PTdecode/CImg-1.3.0/examples/mcf_levelsets3d.cpp

changeset 5
1204ebf9340d
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/PTdecode/CImg-1.3.0/examples/mcf_levelsets3d.cpp	Mon Aug 03 14:09:20 2009 +0100
     1.3 @@ -0,0 +1,183 @@
     1.4 +/*
     1.5 + #
     1.6 + #  File        : mcf_levelsets3d.cpp
     1.7 + #                ( C++ source file )
     1.8 + #
     1.9 + #  Description : Implementation of the Mean Curvature Flow on Surfaces
    1.10 + #                using the framework of Level Sets 3D.
    1.11 + #                This file is a part of the CImg Library project.
    1.12 + #                ( http://cimg.sourceforge.net )
    1.13 + #
    1.14 + #  Copyright   : David Tschumperle
    1.15 + #                ( http://www.greyc.ensicaen.fr/~dtschump/ )
    1.16 + #
    1.17 + #  License     : CeCILL v2.0
    1.18 + #                ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
    1.19 + #
    1.20 + #  This software is governed by the CeCILL  license under French law and
    1.21 + #  abiding by the rules of distribution of free software.  You can  use,
    1.22 + #  modify and/ or redistribute the software under the terms of the CeCILL
    1.23 + #  license as circulated by CEA, CNRS and INRIA at the following URL
    1.24 + #  "http://www.cecill.info".
    1.25 + #
    1.26 + #  As a counterpart to the access to the source code and  rights to copy,
    1.27 + #  modify and redistribute granted by the license, users are provided only
    1.28 + #  with a limited warranty  and the software's author,  the holder of the
    1.29 + #  economic rights,  and the successive licensors  have only  limited
    1.30 + #  liability.
    1.31 + #
    1.32 + #  In this respect, the user's attention is drawn to the risks associated
    1.33 + #  with loading,  using,  modifying and/or developing or reproducing the
    1.34 + #  software by the user in light of its specific status of free software,
    1.35 + #  that may mean  that it is complicated to manipulate,  and  that  also
    1.36 + #  therefore means  that it is reserved for developers  and  experienced
    1.37 + #  professionals having in-depth computer knowledge. Users are therefore
    1.38 + #  encouraged to load and test the software's suitability as regards their
    1.39 + #  requirements in conditions enabling the security of their systems and/or
    1.40 + #  data to be ensured and,  more generally, to use and operate it in the
    1.41 + #  same conditions as regards security.
    1.42 + #
    1.43 + #  The fact that you are presently reading this means that you have had
    1.44 + #  knowledge of the CeCILL license and that you accept its terms.
    1.45 + #
    1.46 +*/
    1.47 +
    1.48 +#include "CImg.h"
    1.49 +using namespace cimg_library;
    1.50 +
    1.51 +// The lines below are necessary when using a non-standard compiler as visualcpp6.
    1.52 +#ifdef cimg_use_visualcpp6
    1.53 +#define std
    1.54 +#endif
    1.55 +#ifdef min
    1.56 +#undef min
    1.57 +#undef max
    1.58 +#endif
    1.59 +
    1.60 +// Apply the Mean curvature flow PDE
    1.61 +//-----------------------------------
    1.62 +template<typename T> CImg<T>& mcf_PDE(CImg<T>& img, const unsigned int nb_iter,
    1.63 +                                      const float dt=0.25f, const float narrow=4.0f) {
    1.64 +  CImg<T> veloc(img.dimx(),img.dimy(),img.dimz(),img.dimv());
    1.65 +  CImg_3x3x3(I,float);
    1.66 +  for (unsigned int iter=0; iter<nb_iter; iter++) {
    1.67 +    cimg_for3x3x3(img,x,y,z,0,I) if (cimg::abs(Iccc)<narrow) {
    1.68 +      const float
    1.69 +        ix = 0.5f*(Incc-Ipcc),
    1.70 +        iy = 0.5f*(Icnc-Icpc),
    1.71 +        iz = 0.5f*(Iccn-Iccp),
    1.72 +        norm = (float)std::sqrt(1e-5f+ix*ix+iy*iy+iz*iz),
    1.73 +        ixx = Incc+Ipcc-2*Iccc,
    1.74 +        ixy = 0.25f*(Ippc+Innc-Inpc-Ipnc),
    1.75 +        ixz = 0.25f*(Ipcp+Incn-Incp-Ipcn),
    1.76 +        iyy = Icnc+Icpc-2*Iccc,
    1.77 +        iyz = 0.25f*(Icpp+Icnn-Icnp-Icpn),
    1.78 +        izz = Iccn+Iccp-2*Iccc,
    1.79 +        a = ix/norm,
    1.80 +        b = iy/norm,
    1.81 +        c = iz/norm,
    1.82 +        inn = a*a*ixx + b*b*iyy + c*c*izz + 2*a*b*ixy + 2*a*c*ixz + 2*b*c*iyz;
    1.83 +      veloc(x,y,z) = ixx+iyy+izz-inn;
    1.84 +    } else veloc(x,y,z) = 0;
    1.85 +    float m, M = veloc.maxmin(m);
    1.86 +    const double xdt = dt/cimg::max(cimg::abs(m),cimg::abs(M));
    1.87 +    img+=xdt*veloc;
    1.88 +  }
    1.89 +  return img;
    1.90 +}
    1.91 +
    1.92 +// Main procedure
    1.93 +//----------------
    1.94 +int main(int argc,char **argv) {
    1.95 +  cimg_usage("Mean curvature flow of a surface, using 3D level sets");
    1.96 +  const char *file_i = cimg_option("-i",(char*)0,"Input image");
    1.97 +  const float dt = cimg_option("-dt",0.05f,"PDE Time step");
    1.98 +  const float narrow = cimg_option("-band",5.0f,"Size of the narrow band");
    1.99 +  const bool both = cimg_option("-both",false,"Show both evolving and initial surface");
   1.100 +
   1.101 +  // Define the signed distance map of the initial surface
   1.102 +  CImg<> img;
   1.103 +  if (file_i) {
   1.104 +    const float sigma = cimg_option("-sigma",1.2f,"Segmentation regularity");
   1.105 +    const float alpha = cimg_option("-alpha",5.0f,"Region growing tolerance");
   1.106 +    img.load(file_i).channel(0);
   1.107 +    CImg<int> s;
   1.108 +    CImgDisplay disp(img,"Please select a starting point");
   1.109 +    while (!s || s[0]<0) s = img.get_select(0,disp);
   1.110 +    CImg<> region;
   1.111 +    float tmp[1] = { 0 };
   1.112 +    img.draw_fill(s[0],s[1],s[2],tmp,1,region,alpha);
   1.113 +    ((img = region.normalize(-1,1))*=-1).blur(sigma);
   1.114 +
   1.115 +  }
   1.116 +  else { // Create synthetic implicit function
   1.117 +    img.assign(60,60,60);
   1.118 +    const float exte[1]={1}, inte[1]={-1};
   1.119 +    img.fill(*exte).draw_rectangle(15,15,15,45,45,45,inte).draw_rectangle(25,25,0,35,35,img.dimz()-1,exte).
   1.120 +      draw_rectangle(0,25,25,img.dimx()-1,35,35,exte).draw_rectangle(25,0,25,35,img.dimy()-1,35,exte);
   1.121 +  }
   1.122 +  img.distance_hamilton(10,0,0.1f);
   1.123 +
   1.124 +  // Compute corresponding surface triangularization by the marching cube algorithm (isovalue 0)
   1.125 +  CImg<> points0;
   1.126 +  CImgList<unsigned int> faces0;
   1.127 +  if (both) points0 = img.get_isovalue3d(faces0,0);
   1.128 +  const CImgList<unsigned char> colors0(faces0.size,CImg<unsigned char>::vector(100,200,255));
   1.129 +  const CImgList<> opacities0(faces0.size,1,1,1,1,0.2f);
   1.130 +
   1.131 +  // Perform MCF evolution
   1.132 +  CImgDisplay disp(256,256,"",1), disp3d(512,512,"",0);
   1.133 +  float alpha = 0, beta = 0;
   1.134 +  for (unsigned int iter=0; !disp.is_closed && !disp3d.is_closed && !disp.is_keyESC && !disp3d.is_keyESC &&
   1.135 +         !disp.is_keyQ && !disp3d.is_keyQ; iter++) {
   1.136 +    disp.set_title("3D implicit Function (iter. %u)",iter);
   1.137 +    disp3d.set_title("Mean curvature flow 3D - Isosurface (iter. %u)",iter);
   1.138 +
   1.139 +    // Apply PDE on the distance function
   1.140 +    mcf_PDE(img,1,dt,narrow);                       // Do one iteration of mean curvature flow
   1.141 +    if (!(iter%10)) img.distance_hamilton(1,narrow,0.5f); // Every 10 steps, do one iteration of distance function re-initialization
   1.142 +
   1.143 +    // Compute surface triangularization by the marching cube algorithm (isovalue 0)
   1.144 +    CImgList<unsigned int> faces;
   1.145 +    CImg<> points = img.get_isovalue3d(faces,0);
   1.146 +    CImgList<unsigned char> colors(faces.size,CImg<unsigned char>::vector(200,128,100));
   1.147 +    CImgList<> opacities(faces.size,CImg<>::vector(1.0f));
   1.148 +    const float fact = 3*cimg::max(disp3d.dimx(),disp3d.dimy())/(4.0f*cimg::max(img.dimx(),img.dimy()));
   1.149 +
   1.150 +    // Append initial object if necessary.
   1.151 +    if (both) {
   1.152 +      points.append_object3d(faces,points0,faces0);
   1.153 +      colors.insert(colors0);
   1.154 +      opacities.insert(opacities0);
   1.155 +    }
   1.156 +
   1.157 +    // center and rescale the objects
   1.158 +    cimg_forX(points,l) {
   1.159 +      points(l,0)=(points(l,0)-img.dimx()/2)*fact;
   1.160 +      points(l,1)=(points(l,1)-img.dimy()/2)*fact;
   1.161 +      points(l,2)=(points(l,2)-img.dimz()/2)*fact;
   1.162 +    }
   1.163 +
   1.164 +    // Display 3D object on the display window.
   1.165 +    CImg<unsigned char> visu(disp3d.dimx(),disp3d.dimy(),1,3,0);
   1.166 +    const CImg<> rot = CImg<>::rotation_matrix(1,0,0,(beta+=0.01f))*CImg<>::rotation_matrix(0,1,1,(alpha+=0.05f));
   1.167 +    if (points.size()) {
   1.168 +      visu.draw_object3d(visu.dimx()/2.0f,visu.dimy()/2.0f,0.0f,
   1.169 +                         rot*points,faces,colors,opacities,3,
   1.170 +                         false,500.0,0.0f,0.0f,-8000.0f).display(disp3d);
   1.171 +    } else visu.fill(0).display(disp3d);
   1.172 +    img.display(disp.wait(20));
   1.173 +
   1.174 +    if ((disp3d.button || disp3d.key) && points.size()) {
   1.175 +      unsigned char white[3]={ 255,255,255 };
   1.176 +      visu.fill(0).draw_text(10,10,"Time stopped, press any key to start again",white).
   1.177 +        display_object3d(disp3d,points,faces,colors,opacities,true,4,3,false,500,0.4f,0.3f);
   1.178 +      disp3d.key = 0;
   1.179 +    }
   1.180 +    if (disp.is_resized)   disp.resize(false);
   1.181 +    if (disp3d.is_resized) disp3d.resize(false);
   1.182 +  }
   1.183 +
   1.184 +  // Exit
   1.185 +  return 0;
   1.186 +}