PTdecode/CImg-1.3.0/examples/image_registration.cpp

changeset 5
1204ebf9340d
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/PTdecode/CImg-1.3.0/examples/image_registration.cpp	Mon Aug 03 14:09:20 2009 +0100
     1.3 @@ -0,0 +1,237 @@
     1.4 +/*
     1.5 + #
     1.6 + #  File        : image_registration.cpp
     1.7 + #                ( C++ source file )
     1.8 + #
     1.9 + #  Description : Compute a motion field between two images,
    1.10 + #                with a multiscale and variational algorithm.
    1.11 + #                This file is a part of the CImg Library project.
    1.12 + #                ( http://cimg.sourceforge.net )
    1.13 + #
    1.14 + #  Copyright   : David Tschumperle
    1.15 + #                ( http://www.greyc.ensicaen.fr/~dtschump/ )
    1.16 + #
    1.17 + #  License     : CeCILL v2.0
    1.18 + #                ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
    1.19 + #
    1.20 + #  This software is governed by the CeCILL  license under French law and
    1.21 + #  abiding by the rules of distribution of free software.  You can  use,
    1.22 + #  modify and/ or redistribute the software under the terms of the CeCILL
    1.23 + #  license as circulated by CEA, CNRS and INRIA at the following URL
    1.24 + #  "http://www.cecill.info".
    1.25 + #
    1.26 + #  As a counterpart to the access to the source code and  rights to copy,
    1.27 + #  modify and redistribute granted by the license, users are provided only
    1.28 + #  with a limited warranty  and the software's author,  the holder of the
    1.29 + #  economic rights,  and the successive licensors  have only  limited
    1.30 + #  liability.
    1.31 + #
    1.32 + #  In this respect, the user's attention is drawn to the risks associated
    1.33 + #  with loading,  using,  modifying and/or developing or reproducing the
    1.34 + #  software by the user in light of its specific status of free software,
    1.35 + #  that may mean  that it is complicated to manipulate,  and  that  also
    1.36 + #  therefore means  that it is reserved for developers  and  experienced
    1.37 + #  professionals having in-depth computer knowledge. Users are therefore
    1.38 + #  encouraged to load and test the software's suitability as regards their
    1.39 + #  requirements in conditions enabling the security of their systems and/or
    1.40 + #  data to be ensured and,  more generally, to use and operate it in the
    1.41 + #   same conditions as regards security.
    1.42 + #
    1.43 + #  The fact that you are presently reading this means that you have had
    1.44 + #  knowledge of the CeCILL license and that you accept its terms.
    1.45 + #
    1.46 +*/
    1.47 +
    1.48 +#include "CImg.h"
    1.49 +using namespace cimg_library;
    1.50 +
    1.51 +// The lines below are necessary when using a non-standard compiler as visualcpp6.
    1.52 +#ifdef cimg_use_visualcpp6
    1.53 +#define std
    1.54 +#endif
    1.55 +#ifdef min
    1.56 +#undef min
    1.57 +#undef max
    1.58 +#endif
    1.59 +
    1.60 +#ifndef cimg_imagepath
    1.61 +#define cimg_imagepath "img/"
    1.62 +#endif
    1.63 +
    1.64 +// animate_warp() : Create warping animation from two images and a motion field
    1.65 +//----------------
    1.66 +void animate_warp(const CImg<unsigned char>& src, const CImg<unsigned char>& dest, const CImg<>& u,
    1.67 +                  const bool morph, const bool imode, const char *filename,int nb, CImgDisplay& disp) {
    1.68 +  CImg<unsigned char> visu = CImgList<unsigned char>(src,dest,src).get_append('x'), warp(src);
    1.69 +  float t=0;
    1.70 +  for (unsigned int iter=0; !disp || (!disp.is_closed && !disp.is_keyQ); iter++) {
    1.71 +    if (morph) cimg_forXYV(warp,x,y,k) {
    1.72 +      const float dx = u(x,y,0), dy = u(x,y,1),
    1.73 +        I1 = (float)src.linear_atXY(x-t*dx, y-t*dy, k),
    1.74 +        I2 = (float)dest.linear_atXY(x+(1-t)*dx,y+(1-t)*dy,k);
    1.75 +      warp(x,y,k) = (unsigned char)((1-t)*I1 + t*I2);
    1.76 +    } else cimg_forXYV(warp,x,y,k) {
    1.77 +      const float dx = u(x,y,0), dy = u(x,y,1), I1 = (float)src.linear_atXY(x-t*dx, y-t*dy, 0,k);
    1.78 +      warp(x,y,k) = (unsigned char)I1;
    1.79 +    }
    1.80 +    if (disp) visu.draw_image(2*src.dimx(),warp).display(disp.resize().wait(30));
    1.81 +    if (filename && *filename && (imode || (int)iter<nb)) {
    1.82 +      std::fprintf(stderr,"\r  > frame %d           ",iter);
    1.83 +      warp.save(filename,iter);
    1.84 +    }
    1.85 +    t+=1.0f/nb;
    1.86 +    if (t<0) { t=0; nb=-nb; }
    1.87 +    if (t>1) { t=1; nb=-nb; if (filename && *filename) std::exit(0); }
    1.88 +  }
    1.89 +}
    1.90 +
    1.91 +// get_warp() : Return the image src warped by the motion field u.
    1.92 +//------------
    1.93 +template<typename T> CImg<T> getwarp(const CImg<T>& src, const CImg<>& u) {
    1.94 +  CImg<T> warp(src);
    1.95 +  cimg_forXY(warp,x,y) warp(x,y) = (T)src.linear_atXY(x - u(x,y,0), y - u(x,y,1));
    1.96 +  return warp;
    1.97 +}
    1.98 +
    1.99 +// optmonoflow() : Register images for one scale ( semi-implicite PDE scheme ) between I2->I1
   1.100 +//---------------
   1.101 +CImg<> optmonoflow(const CImg<>& I1, const CImg<>& I2, const CImg<>& u0,
   1.102 +                   const float smooth, const float precision, CImgDisplay& disp) {
   1.103 +
   1.104 +  CImg<> u = u0.get_resize(I1.dimx(),I1.dimy(),1,2,3),dI(u);
   1.105 +  CImg_3x3(I,float);
   1.106 +  float dt=2,E=1e20f;
   1.107 +
   1.108 +  // compute first derivatives of I2
   1.109 +  cimg_for3x3(I2,x,y,0,0,I) {
   1.110 +    dI(x,y,0) = 0.5f*(Inc-Ipc);
   1.111 +    dI(x,y,1) = 0.5f*(Icn-Icp);
   1.112 +  }
   1.113 +
   1.114 +  // Main PDE iteration
   1.115 +  for (unsigned int iter=0; iter<100000; iter++) {
   1.116 +    std::fprintf(stderr,"\r- Iteration %d - E = %g",iter,E); std::fflush(stderr);
   1.117 +    const float Eold = E;
   1.118 +    E = 0;
   1.119 +    cimg_for3XY(u,x,y) {
   1.120 +      const float
   1.121 +        X = x + u(x,y,0),
   1.122 +        Y = y + u(x,y,1),
   1.123 +        deltaI = (float)(I2.linear_atXY(X,Y) - I1(x,y));
   1.124 +      float tmpf = 0;
   1.125 +      cimg_forV(u,k) {
   1.126 +        const float
   1.127 +          ux  = 0.5f*(u(_n1x,y,k)-u(_p1x,y,k)),
   1.128 +          uy  = 0.5f*(u(x,_n1y,k)-u(x,_p1y,k));
   1.129 +        u(x,y,k) = (float)( u(x,y,k) +
   1.130 +                            dt*(
   1.131 +                                -deltaI*dI.linear_atXY(X,Y,k) +
   1.132 +                                smooth* ( u(_n1x,y,k) + u(_p1x,y,k) + u(x,_n1y,k) + u(x,_p1y,k) )
   1.133 +                                )
   1.134 +                            )/(1+4*smooth*dt);
   1.135 +        tmpf += ux*ux + uy*uy;
   1.136 +      }
   1.137 +      E += deltaI*deltaI + smooth * tmpf;
   1.138 +    }
   1.139 +    if (cimg::abs(Eold-E)<precision) break;
   1.140 +    if (Eold<E) dt*=0.5;
   1.141 +    if (disp) disp.resize();
   1.142 +    if (disp && disp.is_closed) std::exit(0);
   1.143 +    if (disp && !(iter%300)) {
   1.144 +      const unsigned char white = 255;
   1.145 +      CImg<unsigned char> tmp = getwarp(I1,u).normalize(0,200);
   1.146 +      tmp.resize(disp.dimx(),disp.dimy()).draw_quiver(u,&white,0.7f,15,-14,0).display(disp);
   1.147 +    }
   1.148 +  }
   1.149 +  return u;
   1.150 +}
   1.151 +
   1.152 +// optflow() : multiscale version of the image registration algorithm
   1.153 +//-----------
   1.154 +CImg<> optflow(const CImg<>& xsrc, const CImg<>& xdest,
   1.155 +               const float smooth, const float precision, const unsigned int pnb_scale, CImgDisplay& disp) {
   1.156 +  const CImg<>
   1.157 +    src  = xsrc.get_pointwise_norm(1).resize(xdest.dimx(),xdest.dimy(),1,1,3).normalize(0,1),
   1.158 +    dest = xdest.get_pointwise_norm(1).resize(xdest.dimx(),xdest.dimy(),1,1,3).normalize(0,1);
   1.159 +  CImg<> u = CImg<>(src.dimx(),src.dimy(),1,2).fill(0);
   1.160 +
   1.161 +  const unsigned int nb_scale = pnb_scale>0?pnb_scale:(unsigned int)(2*std::log((double)(cimg::max(src.dimx(),src.dimy()))));
   1.162 +  for (int scale=nb_scale-1; scale>=0; scale--) {
   1.163 +    const CImg<> I1 = src.get_resize((int)(src.dimx()/std::pow(1.5,scale)), (int)(src.dimy()/std::pow(1.5,scale)) ,1,1,3);
   1.164 +    const CImg<> I2 = dest.get_resize((int)(src.dimx()/std::pow(1.5,scale)), (int)(src.dimy()/std::pow(1.5,scale)) ,1,1,3);
   1.165 +    std::fprintf(stderr," * Scale %d\n",scale);
   1.166 +    u*=1.5;
   1.167 +    u = optmonoflow(I1,I2,u,smooth,(float)(precision/std::pow(2.25,1+scale)),disp);
   1.168 +    std::fprintf(stderr,"\n");
   1.169 +  }
   1.170 +  return u;
   1.171 +}
   1.172 +
   1.173 +/*------------------------
   1.174 +
   1.175 +  Main function
   1.176 +
   1.177 +  ------------------------*/
   1.178 +
   1.179 +int main(int argc,char **argv) {
   1.180 +
   1.181 +  // Read command line parameters
   1.182 +  cimg_usage("Compute an optical flow between two 2D images, and create a warped animation");
   1.183 +  const char
   1.184 +    *name_i1   = cimg_option("-i",cimg_imagepath "sh0r.pgm","Input Image 1 (Destination)"),
   1.185 +    *name_i2   = cimg_option("-i2",cimg_imagepath "sh1r.pgm","Input Image 2 (Source)"),
   1.186 +    *name_o    = cimg_option("-o",(const char*)NULL,"Output 2D flow (inrimage)"),
   1.187 +    *name_seq  = cimg_option("-o2",(const char*)NULL,"Output Warping Sequence");
   1.188 +  const float
   1.189 +    smooth    = cimg_option("-s",0.1f,"Flow Smoothness"),
   1.190 +    precision = cimg_option("-p",0.9f,"Convergence precision");
   1.191 +  const unsigned int
   1.192 +    nb        = cimg_option("-n",40,"Number of warped frames"),
   1.193 +    nbscale   = cimg_option("-scale",0,"Number of scales (0=auto)");
   1.194 +  const bool
   1.195 +    normalize = cimg_option("-equalize",true,"Histogram normalization of the images"),
   1.196 +    morph     = cimg_option("-m",true,"Morphing mode"),
   1.197 +    imode     = cimg_option("-c",true,"Complete interpolation (or last frame is missing)"),
   1.198 +    dispflag = !cimg_option("-novisu",false,"Visualization");
   1.199 +
   1.200 +  // Init images and display
   1.201 +  std::fprintf(stderr," - Init images.\n");
   1.202 +  const CImg<>
   1.203 +    src(name_i1),
   1.204 +    dest(CImg<>(name_i2).resize(src,3)),
   1.205 +    src_blur  = normalize?src.get_blur(0.5f).equalize(256):src.get_blur(0.5f),
   1.206 +    dest_blur = normalize?dest.get_blur(0.5f).equalize(256):dest.get_blur(0.5f);
   1.207 +
   1.208 +  CImgDisplay disp;
   1.209 +  if (dispflag) {
   1.210 +    unsigned int w = src.dimx(), h = src.dimy();
   1.211 +    const unsigned int dmin = cimg::min(w,h), minsiz = 512;
   1.212 +    if (dmin<minsiz) { w=w*minsiz/dmin; h=h*minsiz/dmin; }
   1.213 +    const unsigned int dmax = cimg::max(w,h), maxsiz = 1024;
   1.214 +    if (dmax>maxsiz) { w=w*maxsiz/dmax; h=h*maxsiz/dmax; }
   1.215 +    disp.assign(w,h,"Estimated Motion",0);
   1.216 +  }
   1.217 +
   1.218 +  // Run Motion estimation algorithm
   1.219 +  std::fprintf(stderr," - Compute optical flow.\n");
   1.220 +  const CImg<> u = optflow(src_blur,dest_blur,smooth,precision,nbscale,disp);
   1.221 +  if (name_o) u.save(name_o);
   1.222 +  u.print("Computed flow");
   1.223 +
   1.224 +  // Do morphing animation
   1.225 +  std::fprintf(stderr," - Create warped animation.\n");
   1.226 +  CImgDisplay disp2;
   1.227 +  if (dispflag) {
   1.228 +    unsigned int w = src.dimx(), h = src.dimy();
   1.229 +    const unsigned int dmin = cimg::min(w,h), minsiz = 100;
   1.230 +    if (dmin<minsiz) { w=w*minsiz/dmin; h=h*minsiz/dmin; }
   1.231 +    const unsigned int dmax = cimg::max(w,h), maxsiz = 1024/3;
   1.232 +    if (dmax>maxsiz) { w=w*maxsiz/dmax; h=h*maxsiz/dmax; }
   1.233 +    disp2.assign(3*w,h,"Source/Destination images and Motion animation",0);
   1.234 +  }
   1.235 +
   1.236 +  animate_warp(src.get_normalize(0,255),dest.get_normalize(0,255),u,morph,imode,name_seq,nb,disp2);
   1.237 +
   1.238 +  std::exit(0);
   1.239 +  return 0;
   1.240 +}