PTdecode/CImg-1.3.0/examples/pde_TschumperleDeriche2d.cpp

Tue, 18 Mar 2014 01:27:15 +0000

author
Philip Pemberton <philpem@philpem.me.uk>
date
Tue, 18 Mar 2014 01:27:15 +0000
changeset 23
f2c7acb4a258
parent 5
1204ebf9340d
permissions
-rwxr-xr-x

Update PTdecode to handle output from other Ptouch drivers

philpem@5 1 /*
philpem@5 2 #
philpem@5 3 # File : pde_TschumperleDeriche2D.cpp
philpem@5 4 # ( C++ source file )
philpem@5 5 #
philpem@5 6 # Description : Implementation of the Tschumperle-Deriche's Regularization
philpem@5 7 # PDE, for 2D multivalued images, as described in the articles below.
philpem@5 8 # This file is a part of the CImg Library project.
philpem@5 9 # ( http://cimg.sourceforge.net )
philpem@5 10 #
philpem@5 11 # (1) PDE-Based Regularization of Multivalued Images and Applications.
philpem@5 12 # (D. Tschumperle). PhD Thesis. University of Nice-Sophia Antipolis, December 2002.
philpem@5 13 # (2) Diffusion PDE's on Vector-valued Images : Local Approach and Geometric Viewpoint.
philpem@5 14 # (D. Tschumperle and R. Deriche). IEEE Signal Processing Magazine, October 2002.
philpem@5 15 # (3) Vector-Valued Image Regularization with PDE's : A Common Framework for Different Applications.
philpem@5 16 # (D. Tschumperle and R. Deriche). CVPR'2003, Computer Vision and Pattern Recognition, Madison, United States, June 2003.
philpem@5 17 #
philpem@5 18 # This code can be used to perform image restoration, inpainting, magnification or flow visualization.
philpem@5 19 #
philpem@5 20 # NOTE : THIS SOURCE IS DISTRIBUTED FOR EDUCATIONAL PURPOSES ONLY. A BETTER ANISOTROPIC SMOOTHING ALGORITHM CAN BE FOUND
philpem@5 21 # IN THE FILE 'greycstoration.cpp' WHICH IS THE RESULT OF MORE RECENT WORK.
philpem@5 22 #
philpem@5 23 # Copyright : David Tschumperle
philpem@5 24 # ( http://www.greyc.ensicaen.fr/~dtschump/ )
philpem@5 25 #
philpem@5 26 # License : CeCILL v2.0
philpem@5 27 # ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
philpem@5 28 #
philpem@5 29 # This software is governed by the CeCILL license under French law and
philpem@5 30 # abiding by the rules of distribution of free software. You can use,
philpem@5 31 # modify and/ or redistribute the software under the terms of the CeCILL
philpem@5 32 # license as circulated by CEA, CNRS and INRIA at the following URL
philpem@5 33 # "http://www.cecill.info".
philpem@5 34 #
philpem@5 35 # As a counterpart to the access to the source code and rights to copy,
philpem@5 36 # modify and redistribute granted by the license, users are provided only
philpem@5 37 # with a limited warranty and the software's author, the holder of the
philpem@5 38 # economic rights, and the successive licensors have only limited
philpem@5 39 # liability.
philpem@5 40 #
philpem@5 41 # In this respect, the user's attention is drawn to the risks associated
philpem@5 42 # with loading, using, modifying and/or developing or reproducing the
philpem@5 43 # software by the user in light of its specific status of free software,
philpem@5 44 # that may mean that it is complicated to manipulate, and that also
philpem@5 45 # therefore means that it is reserved for developers and experienced
philpem@5 46 # professionals having in-depth computer knowledge. Users are therefore
philpem@5 47 # encouraged to load and test the software's suitability as regards their
philpem@5 48 # requirements in conditions enabling the security of their systems and/or
philpem@5 49 # data to be ensured and, more generally, to use and operate it in the
philpem@5 50 # same conditions as regards security.
philpem@5 51 #
philpem@5 52 # The fact that you are presently reading this means that you have had
philpem@5 53 # knowledge of the CeCILL license and that you accept its terms.
philpem@5 54 #
philpem@5 55 */
philpem@5 56
philpem@5 57 #include "CImg.h"
philpem@5 58 using namespace cimg_library;
philpem@5 59
philpem@5 60 // The lines below are necessary when using a non-standard compiler as visualcpp6.
philpem@5 61 #ifdef cimg_use_visualcpp6
philpem@5 62 #define std
philpem@5 63 #endif
philpem@5 64 #ifdef min
philpem@5 65 #undef min
philpem@5 66 #undef max
philpem@5 67 #endif
philpem@5 68
philpem@5 69 #ifndef cimg_imagepath
philpem@5 70 #define cimg_imagepath "img/"
philpem@5 71 #endif
philpem@5 72
philpem@5 73 int main(int argc,char **argv) {
philpem@5 74
philpem@5 75 // Read command line arguments
philpem@5 76 //-----------------------------
philpem@5 77 cimg_usage("Tschumperle-Deriche's flow for 2D Image Restoration, Inpainting, Magnification or Flow visualization");
philpem@5 78 const char *file_i = cimg_option("-i",cimg_imagepath "milla.bmp","Input image");
philpem@5 79 const char *file_m = cimg_option("-m",(char*)NULL,"Mask image (if Inpainting)");
philpem@5 80 const char *file_f = cimg_option("-f",(char*)NULL,"Flow image (if Flow visualization)");
philpem@5 81 const char *file_o = cimg_option("-o",(char*)NULL,"Output file");
philpem@5 82 const double zoom = cimg_option("-zoom",1.0,"Image magnification");
philpem@5 83
philpem@5 84 const unsigned int nb_iter = cimg_option("-iter",100000,"Number of iterations");
philpem@5 85 const double dt = cimg_option("-dt",20.0,"Adapting time step");
philpem@5 86 const double alpha = cimg_option("-alpha",0.0,"Gradient smoothing");
philpem@5 87 const double sigma = cimg_option("-sigma",0.5,"Structure tensor smoothing");
philpem@5 88 const float a1 = cimg_option("-a1",0.5f,"Diffusion limiter along minimal variations");
philpem@5 89 const float a2 = cimg_option("-a2",0.9f,"Diffusion limiter along maximal variations");
philpem@5 90 const double noiseg = cimg_option("-ng",0.0,"Add gauss noise before aplying the algorithm");
philpem@5 91 const double noiseu = cimg_option("-nu",0.0,"Add uniform noise before applying the algorithm");
philpem@5 92 const double noises = cimg_option("-ns",0.0,"Add salt&pepper noise before applying the algorithm");
philpem@5 93 const bool stflag = cimg_option("-stats",false,"Display image statistics at each iteration");
philpem@5 94 const unsigned int save = cimg_option("-save",0,"Iteration saving step");
philpem@5 95 const unsigned int visu = cimg_option("-visu",10,"Visualization step (0=no visualization)");
philpem@5 96 const unsigned int init = cimg_option("-init",3,"Inpainting initialization (0=black, 1=white, 2=noise, 3=unchanged)");
philpem@5 97 const unsigned int skip = cimg_option("-skip",1,"Step of image geometry computation");
philpem@5 98 bool view_t = cimg_option("-d",false,"View tensor directions (useful for debug)");
philpem@5 99 double xdt = 0;
philpem@5 100
philpem@5 101 // Variable initialization
philpem@5 102 //-------------------------
philpem@5 103 CImg<> img, flow;
philpem@5 104 CImg<int> mask;
philpem@5 105
philpem@5 106 if (file_i) {
philpem@5 107 img = CImg<>(file_i).resize(-100,-100,1,-100);
philpem@5 108 if (file_m) mask = CImg<unsigned char>(file_m).resize(img.dimx(),img.dimy(),1,1);
philpem@5 109 else if (zoom>1) {
philpem@5 110 mask = CImg<int>(img.dimx(),img.dimy(),1,1,-1).resize((int)(img.dimx()*zoom),(int)(img.dimy()*zoom),1,1,4)+1;
philpem@5 111 img.resize((int)(img.dimx()*zoom),(int)(img.dimy()*zoom),1,-100,3);
philpem@5 112 }
philpem@5 113 } else {
philpem@5 114 if (file_f) {
philpem@5 115 flow = CImg<>(file_f);
philpem@5 116 img = CImg<>((int)(flow.dimx()*zoom),(int)(flow.dimy()*zoom),1,1,0).noise(100,2);
philpem@5 117 flow.resize(img.dimx(),img.dimy(),1,2,3);
philpem@5 118 } else throw CImgException("You need to specify at least one input image (option -i), or one flow image (option -f)");
philpem@5 119 }
philpem@5 120 img.noise(noiseg,0).noise(noiseu,1).noise(noises,2);
philpem@5 121 float initial_min, initial_max = img.maxmin(initial_min);
philpem@5 122 if (mask.data && init!=3)
philpem@5 123 cimg_forXYV(img,x,y,k) if (mask(x,y))
philpem@5 124 img(x,y,k)=(float)((init?
philpem@5 125 (init==1?initial_max:((initial_max-initial_min)*cimg::rand())):
philpem@5 126 initial_min));
philpem@5 127
philpem@5 128 CImgDisplay disp;
philpem@5 129 if (visu) disp.assign(img,"Iterated Image");
philpem@5 130 CImg<> G(img.dimx(),img.dimy(),1,3,0), T(G), veloc(img), val(2), vec(2,2);
philpem@5 131
philpem@5 132 // PDE main iteration loop
philpem@5 133 //-------------------------
philpem@5 134 for (unsigned int iter=0; iter<nb_iter && (!disp || (!disp.is_closed && !disp.is_keyQ && !disp.is_keyESC)); iter++) {
philpem@5 135 std::printf("\riter %u , xdt = %g ",iter,xdt); std::fflush(stdout);
philpem@5 136 if (stflag) img.print();
philpem@5 137 if (disp && disp.key==cimg::keySPACE) { view_t = !view_t; disp.key=0; }
philpem@5 138
philpem@5 139 if (!(iter%skip)) {
philpem@5 140 // Compute the tensor field T, used to drive the diffusion
philpem@5 141 //---------------------------------------------------------
philpem@5 142
philpem@5 143 // When using PDE for flow visualization
philpem@5 144 if (flow.data) cimg_forXY(flow,x,y) {
philpem@5 145 const float
philpem@5 146 u = flow(x,y,0,0),
philpem@5 147 v = flow(x,y,0,1),
philpem@5 148 n = (float)std::sqrt((double)(u*u+v*v)),
philpem@5 149 nn = (n!=0)?n:1;
philpem@5 150 T(x,y,0) = u*u/nn;
philpem@5 151 T(x,y,1) = u*v/nn;
philpem@5 152 T(x,y,2) = v*v/nn;
philpem@5 153 } else {
philpem@5 154
philpem@5 155 // Compute structure tensor field G
philpem@5 156 CImgList<> grad = img.get_gradient();
philpem@5 157 if (alpha!=0) cimglist_for(grad,l) grad[l].blur((float)alpha);
philpem@5 158 G.fill(0);
philpem@5 159 cimg_forXYV(img,x,y,k) {
philpem@5 160 const float ix = grad[0](x,y,k), iy = grad[1](x,y,k);
philpem@5 161 G(x,y,0) += ix*ix;
philpem@5 162 G(x,y,1) += ix*iy;
philpem@5 163 G(x,y,2) += iy*iy;
philpem@5 164 }
philpem@5 165 if (sigma!=0) G.blur((float)sigma);
philpem@5 166
philpem@5 167 // When using PDE for image restoration, inpainting or zooming
philpem@5 168 T.fill(0);
philpem@5 169 if (!mask.data) cimg_forXY(G,x,y) {
philpem@5 170 G.get_tensor_at(x,y).symmetric_eigen(val,vec);
philpem@5 171 const float
philpem@5 172 l1 = (float)std::pow(1.0f+val[0]+val[1],-a1),
philpem@5 173 l2 = (float)std::pow(1.0f+val[0]+val[1],-a2),
philpem@5 174 ux = vec(1,0),
philpem@5 175 uy = vec(1,1);
philpem@5 176 T(x,y,0) = l1*ux*ux + l2*uy*uy;
philpem@5 177 T(x,y,1) = l1*ux*uy - l2*ux*uy;
philpem@5 178 T(x,y,2) = l1*uy*uy + l2*ux*ux;
philpem@5 179 }
philpem@5 180 else cimg_forXY(G,x,y) if (mask(x,y)) {
philpem@5 181 G.get_tensor_at(x,y).symmetric_eigen(val,vec);
philpem@5 182 const float
philpem@5 183 ux = vec(1,0),
philpem@5 184 uy = vec(1,1);
philpem@5 185 T(x,y,0) = ux*ux;
philpem@5 186 T(x,y,1) = ux*uy;
philpem@5 187 T(x,y,2) = uy*uy;
philpem@5 188 }
philpem@5 189 }
philpem@5 190 }
philpem@5 191
philpem@5 192 // Compute the PDE velocity and update the iterated image
philpem@5 193 //--------------------------------------------------------
philpem@5 194 CImg_3x3(I,float);
philpem@5 195 veloc.fill(0);
philpem@5 196 cimg_forV(img,k) cimg_for3x3(img,x,y,0,k,I) {
philpem@5 197 const float
philpem@5 198 a = T(x,y,0),
philpem@5 199 b = T(x,y,1),
philpem@5 200 c = T(x,y,2),
philpem@5 201 ixx = Inc+Ipc-2*Icc,
philpem@5 202 iyy = Icn+Icp-2*Icc,
philpem@5 203 ixy = 0.25f*(Ipp+Inn-Ipn-Inp);
philpem@5 204 veloc(x,y,k) = a*ixx + 2*b*ixy + c*iyy;
philpem@5 205 }
philpem@5 206 if (dt>0) {
philpem@5 207 float m, M = veloc.maxmin(m);
philpem@5 208 xdt = dt/cimg::max(cimg::abs(m),cimg::abs(M));
philpem@5 209 } else xdt=-dt;
philpem@5 210 img+=veloc*xdt;
philpem@5 211 img.cut((float)initial_min,(float)initial_max);
philpem@5 212
philpem@5 213 // Display and save iterations
philpem@5 214 if (disp && !(iter%visu)) {
philpem@5 215 if (!view_t) img.display(disp);
philpem@5 216 else {
philpem@5 217 const unsigned char white[3] = {255,255,255};
philpem@5 218 CImg<unsigned char> visu = img.get_resize(disp.dimx(),disp.dimy()).normalize(0,255);
philpem@5 219 CImg<> isophotes(img.dimx(),img.dimy(),1,2,0);
philpem@5 220 cimg_forXY(img,x,y) if (!mask.data || mask(x,y)) {
philpem@5 221 T.get_tensor_at(x,y).symmetric_eigen(val,vec);
philpem@5 222 isophotes(x,y,0) = vec(0,0);
philpem@5 223 isophotes(x,y,1) = vec(0,1);
philpem@5 224 }
philpem@5 225 visu.draw_quiver(isophotes,white,0.5f,10,9,0).display(disp);
philpem@5 226 }
philpem@5 227 }
philpem@5 228 if (save && file_o && !(iter%save)) img.save(file_o,iter);
philpem@5 229 if (disp) disp.resize().display(img);
philpem@5 230 }
philpem@5 231
philpem@5 232 // Save result and exit.
philpem@5 233 if (file_o) img.save(file_o);
philpem@5 234 return 0;
philpem@5 235 }