3.434 #define LOG_NOT_HANDLED_R(bits) \ 3.435 - if (!handled) printf("unhandled read%02d, addr=0x%08X\n", bits, address); 3.436 + if (!handled) fprintf(stderr, "unhandled read%02d, addr=0x%08X\n", bits, address); 3.437 3.438 #define LOG_NOT_HANDLED_W(bits) \ 3.439 - if (!handled) printf("unhandled write%02d, addr=0x%08X, data=0x%08X\n", bits, address, data); 3.440 + if (!handled) fprintf(stderr, "unhandled write%02d, addr=0x%08X, data=0x%08X\n", bits, address, data); 3.441 3.442 /******************************************************** 3.443 * I/O read/write functions 3.444 @@ -286,7 +283,7 @@ 3.445 { 3.446 assert((bits == 8) || (bits == 16) || (bits == 32)); 3.447 if ((bits & allowed) == 0) { 3.448 - printf("WARNING: %s 0x%08X (%s) with invalid size %d!\n", read ? "read from" : "write to", address, regname, bits); 3.449 + LOG("WARNING: %s 0x%08X (%s) with invalid size %d!\n", read ? "read from" : "write to", address, regname, bits); 3.450 } 3.451 } 3.452 3.453 @@ -349,6 +346,7 @@ 3.454 case 0x070000: // Line Printer Status Register 3.455 break; 3.456 case 0x080000: // Real Time Clock 3.457 + LOGS("REAL TIME CLOCK WRITE"); 3.458 break; 3.459 case 0x090000: // Phone registers 3.460 switch (address & 0x0FF000) { 3.461 @@ -483,6 +481,7 @@ 3.462 handled = true; 3.463 break; 3.464 case 0x030000: // [ef][3b]xxxx ==> Real Time Clock data bits 3.465 + LOGS("REAL TIME CLOCK DATA WRITE"); 3.466 break; 3.467 case 0x040000: // [ef][4c]xxxx ==> General Control Register 3.468 switch (address & 0x077000) { 3.469 @@ -529,11 +528,15 @@ 3.470 // TODO: figure out which sizes are valid (probably just 8 and 16) 3.471 // ENFORCE_SIZE_W(bits, address, 16, "KEYBOARD CONTROLLER"); 3.472 if (bits == 8) { 3.473 - printf("KBD WR %02X => %02X\n", (address >> 1) & 3, data); 3.474 +#ifdef LOG_KEYBOARD_WRITES 3.475 + LOG("KBD WR %02X => %02X\n", (address >> 1) & 3, data); 3.476 +#endif 3.477 keyboard_write(&state.kbd, (address >> 1) & 3, data); 3.478 handled = true; 3.479 } else if (bits == 16) { 3.480 - printf("KBD WR %02X => %04X\n", (address >> 1) & 3, data); 3.481 +#ifdef LOG_KEYBOARD_WRITES 3.482 + LOG("KBD WR %02X => %04X\n", (address >> 1) & 3, data); 3.483 +#endif 3.484 keyboard_write(&state.kbd, (address >> 1) & 3, data >> 8); 3.485 handled = true; 3.486 } 3.487 @@ -587,7 +590,7 @@ 3.488 return data; 3.489 break; 3.490 case 0x080000: // Real Time Clock 3.491 - printf("READ NOTIMP: Realtime Clock\n"); 3.492 + LOGS("REAL TIME CLOCK READ"); 3.493 break; 3.494 case 0x090000: // Phone registers 3.495 switch (address & 0x0FF000) { 3.496 @@ -665,6 +668,7 @@ 3.497 case 0x020000: // [ef][2a]xxxx ==> Miscellaneous Control Register 2 3.498 break; 3.499 case 0x030000: // [ef][3b]xxxx ==> Real Time Clock data bits 3.500 + LOGS("REAL TIME CLOCK DATA READ"); 3.501 break; 3.502 case 0x040000: // [ef][4c]xxxx ==> General Control Register 3.503 switch (address & 0x077000) { 3.504 @@ -735,7 +739,8 @@ 3.505 return RD32(state.rom, address, ROM_SIZE - 1); 3.506 } else if (address <= 0x3fffff) { 3.507 // RAM access 3.508 - uint32_t newAddr = mapAddr(address, false); 3.509 + uint32_t newAddr = MAP_ADDR(address); 3.510 + 3.511 if (newAddr <= 0x1fffff) { 3.512 if (newAddr >= state.base_ram_size) 3.513 return EMPTY & 0xffffffff; 3.514 @@ -787,7 +792,8 @@ 3.515 data = RD16(state.rom, address, ROM_SIZE - 1); 3.516 } else if (address <= 0x3fffff) { 3.517 // RAM access 3.518 - uint32_t newAddr = mapAddr(address, false); 3.519 + uint32_t newAddr = MAP_ADDR(address); 3.520 + 3.521 if (newAddr <= 0x1fffff) { 3.522 if (newAddr >= state.base_ram_size) 3.523 return EMPTY & 0xffff; 3.524 @@ -839,7 +845,8 @@ 3.525 data = RD8(state.rom, address, ROM_SIZE - 1); 3.526 } else if (address <= 0x3fffff) { 3.527 // RAM access 3.528 - uint32_t newAddr = mapAddr(address, false); 3.529 + uint32_t newAddr = MAP_ADDR(address); 3.530 + 3.531 if (newAddr <= 0x1fffff) { 3.532 if (newAddr >= state.base_ram_size) 3.533 return EMPTY & 0xff; 3.534 @@ -888,7 +895,8 @@ 3.535 // ROM access 3.536 } else if (address <= 0x3FFFFF) { 3.537 // RAM access 3.538 - uint32_t newAddr = mapAddr(address, true); 3.539 + uint32_t newAddr = MAP_ADDR(address); 3.540 + 3.541 if (newAddr <= 0x1fffff) { 3.542 if (newAddr < state.base_ram_size) { 3.543 WR32(state.base_ram, newAddr, state.base_ram_size - 1, value); 3.544 @@ -933,7 +941,7 @@ 3.545 // ROM access 3.546 } else if (address <= 0x3FFFFF) { 3.547 // RAM access 3.548 - uint32_t newAddr = mapAddr(address, true); 3.549 + uint32_t newAddr = MAP_ADDR(address); 3.550 3.551 if (newAddr <= 0x1fffff) { 3.552 if (newAddr < state.base_ram_size) { 3.553 @@ -979,7 +987,8 @@ 3.554 // ROM access (read only!) 3.555 } else if (address <= 0x3FFFFF) { 3.556 // RAM access 3.557 - uint32_t newAddr = mapAddr(address, true); 3.558 + uint32_t newAddr = MAP_ADDR(address); 3.559 + 3.560 if (newAddr <= 0x1fffff) { 3.561 if (newAddr < state.base_ram_size) { 3.562 WR8(state.base_ram, newAddr, state.base_ram_size - 1, value); 3.563 @@ -1013,6 +1022,7 @@ 3.564 uint32_t m68k_read_disassembler_32(uint32_t addr) 3.565 { 3.566 if (addr < 0x400000) { 3.567 + // XXX FIXME BUGBUG update this to use the new mapper macros! 3.568 uint16_t page = (addr >> 12) & 0x3FF; 3.569 uint32_t new_page_addr = MAPRAM(page) & 0x3FF; 3.570 uint32_t newAddr = (new_page_addr << 12) + (addr & 0xFFF); 3.571 @@ -1028,7 +1038,7 @@ 3.572 return EMPTY; 3.573 } 3.574 } else { 3.575 - printf(">>> WARNING Disassembler RD32 out of range 0x%08X\n", addr); 3.576 + LOG("WARNING: Disassembler RD32 out of range 0x%08X\n", addr); 3.577 return EMPTY; 3.578 } 3.579 } 3.580 @@ -1051,7 +1061,7 @@ 3.581 return EMPTY & 0xffff; 3.582 } 3.583 } else { 3.584 - printf(">>> WARNING Disassembler RD16 out of range 0x%08X\n", addr); 3.585 + LOG("WARNING: Disassembler RD16 out of range 0x%08X\n", addr); 3.586 return EMPTY & 0xffff; 3.587 } 3.588 } 3.589 @@ -1074,7 +1084,7 @@ 3.590 return EMPTY & 0xff; 3.591 } 3.592 } else { 3.593 - printf(">>> WARNING Disassembler RD8 out of range 0x%08X\n", addr); 3.594 + LOG("WARNING: Disassembler RD8 out of range 0x%08X\n", addr); 3.595 return EMPTY & 0xff; 3.596 } 3.597 }
4.1 --- a/src/memory.h Wed Jan 16 00:41:51 2013 +0000 4.2 +++ b/src/memory.h Fri Jan 18 17:03:48 2013 +0000 4.3 @@ -45,14 +45,57 @@ 4.4 * Memory mapping 4.5 ******************/ 4.6 4.7 -typedef enum { 4.8 - MEM_ALLOWED = 0, 4.9 - MEM_PAGEFAULT, // Page fault -- page not present 4.10 - MEM_PAGE_NO_WE, // Page not write enabled 4.11 - MEM_KERNEL, // User attempted to access kernel memory 4.12 - MEM_UIE // User Nonmemory Location Access 4.13 -} MEM_STATUS; 4.14 +/*** 4.15 + * An entry in MAP RAM looks like this: 4.16 + * 4.17 + * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 4.18 + * +-----------------------------------------------+ 4.19 + * | | | | | | | MA[21..12] ADDRESS BITS | 4.20 + * +-----------------------------------------------+ 4.21 + * 4.22 + * Bits 0 thru 9: High 10 address bits (mapping) 4.23 + * Bits 10 thru 15: Page bits 4.24 + * B10: PS4 4.25 + * B11: PS3 4.26 + * B12: PS2 4.27 + * B13: PS0 4.28 + * B14: PS1 4.29 + * B15: WE+ 4.30 + * 4.31 + * Page bit meanings: 4.32 + * PS4, 3 and 2 are unused. 4.33 + * PS1:PS0: 4.34 + * PS1 PS0 Meaning 4.35 + * --- --- ------- 4.36 + * 0 0 Page not present 4.37 + * 0 1 Page present but has not been accessed 4.38 + * 1 0 Page has been accessed but not written 4.39 + * 1 1 Page has been accessed and written to (is dirty) 4.40 + * 4.41 + * WE+: Write Enable. Set to 1 if the page is writable. 4.42 + * 4.43 + * Each RAM page is 4096 bytes. 4.44 + */ 4.45 4.46 +/// Known page bits and their values 4.47 +enum { 4.48 + PAGE_BIT_PS0 = 0x08, ///< PS0 page status bit 4.49 + PAGE_BIT_PS1 = 0x10, ///< PS1 (page accessed) page bit 4.50 + PAGE_BIT_WE = 0x20 ///< WE (write enable) page bit 4.51 +}; 4.52 + 4.53 +/// Get the Map RAM entry for the specified page 4.54 +#define MAPRAM(page) (((uint16_t)state.map[page*2] << 8) + ((uint16_t)state.map[(page*2)+1])) 4.55 +/// Get the page number for a given address 4.56 +#define MAP_ADDR_TO_PAGE(addr) (((addr) >> 12) & 0x3FF) 4.57 +/// Get the Map RAM entry for the specified virtual address 4.58 +#define MAPRAM_ADDR(addr) (MAPRAM(MAP_ADDR_TO_PAGE(addr))) 4.59 +/// Map an address from CPU address space to physical memory 4.60 +#define MAP_ADDR(addr) (((MAPRAM_ADDR(addr) & 0x3FF) << 12) | (addr & 0xFFF)) 4.61 +/// Get the page bits associated with the mapping for a given physical memory address 4.62 +#define MAP_PAGEBITS(addr) ((MAPRAM_ADDR(addr) >> 10) & 0x3F) 4.63 + 4.64 +#if 0 4.65 /** 4.66 * @brief Check memory access permissions for a given address. 4.67 * @param addr Address. 4.68 @@ -63,19 +106,18 @@ 4.69 MEM_STATUS checkMemoryAccess(uint32_t addr, bool writing); 4.70 4.71 /** 4.72 - * @brief Map a CPU memory address into physical memory space. 4.73 - * @param addr Address. 4.74 - * @param writing true if writing to memory, false if reading. 4.75 - * @return Address, remapped into physical memory. 4.76 - */ 4.77 -uint32_t mapAddr(uint32_t addr, bool writing); 4.78 - 4.79 -/** 4.80 * @brief Check access flags for a DMA transfer and trigger an exception if 4.81 * the access is not permitted 4.82 * @param reading true if reading from memory, false if writing 4.83 - * @return true if the access is permitted, false if not 4.84 */ 4.85 bool access_check_dma(int reading); 4.86 +#endif 4.87 + 4.88 + 4.89 +/** 4.90 + * Check memory access permissions for a DMA operation. 4.91 + * @return true if the access is permitted, false if not 4.92 + */ 4.93 +bool access_check_dma(void); 4.94 4.95 #endif
5.1 --- a/src/musashi/m68kcpu.h Wed Jan 16 00:41:51 2013 +0000 5.2 +++ b/src/musashi/m68kcpu.h Fri Jan 18 17:03:48 2013 +0000 5.3 @@ -1,4 +1,5 @@ 5.4 #include <stdio.h> 5.5 +#include <ctype.h> 5.6 /* ======================================================================== */ 5.7 /* ========================= LICENSING & COPYRIGHT ======================== */ 5.8 /* ======================================================================== */ 5.9 @@ -1652,6 +1653,41 @@ 5.10 INLINE void m68ki_exception_trapN(uint vector) 5.11 { 5.12 uint sr = m68ki_init_exception(); 5.13 + 5.14 +#ifdef MC68K_TRAP_SYSCALLS 5.15 + if (vector == 32) { 5.16 + printf(">>> TRAP #0 = SYSCALL #%d%s\n", REG_D[0] & 63, REG_D[0] > 63 ? "!!!" : ""); 5.17 + // d0 = syscall number 5.18 + printf("\t d0:%08X d1:%08X d2:%08X d3:%08X\n", REG_D[0], REG_D[1], REG_D[2], REG_D[3]); 5.19 + printf("\t d4:%08X d5:%08X d6:%08X d7:%08X\n", REG_D[4], REG_D[5], REG_D[6], REG_D[7]); 5.20 + printf("\t a0:%08X a1:%08X a2:%08X a3:%08X\n", REG_A[0], REG_A[1], REG_A[2], REG_A[3]); 5.21 + printf("\t a4:%08X a5:%08X a6:%08X sp:%08X\n", REG_A[4], REG_A[5], REG_A[6], REG_USP); 5.22 + printf("\t pc:%08X sr:%08X\n", REG_PC, sr); 5.23 + 5.24 + /* 5.25 + // dump stack -- but syscalls use registers to pass parameters 5.26 + for (int i=-128; i<128; i+=4) { 5.27 + printf(" sp%s%02d: %08X\n", i<0?"":"+", i, m68k_read_disassembler_32(REG_SP+i)); 5.28 + } 5.29 + */ 5.30 + for (int r=0; r<2; r++) { 5.31 + printf(" *a%d: [", r); 5.32 + if (REG_A[r] == 0x00) { 5.33 + printf("NullPointer]\n"); 5.34 + continue; 5.35 + } 5.36 + for (int i=0; i<32; i++) { 5.37 + unsigned char c = m68k_read_disassembler_8(REG_A[r]+i); 5.38 + if (isprint(c)) 5.39 + putchar(c); 5.40 + else 5.41 + putchar('.'); 5.42 + } 5.43 + printf("]\n"); 5.44 + } 5.45 + } 5.46 +#endif // MC68K_TRAP_SYSCALLS 5.47 + 5.48 m68ki_stack_frame_0000(REG_PC, sr, vector); 5.49 m68ki_jump_vector(vector); 5.50
6.1 --- a/src/wd2010.c Wed Jan 16 00:41:51 2013 +0000 6.2 +++ b/src/wd2010.c Fri Jan 18 17:03:48 2013 +0000 6.3 @@ -263,6 +263,7 @@ 6.4 size_t lba; 6.5 int new_track; 6.6 int sector_count; 6.7 + unsigned int ssz; 6.8 6.9 m68k_end_timeslice(); 6.10 6.11 @@ -296,7 +297,7 @@ 6.12 break; 6.13 case WD2010_REG_SDH: 6.14 /*XXX: remove this once the DMA page fault test passes (unless this is actually the correct behavior here)*/ 6.15 - ctx->data_pos = ctx->data_len = 0; 6.16 + //ctx->data_pos = ctx->data_len = 0; 6.17 ctx->sdh = val; 6.18 break; 6.19 case WD2010_REG_COMMAND: // Command register 6.20 @@ -343,13 +344,23 @@ 6.21 break; 6.22 case CMD_READ_SECTOR: 6.23 /*XXX: does a separate function to set the head have to be added?*/ 6.24 - LOG("WD2010: READ SECTOR cmd=%02X chs=%d:%d:%d nsectors=%d", cmd, ctx->track, ctx->head, ctx->sector, ctx->sector_count); 6.25 + LOG("WD2010: READ SECTOR cmd=%02X sdh=0x%02X drive=%d ddrive1=%d chs=%d:%d:%d nsectors=%d", cmd, ctx->sdh, (ctx->sdh >> 3) & 3, ctx->mcr2_ddrive1, ctx->track, ctx->head, ctx->sector, val&CMD_MULTI_SECTOR ? ctx->sector_count : 1); 6.26 + 6.27 + switch ((ctx->sdh >> 5) & 0x03) { 6.28 + case 0: ssz = 256; break; 6.29 + case 1: ssz = 512; break; 6.30 + case 2: ssz = 1024; break; 6.31 + case 3: ssz = 128; break; 6.32 + } 6.33 + if (ssz != ctx->geom_secsz) 6.34 + LOG("WARNING: Geometry mismatch. WD2010 Write Sector with secsz %d != phys_secsz %d.", ssz, ctx->geom_secsz); 6.35 6.36 // Read Sector 6.37 6.38 // Check to see if the cyl, hd and sec are valid 6.39 - if ((ctx->track > (ctx->geom_tracks-1)) || (ctx->head > (ctx->geom_heads-1)) || ((ctx->sector + ctx->sector_count - 1) > ctx->geom_spt-1)) { 6.40 - LOG("*** WD2010 ALERT: CHS parameter limit exceeded! CHS=%d:%d:%d, nSecs=%d, endSec=%d maxCHS=%d:%d:%d", 6.41 + if ((ctx->track > (ctx->geom_tracks-1)) || (ctx->head > (ctx->geom_heads-1)) || ((ctx->sector + ctx->sector_count - 1) > ctx->geom_spt-1) || (ssz != ctx->geom_secsz)) { 6.42 + LOG("*** WD2010 ALERT: CHS parameter limit exceeded! dDrive1=%d CHS=%d:%d:%d, nSecs=%d, endSec=%d maxCHS=%d:%d:%d", 6.43 + ctx->mcr2_ddrive1, 6.44 ctx->track, ctx->head, ctx->sector, 6.45 ctx->sector_count, 6.46 ctx->sector + ctx->sector_count - 1, 6.47 @@ -395,12 +406,22 @@ 6.48 case CMD_WRITE_FORMAT: 6.49 ctx->sector = 0; 6.50 case CMD_WRITE_SECTOR: 6.51 - LOG("WD2010: WRITE SECTOR cmd=%02X chs=%d:%d:%d nsectors=%d", cmd, ctx->track, ctx->head, ctx->sector, ctx->sector_count); 6.52 + LOG("WD2010: WRITE SECTOR cmd=%02X sdh=0x%02X drive=%d ddrive1=%d chs=%d:%d:%d nsectors=%d", cmd, ctx->sdh, (ctx->sdh >> 3) & 3, ctx->mcr2_ddrive1, ctx->track, ctx->head, ctx->sector, val&CMD_MULTI_SECTOR ? ctx->sector_count : 1); 6.53 // Write Sector 6.54 6.55 + switch ((ctx->sdh >> 5) & 0x03) { 6.56 + case 0: ssz = 256; break; 6.57 + case 1: ssz = 512; break; 6.58 + case 2: ssz = 1024; break; 6.59 + case 3: ssz = 128; break; 6.60 + } 6.61 + if (ssz != ctx->geom_secsz) 6.62 + LOG("WARNING: Geometry mismatch. WD2010 Write Sector with secsz %d != phys_secsz %d.", ssz, ctx->geom_secsz); 6.63 + 6.64 // Check to see if the cyl, hd and sec are valid 6.65 - if ((ctx->track > (ctx->geom_tracks-1)) || (ctx->head > (ctx->geom_heads-1)) || ((ctx->sector + ctx->sector_count - 1) > ctx->geom_spt-1)) { 6.66 - LOG("*** WD2010 ALERT: CHS parameter limit exceeded! CHS=%d:%d:%d, nSecs=%d, endSec=%d maxCHS=%d:%d:%d", 6.67 + if ((ctx->track > (ctx->geom_tracks-1)) || (ctx->head > (ctx->geom_heads-1)) || ((ctx->sector + ctx->sector_count - 1) > ctx->geom_spt-1) || (ssz != ctx->geom_secsz)) { 6.68 + LOG("*** WD2010 ALERT: CHS parameter limit exceeded! dDrive1=%d CHS=%d:%d:%d, nSecs=%d, endSec=%d maxCHS=%d:%d:%d", 6.69 + ctx->mcr2_ddrive1, 6.70 ctx->track, ctx->head, ctx->sector, 6.71 ctx->sector_count, 6.72 ctx->sector + ctx->sector_count - 1,