Lattice

Semiconductor
Corporation

LatticeMico32 Processor
Reference Manual

Lattice Semiconductor Corporation
5555 NE Moore Court

Hillsboro, OR 97124

(503) 268-8000

June 2011




Copyright
Copyright © 2011 Lattice Semiconductor Corporation.

This document may not, in whole or part, be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine-
readable form without prior written consent from Lattice Semiconductor
Corporation.

Trademarks

Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation
(logo), L (stylized), L (design), Lattice (design), LSC, CleanClock, E2CMOS,
Extreme Performance, FlashBAK, FlexiClock, flexiFlash, flexiMAC, flexiPCS,
FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, IPexpress,
ISP, ispATE, ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDXV,
ispGDX2, ispGENERATOR, ispJTAG, ispLEVER, ispLeverCORE, ispLSI,
iISPMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM,
ispXP, ispXPGA, ispXPLD, Lattice Diamond, Lattice CORE, LatticeEC,
LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M, LatticeECP3,
LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM, LatticeXP,
LatticeXP2, MACH, MachXO, MachX02, MACO, ORCA, PAC, PAC-
Designer, PAL, Performance Analyst, Platform Manager, ProcessorPM,
PURESPEED, Reveal, Silicon Forest, Speedlocked, Speed Locking,
SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG,
sysDSP, sysHSI, sysl/O, sysMEM, The Simple Machine for Complex Design,
TracelD, TransFR, UltraMOS, and specific product designations are either
registered trademarks or trademarks of Lattice Semiconductor Corporation or
its subsidiaries in the United States and/or other countries. ISP, Bringing the
Best Together, and More of the Best are service marks of Lattice
Semiconductor Corporation.

Other product names used in this publication are for identification purposes
only and may be trademarks of their respective companies.

Disclaimers

NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT
IS “AS IS” WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY
KIND INCLUDING WARRANTIES OF ACCURACY, COMPLETENESS,
MERCHANTABILITY, NONINFRINGEMENT OF INTELLECTUAL
PROPERTY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO
EVENT WILL LATTICE SEMICONDUCTOR CORPORATION (LSC) OR ITS
SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL,
INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OF OR INABILITY TO USE THE INFORMATION PROVIDED
IN THIS DOCUMENT, EVEN IF LSC HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS
PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN LIABILITY,
SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

LSC may make changes to these materials, specifications, or information, or
to the products described herein, at any time without notice. LSC makes no
commitment to update this documentation. LSC reserves the right to
discontinue any product or service without notice and assumes no obligation

LatticeMico32 Processor Reference Manual ii



to correct any errors contained herein or to advise any user of this document
of any correction if such be made. LSC recommends its customers obtain the
latest version of the relevant information to establish, before ordering, that the
information being relied upon is current.

Type Conventions Used in This Document

Convention Meaning or Use

Bold

Items in the user interface that you select or click. Text that you type
into the user interface.

<Italic>

Variables in commands, code syntax, and path names.

Ctrl+L

Press the two keys at the same time.

Courier

Code examples. Messages, reports, and prompts from the software.

Omitted material in a line of code.

Omitted lines in code and report examples.

Optional items in syntax descriptions. In bus specifications, the
brackets are required.

Grouped items in syntax descriptions.

Repeatable items in syntax descriptions.

A choice between items in syntax descriptions.

LatticeMico32 Processor Reference Manual



LatticeMico32 Processor Reference Manual



Lattice

Semiconductor
Corporation

Contents

Chapter 1 LatticeMico32 Processor and Systems 1

Chapter 2 Programmer’s Model 5
Pipeline Architecture 5
Data Types 6

Register Architecture 7
General-Purpose Registers 7
Control and Status Registers 9

Memory Architecture 13
Address Space 13
Endianness 14
Address Alignment 15
Stack Layout 15
Caches 16
Inline Memories 18

Exceptions 20
Exception Processing 21
Exception Handler Code 21
Nested Exceptions 25
Remapping the Exception Table 25
Reset Summary 26
Using Breakpoints 26
Using Watchpoints 27

Debug Architecture 27
DC - Debug Control 28
DEBA - Debug Exception Base Address 28
JTX — JTAG UART Transmit Register 29
JRX — JTAG UART Receive Register 29
BPn — Breakpoint 29
WPn — Watchpoint 30

Instruction Set Categories 30

LatticeMico32 Processor Reference Manual



Contents

Chapter 3

Chapter 4

Chapter 5

Arithmetic 30

Logic 30

Comparison 31

Shift 31

Data Transfer 31
Program Flow Control 32

Configuring the LatticeMico32 Processor 33
Configuration Options 33
EBR Use 36

WISHBONE Interconnect Architecture 37
Introduction to WISHBONE Interconnect 37

WISHBONE Registered Feedback Mode 38
CTLIO() 38
BTE_IO() 39

Component Signals 40
Master Port and Signal Descriptions 41
Slave Port and Signal Descriptions 42

Arbitration Schemes 44
Shared-Bus Arbitration 44
Slave-Side Arbitration 44

Instruction Set 47
Instruction Formats 47
Opcode Look-Up Table 48
Pseudo-Instructions 49

Instruction Descriptions 49
add 50
addi 50
and 51
andhi 51
andi 52
b 52
be 53
bg 53
bge 54
bgeu 54
bgu 55
bi 55
bne 56
break 56
bret 57
call 57
calli 58
cmpe 58
cmpei 59
cmpg 59
cmpgi 60
cmpge 60
cmpgei 61

LatticeMico32 Processor Reference Manual

Vi



Contents

cmpgeu 61
cmpgeui 62
cmpgu 62
cmpgui 63
cmpne 63
cmpnei 64
divu 64
eret 65

Ib 65

Ibu 66

Ih 66

Ihu 67

lw 67
modu 68
mul 69
muli 69
mv 70
mvhi 70
nor 71
nori 71
not 72

or 72

ori 73
orhi 73
rcsr 74
ret 74

sb 74
scall 75
sextb 75
sexth 76
sh 77

sl 77

sli 78

sr 78

sri 79

sru 79
srui 80
sub 80
sw 81
wcsr 81
xnor 82
xnori 82
xor 83
xori 83

Index 85

LatticeMico32 Processor Reference Manual

Vii



Contents

LatticeMico32 Processor Reference Manual Viii



Lattice

Semiconductor
Corporation

LatticeMico32 Processor
and Systems

As systems become more complex, there are a growing number of L_2 and
L_3 protocols that continue to burden a local host processor. These tend to
incrementally add processing requirements to the local processor, starving
other critical functions of processor machine cycles. To alleviate the local host
processor’s processing requirements, embedded processors are being
utilized to support the main processor in a distributed processing architecture.
These embedded processors offer localized control, OA&M functionality, and
statistics gathering and processing features, thereby saving the host
processor many unnecessary clock cycles, which can be used for higher-level
functions.

A soft processor provides added flexibility in the implementation of your
design. Functionality that can be implemented in software rather than
hardware allows much greater freedom in terms of the types of changes that
can be made. With software-based processing, it is possible for the hardware
logic to remain stable and functional upgrades can be made through software
modification. Additionally, it is much quicker and simpler to implement
functionality in software than it is to design it in hardware, leading to a
reduced time to market.

The LatticeMico32™ is a configurable 32-bit soft processor core for Lattice
Field Programmable Gate Array (FPGA) devices. By combining a 32-bit wide
instruction set with 32 general-purpose registers, the LatticeMico32 provides
the performance and flexibility suitable for a wide variety of markets, including
communications, consumer, computer, medical, industrial, and automotive.
With separate instruction and data buses, this Harvard architecture processor
allows for single-cycle instruction execution as the instruction and data
memories can be accessed simultaneously. Additionally, the LatticeMico32
uses a Reduced Instruction Set Computer (RISC) architecture, thereby
providing a simpler instruction set and faster performance. As a result, the
processor core consumes minimal device resources, while maintaining the

LatticeMico32 Processor Reference Manual 1



LatticeMico32 Processor and Systems

performance required for a broad application set. Some of the key features of
this 32-bit processor include:

¢ RISC architecture

32-bit data path

32-hit instructions

32 general-purpose registers
Up to 32 external interrupts
Optional instruction cache

Optional data cache

® & & 6 o o o

Dual WISHBONE memory interfaces (instruction and data)

Figure 1 shows a block diagram of the LatticeMico32 processor core.

Figure 1: LatticeMico32 Block Diagram

WISHBONE Bus

Instructions

WISHBONE Bus
Data

—m 1

.

-+

| | o

Adder ontrol atusl | Logical | 3

| | | Registers Opérands ]

[5]

l Shifter [ ~ 5

h [«

Multipl 5

2™ | E

Optional Divide o

Data Data =
Cache Memory -

To accelerate the development of processor systems, several optional
peripheral components are available with the LatticeMico32 processor.
Specifically, these components are connected to the processor through a
WISHBONE bus interface, a royalty-free, public-domain specification. By
using this open source bus interface, you can incorporate your own

LatticeMico32 Processor Reference Manual



LatticeMico32 Processor and Systems

WISHBONE components into your embedded designs. The components
include:

¢ Memory controllers

L 4

L 4

L 4

Asynchronous SRAM
Double data rate (DDR)
On-chip

+ Input/output (I/O) ports

L 4

L 4

L 4

L 4

L 4

L 4

32-bit timer
Direct memory access (DMA) controller
General-purpose 1/0 (GPIO)

12C master controller
Serial peripheral interface (SPI)

Universal asynchronous receiver transmitter (UART)

Figure 2 shows a complete embedded system using the LatticeMico32
processor along with several components.

Figure 2: LatticeMico32 Processor Embedded System

FPGA

Interrupt Lines

P LatticeMico32

Processor
Core

 d

WISHBONE

f

T
3
B

T
=
B

ﬁ
< Y

This manual describes the architecture of the LatticeMico32 processor. It
includes information on configuration options, pipeline architecture, register
architecture, memory architecture, debug architecture, and the instruction set.
Itis intended to be used as a reference when you design processors for use
on supported Lattice Semiconductor field programmable gate arrays
(FPGAS).

LatticeMico32 Processor Reference Manual



LatticeMico32 Processor and Systems

LatticeMico32 Processor Reference Manual



Lattice

Semiconductor
Corporation

Programmer’s Model

This chapter describes the pipeline architecture of the LatticeMico32
processor.

Pipeline Architecture

The LatticeMico32 processor uses a 32-bit, 6-stage pipeline, as shown in
Figure 3 on page 6. It is fully bypassed and interlocked. The bypass logic is
responsible for forwarding results back through the pipeline, allowing most
instructions to be effectively executed in a single cycle. The interlock is
responsible for detecting read-after-write hazards and stalling the pipeline
until the hazard has been resolved. This avoids the need to insert nop
directives between dependent instructions, keeping code size to a minimum,
as well as simplifying assembler-level programming.

The six pipeline stages are:

*

Address — The address of the instruction to execute is calculated and sent
to the instruction cache.

Fetch — The instruction is read from memory.

Decode — The instruction is decoded, and operands are either fetched
from the register file or bypassed from the pipeline. PC-relative branches
are predicted by a static branch predictor.

Execute — The operation specified by the instruction is performed. For
simple instructions such as addition or a logical operation, execution
finishes in this stage, and the result is made available for bypassing.

Memory — For more complicated instructions such as loads, stores,
multiplies, or shifts, a second execution stage is required.

Writeback — Results produced by the instructions are written back to the
register file

LatticeMico32 Processor Reference Manual



Programmer’s Model Data Types

Figure 3: LatticeMico32 Pipeline

> pc
QA P l A
""""""""""""""" Instruction || Instruction |
WISHBONE < Cache Memory

1 ] F

Instruction Register |----------------- -
% —

Branch Predictor ‘ Instruction Decoder ‘ ‘ Register File ‘ 5
v .

[ v v s s s

User Adder CSRs Logical Shifter | | Multiply -
Logic & <
T \_( Divid E X
ivide ?
5
= > D
————————— Data (-| Data A5t
Cache Memo 1)
WISHBONE <«—| v =

ab "
v v

Align

Data Types

The LatticeMico32 processor supports the data types listed in Table 1.

Table 1: Data Types

Type Range Bits Encoding C Compiler Type

Unsigned byte [0, 28-1] 8 Binary Unsigned
character

Signed byte [-27, 27-1] 8  Two's complement Character

Unsigned half-word [0, 216-1] 16 Binary Unsigned short

Signed half-word [-21°,215.1] 16 Two's complement Short

Unsigned word [0, 2%2-1] 32 Binary Unsigned int/

unsigned long

Signed word [-231,281.1] 32  Two's complement Int/long

LatticeMico32 Processor Reference Manual 6



Programmer’s Model

Register Architecture

In addition to the above, the extended data types in Table 2 can be emulated
through a compiler.

Table 2: Extended Data Types

Data Type Range Bits Encoding C Compiler Type
Unsigned double-word [0, 264-1] 64  Binary Unsigned long long
Signed double-word ~ [-253,2%%-1] 64  Two's complement Long long
Single-precision real  [1.1754e-38, 32 IEEE 754 Float

3.4028e+38]
Double-precision real [2.2250e-308, 64 |EEE 754 Double

1.7976e+308]

Register Architecture

This section describes the register architecture of the LatticeMico32
processor.

General-Purpose Registers

The LatticeMico32 features the following 32-bit registers:

& By convention, register 0 (r0) must always hold the value 0, and this is
required for correct operation by both the LatticeMico32 assembler and
the C compiler. On power-up, the value of 0 in r0 is not hardwired, so you
must initialize it to load r0 with the 0 value.

¢ Registers 1 through 28 are truly general purpose and can be used as the
source or destination register for any instruction. After reset, the values in
all of these registers are undefined.

¢ Register 29 (ra) is used by the call instruction to save the return address
but is otherwise general purpose.

¢ Register 30 (ea) is used to save the value of the Program Counter (PC)
when an exception occurs, so it should not be used by user-level
programs.

¢ Register 31 (ba) saves the value of the Program Counter (PC) when a
breakpoint or watchpoint exception occurs, so it should not be used by
user-level programs.

After reset, the values in all of the above 32-bit registers are undefined. To
ensure that register O contains 0, the first instruction executed after reset
should be xor r0, r0, ro0.

Table 3 lists the general-purpose registers and specifies their use by the C
compiler. In this table, the callee is the function called by the caller function.

LatticeMico32 Processor Reference Manual 7



Programmer’s Model Register Architecture

Table 3: General-Purpose Registers

Register Name Function Saver
r0 Holds the value zero

rl General-purpose/argument O/return value 0 Caller
r2 General-purpose/argument 1/return value 1 Caller
r3 General-purpose/argument 2 Caller
r4 General-purpose/argument 3 Caller
5 General-purpose/argument 4 Caller
r6 General-purpose/argument 5 Caller
r7 General-purpose/argument 6 Caller
r8 General-purpose/argument 7 Caller
r9 General-purpose Caller
r10 General-purpose Caller
r11 General-purpose Callee
ri2 General-purpose Callee
r13 General-purpose Callee
rl4 General-purpose Callee
rl5 General-purpose Callee
rlé General-purpose Callee
rl7 General-purpose Callee
ri8 General-purpose Callee
r19 General-purpose Callee
r20 General-purpose Callee
r21 General-purpose Callee
r22 General-purpose Callee
r23 General-purpose Callee
r24 General-purpose Callee
r25 General-purpose Callee
r26/gp General-purpose/global pointer Callee
r27/fp General-purpose/frame pointer Callee
r28/sp Stack pointer Callee
r29/ra General-purpose/return address Caller
r30/ea Exception address

r31/ba Breakpoint address

LatticeMico32 Processor Reference Manual 8



Programmer’s Model

Register Architecture

Control and Status Registers

Table 4 shows all of the names of the control and status registers (CSR),
whether the register can be read from or written to, and the index used when
accessing the register. Some of the registers are optional, depending on the
configuration of the processor (see “Configuring the LatticeMico32 Processor”
on page 33). All signal levels are active high.

Table 4: Control and Status Registers

Name Access Index Optional Description

PC No Program counter

IE R/W 0x0 Yes Interrupt enable

IM R/W ox1 Yes Interrupt mask

P R 0x2 Yes Interrupt pending

ICC w 0x3 Yes Instruction cache control
DCC w 0x4 Yes Data cache control

CcC R 0x5 Yes Cycle counter

CFG R 0x6 No Configuration

EBA R/W 0x7 No Exception base address
CFG2 R OxA No Extended configuration

PC — Program Counter

The PC CSR is a 32-bit register that contains the address of the instruction
currently being executed. Because all instructions are four bytes wide, the two
least significant bits of the PC are always zero. After reset, the value of the PC
CSR is h00000000.

Figure 4: Format of the PC CSR

31 210

pC o o |
IE — Interrupt Enable
The IE CSR contains a single-bit flag, IE, that determines whether interrupts
are enabled. This flag has priority over the IM CSR. In addition, there are two
bits, BIE and EIE, that are used to save the value of the IE field when either a
breakpoint or other exception occurs. Each interrupt is associated with a
mask bit (IE bit) indexed with each interrupt. After reset, the value of the IE
CSR is h00000000.
Figure 5: Format of the IE CSR

31 3210

|_ |EIIE|EIE|IE |

LatticeMico32 Processor Reference Manual 9



Programmer’s Model Register Architecture

Table 5: Fields of the IE CSR

Field Values Description
IE 0 — Interrupts disabled Determines whether interrupts are
enabled.

1 — Interrupts enabled

EIE 0 — Interrupts disabled Holds a copy of the IE field when an

1 — Interrupts enabled exception occurs.

BIE 0 — Interrupts disabled Holds a copy of the IE field when a

1 — Interrupts enabled breakpoint occurs.

IM — Interrupt Mask

The IM CSR contains an enable bit for each of the 32 interrupts. Bit 0
corresponds to interrupt 0. In order for an interrupt to be raised, both an
enable bit in this register and the IE flag in the IE CSR must be set to 1. After
reset, the value of the IM CSR is h00000000.

IP — Interrupt Pending

The IP CSR contains a pending bit for each of the 32 interrupts. A pending bit
is set when the corresponding interrupt request line is asserted low. Bit 0
corresponds to interrupt 0. Bits in the IP CSR can be cleared by writing a 1
with the wesr instruction. Writing a 0 has no effect. After reset, the value of the
IP CSR is h00000000.

ICC — Instruction Cache Control
The ICC CSR provides a control bit that, when written with any value, causes

the contents of the entire instruction cache to be invalidated.

Figure 6: Format of the ICC CSR

Field Values Description

| Any — Invalidate instruction When written, the contents of the
cache instruction cache are invalidated.

LatticeMico32 Processor Reference Manual 10



Programmer’s Model

Register Architecture

DCC — Data Cache Control

The DCC CSR provides a control bit that, when written with any value, causes
the contents of the entire data cache to be invalidated.

Figure 7: Format of the DCC CSR
3

Table 6: Fields of the DCC CSR

Field Values Description

| Any — Invalidate data cache ~ When written, the contents of the data
cache are invalidated.

CC - Cycle Counter

The CC CSR is an optional 32-bit register that is incremented on each clock
cycle. It can be used to profile ghost code sequences.

CFG - Configuration

The CFG CSR details the configuration of a particular instance of a

LatticeMico32 processor.

Figure 8: Format of the CFG CSR

)] 2624 2221 1817 1211109 8 7 6 5 4 3 210

REVY WP BF INT JIRHGICDCKUISDM
ciIC

Table 7: Fields of the CFG CSR

Field Values Description

M 0 — Multiply is not implemented
1 — Multiply is implemented

Indicates whether a hardware
multiplier is implemented.

D 0 — Divide is not implemented

1 — Divide is implemented

Indicates whether a hardware
divider is implemented.

S 0 — Barrel shift is not implemented

1 — Barrel shift is implemented

Indicates whether a hardware
barrel-shifter is implemented.

Reserved.

X 0 — Sign extend is not implemented

1 - Sign extend is implemented

Indicates whether the sign-
extension instructions are
implemented.

CC  0- Cycle counter is not implemented

1 — Cycle counter is implemented

Indicates whether the CC CSR is
implemented.

IC 0 — Instruction cache is not implemented

1 — Instruction cache is implemented

Indicates whether an instruction
cache is implemented.

LatticeMico32 Processor Reference Manual

11



Programmer’s Model

Register Architecture

Table 7: Fields of the CFG CSR (Continued)

Field Values

Description

DC 0 - Data cache is not implemented

1 — Data cache is implemented

Indicates whether a data cache is
implemented.

G 0 — Debug is not implemented

1 — Data cache is implemented

Indicates whether software-based
debug support is implemented.

H 0 — H/W debug is not implemented
1 - H/W debug is implemented

Indicates whether hardware-based
debug support is implemented.

R 0 — ROM debug is not implemented
1 - ROM debug is implemented

Indicates whether support for
debugging ROM-based programs is
implemented.

J 0 — JTAG UART is not implemented
1 - JTAG UART is implemented

Indicates whether a JTAG UART is
implemented.

INT 0-32 Indicates the number of external
interrupts.

BP 0-4 Indicates the number of breakpoint
CSRs.

WP 0-4 Indicates the number of watchpoint
CSRs.

REV 0-63 Processor revision number. This is

set automatically. You cannot reset
this field.

CFG2 - Extended Configuration

The CFG2 CSR is used in conjunction with CFG CSR to provide details on
the configuration of a particular instance of the LatticeMico32 processor.

Figure 9: Format of CFG2 CSR

31

CFG2

[IM | DIM

Table 8:

Field Values

Description

DIM 0 - Data inline memory is not implemented. Indicates whether data inline

1 — Data inline memory is implemented.

memory is implemented.

IIM 0 - Instruction inline memory is not
implemented.

1 — Instruction inline memory is
implemented.

Indicates whether instruction
inline memory is implemented.

LatticeMico32 Processor Reference Manual

12



Programmer’s Model

Memory Architecture

EBA — Exception Base Address

The EBA CSR specifies the base address of the exception handlers. After
reset, the value of EBA is set to EBA_RESET. If you write a value to the
register where the lower byte is not zero, it will read back all zeros. There is
no need for you to mask zeros to avoid issues.

Figure 10: Format of EBA CSR

31

EBA

=782
[=78%
=1k
o |
[=
GA
[=]R=.

Memory Architecture

This section describes the memory architecture of the LatticeMico32
processor.

Address Space

The LatticeMico32 processor has a flat 32-bit, byte-addressable address
space. By default, this address space is uncachable. The designer can
configure the entire address space, or just a portion of it, to be cachable. The
designer can also designate the entire uncachable address space, or just a
portion of it, to be processor inline memory space. For LatticeMico32
processors with caches, the portion of the address space that is cacheable
can be configured separately for both the instruction and data cache. This
allows for the size of the cache tag RAMSs to be optimized to be as small as is
required (the fewer the number of cacheable addresses, the smaller the tag
RAMs will be).

If an instruction cache is used, attempts to fetch instructions from outside of
the range of cacheable addresses result in undefined behavior, so only one
cached region is supported. Portions of the memory image are not cached, so
if a miss occurs, it will not be fetched.

LatticeMico32 Processor Reference Manual 13



Programmer’s Model

Memory Architecture

Figure 11 illustrates some possible configurations. Typically, the parts of the

address space that are cacheable are used for storing code or program data,
with 1/O components being mapped into uncacheable addresses.

Figure 11: Cacheable Addresses

hffffffff

hOoooooooo0

Uncachable

Endian

Mo caches

Ness

hffffffff

hE0000000
h7fffffff

hOoooooooo0

Uncachable

Cachable

Cwerlapping

hffffffff

hE0000000
h7fffffff

h40000000
h3fffffff

hOoooooooo0

Uncachable

Cachable by
Data Cache
Only

Cachable by
Instruction
Cache Only

Separate

The LatticeMico32 processor is big-endian, which means that multi-byte

objects, such as half-words and words, are stored with the most significant

byte at the lowest address.

LatticeMico32 Processor Reference Manual

14



Programmer’s Model Memory Architecture

Address Alignment

All memory accesses must be aligned to the size of the access, as shown in
Table 9. No check is performed for unaligned access. All unaligned accesses
result in undefined behavior.

Table 9: Memory Access Alignment Requirements

Access Size Address Requirements

Byte None

Half-word Address must be half-word aligned (bit 0 must be 0)
Word Address must be word aligned (bits 1 and 0 must be 0)

Stack Layout

Figure 12 shows the conventional layout of a stack frame. The stack grows
toward lower memory as data is pushed onto it. The stack pointer (sp) points
to the first unused location, and the frame pointer (fp) points at the first
location used in the active frame. In many cases, a compiler may be able to
eliminate the frame pointer, because data can often be accessed by using a
negative displacement from the stack pointer, freeing up the frame pointer for
use as a general-purpose register.

As illustrated in Table 3 on page 8, the first eight function arguments are

passed in registers. Any remaining arguments are passed on the stack, as
illustrated in Figure 12.

Figure 12: Stack Layout

Previous frame Higher Address

Incoming arguments

|

|

fp —» |
Locals |

|

Callee saves |

|

Outgoing arguments |

sp —b v

Lower Address
Free memory

LatticeMico32 Processor Reference Manual 15



Programmer’s Model

Memory Architecture

Caches

A cache is a fast memory (single-cycle access) that stores a copy of a limited
subset of the data held in main memory, which may take the CPU several
cycles to access. A cache helps improve overall performance by exploiting
the fact that the same data is typically accessed several times in a short
interval. By storing a local copy of the data in the processor’s cache, the
multiple cycles required to access the data can be reduced to just a single
cycle for all subsequent accesses once the data is loaded into the cache.

Cache Architecture

When a cache accesses a data item, it is also likely to access data at adjacent
addresses (such as with arrays or structures) by loading data into the cache in
lines. A line can consist of 4, 8, or 16 adjacent bytes, and is specified by the
BYTES_PER_LINE option.

A one-way associative (direct-mapped) cache consists of an array of cache
lines known as a “way.” To allow the cache to operate at a high frequency,
data from main memory can only be stored in a specific cache line. A two-way
associative cache consists of a two-dimensional array of cache lines. It
requires slightly more logic to implement but allows data from main memory to
be stored in one of two places in the cache. It helps performance by reducing
cache conflicts that occur when a program is accessing multiple data items
that would map to the same cache line in a one-way associative cache. The
number of lines in each way is specified by the ICACHE_SETS and
DCACHE_SETS options. The ways are assigned in a round-robin fashion.
Each time a cache miss occurs the way number is switched.

Figure 13: Cache Organization

Way 1, Line SETS-1 Way 0, Line SETS-1

VWay 1, Line 1 Way 0, Line 1

Way 1, Line 0 Way 0, Line 0 Set0
Way 0

The LatticeMico32 caches are write-through, which means that whenever a
store instruction writes to an address that is cached, the data is written to both
the cache and main memory. A read-miss allocation policy means that a
cache line is only fetched from memory for a load instruction. If a cache miss

LatticeMico32 Processor Reference Manual 16



Programmer’s Model Memory Architecture

occurs for a store instruction, the data is written directly to memory without the
cache being updated.

The LatticeMico32 processor supports a range of cache configurations, as
detailed in Table 10.

Table 10: Cache Configurations

Attribute Values

Size 0 kB, 1 kB, 2 kB, 4 kB, 8 kB, 16 kB, 32 kB
Sets 128, 256, 512, 1024

Associativity 1,2

Bytes-per-line 4,8, 16

Write policy Write-through

Update policy Read miss only

The LatticeMico32 caches are initialized automatically by embedded logic, so
they do not require a program to initialize or enable them.

Invalidating the Caches

The contents of the instruction cache can be invalidated by writing to the ICC
CSR. It is recommended that you follow the write to the ICC CSR with four
nops, as follows:

wcsr ICC, r0
nop
nop
nop
nop

The contents of the data cache can similarly be invalidated by writing to the
DCC CSR as follows:

wcsr DCC, rO0

It is recommended that you avoid placing a load or store instruction
immediately before or after the wcsr instruction.

The LatticeMico32 caches are not kept consistent with respect to each other.
This means that if a store instruction writes to an area of memory that is
currently cached by the instruction cache, the instruction cache will not be
automatically updated to reflect the store. It is your responsibility to invalidate
the instruction cache after the write has taken place, if necessary.

Similarly, the caches do not snoop bus activity to monitor for writes by
peripherals (by DMA for example) to addresses that are cached. It is again
your responsibility to ensure that the cache is invalidated before reading
memory that may have been written by a peripheral.

LatticeMico32 Processor Reference Manual 17



Programmer’s Model Memory Architecture

Inline Memories

The LatticeMico32 processor enables you to optionally connect to on-chip
memory, through instruction and data ports, by using a local bus rather than
the Wishbone interface. Memory connected to the CPU in such a manner is
referred to as inline memory. Figure 14 shows a functional block diagram of
the LatticeMico32 processor with inline memories. The addresses occupied
by inline memories are not cachable.

Figure 14: LatticeMico32 Inline Memories

Data Data
Fort Inline
Memonry

’

Instruction Cache Data Cache

A

Wishbone System Bus

| |

There are two types of inline memories:

+ Instruction Inline Memory — This memory component is connected to the
Instruction Port of the LatticeMico32 CPU and is used to hold only
program memory of any software application.

¢ Data Inline Memory — This memory component is connected to the Data
Port of the LatticeMico32 CPU and is used to hold read-only or read/write
data of any software application.

Note

The Instruction Inline Memory is also connected to the Data Port of the
LatticeMico32 CPU in order to facilitate loading of the memory image of
the software application through the command line Im32-elf-gdb or
through the C/C++ SPE Debugger.

LatticeMico32 Processor Reference Manual 18



Programmer’s Model Memory Architecture

While it is possible to create a LatticeMico32 platform that contains inline
memories as the sole memory components, inline memories can co-exist in a
platform with other Wishbone-based memory components. Inline memories
act as types of main memories, but with the difference that the contents of
these memories are not cached.

Performance Advantage Over Wishbone-based Memory
without Caches

The direct connection between CPU and EBR-based inline memory has the
advantage of providing a single-cycle read/write access to the CPU. Figure 15
shows cycle-level analysis of potential performance benefits of inline memory
when compared to on-chip memory (EBR) that is connected to the CPU
through the Wishbone interface.

Figure 15: Cycle-level Analysis

memary read inifiated
v LM32 CPL

dlata availahie dare avrilelile
Trom Fidine Memory Srom On—Clhip EBR
CLK AL 4] [ N Al
_expected behavior of |

line memory

nline_ADDRESS — —— | i
Inline_REAL _j—\ \

LM32_DATA T & A

helavior af an—chip memory through wishbone inferfac

WEM_DATA_IN

wisfthone signels

_ {frour EMIZ I

LWEM_DATA_ACK

LM32_DATA : h )

This diagram compares the number of cycles it takes to service read access
from the LatticeMico32 CPU by the inline memory versus the Wishbone-
based on-chip EBR. The read access initiated to inline memory will be
completed in the next cycle, whereas a read access initiated to EBR will take
four cycles. A similar behavior can be seen for writes initiated by the

LatticeMico32 Processor Reference Manual 19



Programmer’s Model

Exceptions

LatticeMico32 CPU. This shows that deploying program code or data to inline
memory can provide at least a 3x speedup over Wishbone-based memories.

Performance Advantage Over Wishbone-based Memory
with Caches

It is common to configure the LatticeMico32 CPU with Instruction and Data
caches to reduce the performance impact of accessing Wishbone-based
memories, since they theoretically provide a single-cycle access. In practice,
however, you will encounter situations in which a single-cycle cache access is
not possible. In these situations, inline memory affords a performance
advantage. Such situations include the following scenarios:

& Any cache access (read or write) that results in a miss will initiate an
access to memory components on the Wishbone Interface. As a result,
the cache access will not take multiple cycles to complete.

¢ The data cache in LatticeMico32 is write-through, meaning that any write
to the data cache from LatticeMico32 will immediately result in access to
memory components on the Wishbone interface. This means that all data
cache writes are multicycle accesses.

Exceptions

Exceptions are events either inside or outside of the processor that cause a
change in the normal flow of program execution. The LatticeMico32 processor
can raise eight types of exceptions, as shown in Table 11. The exceptions are
listed in a decreasing order of priority, so if multiple exceptions occur
simultaneously, the exception with the highest priority is raised.

Table 11: Exceptions

Exception ID Condition
Reset 0 Raised when the processor’s reset pin is asserted.
Breakpoint 1 Raised when either a break instruction is executed or when

a hardware breakpoint is triggered.

InstructionBusError 2 Raised when an instruction fetch fails, typically due to the
requested address being invalid.

Watchpoint 3 Raised when a hardware watchpoint is triggered.

DataBusError 4 Raised when a data access fails, typically because either
the requested address is invalid or the type of access is not
allowed.

DivideByZero 5 Raised when an attempt is made to divide by zero.

Interrupt 6 Raised when one of the processor’s interrupt pins is

asserted, providing that the corresponding field in the
interrupt mask (IM) CSR is set and the global interrupt
enable flag, IE.IE, is set.

SystemCall 7 Raised when an scall instruction is executed.

LatticeMico32 Processor Reference Manual 20



Programmer’s Model

Exceptions

Exception Processing

Exceptions occur in the execute pipeline stage. It is possible to have two
exceptions occur simultaneously. In this situation the exception with the
highest priority is handled. The sequence of operations performed by the
processor after an exception depends on the type of the highest priority
exception that has occured. Before the exception is handled, all instructions in
the Memory and Writeback pipeline stages are allowed to complete. Also, all
instructions in the Execute, Address, Fetch, and Decode pipeline stages are
squashed to ensure that they do not modify the processor state.

Exceptions are categorized in to two broad categories:
¢ Non-Debug Exceptions

¢ Debug Exceptions.

Non-Debug Exceptions

The Reset, Instruction Bus Error, Data Bus Error, Divide-By-Zero, Interrupt
and System Call exceptions are classified as non-debug exceptions. The
following sequence of events occur in one atomic operation:

ea = PC

IE.EIE = IE.IE

IE.IE = 0

PC = (DC.RE ? DEBA : EBA) + (ID * 32)

Debug Exceptions

The Breakpoint and Watchpoint exceptions are classified as debug
exceptions. The following sequence of events occur in one atomic operation:

ba = PC

IE.BIE = IE.IE

IE.IE = 0

PC = DEBA + (ID * 32)

Exception Handler Code

As seen above, the processor branches to an address that is an offset from
either the EBA CSR or the DEBA CSR in order to handle the exception. The
offset is calculated by multiplying the exception ID by 32. Exception IDs are
shown in Table 11 on page 20. Since all LatticeMico32 instructions are four
bytes long, this means each exception handler can be eight instructions long.
If further instructions are required, the handler can call a subroutine.

Whether the EBA or DEBA is used as the base address depends upon the
type of the exception that occurred, whether DC.RE is set, and whether
dynamic mapping of EBA to DEBA is enabled via the 'at_debug' input pin to
the processor. Having two different base addresses for the exception table
allows a debug monitor to exist in a different memory from the main program
code. For example, the debug monitor may exist in an on-chip ROM, whereas
the main program code may be in a DDR or SRAM. The DC.RE flag and
at_debug pin allow either interrupts to run at full speed when debugging or for

LatticeMico32 Processor Reference Manual 21



Programmer’s Model

Exceptions

the debugger to take complete control and handle all exceptions. When an
exception occurs, the only state that is automatically saved by the CPU is the
PC, which is saved in either ea or ba, and the interrupt enable flag, IE.IE,
which is saved in either IE.EIE or IE.BIE. It is the responsibility of the
exception handler to save and restore any other registers that it uses, if it
returns to the previously executing code.

The piece of code in Figure 16 shows how the exception handlers can be
implemented. The nops are required to ensure that the next exception handler
is aligned at the correct address. To ensure that this code is at the correct
address, it is common practice to place it in its own section. Place the
following assembler directive at the start of the code:

.section .boot, "ax", @progbits

Figure 16: Exception Handler Example

/* Exception handlers */

_reset_handler:

XOr r0, r0, r0
bi _crto

nop

nop

nop

nop

nop

nop

_breakpoint_handler:

sw (sp+0), ra

calli save all

mvi rl, SIGTRAP

calli raise

bi restore_all and bret
nop

nop

nop

_instruction bus_error handler:

sw (sp+0), ra

calli save all

mvi rl, SIGSEGV

calli raise

bi restore_all and eret
nop

nop

nop

_watchpoint handler:

sw (sp+0), ra

calli save all

mvi rl, SIGTRAP

calli raise

bi restore_all_and bret
nop

nop

nop

LatticeMico32 Processor Reference Manual 22



Programmer’s Model

Exceptions

Figure 16: Exception Handler Example (Continued)

_data_bus_error handler:

sw
calli
mvi
calli
bi
nop
nop
nop

(sp+0), ra

save_all

rl, SIGSEGV

raise
restore_all_and eret

_divide by zero handler:

sw
calli
mvi
calli
bi
nop
nop
nop

(sp+0), ra

save_all

rl, SIGFPE

raise
restore_all_and eret

_interrupt handler:

sw
calli
mvi
calli
bi
nop
nop
nop

(sp+0), ra

save_all

rl, SIGINT

raise
restore_all and eret

_system call handler:

sw
calli
mv
calli
bi
nop
nop
nop

(sp+0), ra

save_all

rl, sp

handle scall
restore_all and eret

LatticeMico32 Processor Reference Manual

23



Programmer’s Model Exceptions

Figure 16: Exception Handler Example (Continued)

_save_all:
addi sp, sp, -56
/* Save all caller save registers onto the stack */
sSwW (sp+4), rl
sw (sp+8), r2
sw (sp+12), r3
sw (sp+16), r4
sw (sp+20), r5
sw (sp+24), r6
sSw (sp+28), r7
sSw (sp+32), r8
sSw (sp+36), r9
sw (sp+40), rlo
sw (sp+48), ea
sw (sp+52), ba
/* ra needs to be moved from initial stack location */
1w rl, (sp+56)
sSw (sp+44), rl
ret

/* Restore all registers and return from exception */
_restore_all_and_eret:

1w rl, (sp+4)
1w r2, (sp+8)
1w r3, (sp+12)
1w r4, (sp+16)
1w r5, (sp+20)
1w r6, (sp+24)
1w r7, (sp+28)
1w r8, (sp+32)
1w r9, (sp+36)
1w rl0, (sp+40)
1w ra, (sp+44)
1w ea, (sp+48)
1w ba, (sp+52)
addi sp, sp, 56
eret

/* Restore all registers and return from breakpoint */
_restore_all and bret:

1w rl, (sp+4)
1w r2, (sp+8)
1w r3, (sp+l2)
1w r4, (sp+16)
1w r5, (sp+20)
1w r6, (sp+24)
1w r7, (sp+28)
1w r8, (sp+32)
1w r9, (sp+36)
1w rl0, (sp+40)
1w ra, (sp+44)
1w ea, (sp+48)
1w ba, (sp+52)
addi sp, sp, 56
bret

LatticeMico32 Processor Reference Manual 24



Programmer’s Model Exceptions

Then in the linker script, place the code at the reset value of EBA or DEBA, as
shown in Figure 17.

Figure 17: Placing Exception Handler in Memory

MEMORY

{

ram : ORIGIN = 0x00000000, LENGTH = 0x00100000

}

SECTIONS

{

.boot : { *(.boot) } > ram

}

Nested Exceptions

Because different registers are used to save a state when a debug-related
exception occurs (ba and IE.BIE instead of ea and IE.EIE), limited nesting of
exceptions is possible, allowing the interrupt handler code to be debugged.
Any further nesting of exceptions requires software support.

To enable nested exceptions, an exception handler must save all the state
that is modified when an exception occurs, including the ea and ba registers,
as well as the IE CSR. These registers can simply be saved on the stack.
When returning from the exception handler, these registers must, obviously,
be restored from the values saved on the stack.

Nested Prioritized Interrupts

The LatticeMico32 microprocessor supports up to 32 maskable, active-low,
level-sensitive interrupts. Each interrupt line has a corresponding mask bit in
the IM CSR. The mask enable is active high. A global interrupt enable flag is
implemented in the IE CSR. Software can query the status of the interrupts
and acknowledge them through the IP CSR.

To support nested prioritized interrupts, an exception handler should save the
registers just outlined, then save the IM CSR, and then mask all lower-priority
interrupts. IE.IE can then be set to re-enable interrupts. When the interrupt
handler has finished, IE.IE should be cleared before all the saved registers,
including IM, are restored.

Remapping the Exception Table

In order to increase performance, the exception table can be remapped at run
time by writing a new value to EBA. It would be used in a system in which the
power-up value of EBA points to a slow, non-volatile memory, such as a
FLASH memory, but the code is executed from a faster, non-volatile RAM,
such as DDR or SRAM.

LatticeMico32 Processor Reference Manual 25



Programmer’s Model

Exceptions

Reset Summary
During reset, the following occurs:

¢ All CSRs are set to their reset values as listed in “Control and Status
Registers” on page 9.

Interrupts are disabled.
All hardware breakpoints and watchpoints are disabled.

If implemented, the contents of the caches are invalidated.

* & o o

A reset exception is raised, which causes the PC to be set to the value in
the EBA CSR, where program execution starts. The PC can be optionally
set to the value in the DEBA CSR by enabling dynamic mapping of
exception handlers to Debugger (i.e., mapping EBA to DEBA) and
asserting the at_debug pin.

The register file is not reset, so it is the responsibility of the reset exception
handler to set register 0 to 0. This should be achieved by executing the
following sequence: xor r0, r0, rO.

Using Breakpoints

The LatticeMico32 architecture supports both software and hardware
breakpoints. Software breakpoints should be used for setting breakpoints in
code that resides in volatile memory, such as DDR or SRAM, while hardware
breakpoints should be used for setting breakpoints in code that resides in
non-volatile memory, such as FLASH or ROM.

A software breakpoint is simply a break instruction. In order to set a
breakpoint, it is simply a case of replacing the instruction at the desired
address with the break instruction. When the break instruction is executed, a
breakpoint exception is raised, and the ba register contains the address of the
break instruction that was executed. It is then up to the exception handler to
either restore the instruction that was overwritten and continue execution, or
to take some other action, depending upon why the breakpoint was set.

It is typically either not possible or very slow to write a break instruction to
non-volatile RAM. For processors with breakpoints greater than 0O, it is
possible to set a hardware breakpoint by writing the address of the instruction
on which the breakpoint should be set to one of the BPn CSRs. The
processor then constantly compares the values in these BPn CSRs with the
address of the instruction being executed. If a match occurs, and the
breakpoint is enabled (by the LSB being set to 1), a breakpoint exception will
be raised. As with software breakpoints, the address of the instruction that
caused the breakpoint is saved in the ba register. If the breakpoint exception
handler wishes to resume program execution, it must clear the enable bit in
the relevant BP CSR; otherwise, the breakpoint exception is raised as soon
as execution resumes.

LatticeMico32 Processor Reference Manual 26



Programmer’s Model Debug Architecture

Using Watchpoints

The LatticeMico32 architecture supports hardware watchpoints. Watchpoints
are a mechanism by which a program can watch out for specific memory
accesses. For example, a program can set up a watchpoint that will cause a
watchpoint exception to be raised every time the address 0 is accessed
(something that is useful for tracking down null pointer errors in C programs).

To set up a watchpoint, the memory address that is being watched must be
written to one of the WPn CSRs. The watchpoint then needs to be enabled by
writing the corresponding C field in the DC CSR. This field takes one of the
four values that indicate the following:

¢ The watchpoint is disabled.

¢ The watchpoint exception is only raised on read accesses.
¢ The watchpoint exception is only raised on write accesses.
.

The watchpoint exception is raised on either read or write accesses.

Debug Architecture

This section describes the debug architecture of the LatticeMico32 processor.

The LatticeMico32 debug architecture provides:
Software breakpoints

Hardware breakpoints

Hardware watchpoints

Single-step capability

Ability to remap exception handlers when debugging is enabled

* & & O oo o

Hardware support for debugging interrupt handlers

Table 12 shows the debug control and status registers.

Table 12: Debug Control and Status Registers

Name Access Index Description

DC w 0x8 Debug control

DEBA R/W 0x9 Debug exception base address
JTX R/W Oxe JTAG UART transmit

JRX R/W Oxf JTAG UART receive

BPO W 0x10 Breakpoint address 0

BP1 w 0x11 Breakpoint address 1

BP2 w 0x12 Breakpoint address 2

BP3 W 0x13 Breakpoint address 3

LatticeMico32 Processor Reference Manual 27



Programmer’s Model Debug Architecture

Table 12: Debug Control and Status Registers (Continued)

Name Access Index Description

WPO w 0x18 Watchpoint address 0
WP1 w 0x19 Watchpoint address 1
WP2 w Oxla Watchpoint address 2
WP3 w 0x1b Watchpoint address 3

DC — Debug Control

The DC CSR contains flags that control debugging facilities. After reset, the
value of the DC CSR is h0O0000000. This CSR is only implemented if
DEBUG_ENABLED equals TRUE.

Figure 18: Format of the DC CSR

31 109876 543210
F C3 |IC2 |IC1 [CO RS
Els
Table 13: Fields of the DC CSR
Field Value Description
SS 0 — Single step disabled Determines whether single-stepping is
1 - Single step enabled enabled
RE 0 — Remap only debug Determines whether all exceptions are
exceptions remapped to the base address specified
1 — Remap all exceptions by DEBA or just debug exceptions
Cn b00 — Watchpoint n disabled Enable for corresponding Wpn CSR

b01 — Break on read
b10 — Break on write

b1l — Break on read or write

DEBA — Debug Exception Base Address

The DEBA CSR specifies the base address of the debug exception handlers.
After reset, the value of the DEBA CSR is set to DEBA_RESET. This CSR is
only implemented if DEBUG_ENABLED equals TRUE.

Figure 19: Format of the DEBA CSR

31 8
DEBA

=1
=182
o|th
=1k
o | o
=1L
C}A
[=1L=]

LatticeMico32 Processor Reference Manual 28



Programmer’s Model Debug Architecture

JTX —JTAG UART Transmit Register

The JTX CSR can be used for transmitting data through a JTAG interface.
This CSR is only implemented if JTAG_UART_ENABLED equals TRUE.

Figure 20: Format of the JTX CSR

31 9 8 7 0
F |TXD
Table 14: Fields of the JTX CSR
Field Values Description
TXD Transmits data
F 0 — Empty Indicates whether the transmit data

1 — Eull register is full

JRX — JTAG UART Receive Register

The JRX CSR can be used for receiving data through a JTAG interface. This
CSR is only implemented if JTAG_UART_ENABLED equals TRUE.

Figure 21: Format of the JRX CSR

31 9 8 7 0
F |[RXD
Table 15: Fields of the JTX CSR
Field Values Description
RXD Receives data.
F 0 — Empty Indicates whether the receive data

1 — Full register is full.

BPn — Breakpoint

The BPn CSRs hold an instruction breakpoint address and a control bit that
determines whether the breakpoint is enabled. Because instructions are
always word-aligned, only the 30 most significant bits of the breakpoint
address are needed. After reset, the value of the BPn CSRs is h00000000.

These CSRs are only implemented if DEBUG_ENABLED equals TRUE.

Figure 22: Format of the BPn CSRs

m|e

LatticeMico32 Processor Reference Manual 29



Programmer’s Model Instruction Set Categories

Table 16: BPn CSR Fields

Field Value Description

E b0 — Breakpoint is disabled Breakpoint enable
bl — Breakpoint is enabled

A Breakpoint address (Bits 31:2)

WPn — Watchpoint

The WPn CSRs hold data watchpoint addresses. After reset, the value of the
WPn CSRs is h00000000. These CSRs are only implemented if
DEBUG_ENABLED equals TRUE.

Instruction Set Categories

LatticeMico32 supports a variety of instructions for arithmetic, logic, data
comparison, data movement, and program control. Not all instructions are
available in all configurations of the processor. Support for some types of
instructions can be eliminated to reduce the amount of FPGA resources used.
See “Configuring the LatticeMico32 Processor” on page 33.

Instructions ending with the letter “i” use an immediate value instead of a
register. Instructions ending with “hi” use a 16-bit immediate and the high 16
bits from a register. Instructions ending with the letter “u” treat the data as
unsigned integers.

For descriptions of individual instructions, see “Instruction Set” on page 47.

Arithmetic

The instruction set includes the standard 32-bit integer arithmetic operations.
Support for the multiply and divide instructions is optional.

¢ Add: add, addi

& Subtract: sub

¢ Multiply: mul, muli

¢ Divide and modulus: divu, modu

There are also instructions to sign-extend byte and half-word data to word
size. Support for these instructions is optional.

¢ Sign-extend: sextb, sexth

Logic
The instruction set includes the standard 32-bit bitwise logic operations. Most
of the logic instructions also have 16-bit immediate or high 16-bit versions.

¢ AND: and, andi, andhi

¢ OR:or, ori, orhi

LatticeMico32 Processor Reference Manual 30



Programmer’s Model

Instruction Set Categories

Exclusive-OR: xor, xori
Complement: not

NOR: nor, nori

* & o o

Exclusive-NOR: xnor, xnori

Comparison

The instruction set has basic comparison instructions with versions for
register-to-register and register-to-16-bit-immediate and signed and unsigned
comparisons. The instructions return 1 if true and O if false.

¢ Equal: cmpe, cmpei

¢ Not equal: cmpne, cmpnei

¢ Greater: cmpg, cmpgi, cmpgu, cmpgui
.

Greater or equal: cmpge, cmpgei, cmpgeu, cmpgeui

Shift

The instruction set supports left and right shifting of data in general-purpose
registers. The number of bits to shift can be given through a register or a 5-bit
immediate. The right shift instruction has signed and unsigned versions (also
known as arithmetic and logical shifting). Support for shift instructions is
optional.

¢ Left shift: sl, sli

¢ Right shift: sr, sri, sru, srui

Data Transfer

Data transfer includes instructions that move data of byte, half-word, and
word sizes between memory and registers. Memory addresses are relative
and given as the sum of a general-purpose register and a signed 16-bit
immediate, for example, (r2+32).

¢ Load register from memory: Ib, Ibu, Ih, lhu, Iw

Byte and half-word values are either sign-extended or zero-extended to fill
the register.

¢ Store register to memory: sb, sh, sw
Byte and half-word values are taken from the lowest order part of the
register.
There are also instructions for moving data from one register to another,
including general-purpose and control and status registers.
¢ Move between general-purpose registers: mv
¢ Move immediate to high 16 bits of register: mvhi

¢ Read and write control and status register: rcsr, wcsr

LatticeMico32 Processor Reference Manual 31



Programmer’s Model Instruction Set Categories

Program Flow Control

Program flow control instructions include branches, function and exception
calls, and returns. The conditional branches and the immediate versions of
the unconditional branch and call instructions establish the next instruction’s
address by adding a signed immediate to the PC register. Since the
immediate is signed, the jump can be to a lower or higher address.

¢ Unconditional branch: b, bi

Branch if equal: be

Branch if not equal: bne

Branch if greater: bg, bgu

Branch if greater or equal: bge, bgeu
Function call and return: call, calli, ret
System call: scall

Return from exception: eret

® & & 6 O o 0o o

Software breakpoint and return: break, bret

LatticeMico32 Processor Reference Manual 32



Lattice

Semiconductor
Corporation

Configuring the
LatticeMico32 Processor

This chapter describes possible configuration options that you can use for the
LatticeMico32 processor. You are expected to use the Lattice Mico System
Builder (MSB) tool to configure the LatticeMico32 processor. Use the
processor's configuration GUI, located in the MSB, to specify the Verilog
parameters of the processor's RTL. For more information on the processor's
configuration GUI, refer to LatticeMico32 online Help.

Configuration Options

Table 17 describes the Verilog parameters for the LatticeMico32 processor.

Table 17: Verilog Configuration Options

Parameter Name Values Default

Description

MC_MULTIPLY_ENABLED TRUE, FALSE FALSE

Enables LUT-based multicycle multiplier. mul,
muli instructions are implemented. Multiply
instructions take 32 cycles to complete.

PL_MULTIPLY_ENABLED TRUE, FALSE TRUE

Enables pipelined multiplier (uses DSP blocks
if available). mul, muli instructions are
implemented. Multiply instructions take 3
cycles to complete.

DIVIDE_ENABLED TRUE, FALSE FALSE

Determines whether the divide and modulus
instructions (divu, modu) are implemented.

LatticeMico32 Processor Reference Manual

33



Configuring the LatticeMico32 Processor

Configuration Options

Table 17: Verilog Configuration Options (Continued)

Parameter Name

Values

Default

Description

MC_BARREL_SHIFT_ENABLED

TRUE, FALSE

FALSE

Enables LUT-based multicycle barrel
shifter. Enables shift instructions (sr, sri, sru,
srui, sl, sli). Each shift instruction can take
up to 32 cycles. If both
SIGN_EXTEND_ENABLED and
PL_BARREL_SHIFT_ENABLED are FALSE,
this option must be set to TRUE.

PL_BARREL_SHIFT_ENABLED

TRUE, FALSE

TRUE

Enables pipelined barrel shifter. Enables shift
instructions (sr, sri, sru, srui, sl, sli). Shift
instructions take 3 cycles to complete. If both
MC_BARREL_SHIFT_ENABLED and
SIGN_EXTEND_ENABLED are FALSE, this
option must be set to TRUE.

SIGN_EXTEND_ENABLED

TRUE, FALSE

FALSE

Determines whether the sign-extension
instructions (sextb, sexth) are implemented. If
both MC_BARREL_SHIFT_ENABLED and
PL_BARREL_SHIFT_ENABLED are FALSE,
this option must be set to TRUE.

DEBUG_ENABLED

TRUE, FALSE

TRUE

Determines whether software-based
debugging support is implemented (that is, a
ROM monitor is required to debug).

HW_DEBUG_ENABLED

TRUE, FALSE

TRUE

Determines whether hardware-based
debugging support is implemented (that is, a
ROM monitor is not required to debug). If this
option is set to TRUE, DEBUG_ENABLED and
JTAG_ENABLED must also be set to TRUE.

ROM_DEBUG_ENABLED

TRUE, FALSE

FALSE

Determines whether support for debugging
ROM-based programs is implemented. If this
option is set to TRUE, DEBUG_ENABLED
must also be set to TRUE.

BREAKPOINTS

0-4

Specifies the number of breakpoint CSRs. If
this option is set to a non-zero value,
ROM_DEBUG_ENABLED must be set to
TRUE.

WATCHPOINTS

0-4

Specifies the number of watchpoint CSRs. If
this option is set to a non-zero value,
SW_DEBUG_ENABLED must be set to TRUE.

JTAG_ENABLED

TRUE, FALSE

TRUE

Determines whether a JTAG interface is
implemented.

JTAG_UART_ENABLED

TRUE, FALSE

TRUE

Determines whether a JTAG UART is
implemented. If this option is set to TRUE,
JTAG_ENABLED must be set to TRUE.

CYCLE_COUNTER_ENABLED

TRUE, FALSE

FALSE

Determines whether a cycle counter is
implemented.

ICACHE_ENABLED

TRUE, FALSE

TRUE

Determines whether an instruction cache is
implemented.

LatticeMico32 Processor Reference Manual

34



Configuring the LatticeMico32 Processor Configuration Options

Table 17: Verilog Configuration Options (Continued)

Parameter Name Values Default Description

ICACHE_BASE_ADDRESS Any address 0 Specifies the base address of region
aligned to the cacheable by instruction cache.
size of the
cacheable
region.

ICACHE_LIMIT Any integer Ox7FFFFFFF Specifies the upper limit of region cacheable
multiple of the by instruction cache.

capacity of the
cache added

to the base
address of the
cacheable
region
ICACHE_SETS 128, 256, 512, 512 Specifies the number of sets in the instruction
1024 cache.
ICACHE_ASSOCIATIVITY 1,2 1 Specifies the associativity of instruction cache.
ICACHE_BYTES_PER_LINE 4,8,16 4 Specifies the number of bytes per instruction
cache line.
DCACHE_ENABLED TRUE, FALSE TRUE Determines whether a data cache is
implemented.
DCACHE_BASE_ADDRESS Any address 0 Specifies the base address of region
aligned to the cacheable by data cache.
size of the
cacheable
region
DCACHE_LIMIT Any integer OXOFFFFFFF  Specifies the upper limit of region cacheable
multiple of the by data cache.
capacity of the
cache added
to the base
address of the
cacheable
region
DCACHE_SETS 128, 256, 512, 512 Specifies the number of sets in the data cache.
1024
DCACHE_ASSOCIATIVITY 1,2 1 Specifies the associativity of the data cache.
DCACHE_BYTES_PER_LINE 4,8,16 4 Specifies the number of bytes per data cache
line.
INTERRUPTS 0-32 32 Specifies the number of external interrupts.
EBA_RESET Any 256-byte 0 Specifies the reset value of the EBA CSR.
aligned
address
DEBA_RESET Any 256-byte 0 Specifies the reset value of the DEB_CSR.
aligned
address

LatticeMico32 Processor Reference Manual 35



Configuring the LatticeMico32 Processor EBR Use

Table 17: Verilog Configuration Options (Continued)

Parameter Name Values Default Description

EBR_POSEDGE_REGISTER_FILE TRUE, FALSE FALSE Use EBR to implement register file instead of
distributed RAM (LUTS).

CFG_ALTERNATE_EBA TRUE, FALSE FALSE Enable dynamic switching of EBA to DEBA via
"at_debug" input pin. When the "at_debug" pin
is asserted (logic 1), DEBA is used. When the
"at_debug" pin is deasserted (logic 0), EBA is
used.

EBR Use

The following details of embedded block RAM (EBR) use with different
configurations are based on the LatticeECP family of FPGAs.

¢ Software-based debugging (DEBUG_ENABLED) requires two EBRs.

¢ The instruction and data caches (ICACHE_ENABLED and
DCACHE_ENABLED, respectively) require EBR based on the size of the
cache:

cache size = sets x bytes per cache line x associativity
number of EBR = cache size/EBR_Size
For example, the default LatticeMico32 processor in the MSB has software-

based debugging, an instruction cache, and a data cache. Both caches have
512 sets, 16 bytes per cache line, and an associativity of 1.

For each cache:
cache size =512 x 16 x 1 = 8192

EBR_size = memory size when configured as a 9-bit memory.
¢ LatticeECP/XP = 1204x9
¢ LatticeECP2/XP2/ECP3 = 2048x9

number of EBR (LatticeECP/XP) = 8192/1024 + 1 =9

Total number of EBRSs required:

Software-based debugging
Instruction cache
Data cache

3
Qlo ©N

LatticeMico32 Processor Reference Manual 36



Lattice

Semiconductor
Corporation

WISHBONE Interconnect
Architecture

This chapter describes the standard WISHBONE interconnect architecture
that is employed by LatticeMico32 System. It focuses on the items that you
must be aware of to begin designing and programming the functions of your
system interconnects.

Introduction to WISHBONE Interconnect

LatticeMico32 System uses a standard WISHBONE interconnect architecture
to connect the processor to its on-chip component resources, such as the
LatticeMico32 UART and the LatticeMico32 SPI.

The WISHBONE interconnect works as a general-purpose interface, defining
the standard data exchanges between the processor module and its
components. The interconnect does not interfere with the regulation of the
processor or component application-specific functions. Like microcomputer
buses, the WISHBONE bus is flexible enough to be tailored to a specific
application, robust enough to provide a number of bus cycles and data path
widths to solve various system issues, and universal enough to allow a
number of suppliers to create design products for it, making it more cost-
effective.

For more information on the WISHBONE System-on-Chip (SoC)
Interconnection Architecture for Portable IP Cores, as it is formally known,
refer to the OPENCORES.ORG Web site at www.opencores.org/projects.cgi/
web/wishbone. The subject matter is very detailed and goes beyond the
scope of this manual.

LatticeMico32 Processor Reference Manual 37


http://www.opencores.org/projects.cgi/web/wishbone
http://www.opencores.org/projects.cgi/web/wishbone

WISHBONE Interconnect Architecture WISHBONE Registered Feedback Mode

WISHBONE Registered Feedback Mode

This section describes the WISHBONE Registered Feedback mode. To
implement an advanced synchronous cycle termination scheme, Registered
Feedback mode bus cycles use the Cycle Type Identifier, CTI_O() and
CTL_I(), address tags. Both master and slave interfaces support CTI_O() and
CTL_I() for improved bandwidth. The type of burst information is provided by
the Burst Type Extension, BTE_O( ) and BTE_I() address tags.

All WISHBONE Registered Feedback-compatible cores must support
WISHBONE Classic bus cycles.

Design new IP cores to support WISHBONE Registered Feedback bus cycles
to ensure maximum throughput in all systems.

CTI_I10()

The cycle-type identifier CTI_IO() address tag provides additional information
about the current cycle. The master sends this information to the slave. The
slave can use this information to prepare the response for the next cycle.

Table 18: Cycle Type Identifiers

CTl_0O(2:0) Description

000 Classic cycle

001 Constant address burst cycle
010 Incrementing burst cycle

011 Reserved

100 Reserved

101 Reserved

110 Reserved

111 End of burst

Observe the following allowances and rules:

¢ Master and slave interfaces may be designed to support the CTI_I() and
CTI_O() signals. Also, master and slave interfaces may be designed to
support a limited number of burst types.

¢ Master and slave interfaces that do support the CTI_I() and CTI_O()
signals must at least support the Classic cycle CTIl_IO( )=000 and the
End-of-Cycle CTI_IO( )=111.

¢ Master and slave interfaces that are designed to support a limited number
of burst types must complete the unsupported cycles as though they were
WISHBONE Classic cycle, that is, CTI_IO( )=000.

¢ For description languages that allow default values for input ports (like
VHDL), CTI_I() may be assigned a default value of 000.

LatticeMico32 Processor Reference Manual 38



WISHBONE Interconnect Architecture WISHBONE Registered Feedback Mode

¢ In addition to the WISHBONE Classic rules for generating cycle
termination signals ACK_O, RTY_O, and ERR_O, a SLAVE may assert a
termination cycle without checking the STB_|I signal.

¢ ACK_O, RTY_O, and ERR_O may be asserted while STB_O is negated.

¢ A cycle terminates when the cycle termination signal, STB_I and STB_O
are asserted. Even if ACK_O/ACK I is asserted, the other signals are only
valid when STB_O/STB_| is also asserted.

To avoid the inherent wait state in synchronous termination schemes, the
slave must generate the response as soon as possible, that is, the next cycle.
It can use the CTI_I() signals to determine the response for the next cycle,
but if it cannot determine the state of STB_| for the next cycle, it must
generate the response independent of STB_1I.

BTE_IO()

The burst-type extension BTE_IO( ) address tag provides additional
information about the current burst. The master sends this information to the
slave. This information is only relevant for incrementing bursts. In the future,
other burst types may use these signals. See Table 19 for BTE_IO(1:0) signal
incrementing and decrementing bursts.

Table 19: Burst Type Extension Signal Bursts

BTE_IO(1:0) Description

00 Linear burst

01 4-beat wrap burst
10 8-beat wrap burst
11 16-beat wrap burst

Observe the following allowances and rules:

¢ Master and slave interfaces that support incrementing burst cycles must
support the BTE_O( ) and BTE_I() signals.

¢ Master and slave interfaces may be designed to support a limited number
of burst extensions.

¢ Master and slave interfaces that are designed to support a limited number
of burst extensions must complete the unsupported cycles as though they
were WISHBONE Classic cycle, that is, CTIl_IO( )= 000.

LatticeMico32 Processor Reference Manual 39



WISHBONE Interconnect Architecture Component Signals

Component Signals

In Mico System Builder (MSB), you define which components are in the
platform and what needs to communicate with what. When the platform
generator is run in MSB, it uses this information to build the WISHBONE-
based interconnect of the platform. This generated interconnect is a set of
Verilog wires connecting the various processor and component ports. To do
this, the components must implement certain ports and follow a specific port-
naming convention.

Table 20 defines the suffixes that must be used on the names of a
component's ports. The suffixes of the ports of a master port are different than
those of a slave port. The generated interconnect creates signals with names
that end with the same suffix as the component port to which the signal is
attached. Table 20 also notes which signals are mandatory and which are
optional to support the basic WISHBONE bus cycle.

The prefixes used in the port and signal naming are not described in this
section.

The port and signal descriptions that follow refer to the port or signal that ends
with the string in the title.

Table 20: List of Component Port and Signal Name Suffixes

Master Ports Slave Ports
Name Width Optional (O)/ Name Width Optional (O)/
Mandatory (M) Mandatory (M)

_ADR_O 32 bits M _ADR_I 32 bits M

_DAT_O 32 bits M _DAT_I 32 bits M

_DAT | 32 bits M _DAT_ O 32 bits M

_SEL O 4 bits M _SEL_| 4 bits M

_WE_O 1 bit M _WE_I 1 bit M

_ACK_| 1 bit M _ACK_O 1 bit M

_ERR_| 1 bit o} _ERR_O 1 bit o}

_RTY_| 1 bit o} _RTY_O 1 bit o}

_CTLO 3 bits o) _CTLI 3 bits o}

_BTE_O 2 bits o} _BTE_ 2 bits o}

_LOCK_O 1 bit o} _LOCK_| 1 bit o}

_CyC_O 1 bit M _Cvyc_l 1 bit M

_STB_O 1 bit M _STB_ 1 bit M

LatticeMico32 Processor Reference Manual 40



WISHBONE Interconnect Architecture Component Signals

Master Port and Signal Descriptions
This section describes the master ports and signals listed in Table 20.

ADR_O [31:2]
The address output array ADR_O() is used to pass a binary address.

ADR_O() actually has a full 32 bits. But, because all addressing is on
DWORD (4-byte) boundaries, the lowest two bits are always zero.

DAT_O [31:0]
The data output array DAT_O( ) is used to store a binary value for output.

DAT | [31:0]
The data input array DAT _I( ) is used to store a binary value for input.

SEL_O [3:0]

The Select Output array SEL_O() indicates where valid data is expected on
the DAT _I() signal array during READ cycles and where it is placed on the
DAT_O() signal array during WRITE cycles. The array boundaries are
determined by the granularity of a port.

WE_O
The write enable output WE_O indicates whether the current local bus cycle

is a READ or WRITE cycle. The signal is negated during READ cycles and is
asserted during WRITE cycles.

ACK_|

This signal is called the acknowledge input ACK_I. When asserted, the signal
indicates the normal termination of a bus cycle by the slave. Also see the
ERR_I and RTY_I signal descriptions.

ERR_|

The Error Input ERR_I indicates an abnormal cycle termination by the slave.
The source of the error and the response generated by the master depends
on the master functionality. Also see the ACK_| and RTY_I signal
descriptions.

RTY |

The Retry Input RTY_I indicates that the interface is not ready to accept or
send data, so the cycle should be retried. The core functionality defines when
and how the cycle is retried. Also see the ERR_I and RTY_ signal
descriptions.

LatticeMico32 Processor Reference Manual 41



WISHBONE Interconnect Architecture Component Signals

CTI_O [2:0]
For descriptions of the cycle-type identifier CTI_O( ), see “CTI_IO()” on
page 38.

BTE_O [1:0]
For descriptions of the burst-type extension BTE_O( ), see “BTE_IO()” on
page 39.

LOCK_O

The lock output LOCK_O, when asserted, indicates that the current bus cycle
cannot be interrupted. Lock is asserted to request complete ownership of the
bus. After the transfer starts, the INTERCON does not grant the bus to any
other master until the current master negates LOCK_O or CYC_O.

CYC_ O

The cycle output CYC_O, when asserted, indicates that a valid bus cycle is in
progress. The signal is asserted for the duration of all bus cycles. For
example, during a BLOCK transfer cycle there can be multiple data transfers.
The CYC_O signal is asserted during the first data transfer and remains
asserted until the last data transfer. The CYC_O signal is useful for interfaces
with multi-port interfaces, such as dual-port memories. In these cases, the
CYC_O signal requests the use of a common bus from an arbiter.

STB_ O

The strobe output STB_O indicates a valid data transfer cycle. It is used to
qualify various other signals on the interface, such as SEL_O( ). The slave
asserts either the ACK_I, ERR_I, or RTY_I signals in response to every
assertion of the STB_O signal.

Slave Port and Signal Descriptions
This section describes the slave ports and signals listed in the Table 20.

ADR_1[31:2]

The address input array ADR_I() is used to pass a binary address. ADR_I()
actually has a full 32 bits. But, because all addressing is on DWORD (4-byte)
boundaries, the lowest two bits are always zero.

DAT _1[31:0]
The data input array DAT _I() is used to store a binary value for input.

DAT_O [31:0]
The data output array DAT_O() is used to store a binary value for output.

SEL_1[3:0]

The select input array SEL_I( ) indicates where valid data is placed on the
DAT_I() signal array during WRITE cycles and where it should be present on
the DAT_O() signal array during READ cycles. The array boundaries are
determined by the granularity of a port.

LatticeMico32 Processor Reference Manual 42



WISHBONE Interconnect Architecture Component Signals

WE_I

The write enable Input WE_| indicates whether the current local bus cycle is a
READ or WRITE cycle. The signal is negated during READ cycles and is
asserted during WRITE cycles.

ACK_O

The acknowledge output ACK_O, when asserted, indicates the termination of
a normal bus cycle by the slave. Also see the ERR_O and RTY_O signal
descriptions.

ERR_O

The error output ERR_O indicates an abnormal cycle termination by the
slave. The source of the error and the response generated by the master
depends on the master functionality. Also see the ACK_O and RTY_O signal
descriptions.

RTY O

The retry output RTY_O indicates that the slave interface is not ready to
accept or send data, so the cycle should be retried. The core functionality
defines when and how the cycle is retried. Also see the ERR_O and RTY_O
signal descriptions.

CTI_I

For descriptions of the cycle-type identifier CTI_I(), see “CTI_IO()” on
page 38.

BTE I[1:0]
For descriptions of the burst-type extension BTE_i( ), see “BTE_IO()” on
page 39.

LOCK_|

The lock input LOCK_I, when asserted, indicates that the current bus cycle is
uninterruptible. A slave that receives the LOCK LOCK | signal is accessed by
a single master only until either LOCK_I or CYC_| is negated.

CYC_I[2:0]

The Cycle Input CYC_I, when asserted, indicates that a valid bus cycle is in
progress. The signal is asserted for the duration of all bus cycles. For
example, during a BLOCK transfer cycle there can be multiple data transfers.
The CYC_I signal is asserted during the first data transfer and remains
asserted until the last data transfer.

STB_|

The strobe input STB_I, when asserted, indicates a valid data transfer cycle.
A slave responds to other WISHBONE signals only when this STB_| is
asserted, except for the RST_|I signal, to which it should always respond. The
slave asserts either the ACK_O, ERR_O, or RTY_O signals in response to
every assertion of the STB_| signal.

LatticeMico32 Processor Reference Manual 43



WISHBONE Interconnect Architecture Arbitration Schemes

Arbitration Schemes

MSB supports the following arbitration schemes for platform generation:

¢ Shared-bus arbitration schemes
¢ Slave-side fixed arbitration schemes

¢ Slave-side round-robin arbitration schemes

Shared-Bus Arbitration

The shared-bus arbitration scheme is shown in Figure 23.

Figure 23: Bus Architecture with Shared-Bus Arbitration

Masters Master 1 Master 2
CPU DMA
y A
Shared-bus arbiter
v
WISHBONE bus
A A Y}
A 4 y A
Slaves UART GPIO Memory

In the shared-bus arbitration scheme, one or more bus masters and bus
slaves connect to a shared bus. A single arbiter controls the bus, that is, the
path between masters and slaves. Each bus master requests control of the
bus from the arbiter, and the arbiter grants access to a single master at a time.
Once a master has control of the bus, it performs transfers with a bus slave. If
multiple masters attempt to access the bus at the same time, the arbiter
allocates the bus resources to a single master according to fixed arbitration
rules, forcing all other masters to wait.

Slave-Side Arbitration

Slave-side arbitration is shown in Figure 24.

LatticeMico32 Processor Reference Manual 44



WISHBONE Interconnect Architecture Arbitration Schemes

Figure 24: Bus Architecture with Slave-Side Arbitration

Master 1 Master 2

y v
Arbiter
A

UART Memory GPIO

In slave-side arbitration, each multi-master slave has its own arbiter. A master
port never waits to access a slave port, unless a different master port attempts
to access the same slave port at the same time. As a result, multiple master
ports active at the same time simultaneously transfer data with independent
slave ports.

In the slave-side arbitration scheme, arbitation is only required when two or
more masters contend for the same slave port. This scheme is called slave-
side arbitration because it is implemented when two or more masters connect
to a single slave.

Slave-Side Fixed Arbitration

In the slave-side fixed arbitration scheme, when two or more masters request
control of the bus for the same slave simultaneously, the master with the
highest priority gains access to the bus. At every slave transfer, only
requesting masters are included in the arbitration. The master with the highest
priority is granted access to the bus.

Slave-Side Round-Robin Arbitration

In the slave-side round-robin arbitration scheme, when multiple masters
contend for access to a slave port, the arbiter grants access to the bus in
round-robin order. At every slave transfer, only requesting masters are
included in the round-robin arbitration.

LatticeMico32 Processor Reference Manual 45



WISHBONE Interconnect Architecture Arbitration Schemes

LatticeMico32 Processor Reference Manual 46



Lattice

Semiconductor
Corporation

Instruction Set

This chapter includes descriptions of all of the instruction opcodes of the
LatticeMico32 processor.

Instruction Formats

All LatticeMico32 instructions are 32 bits wide. They are in four basic formats,
as shown in Figure 25 through Figure 28.

Figure 25: Register Immediate (RI) Format
1 30 26 25 2 20 16 15 0
0 Jop [Reg o [Feo 1 Immediate

Figure 26: Register Register (RR) Format
3130 26 25 2120 16 15 11 10 0
[ |op [Fegn [Reo 1 Reg 2 D opoppppofpllp]

Figure 27: Control Register (CR) Format
31 30 26 25 2120 16 15 0
[ Top [csR Reg N N N N O T

Figure 28: Immediate (I) Format
3 26 25 0
[ Joont o immediate

LatticeMico32 Processor Reference Manual 47



Instruction Set

Opcode Look-Up Table

Opcode Look-Up Table

Opcode Decimal Hexadecimal Mnemonic Opcode Decimal Hexadecimal Mnemonic
000000 00 00 Srui 100000 32 20 sru
000001 01 01 nori 100001 33 21 nor
000010 02 02 muli 100010 34 22 mul
000011 03 03 sh 100011 35 23 divu
000100 04 04 Ib 100100 36 24 rcsr
000101 05 05 sri 100101 37 25 sr
000110 06 06 XOri 100110 38 26 xor
000111 07 07 lh 100111 39 27 div
001000 08 08 andi 101000 40 28 and
001001 09 09 xnori 101001 41 29 xnor
001010 10 0A Iw 101010 42 2A reserved
001011 11 0B lhu 101011 43 2B raise
001100 12 ocC sb 101100 44 2C sextb
001101 13 (0]} addi 101101 45 2D add
001110 14 OE ori 101110 46 2E or
001111 15 OF sli 101111 47 2F sl
010000 16 10 Ibu 110000 48 30 b
010001 17 11 be 110001 49 31 modu
010010 18 12 bg 110010 50 32 sub
010011 19 13 bge 110011 51 33 reserved
010100 20 14 bgeu 110100 52 34 wcsr
010101 21 15 bgu 110101 53 35 mod
010110 22 16 S 110110 54 36 call
010111 23 17 bne 110111 55 37 sexth
011000 24 18 andhi 111000 56 38 bi
011001 25 19 cmpei 111001 57 39 cmpe
011010 26 1A cmpgi 111010 58 3A cmpg
011011 27 1B cmpgei 111011 59 3B cmpge
011100 28 1C cmpgeui 111100 60 3C cmpgeu
011101 29 1D cmpgui 111101 61 3D cmpgu
011110 30 1E orhi 111110 62 3E calli
011111 31 1F cmpnei 111111 63 3F cmpne

LatticeMico32 Processor Reference Manual

48



Instruction Set

Pseudo-Instructions

Pseudo-Instructions

To aid the semantics of assembler programs, the LatticeMico32 assembler
implements a variety of pseudo-instructions. Table 21 lists these instructions
and to what actual instructions they are mapped. Disassemblers show the

actual implementation.

Table 21: Pseudo-Instructions

Mnemonic Implementation  Description
ret bra Returns from function call.
mv rX, rY orrX,rY, rO Moves value in rY to rX.

mvhi rX, imm16 orhirX, rO, immm16

Moves the 16-bit, left-shifted immediate into rX.

not rX, rY xnor rX, rY, r0 Is the bitwise complement of the value in rY and
stores the result in rX.

mvi addi rd, r0, imm16 Adds 16-bit immediate to rO and stores the
result in rd.
Note: GCC compiler tool chain expects r0
contents to be zero.

nop addiro, r0, 0 Adds 0 to r0 and saves it to r0, resulting in no

operation (nop).

Instruction Descriptions

Some of the following tables include these parameters:

¢ Syntax — Describes the assembly language syntax for the instruction.

¢ Issue — The “issue” cycles mean the number of cycles that the
microprocessor takes to place this instruction in the pipeline. For example,
if the issue is 1 cycle, the next instruction will be introduced into the
pipeline the very next cycle. If the issue is 4, the next instruction will be
introduced three cycles later. The branches and calls are issue 4 cycles,
which means that the pipeline stalls for the next three cycles.

¢ Semantics — Describes how the instruction creates a result from the inputs
and where it puts the result. The Semantics feature refers to terms used in
the assembly language syntax for the instruction.

The Semantics feature also uses the following terms:

L R R R R R 4

gpr — Refers to a general-purpose register.

PC — Refers to a program counter.

csr — Refers to a control and status register.

IE.BIE — Refers to the BIE bit of the IE (interrupt enable) register.
IE.IE — Refers to the IE bit of the IE (interrupt enable) register.
IE.EIE — Refers to the EIE bit of the IE (interrupt enable) register.

LatticeMico32 Processor Reference Manual

49



Instruction Set

Instruction Descriptions

Figure 29: add Instruction

¢ EBA - See “EBA — Exception Base Address” on page 13.
¢ DEBA - See “DEBA - Debug Exception Base Address” on page 28.
¢ DC.RE - Refers to the RE bit of DC register. The DC register is an

internal microprocessor register that is statically set to 0. It cannot be

changed through the microprocessor configuration graphical user

interface or parameter settings.

¢ Result — Specifies how many clock cycles before the result of the
instruction is available. The exact result depends on the instruction. For

example, for an add instruction, the result is the value produced by adding

the two operands. For a load instruction, the result is the value loaded

from memory.

add

21

20 16 15

3 26 25
Ao oY

rz 23

1110 0
o joojofojojofojofo]

Figure 30: addi Instruction

il 26 25

Table 22: add Instruction Features

Feature Description

Operation Integer addition

Description Adds the value in rY to the value in rZ, storing the result in rX.
Syntax add rX, rY, rZ

Example add rl4, rls5, rl7

Semantics gpr[rX] = gprlrY] + gprlrz]

Result 1 cycle

Issue 1 cycle

See Also addi, addition with immediate

addi

Py

20 16 13

oo It [t Jo fr

[t lirnrl 6

Table 23: addi Instruction Features

Feature

Description

Operation

Integer addition with immediate

Description Adds the value in rY to the sign-extended immediate, storing the result

inrX.

LatticeMico32 Processor Reference Manual

50



Instruction Set

Instruction Descriptions

Figure 31: and Instruction

Table 23: addi Instruction Features

Feature Description

Syntax addi rX, rY, immlé

Example addi r4, r2, -32

Semantics gpr [rX] = gprlrY] + sign extend (immlé)
Result 1 cycle

Issue 1 cycle

See Also add, addition between registers

and

21 20 16 15

31 26 25
Ao AP po I

11 10 0
7 X PP P PopPo PP po o]

Table 24: and Instruction Features

Feature Description
Operation  Bitwise logical AND
Description Bitwise AND of the value in rY with the value in rZ, storing the result in
rx.
Syntax and rX, rY, rZ
Example and rl4, rl5, rl7
Semantics gpr [rX] = gpr[rY] & gpr[rz]
Result 1 cycle
Issue 1 cycle
See Also andi, AND with immediate; andhi, AND with high 16 bits
andhi
Figure 32: andhi Instruction
31 26 25 21 20 16 15 0
O 1 1o oy X imm1s

Table 25: andhi Instruction Features

Feature Description
Operation  Bitwise logical AND (high 16-bits)
Description Bitwise AND of the value in rY with the 16-bit, left-shifted immediate,

storing the result in rX.

LatticeMico32 Processor Reference Manual

51



Instruction Set

Instruction Descriptions

Figure 33: andi Instruction

Table 25: andhi Instruction Features

Feature Description

Syntax andhi rX, rY, immlé

Example andhi r4, r2, 0x5555

Semantics gpr(rX] = gprlrY] & (immlé << 16)

Result 1 cycle

Issue 1 cycle

See Also AND between registers; andi, AND with immediate

andi

21 20 16 15 0

3 26 25
PO PP I

X imm16

Figure 34: b Instruction

Table 26: andi Instruction Features

Feature Description

Operation  Bitwise logical AND

Description Bitwise AND of the value in rY with the zero-extended immediate,
storing the result in rX.

Syntax andi rX, rY, immlé

Example andi r4, r2, 0x5555

Semantics gpr [rX] = gprlrY] & zero_ extend (immlé)

Result 1 cycle

Issue 1 cycle

See Also and, AND between registers; andhi, AND with high 16 bits

b

<X 26 25
7 pppDb X

120 0
0o jofopjoofofofojofojojofofofojooiolo]

Table 27: b Instruction Features

Feature Description

Operation Unconditional branch

Description  Unconditional branch to address in rX. rX cannot be r30 (ea) or r31
(ba).

LatticeMico32 Processor Reference Manual 52



Instruction Set

Instruction Descriptions

Table 27: b Instruction Features

Feature Description

Syntax b rX

Example b r3

Semantics PC = gpr[rX]

Issue 4 cycles

See Also bi, branch with immediate

be

Figure 35: be Instruction
21

20 16 15 0

3 26 25
PP P [

X imm16 |

Table 28: be Instruction Features

Feature

Description

Operation

Branch if equal

Description

Compares the value in rX with the value in rY, branching to the address
given by the sum of the PC and the sign-extended immediate if the
values are equal.

Syntax

be rX, rY, immlé

Example

be r4, r2, label

Semantics

if (gprlrX] == gprlrY])
PC = PC + sign extend(immlé << 2)

Issue

1 cycle (not taken), 4 cycles (taken)

See Also

bne, branch if not equal

bg

Figure 36: bg Instruction

21 20 16 15 a

31 26 25
O 0P[R

X imm16 |

Table 29: bg Instruction Features

Feature

Description

Operation

Branch if greater

Description

Compares the value in rX with the value in rY, branching to the address
given by the sum of the PC and the sign-extended immediate if the
value in rX is greater than the value in rY. The values in rX and rY are
treated as signed integers.

LatticeMico32 Processor Reference Manual

53



Instruction Set

Instruction Descriptions

Figure 37: bge Instruction

Table 29: bg Instruction Features

Feature Description
Syntax bg rX, rY, immlé
Example bg r4, r2, label
Semantics if (gpr(rX] > gprlrYl)
PC = PC + sign_extend(immlé << 2)
Issue 1 cycle (not taken), 4 cycles (taken)
See Also  bgu, branch if greater, unsigned

bge

21

20 16 15 ]

31 26 25
O Moo 1y

23 imm16

Table 30: bge Instruction Features

Feature Description

Operation  Branch if greater or equal

Description Compares the value in rX with the value in rY, branching to the address
given by the sum of the PC and the sign-extended immediate if the
value in rX is greater or equal to the value in rY. The values in rX and rY
are treated as signed integers.

Syntax bge rX, rY, immlé

Example bge r4, r2, label

Semantics if (gpr[rX] >= gprlrY])

PC = PC + sign extend(immlé6 << 2)
Issue 1 cycle (not taken), 4 cycles (taken)
See Also  bgeu, branch if greater or equal, unsigned

bgeu

Figure 38: bgeu Instruction

21

20 16 15 0

3 26 25
P o PP

X imm16

LatticeMico32 Processor Reference Manual

54



Instruction Set Instruction Descriptions

Table 31: bgeu Instruction Features

Feature Description

Operation  Branch if greater or equal, unsigned

Description Compares the value in rX with the value in rY, branching to the address
given by the sum of the PC and the sign-extended immediate if the
value in rX is greater or equal to the value in rY. The values in rX and rY
are treated as unsigned integers.

Syntax bgeu rX, rY, immlé

Example bgeu r4, r2, label

Semantics if (gpr[rX] >= gprlrY])
PC = PC + sign_extend(immlé << 2)

Issue 1 cycle (not taken), 4 cycles (taken)

See Also  bge, branch if greater or equal, signed

bgu

Figure 39: bgu Instruction

31 26 25 21 20 16 15 0
O PPN Y i imm16 |

Table 32: bgu Instruction Features

Feature Description

Operation  Branch if greater, unsigned

Description Compares the value in rX with the value in rY, branching to the address
given by the sum of the PC and the sign-extended immediate if the
value in rX is greater than the value in rY. The values in rX and rY are
treated as unsigned integers.

Syntax bgu rX, rY, immlé

Example bgu r4, r2, label

Semantics if (gprlrX] > gprlrY])
PC = PC + sign extend(immlé << 2)

Issue 1 cycle (not taken), 4 cycles (taken)

See Also  bg, branch if greater, signed

bi

Figure 40: bi Instruction

31 26 25
N[ op P jmm2e |

LatticeMico32 Processor Reference Manual 55



Instruction Set

Instruction Descriptions

Figure 41: bne Instruction

Table 33: bi Instruction Features

Feature Description

Operation  Unconditional branch

Description Unconditional branch to the address given by the sum of the PC and the
sign-extended immediate.

Syntax bi imm26

Example bi label

Semantics PC = PC + sign_extend(imm26 << 2)

Issue 4 cycles

See Also b, branch from register

bne

21 20 16 1% 0

31 26 25
O o[ [ [

X imm16

Table 34: bne Instruction Features

Feature Description

Operation  Branch if not equal

Description Compares the value in rX with the value in rY, branching to the address
given by the sum of the PC and the sign-extended immediate if the
values are not equal.

Syntax bne rX, rY, immlé

Example bne r4, r2, label

Semantics if (gprlrX] != gprlrY])
PC = PC + sign extend(immlé6 << 2)

Issue 1 cycle (not taken), 4 cycles (taken)

See Also  be, branch if equal

break

Figure 42: break Instruction

31 0
o[t jofr[rjooojooojopofojopjojopjojopfopplopplohep,]

LatticeMico32 Processor Reference Manual 56



Instruction Set

Instruction Descriptions

Figure 43: bret Instruction

Table 35: break Instruction Features

Feature Description
Operation  Software breakpoint
Description Raises a breakpoint exception.
Syntax break
Example break
Semantics gpr([ba] = PC

IE.BIE = IE.IE

IE.IE = 0

PC = DEBA + ID * 32
Issue 4 cycles
See Also bret, return from breakpoint
bret

31 0
L 1jopoppooft 1t " 1jofojofoofoojofojopoofojojofofofpjoolo

Figure 44: call Instruction
31 26 25

Table 36: bret Instruction Features

Feature Description

Operation  Return from breakpoint

Description Unconditional branch to the address in the breakpoint address register
(ba), updating interrupt enable with value saved in breakpoint interrupt
enable register.

Syntax bret

Example  bret

Semantics PC = gpr [ba]
IE.IE = IE.BIE

Issue 4 cycles

See Also  break, breakpoint

call

21 20 0

Ml x

o olopbpoojopojolopjplofojofopolfpfpl]

LatticeMico32 Processor Reference Manual

57



Instruction Set

Instruction Descriptions

Table 37: call Instruction Features

Feature Description

Operation  Function call

Description Adds 4 to the PC, storing the result in ra, then unconditionally branches
to the address in rX.

Syntax call rX

Example call r3

Semantics gpr[ral = PC + 4
PC = gpr[rX]

Result 1 cycle

Issue 4 cycles

See Also calli, call with immediate; ret, return from call

calli

Figure 45: calli Instruction
6 25

31 2
MMM N P jmms

Table 38: calli Instruction Features

Feature Description

Operation  Function call

Description Adds 4 to the PC, storing the result in ra, then unconditionally branches
to the address given by the sum of the PC and the sign-extended
immediate.

Syntax calli imm26

Example calli label

Semantics gpr(ral] = PC + 4
PC = PC + sign extend(imm26 << 2)

Result 1 cycle

Issue 4 cycles

See Also  call, call from register; ret, return from call

cmpe

Figure 46: cmpe Instruction
21

20 16 15

31 26 25
1Mooy

1110 0
rz X o ojojojofolofo o]

LatticeMico32 Processor Reference Manual 58



Instruction Set

Instruction Descriptions

Table 39: cmpe Instruction Features

Feature Description

Operation Compare equal

Description Compares the value in rY with the value in rZ, storing 1 in rX if they are
equal, otherwise 0.

Syntax cmpe rX, rY¥, rZ

Example cmpe rl4, rl5, rl7

Semantics gpr[rX] = gprl[rY] == gpr[rZ]

Result 2 cycles

Issue 1 cycle

See Also  cmpei, compare equal with immediate

cmpei

Figure 47: cmpei Instruction

21

31 26 25
O PP Y

20 16 15 0
X imm16

Table 40: cmpei Instruction Features

Feature Description

Operation Compare equal

Description Compares the value in rY with the sign-extended immediate, storing 1 in
rX if they are equal, O otherwise.

Syntax cmpei rX, rY, immlé

Example cmpei r4, r2, 0x5555

Semantics gpr [rX] = gpr[rY] == sign extend(immlé)

Result 2 cycles

Issue 1 cycle

See Also  cmpe, compare equal between registers

cmpg

Figure 48: cmpg Instruction

21

20 16 15

31 26 25
TP [ oY

11 .10 0
1z X PP P pPPPpPPo PP

LatticeMico32 Processor Reference Manual

59



Instruction Set Instruction Descriptions

Table 41: cmpg Instruction Features

Feature Description

Operation Compare greater

Description Compares the value in rY with the value in rZ, storing 1 in rX if the value
in rY is greater than the value in rZ, 0 otherwise. Both operands are
treated as signed integers.

Syntax cmpg rX, rY, rZ

Example cmpg rl4, rl5, rl7

Semantics gpr[rX] = gprlrY] > gprlrz]

Result 2 cycles

Issue 1 cycle

See Also  cmpgi, compare greater with immediate; cmpgu, compare greater,
unsigned; cmpgui, compare greater with immediate, unsigned

cmpagi

Figure 49: cmpgi Instruction

31 2% 25 21 20 16 15 0
O [ oy X imm16 |

Table 42: cmpgi Instruction Features

Feature Description

Operation Compare greater

Description Compares the value in rY with the sign-extended immediate, storing 1 in
rX if the value in rY is greater than the immediate, O otherwise. Both
operands are treated as signed integers.

Syntax cmpgi rX, rY, immlé

Example cmpgi r4, r2, 0x5555

Semantics gpr[rX] = gprlrY] > sign extend(immlé6)

Result 2 cycles

Issue 1 cycle

See Also  cmpg, compare greater between registers; cmpgu, compare greater,
unsigned; cmpgui, compare greater with immediate, unsigned

cmpge

Figure 50: cmpge Instruction

3 26 25 21 20 16 15 1110 0
TR AP A iz X PP P PP PO |

LatticeMico32 Processor Reference Manual 60



Instruction Set

Instruction Descriptions

Table 43: cmpge Instruction Features

Feature Description

Operation Compare greater or equal

Description Compares the value in rY with the value in rZ, storing 1 in rX if the value
in rY is greater or equal to the value in rZ, 0 otherwise. Both operands
are treated as signed integers.

Syntax cmpge rX, rY, rZ

Example cmpge rl4, rl5, rl7

Semantics gpr[rX] = gprlrY] >= gprlrZ]

Result 2 cycles

Issue 1 cycle

See Also  cmpgei, compare with immediate; cmpgeu, compare, unsigned;
cmpgeui, compare with immediate, unsigned

cmpgei

Figure 51: cmpgei Instruction

3 26 25

21 20 16 15 0

O AP

X imm16 |

Table 44: cmpgei Instruction Features

Feature Description

Operation Compare greater or equal

Description Compares the value in rY with the sign-extended immediate, storing 1 in
rX if the value in rY is greater or equal to the immediate, O otherwise.
Both operands are treated as signed integers.

Syntax cmpgei rX, rY, immlé

Example cmpgeil r4, r2, 0x5555

Semantics gpr[rX] = gprlrY] >= sign extend (immlé)

Result 2 cycles

Issue 1 cycle

See Also  cmpge, compare between registers; cmpgeu, compare, unsigned;
cmpgeui, compare with immediate, unsigned

cmpgeu

Figure 52: cmpgeu Instruction

31 26 25 21 20 16 15 11 10 0
M AP o iz X oo ppPpppoPPoPpp|
LatticeMico32 Processor Reference Manual 61



Instruction Set

Instruction Descriptions

Table 45: cmpgeu Instruction Features

Feature Description

Operation Compare greater or equal

Description Compares the value in rY with the value in rZ, storing 1 in rX if the value
in rY is greater or equal to the value in rZ, 0 otherwise. Both operands
are treated as unsigned integers.

Syntax cmpgeu rX, rY¥, rZ

Example cmpgeu rl4, rl5, rl7

Semantics gpr[rX] = gprlrY] >= gprlrZ]

Result 2 cycles

Issue 1 cycle

See Also  cmpge, compare between registers; cmpgei, compare with immediate;
cmpgeui, compare with immediate, unsigned

cmpgeui

Figure 53: cmpgeui Instruction

31 26 25

21

20 16 15 0

O B

3 imm16 |

Table 46: cmpgeui Instruction Features

Feature Description

Operation Compare greater or equal

Description Compares the value in rY with the zero-extended immediate, storing 1 in
rX if the value in rY is greater or equal to the immediate, O otherwise.
Both operands are treated as unsigned integers.

Syntax cmpgeui rX, rY, immlé

Example cmpgeui r4, r2, 0x5555

Semantics gpr [rX] = gpr[rY] >= zero_ extend(immlé)

Result 2 cycles

Issue 1 cycle

See Also  cmpge, compare between registers; cmpgei, compare with immediate;
cmpgeu, compare, unsigned

cmpgu

Figure 54: cmpgu Instruction

3 26 25 21 20 16 15 11 10 0
MNPy 74 X OPoopppPPoplpPPp]
LatticeMico32 Processor Reference Manual 62



Instruction Set Instruction Descriptions

Table 47: cmpgu Instruction Features

Feature Description

Operation Compare greater unsigned

Description Compares the value in rY with the value in rZ, storing 1 in rX if the value
in rY is greater than the value in rZ, 0 otherwise. Both operands are
treated as unsigned integers.

Syntax cmpgu rX, rY¥, rZ

Example cmpgu rl4, rl5, rl7

Semantics gpr[rX] = gprlrY] > gprlrz]

Result 2 cycles

Issue 1 cycle

See Also  cmpg, compare greater, signed; cmpgi, compare greater with
immediate; cmpgui, compare greater with immediate, unsigned

cmpgui

Figure 55: cmpgui Instruction

31 26 25 21 20 16 15 0
PP [Py X imm16

Table 48: cmpgui Instruction Features

Feature Description

Operation Compare greater unsigned

Description Compares the value in rY with the zero-extended immediate, storing 1 in
rX if the value in rY is greater than the immediate, O otherwise. Both
operands are treated as unsigned integers.

Syntax cmpgui rX, rY, immlé

Example cmpgui r4, r2, 0x5555

Semantics gpr[rX] = gprlrY] > zero extend(immlé)

Result 2 cycles

Issue 1 cycle

See Also  cmpg, compare greater, signed; cmpgi, compare greater with
immediate; cmpgu, compare greater, unsigned

cmpne

Figure 56: cmpne Instruction

31 26 25 21 20 16 15 11 10 0
T [ 72 X PP P PP PPpPDP PP ]

LatticeMico32 Processor Reference Manual 63



Instruction Set

Instruction Descriptions

Table 49: cmpne Instruction Features

Feature Description

Operation Compare not equal

Description Compares the value in rY with the value in rZ, storing 1 in rX if they are

not equal, O otherwise.

Syntax cmpne rX, rY, rZ

Example cmpne rl4, rl5, rl7

Semantics gpr [rX] = gprlrY] != gpr[rz]
Result 2 cycles
Issue 1 cycle

See Also  cmpnei, compare not equal with

immediate

cmpnei
Figure 57: cmpnei Instruction
1 26 25 21 20 16 15 0
oY X imm16

Figure 58: divu Instruction

Table 50: cmpnei Instruction Features

Feature Description

Operation Compare not equal

Description Compares the value in rY with the sign-extended immediate, storing 1 in
rX if they are not equal, O otherwise.

Syntax cmpnei rX, rY, immlé

Example cmpnei r4, r2, 0x5555

Semantics gpr[rX] = gprlrY] != sign extend(immlé)
Result 2 cycles
Issue 1 cycle

See Also  cmpne, compare not equal between registers

divu

21 20 16 15

31 26 25
Ho oo

rz X

11 10 0
o ofofojojojoppol]

LatticeMico32 Processor Reference Manual

64



Instruction Set Instruction Descriptions

Table 51: divu Instruction Features

Feature Description

Operation  Unsigned iinteger division

Description Divides the value in rY by the value in rZ, storing the quotient in rX. Both
operands are treated as unsigned integers.

Available only if the processor was configured with the
DIVIDE_ENABLED option.

Syntax divu rX, rY, rZ

Example divu ril4, rls5, rl7

Semantics gpr[rX] = gprlrY] / gprlrz]

Result 34 cycles

Issue 34 cycles

See Also modu, modulus

eret

Figure 59: eret Instruction

31 0
N tjooojofrt1"jolojofojofofoloijojojoofojoolofopiololfolp|

Table 52: eret Instruction Features

Feature Description

Operation  Return from exception

Description Unconditionally branches to the address in the exception address
register (ea), updating interrupt enable with value saved in exception
interrupt enable register.

Syntax eret

Example eret

Semantics PC = gprleal
IE.IE = IE.EIE

Result

Issue 3 cycles

See Also scall, system call

Figure 60: Ib Instruction

31 26 25 21 20 16 15 0
o oot ol X imm16 |

LatticeMico32 Processor Reference Manual 65



Instruction Set Instruction Descriptions

Table 53: Ib Instruction Features

Feature Description

Operation Load byte from memory

Description Loads a byte from memory at the address specified by the sum of the
value in rY added to the sign-extended immediate, storing the sign-
extended result into rX.

Syntax 1b rX, (rY+immlé6)

Example 1b r4, (r2+5)

Semantics address

gpr[rY] + sign extend(immlé)

gpr [rX] = sign_ extend(memory [address])
Result 3 cycles
Issue 1 cycle

See Also Ibu, load byte, unsigned; Ih, load half-word, signed; Ihu, load half-word,
unsigned; Iw, load word

Ibu

Figure 61: Ibu Instruction

31 26 25 21 20 16 15 0
b jopp b X imm16 |

Table 54: Ibu Instruction Features

Feature Description

Operation  Load unsigned byte from memory

Description Loads a byte from memory at the address specified by the sum of the
value in rY added to the sign-extended immediate, storing the zero-
extended result into rX.

Syntax lbu rX, (r¥+immleé)

Example lbu r4, (r2+5)

Semantics address = gpr[rY] + sign extend (immlé)

gpr [rX] = zero_ extend(memory [address])
Result 3 cycles
Issue 1 cycle

See Also Ib, load byte, signed; |h, load half-word, signed; lhu, load half-word,
unsigned; Iw, load word

Ih

Figure 62: Ih Instruction

26 25 21 20 16 15 ]
1 1Y X imm16

31
oot

LatticeMico32 Processor Reference Manual 66



Instruction Set Instruction Descriptions

Table 55: |h Instruction Features

Feature Description

Operation Load half-word from memory

Description Loads a half-word from memory at the address specified by the sum of
the value in rY added to the sign-extended immediate, storing the sign-
extended result into rX.

Syntax 1h rX, (rY+immlé)

Example 1h r4, (r2+6)

Semantics address = gpr[rY] + sign extend(immlé)
gpr [rX] = sign extend((memory[address] << 8)
| (memory[address+1]))

Result 3 cycles

Issue 1 cycle

See Also Ib, load byte, signed; Ibu, load byte, unsigned; Ihu, load half-word,
unsigned; Iw, load word

lhu

Figure 63: |hu Instruction

31 26 25 21 20 16 15 0
O jo1top Nty 23 imm16

Table 56: lhu Instruction Features

Feature Description

Operation Load unsigned half-word from memory

Description Loads a half-word from memory at the address specified by the sum of
the value in rY added to the sign-extended immediate, storing the zero-
extended result into rX.

Syntax lhu rX, (r¥+immlé)

Example lhu r4, (r2+6)

Semantics address = gpr[rY] + sign extend (immlé)

gpr [rX] = zero extend((memory[address] << 8)
| (memory[address+1]))
Result 3 cycles
Issue 1 cycle

See Also Ib, load byte, signed; Ibu, load byte, unsigned; |h, load half-word, signed;

Iw, load word
lw
Figure 64: lw Instruction
<N 26 25 21 20 16 15 0
b ohfop oy 23 imm16 |

LatticeMico32 Processor Reference Manual 67



Instruction Set Instruction Descriptions

Table 57: lw Instruction Features

Feature Description

Operation  Load word from memory

Description Loads a word from memory at address specified by the sum of the value
in rY added to the sign-extended immediate, storing the result in rX.

Syntax lw rX, (rY+immlé)

Example 1w r4, (r2+8)

Semantics address = gpr[rY] + sign extend(immlé)

gpr [rX] = (memory[address] << 24)
| (memory[address+1] << 16)
| (memory[address+2] << 8)
| (memoryl[address+3])
Result 3 cycles
Issue 1 cycle

See Also Ib, load byte, signed; Ibu, load byte, unsigned; |h, load half-word, signed;
Ihu, load half-word, unsigned

modu
Figure 65: modu Instruction
EX 26 25 21 20 16 15 1110 0
Mooy rz X 0 ojojojojojopiopp]

Table 58: modu Instruction Features

Feature Description

Operation  Unsigned integer modulus

Description Divides the value in rY by the value in rZ, storing the remainder in rX.
Both operands are treated as unsigned integers.

Available only if the processor was configured with the
DIVIDE_ENABLED option.

Syntax modu rX, rY, rZz

Example modu rl4, rl5, rl7

Semantics gpr[rX] = gprlrY] % gpr(rz]

Result 34 cycles

Issue 34 cycles

See Also divu, divide

LatticeMico32 Processor Reference Manual 68



Instruction Set Instruction Descriptions

mul
Figure 66: mul Instruction
31 26 25 21 20 16 15 1110 0
M bhbloh ol 74 X 0D oo bojojofooolo o]

Table 59: mul Instruction Features

Feature Description

Operation  Integer multiply

Description Multiplies the value in rY by the value in rZ, storing the low 32 bits of the
product in rX.

Available only if the processor was configured with either the
MC_MULTIPLY_ENABLED or PL_MULTIPLY_ENABLED option.

Syntax mul rX, rY, rZ

Example mul rl4, ril5, rl7

Semantics gpr[rX] = gprlrY] * gprlrZ]

Result 3 cycles

Issue 1 cycle

See Also  muli, multiply with immediate

muli

Figure 67: muli Instruction

31 26 25 21 20 16 15 0
0 ojojoNt oy 23 imm16

Table 60: muli Instruction Features

Feature Description

Operation Integer multiply

Description Multiplies the value in rY by the sign-extended immediate, storing the
low 32 bits of the product in rX.

Available only if the processor was configured with either the
MC_MULTIPLY_ENABLED or PL_MULTIPLY_ENABLED option.

Syntax muli rX, rY, immlé

Example muli r4, r2, 0x5555

Semantics gpr[rX] = gprlrY] * sign extend(immlé)

Result 3 cycles

Issue 1 cycle

See Also  mul, multiply between registers

LatticeMico32 Processor Reference Manual 69



Instruction Set

Instruction Descriptions

myv
Feature Description
Operation Move
Description Moves the value in rY to rX.
This is a pseudo-instruction implemented with: or rX, rY, ro.
Syntax mv rX, rY
Example mv r4, r2
Semantics gpr [rX] = gprlrY] | gprlro]
Result 1 cycle
Issue 1 cycle
See Also  mvhi, move immediate into high 16 bits
mvhi
Feature Description
Operation  Move high 16 bits
Description Moves the 16-bit, left-shifted immediate into rX.
This is a pseudo-instruction implemented with: orhi rX, r0, immlé.
Syntax mvhi rX, immlé
Example  mvhi r4, 0x5555
Semantics gpr[rX] = gprl[r0] | (immlé << 16)
Result 1 cycle
Issue 1 cycle
See Also mv, move between registers

LatticeMico32 Processor Reference Manual

70



Instruction Set Instruction Descriptions

nor

Figure 68: nor Instruction

31 26 25 21 20 16 15 11 10 0
Mooty rz 23 0 jojoJojojojolplopp]

Table 61: nor Instruction Features

Feature Description

Operation  Bitwise logical NOR

Description Bitwise NOR of the value in rY with the value in rZ, storing the result in
rx.

Syntax nor rX, rY¥, rZ

Example nor rl4, rl5, rl7

Semantics gpr[rX] = ~(gprlrY] | gprlrz])
Result 1 cycle
Issue 1 cycle

See Also nori, NOR with immediate

nori

Figure 69: nori Instruction

31 26 25 21 20 16 15 0
PP oop [y PX imm16

Table 62: nori Instruction Features

Feature Description

Operation Bitwise logical NOR

Description Bitwise NOR of the value in rY with the zero-extended immediate,
storing the result in rX.

Syntax nori rX, ryY, immlé

Example nori r4, r2, 0x5555

Semantics gpr([rX] = ~(gprlrY] | zero_extend (immlé) )
Result 1 cycle
Issue 1 cycle

See Also  nor, NOR between registers

LatticeMico32 Processor Reference Manual 71



Instruction Set Instruction Descriptions

not

Feature Description

Operation  Bitwise complement

Description Bitwise complement of the value in rY, storing the result in rX.

This is a pseudo-instruction implemented with: xnor rX, rY, ro.

Syntax not rX, rY

Example not r4, r2

Semantics gpr[rX] = ~(gprlr¥Y] * gprlr0l)
Result 1 cycle
Issue 1 cycle
or
Figure 70: or Instruction
31 26 25 21 20 16 15 11 10 0
TPy 74 X oo jopPooopPlpPpPp|

Table 63: or Instruction Features

Feature Description

Operation  Bitwise logical OR

Description Bitwise OR of the value in rY with the value in rZ, storing the result in rX.

Syntax or rX, rY¥, rZ

Example or rl4, rl5, rl7

Semantics gpr[rX] = gprlrY] | gpr(rz]

Result 1 cycle

Issue 1 cycle

See Also  ori, OR with immediate; orhi, OR with high 16 bits

LatticeMico32 Processor Reference Manual 72



Instruction Set Instruction Descriptions

ori
Figure 71: ori Instruction
31 26 25 21 20 16 15 0
Dot oy 23 imm16

Table 64: ori Instruction Features

Feature Description

Operation  Bitwise logical OR

Description Bitwise OR of the value in rY with the zero-extended immediate, storing
the result in rX.

Syntax ori rX, rY, immlé

Example  ori r4, r2, 0x5555

Semantics gpr[rX] = gprlrY] | zero extend(immlé)

Result 1 cycle

Issue 1 cycle

See Also or, OR between registers; orhi, OR with high 16 bits

orhi

Figure 72: orhi Instruction

31 26 25 21 20 16 15 0
O[T oY PX imm16

Table 65: orhi Instruction Features

Feature Description

Operation Bitwise logical OR (high 16-bits)

Description Bitwise OR of the value in rY with the 16-bit, left-shifted immediate,
storing the result in rX.

Syntax orhi rX, rY, immlé

Example orhi r4, r2, 0x5555

Semantics gpr[rX] = gprlrY] | (immlé << 16)
Result 1 cycle
Issue 1 cycle

See Also  or, OR between registers; ori, OR with immediate

LatticeMico32 Processor Reference Manual 73



Instruction Set Instruction Descriptions

rcsr

Figure 73: rcsr Instruction

31 26 25 21 20 16 15 0
Moo oo fesr 0 oo ol Ix 0 jojoJoojopooloiflo]

Table 66: rcsr Instruction Features

Feature Description

Operation Read control and status register

Description Reads the value of the specified control and status register and stores it
inrX.

Syntax rcsr rX, csr

Example rcsr rl5, IM

Semantics gpr([rX] = csr

Result 1 cycle

Issue 1 cycle

See Also wcsr, write control and status register

ret

Feature Description

Operation  Return from function call

Description Unconditional branch to address in ra.

This is a pseudo-instruction implemented with: b ra.

Syntax ret

Example ret

Semantics PC = gpr[ra]

Result

Issue 4 cycles

See Also call, function call from register; calli, function call with immediate

sb

Figure 74: sb Instruction

31 26 25 21 20 16 15 0
O I O S I Y imm16 |

LatticeMico32 Processor Reference Manual 74



Instruction Set Instruction Descriptions
Table 67: sb Instruction Features
Feature Description
Operation  Store byte to memory
Description Stores the lower byte in rY into memory at the address specified by the
sum of the value in rX added to the sign-extended immediate.
Syntax sb (rX+imml6), rY
Example sb(r2+8), r4
Semantics address = gpr[rX] + sign extend(immlé)
memory [address] = gpr[rY] & Oxff
Result
Issue 1 cycle
See Also  sh, store half-word; sw, store word
scall
Figure 75: scall Instruction
31 0
floftjophftjopjoppoopopopjofojojoppjofopfpofpjopjtfrft]
Table 68: scall Instruction Features
Feature Description
Operation  System call
Description Raises a system call exception.
Syntax scall
Example scall
Semantics gprlea] = PC
IE.EIE = IE.IE
IE.IE = 0
PC = (DC.RE ? DEBA : EBA) + ID * 32
Result
Issue 4 cycles
See Also  eret, return from exception
sextb
Figure 76: sextb Instruction
31 26 25 21 20 16 15 11 10 0
M blh ooy b bbbl x 0D o ofojojojojoloo o]
LatticeMico32 Processor Reference Manual 75



Instruction Set Instruction Descriptions

Table 69: sextb Instruction Features

Feature Description

Operation  Sign-extend byte to word

Description Sign-extends the value in rY, storing the result in rX.

Available only if the processor was configured with the
SIGN_EXTEND_ENABLED option.

Syntax sextb rX, rY

Example sextb rl4, rl5

Semantics gpr[rX] = (gprlrY¥] << 24) >> 24
Result 1 cycle
Issue 1 cycle

See Also sexth, sign-extend half-word

sexth

Figure 77: sexth Instruction

3 26 25 21 20 16 15 11 10 0
A PR [ 00 b o0 X O

Table 70: sexth Instruction Features

Feature Description

Operation  Sign-extends half-word to word

Description Sign-extends the value in rY, storing the result in rX.

Available only if the processor was configured with the
SIGN_EXTEND_ENABLED option.

Syntax sexth rX, rY

Example sexth rl4, rl5

Semantics gpr[rX] = (gprlrY¥] << 16) >> 16
Result 1 cycle
Issue 1 cycle

See Also  sextb, sign-extend byte

LatticeMico32 Processor Reference Manual 76



Instruction Set Instruction Descriptions

sh

Figure 78: sh Instruction

31 2% 25 21 20 16 15 0
R rY imm16

Table 71: sh Instruction Features

Feature Description

Operation  Store half-word to memory

Description Stores the lower half-word in rY into memory at the address specified by
the sum of the value in rX added to the sign-extended immediate.

Syntax sh (rX+imml6), rY

Example sh (r2+8), r4

Semantics address = gpr[rX] + sign extend(immlé)
memory [address] = gpr[rY] & Oxff
memory [address+1] = (gprl[rY] >> 8) & Oxff

Result

Issue 1 cycle

See Also  sb, store byte; sw, store word

sl
Figure 79: sl Instruction
31 26 25 21 20 16 15 11 10 0
I O O O O O % ¥4 IrX D 0o pjojoooli]

Table 72: sl Instruction Features

Feature Description

Operation  Shift left

Description Shifts the value in rY left by the number of bits specified by the value in
rZ, storing the result in rX.

Available only if the processor was configured with either the
MC_BARREL_SHIFT_ENABLED or PL_BARREL_SHIFT_ENABLED
option.

Syntax sl rX, rY¥, rz

Example sl r1l4, rl5, rl7

Semantics gpr[rX] = gprlrY] << (gpr[rz] & O0x1f)

Result 2 cycles

Issue 1 cycle

See Also sli, shift left with immediate

LatticeMico32 Processor Reference Manual 77



Instruction Set Instruction Descriptions

sli
Figure 80: sli Instruction

<X 26 25 21 20 16 15
Ol [ A X DO PP PP PP PP o mmb |

Table 73: sli Instruction Features

Feature Description

Operation  Shift left

Description Shifts the value in rY left by the number of bits specified by the
immediate, storing the result in rX.

Available only if the processor was configured with either the
MC_BARREL_SHIFT_ENABLED or PL_BARREL_SHIFT_ENABLED
option.

Syntax sli rX, rY, imm5

Example sli r4, r2, 17

Semantics gpr[rX] = gprlrY] << imm5

Result 2 cycles

Issue 1 cycle

See Also s, shift left from register

Sr
Figure 81: sr Instruction
3 26 25 21 20 16 15 1110 0
1 ooy ¥4 X 0D o ofojojojooooio|

Table 74: sr Instruction Features

Feature Description

Operation  Shift right (arithmetic)

Description Shifts the signed value in rY right by the number of bits specified by the
value in rZ, storing the result in rX.

Available only if the processor was configured with either the
MC_BARREL_SHIFT_ENABLED or PL_BARREL_SHIFT_ENABLED
option.

Syntax sr rX, rY¥, rZ

Example sr rl4, rl5, rl7

Semantics gpr[rX] = gprlrY] >> (gpr[rz] & O0x1f)

Result 2 cycles

Issue 1 cycle

See Also sri, shift right with immediate; sru, shift right, unsigned; srui, shift right
with immediate, unsigned

LatticeMico32 Processor Reference Manual 78



Instruction Set

Instruction Descriptions

Figure 82: sri Instruction

Sri

21 20

31 26 25
Do o pH Y

16 15 0
X PP PP PP PP P 0P fmms |

Table 75: sri Instruction Features

Feature Description

Operation  Shift right (arithmetic)

Description Shifts the signed value in rY right by the number of bits specified by the
immediate, storing the result in rX.

Available only if the processor was configured with either the
MC_BARREL_SHIFT_ENABLED or PL_BARREL_SHIFT_ENABLED
option.

Syntax sri rX, rY, imm5

Example sri r4, r2, 12

Semantics gpr[rX] = gprlrY] >> imm5

Result 2 cycles

Issue 1 cycle

See Also sr, shift right from register; sru, shift right, unsigned; srui, shift right with
immediate, unsigned

sru
Figure 83: sru Instruction
3 26 25 21 20 16 15 11 .10 0
1 ooy 74 X D b ofojojojolooloio]

Table 76: sru Instruction Features

Feature Description

Operation  Shift right, unsigned (logical)

Description Shifts the unsigned value in rY right by the number of bits specified by
the value in rZ, storing the result in rX.

Available only if the processor was configured with either the
MC_BARREL_SHIFT_ENABLED or PL_BARREL_SHIFT_ENABLED
option.

Syntax sru rX, rY¥, rZ

Example sru rl4, rl5, rl7

Semantics gpr([rX] = gprlrY] >> (gprlrZ] & 0x1f)

Result 2 cycles

Issue 1 cycle

See Also s, shift right from register; sri, shift right with immediate; srui, shift right
with immediate, unsigned

LatticeMico32 Processor Reference Manual 79



Instruction Set Instruction Descriptions

srui
Figure 84: srui Instruction
31 26 25 21 20 16 15 0
0o oo ooy X 0 jojojooolool o mms

Table 77: srui Instruction Features

Feature Description

Operation  Shifts right, unsigned (logical)

Description Shifts the unsigned value in rY right by the number of bits specified by
the immediate, storing the result in rX.

Available only if the processor was configured with either the
MC_BARREL_SHIFT_ENABLED or PL_BARREL_SHIFT_ENABLED
option.

Syntax srui rX, rY, imm5

Example srui r4, r2, 5

Semantics gpr([rX] = gprlrY] >> imm5

Result 2 cycles

Issue 1 cycle

See Also s, shift right from register; sri, shift right with immediate; sru, shift right,

unsigned
sub
Figure 85: sub Instruction
31 26 25 21 20 16 15 11 10 0
N bop by rz X 0 ojojojojofoplopp]

Table 78: sub Instruction Features

Feature Description

Operation Integer subtraction

Description Subtracts the value in rZ from the value in rY, storing the result in rX.

Syntax sub rX, rY, rZz

Example sub rl4, rl5, rl7

Semantics gpr[rX] = gprlrY] - gprlrz]

Result 1 cycle

Issue 1 cycle

See Also  addi, add with signed immediate

LatticeMico32 Processor Reference Manual 80



Instruction Set

Instruction Descriptions

Figure 86: sw Instruction
31 26 25

SW

21 20

16 15 0

PR PR [P X

Y

imm16 |

Table 79: sw Instruction Features

Feature Description

Operation  Store word to memory

Description Stores the value in rY into memory at the address specified by the sum
of the value in rX added to the sign-extended immediate.

Syntax sw(rX+imml6), rY

Example sw(r2+8), r4

Semantics address = gpr[rX] + sign extend(immlé)
memory [address] = gpr[rY] & Oxff
memory [address+1] = (gprl[rY] >> 8) & Oxff
memory [address+2] = (gpr[rY] >> 16) & Oxff
memory [address+3] = (gpr[rY] >> 32) & Oxff

Result

Issue 1 cycle

See Also sb, store byte; sh, store half-word

WCSTI

Figure 87: wcsr Instruction

21 20

31 26 25
Moo lesr

X

6 15 0
0 oo oojojojojofooofojool]

Table 80: wcsr Instruction Features

Feature Description

Operation  Write control or status register

Description Writes the value in rX to the specified control or status register.
Syntax wcsr csr, rX

Example wcsr IM, rls

Semantics csr = gpr[rX]

Result 1 cycle

Issue 1 cycle

See Also rcsr, read control and status register

LatticeMico32 Processor Reference Manual

81



Instruction Set Instruction Descriptions

Xnor

Figure 88: xnor Instruction

31 26 25 21 20 16 15 1110 0
[1jon ooy rz X o ojojojofolofo o]

Table 81: xnor Instruction Features

Feature Description

Operation  Bitwise logical exclusive-NOR

Description Bitwise exclusive-NOR of the value in rY with the value in rZ, storing the
result in rX.

Syntax xnor rX, rY¥, rZ

Example xnor rl4, rl5, rl7

Semantics gpr [rX] = ~(gpr(rY] * gprlrzl)
Result 1 cycle
Issue 1 cycle

See Also xnori, XNOR with immediate

Xnori

Figure 89: xnori Instruction

31 26 25 21 20 16 15 0
P o1t ooy 23 imm16

Table 82: xnori Instruction Features

Feature Description

Operation  Bitwise logical exclusive-NOR

Description Bitwise exclusive-NOR of the value in rY with the zero-extended
immediate, storing the result in rX.

Syntax xnori rX, rY, immlé

Example xnori r4, r2, 0x5555

Semantics gpr[rX] = ~(gpr[rY] * zero extend(immlé))
Result 1 cycle
Issue 1 cycle

See Also  xnor, XNOR between registers

LatticeMico32 Processor Reference Manual 82



Instruction Set Instruction Descriptions

Xor
Figure 90: xor Instruction
31 26 25 21 20 16 15 1110 0
Mot ¥4 kX D b loojojojool ol

Table 83: xor Instruction Features

Feature Description

Operation  Bitwise logical exclusive-OR

Description Bitwise exclusive-OR of the value in rY with the value in rZ, storing the
result in rX.

Syntax xor rX, rY¥, rZ

Example xor rl4, rl5, rl7

Semantics gpr [rX] = gprlrY] * gpr(rz]

Result 1 cycle

Issue 1 cycle

See Also  xori, XOR with immediate

XOri

Figure 91: xori Instruction

31 26 25 21 20 16 15 0
P oot 1oy 23 imm16

Table 84: xori Instruction Features

Feature Description

Operation  Bitwise logical exclusive-OR

Description Bitwise exclusive-OR of the value in rY with the zero-extended
immediate, storing the result in rX.

Syntax xori rX, rY, immlé

Example  xori r4, r2, 0x5555

Semantics gpr [rX] = gprlrY] * zero extend (immlé)

Result 1 cycle

Issue 1 cycle

See Also  xori, XOR between registers

LatticeMico32 Processor Reference Manual 83



Instruction Set Instruction Descriptions

LatticeMico32 Processor Reference Manual 84



Lattice

Semiconductor
Corporation

Index

A BP field 11
A field 29 BP registers 26, 27,29
ACK 20 break instruction 56
ACK | 41 breakpoint address register 7
ACK_O 43 breakpoint exceptions 20, 21, 22, 26
Acknowledge Input 41 breakpoint registers 26, 27, 29
Acknowledge Output 43 bret instruction 57
add instruction 50 BTE_I() 39
addi instruction 50 BTE_O() 39
address alignment 15 burst type extension 39
Address Input array 42 bypass in pipeline 5
Address Output array 41
Address pipeline stage 5 C
address space 13 cache configurations 17, 36
ADR_I() 42 cacheable addresses 13
ADR_O() 41 caches 16,36
and instruction 51 call instruction 57
andhi instruction 51 calli instruction 58
andi instruction 52 CC field 11
arbitration schemes 44 CC register 9,11
arithmetic instructions 30 CFG register 9, 11
associativity in caches 16 CFG2 register 9

cmpe instruction 58
B cmpei instruction 59
b instruction 52 cmpg instruction 59
ba register 7 cmpge instruction 60
be instruction 53 cmpgei instruction 61
bg instruction 53 cmpgeu instruction 61
bge instruction 54 cmpgeui instruction 62
bgeu instruction 54 cmpgi instruction 60
bgu instruction 55 cmpgu instruction 62
bi instruction 55 cmpgui instruction 63
BIE field 9 cmpne instruction 63
big-endian 14 cmpnei instruction 64
bne instruction 56 comparison instructions 31

LatticeMico32 Processor Reference Manual



Index

component signals
introduction to 40
master signals 41
slave signals 42
configuration options 33
configuration register 9, 11
control and status registers
configuration 9, 11
cycle counter 9,11
data cache control 9, 11
exception base address 9, 13,25
extended configuration 9
instruction cache control 9, 10
interrupt enable 9
interrupt mask 9, 10
interrupt pending 9, 10
introduction 9
program counter 9
CR format for instructions 47
CTLI() 38
CTI_O() 38
CYC_I 43
CYC O 42
cycle counter 9,11
Cycle Input 43
Cycle Output 42
cycle type identifier 38
CYCLE_COUNTER_ENABLED 34

D
D field 11
DAT () 41,42

DAT_O() 41,42

data cache control 9, 11

Data Input array 41,42

Data Output array 41,42

data transfer instructions 31

data types 6

DataBusError 20, 23

DC field 11

DC register 27,28
DCACHE_ASSOCIATIVITY 35
DCACHE_BASE_ADDRESS 35
DCACHE_BYTES_PER_LINE 35
DCACHE_ENABLED 35
DCACHE_LIMIT 35
DCACHE_SETS 35

DCC register 9, 11

DEBA register 27,28

debug 27, 36

debug control 27,28

debug control and status registers 27
debug exception base aAddress 27
debug exception base address 28
debug exceptions 21
DEBUG_ENABLED 34, 36
decode pipeline stage 5
DIVIDE_ENABLED 33

DivideByZero 20, 23
divu instruction 64

E
E field 29
earegister 7
EBA register 9, 13,25
EBR 36
EIE field 9
embedded block RAM 36
endianness 14
eret instruction 65
ERR_I 41
ERR_O 43
Error Input 41
Error Output 43
exception address register 7
exception base address 9, 13,25
exceptions
breakpoints 26
debug 21
interrupts 25
introduction to 20
nested 25
non-debug 21
processing 21
reset 26
watchpoints 27
execute pipeline stage 5
extended configuration register 9
extended data types 7

F

F field in JTAG UART Receive Register 29
F field in JTAG UART Transmit Register 29
fetch pipeline stage 5

fixed slave-side arbitration scheme 45

fp register 8,15

frame pointer 8,15

G

G field 11

general-purpose registers 7
global pointer 8

gp register 8

H
H field 11

|

| bit in data cache control 11

| bit in instruction cache control 10
| format for instructions 47

IC field 11
ICACHE_ASSOCIATIVITY 35
ICACHE_BASE_ADDRESS 35
ICACHE_BYTES_PER_LINE 35
ICACHE_ENABLED 34

LatticeMico32 Processor Reference Manual



Index

ICACHE_LIMIT 35
ICACHE_SETS 35
ICC register 9,10
IE field 9
IE register 9
IM register 9,10
initializing caches 17
inline memories 18
instruction cache control 9, 10
instruction set
categories 30
descriptions 49
add 50
addi 50
and 51
andhi 51
andi 52
b 52
be 53
bg 53
bge 54
bgeu 54
bgu 55
bi 55
bne 56
break 56
bret 57
call 57
calli 58
cmpe 58
cmpei 59
cmpg 59
cmpge 60
cmpgei 61
cmpgeu 61
cmpgeui 62
cmpgi 60
cmpgu 62
cmpgui 63
cmpne 63
cmpnei 64
divu 64
eret 65
Ib 65
Ibu 66
lhu 66, 67
w 67
modu 68
mul 69
muli 69
mv 70
mvh 70
nor 71
nori 71
not 72
or 72
orhi 73
ori 73
rcsr 74

ret 74
sb 74
scall 75
sextb 75
sexth 76
sh 77
sl 77
sli 78
sr 78
sri 79
sru 79
srui 80
sub 80
sw 81
wcsr 81
Xxnor 82
xnori 82
xor 83
xori 83
formats 47
opcodes 48
pseudo-instructions 49
InstructionBusError 20, 22
INT field 11

interconnect architecture see WISHBONE

interconnect
interlock in pipeline 5
Interrupt 20, 23, 25
interrupt enable 9
interrupt mask 9, 10
interrupt pending 9, 10
interrupt renable 9
invalidating caches 17
IP register 9,10

J

J field 11

JRX register 27,29

JTAG UART Receive Register 27,29
JTAG UART Transmit Register 29
JTAG UART transmit register 27
JTX register 27,29

L

Ib instruction 65
Ibu instruction 66
Ih instruction 66
lhu instruction 67
lines in caches 16
Lock Input 43
Lock Output 42
LOCK_ | 43
LOCK_O 42

logic instructions 30
Iw instruction 67

M
M field 11

LatticeMico32 Processor Reference Manual

87



Index

master signals 41

memory architecture
address alignment 15
address space 13
cacheable addresses 13
endianness 14
exceptions 20
stack layout 15

memory pipeline stage 5

model, programmer’s 5

modu instruction 68

mul instruction 69

muli instruction 69

mv instruction 70

mvh instruction 70

N

nested exceptions 25

Nested Prioritized Interrupts 25
non-debug exceptions 21

nor instruction 71

nori instruction 71

not instruction 72

(@]

opcodes 48
OPENCORES.ORG 37
or instruction 72

orhi instruction 73

ori instruction 73

P

PC register 9

pipeline 5,21

processing exceptions 21

program counter 9

program flow control instructions 32
programmer’s model 5
pseudo-instructions 49

R

R field 11

rO register 7

ra register 7

rcsrinstruction 74

read-miss 16

registered feedback mode 38

registers
control and status 9
debug control and status 27
general-purpose 7

reset 20,22, 26

resources 36

ret instruction 74

Retry Input 41

Retry Output 43

return address register 7

REV field 11

RI format for instructions 47

round-robin slave-side arbitration scheme 45
RR format for instructions 47

RTY_| 41

RTY_O 43

RXD field 29

S

S field 11

sb instruction 74

scall instruction 75

SEL_I() 42

SEL_O() 41

Select Input array 42

Select Output array 41

sextb instruction 75

sexth instruction 76

sh instruction 77

shared-bus arbitration scheme 44

shift instructions 31

SIGN_EXTEND_ENABLED 34

signals, component 40

sl instruction 77

slave signals 42

slave-side arbitration scheme 44
fixed 45
round-robin 45

sli instruction 78

SoC Interconnection Architecture for Portable IP
Cores see WISHBONE interconnect

sp register 8,15

sr instruction 78

sri instruction 79

sru instruction 79

srui instruction 80

stack layout 15

stack pointer 8, 15

stages in pipeline 5

STB_| 43

STB_O 42

Strobe Input 43

Strobe Output 42

sub instruction 80

sw instruction 81

SystemCall 20, 23

System-on-Chip Interconnection Architecture for
Portable IP Cores see WISHBONE

interconnect
T
TXD field 29
w

watchpoint exceptions 20, 21, 22, 27
Watchpoint registers 27, 30
watchpoint registers 28

ways in caches 16

wcsr instruction 81

LatticeMico32 Processor Reference Manual

88



Index

WE_I 43

WE_O 41

WISHBONE interconnect 37
coomponent signals 40
introduction to 37
master signals 41
registered feedback mode 38
slave signals 42

WP field 11

WP registers 27,28, 30

Write Enable Input 43

Write Enable Output 41

writeback pipeline stage 5

X

X field 11

xnor instruction 82
xnori instruction 82
Xor instruction 83

xori instruction 83

LatticeMico32 Processor Reference Manual

89



	LatticeMico32 Processor and Systems
	Programmer’s Model
	Pipeline Architecture
	Data Types
	Register Architecture
	General-Purpose Registers
	Control and Status Registers

	Memory Architecture
	Address Space
	Endianness
	Address Alignment
	Stack Layout
	Caches
	Inline Memories

	Exceptions
	Exception Processing
	Exception Handler Code
	Nested Exceptions
	Remapping the Exception Table
	Reset Summary
	Using Breakpoints
	Using Watchpoints

	Debug Architecture
	DC - Debug Control
	DEBA - Debug Exception Base Address
	JTX - JTAG UART Transmit Register
	JRX - JTAG UART Receive Register
	BPn - Breakpoint
	WPn - Watchpoint

	Instruction Set Categories
	Arithmetic
	Logic
	Comparison
	Shift
	Data Transfer
	Program Flow Control


	Configuring the LatticeMico32 Processor
	Configuration Options
	EBR Use

	WISHBONE Interconnect Architecture
	Introduction to WISHBONE Interconnect
	WISHBONE Registered Feedback Mode
	CTI_IO( )
	BTE_IO( )

	Component Signals
	Master Port and Signal Descriptions
	Slave Port and Signal Descriptions

	Arbitration Schemes
	Shared-Bus Arbitration
	Slave-Side Arbitration


	Instruction Set
	Instruction Formats
	Opcode Look-Up Table
	Pseudo-Instructions
	Instruction Descriptions
	add
	addi
	and
	andhi
	andi
	b
	be
	bg
	bge
	bgeu
	bgu
	bi
	bne
	break
	bret
	call
	calli
	cmpe
	cmpei
	cmpg
	cmpgi
	cmpge
	cmpgei
	cmpgeu
	cmpgeui
	cmpgu
	cmpgui
	cmpne
	cmpnei
	divu
	eret
	lb
	lbu
	lh
	lhu
	lw
	modu
	mul
	muli
	mv
	mvhi
	nor
	nori
	not
	or
	ori
	orhi
	rcsr
	ret
	sb
	scall
	sextb
	sexth
	sh
	sl
	sli
	sr
	sri
	sru
	srui
	sub
	sw
	wcsr
	xnor
	xnori
	xor
	xori


	Index

