PTdecode/CImg-1.3.0/examples/pde_TschumperleDeriche2d.cpp

changeset 5
1204ebf9340d
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/PTdecode/CImg-1.3.0/examples/pde_TschumperleDeriche2d.cpp	Mon Aug 03 14:09:20 2009 +0100
     1.3 @@ -0,0 +1,235 @@
     1.4 +/*
     1.5 + #
     1.6 + #  File        : pde_TschumperleDeriche2D.cpp
     1.7 + #                ( C++ source file )
     1.8 + #
     1.9 + #  Description : Implementation of the Tschumperle-Deriche's Regularization
    1.10 + #                PDE, for 2D multivalued images, as described in the articles below.
    1.11 + #                This file is a part of the CImg Library project.
    1.12 + #                ( http://cimg.sourceforge.net )
    1.13 + #
    1.14 + #  (1) PDE-Based Regularization of Multivalued Images and Applications.
    1.15 + #               (D. Tschumperle). PhD Thesis. University of Nice-Sophia Antipolis, December 2002.
    1.16 + #  (2) Diffusion PDE's on Vector-valued Images : Local Approach and Geometric Viewpoint.
    1.17 + #               (D. Tschumperle and R. Deriche). IEEE Signal Processing Magazine, October 2002.
    1.18 + #  (3) Vector-Valued Image Regularization with PDE's : A Common Framework for Different Applications.
    1.19 + #               (D. Tschumperle and R. Deriche). CVPR'2003, Computer Vision and Pattern Recognition, Madison, United States, June 2003.
    1.20 + #
    1.21 + #  This code can be used to perform image restoration, inpainting, magnification or flow visualization.
    1.22 + #
    1.23 + #  NOTE : THIS SOURCE IS DISTRIBUTED FOR EDUCATIONAL PURPOSES ONLY. A BETTER ANISOTROPIC SMOOTHING ALGORITHM CAN BE FOUND
    1.24 + #  IN THE FILE 'greycstoration.cpp' WHICH IS THE RESULT OF MORE RECENT WORK.
    1.25 + #
    1.26 + #  Copyright   : David Tschumperle
    1.27 + #                ( http://www.greyc.ensicaen.fr/~dtschump/ )
    1.28 + #
    1.29 + #  License     : CeCILL v2.0
    1.30 + #                ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
    1.31 + #
    1.32 + #  This software is governed by the CeCILL  license under French law and
    1.33 + #  abiding by the rules of distribution of free software.  You can  use,
    1.34 + #  modify and/ or redistribute the software under the terms of the CeCILL
    1.35 + #  license as circulated by CEA, CNRS and INRIA at the following URL
    1.36 + #  "http://www.cecill.info".
    1.37 + #
    1.38 + #  As a counterpart to the access to the source code and  rights to copy,
    1.39 + #  modify and redistribute granted by the license, users are provided only
    1.40 + #  with a limited warranty  and the software's author,  the holder of the
    1.41 + #  economic rights,  and the successive licensors  have only  limited
    1.42 + #  liability.
    1.43 + #
    1.44 + #  In this respect, the user's attention is drawn to the risks associated
    1.45 + #  with loading,  using,  modifying and/or developing or reproducing the
    1.46 + #  software by the user in light of its specific status of free software,
    1.47 + #  that may mean  that it is complicated to manipulate,  and  that  also
    1.48 + #  therefore means  that it is reserved for developers  and  experienced
    1.49 + #  professionals having in-depth computer knowledge. Users are therefore
    1.50 + #  encouraged to load and test the software's suitability as regards their
    1.51 + #  requirements in conditions enabling the security of their systems and/or
    1.52 + #  data to be ensured and,  more generally, to use and operate it in the
    1.53 + #  same conditions as regards security.
    1.54 + #
    1.55 + #  The fact that you are presently reading this means that you have had
    1.56 + #  knowledge of the CeCILL license and that you accept its terms.
    1.57 + #
    1.58 +*/
    1.59 +
    1.60 +#include "CImg.h"
    1.61 +using namespace cimg_library;
    1.62 +
    1.63 +// The lines below are necessary when using a non-standard compiler as visualcpp6.
    1.64 +#ifdef cimg_use_visualcpp6
    1.65 +#define std
    1.66 +#endif
    1.67 +#ifdef min
    1.68 +#undef min
    1.69 +#undef max
    1.70 +#endif
    1.71 +
    1.72 +#ifndef cimg_imagepath
    1.73 +#define cimg_imagepath "img/"
    1.74 +#endif
    1.75 +
    1.76 +int main(int argc,char **argv) {
    1.77 +
    1.78 +  // Read command line arguments
    1.79 +  //-----------------------------
    1.80 +  cimg_usage("Tschumperle-Deriche's flow for 2D Image Restoration, Inpainting, Magnification or Flow visualization");
    1.81 +  const char *file_i  = cimg_option("-i",cimg_imagepath "milla.bmp","Input image");
    1.82 +  const char *file_m  = cimg_option("-m",(char*)NULL,"Mask image (if Inpainting)");
    1.83 +  const char *file_f  = cimg_option("-f",(char*)NULL,"Flow image (if Flow visualization)");
    1.84 +  const char *file_o  = cimg_option("-o",(char*)NULL,"Output file");
    1.85 +  const double zoom   = cimg_option("-zoom",1.0,"Image magnification");
    1.86 +
    1.87 +  const unsigned int nb_iter  = cimg_option("-iter",100000,"Number of iterations");
    1.88 +  const double dt     = cimg_option("-dt",20.0,"Adapting time step");
    1.89 +  const double alpha  = cimg_option("-alpha",0.0,"Gradient smoothing");
    1.90 +  const double sigma  = cimg_option("-sigma",0.5,"Structure tensor smoothing");
    1.91 +  const float a1      = cimg_option("-a1",0.5f,"Diffusion limiter along minimal variations");
    1.92 +  const float a2      = cimg_option("-a2",0.9f,"Diffusion limiter along maximal variations");
    1.93 +  const double noiseg = cimg_option("-ng",0.0,"Add gauss noise before aplying the algorithm");
    1.94 +  const double noiseu = cimg_option("-nu",0.0,"Add uniform noise before applying the algorithm");
    1.95 +  const double noises = cimg_option("-ns",0.0,"Add salt&pepper noise before applying the algorithm");
    1.96 +  const bool stflag   = cimg_option("-stats",false,"Display image statistics at each iteration");
    1.97 +  const unsigned int save = cimg_option("-save",0,"Iteration saving step");
    1.98 +  const unsigned int visu = cimg_option("-visu",10,"Visualization step (0=no visualization)");
    1.99 +  const unsigned int init = cimg_option("-init",3,"Inpainting initialization (0=black, 1=white, 2=noise, 3=unchanged)");
   1.100 +  const unsigned int skip = cimg_option("-skip",1,"Step of image geometry computation");
   1.101 +  bool view_t         = cimg_option("-d",false,"View tensor directions (useful for debug)");
   1.102 +  double xdt = 0;
   1.103 +
   1.104 +  // Variable initialization
   1.105 +  //-------------------------
   1.106 +  CImg<> img, flow;
   1.107 +  CImg<int> mask;
   1.108 +
   1.109 +  if (file_i) {
   1.110 +    img = CImg<>(file_i).resize(-100,-100,1,-100);
   1.111 +    if (file_m) mask = CImg<unsigned char>(file_m).resize(img.dimx(),img.dimy(),1,1);
   1.112 +    else if (zoom>1) {
   1.113 +      mask = CImg<int>(img.dimx(),img.dimy(),1,1,-1).resize((int)(img.dimx()*zoom),(int)(img.dimy()*zoom),1,1,4)+1;
   1.114 +      img.resize((int)(img.dimx()*zoom),(int)(img.dimy()*zoom),1,-100,3);
   1.115 +    }
   1.116 +  } else {
   1.117 +    if (file_f) {
   1.118 +      flow = CImg<>(file_f);
   1.119 +      img = CImg<>((int)(flow.dimx()*zoom),(int)(flow.dimy()*zoom),1,1,0).noise(100,2);
   1.120 +      flow.resize(img.dimx(),img.dimy(),1,2,3);
   1.121 +    } else throw CImgException("You need to specify at least one input image (option -i), or one flow image (option -f)");
   1.122 +  }
   1.123 +  img.noise(noiseg,0).noise(noiseu,1).noise(noises,2);
   1.124 +  float initial_min, initial_max = img.maxmin(initial_min);
   1.125 +  if (mask.data && init!=3)
   1.126 +    cimg_forXYV(img,x,y,k) if (mask(x,y))
   1.127 +      img(x,y,k)=(float)((init?
   1.128 +                          (init==1?initial_max:((initial_max-initial_min)*cimg::rand())):
   1.129 +                          initial_min));
   1.130 +
   1.131 +  CImgDisplay disp;
   1.132 +  if (visu) disp.assign(img,"Iterated Image");
   1.133 +  CImg<> G(img.dimx(),img.dimy(),1,3,0), T(G), veloc(img), val(2), vec(2,2);
   1.134 +
   1.135 +  // PDE main iteration loop
   1.136 +  //-------------------------
   1.137 +  for (unsigned int iter=0; iter<nb_iter && (!disp || (!disp.is_closed && !disp.is_keyQ && !disp.is_keyESC)); iter++) {
   1.138 +    std::printf("\riter %u , xdt = %g               ",iter,xdt); std::fflush(stdout);
   1.139 +    if (stflag) img.print();
   1.140 +    if (disp && disp.key==cimg::keySPACE) { view_t = !view_t; disp.key=0; }
   1.141 +
   1.142 +    if (!(iter%skip)) {
   1.143 +      // Compute the tensor field T, used to drive the diffusion
   1.144 +      //---------------------------------------------------------
   1.145 +
   1.146 +      // When using PDE for flow visualization
   1.147 +      if (flow.data) cimg_forXY(flow,x,y) {
   1.148 +        const float
   1.149 +          u = flow(x,y,0,0),
   1.150 +          v = flow(x,y,0,1),
   1.151 +          n = (float)std::sqrt((double)(u*u+v*v)),
   1.152 +          nn = (n!=0)?n:1;
   1.153 +        T(x,y,0) = u*u/nn;
   1.154 +        T(x,y,1) = u*v/nn;
   1.155 +        T(x,y,2) = v*v/nn;
   1.156 +      } else {
   1.157 +
   1.158 +        // Compute structure tensor field G
   1.159 +        CImgList<> grad = img.get_gradient();
   1.160 +        if (alpha!=0) cimglist_for(grad,l) grad[l].blur((float)alpha);
   1.161 +        G.fill(0);
   1.162 +        cimg_forXYV(img,x,y,k) {
   1.163 +          const float ix = grad[0](x,y,k), iy = grad[1](x,y,k);
   1.164 +          G(x,y,0) += ix*ix;
   1.165 +          G(x,y,1) += ix*iy;
   1.166 +          G(x,y,2) += iy*iy;
   1.167 +        }
   1.168 +        if (sigma!=0) G.blur((float)sigma);
   1.169 +
   1.170 +        // When using PDE for image restoration, inpainting or zooming
   1.171 +        T.fill(0);
   1.172 +        if (!mask.data) cimg_forXY(G,x,y) {
   1.173 +          G.get_tensor_at(x,y).symmetric_eigen(val,vec);
   1.174 +          const float
   1.175 +            l1 = (float)std::pow(1.0f+val[0]+val[1],-a1),
   1.176 +            l2 = (float)std::pow(1.0f+val[0]+val[1],-a2),
   1.177 +            ux = vec(1,0),
   1.178 +            uy = vec(1,1);
   1.179 +          T(x,y,0) = l1*ux*ux + l2*uy*uy;
   1.180 +          T(x,y,1) = l1*ux*uy - l2*ux*uy;
   1.181 +          T(x,y,2) = l1*uy*uy + l2*ux*ux;
   1.182 +        }
   1.183 +        else cimg_forXY(G,x,y) if (mask(x,y)) {
   1.184 +          G.get_tensor_at(x,y).symmetric_eigen(val,vec);
   1.185 +          const float
   1.186 +            ux = vec(1,0),
   1.187 +            uy = vec(1,1);
   1.188 +          T(x,y,0) = ux*ux;
   1.189 +          T(x,y,1) = ux*uy;
   1.190 +          T(x,y,2) = uy*uy;
   1.191 +        }
   1.192 +      }
   1.193 +    }
   1.194 +
   1.195 +    // Compute the PDE velocity and update the iterated image
   1.196 +    //--------------------------------------------------------
   1.197 +    CImg_3x3(I,float);
   1.198 +    veloc.fill(0);
   1.199 +    cimg_forV(img,k) cimg_for3x3(img,x,y,0,k,I) {
   1.200 +      const float
   1.201 +        a = T(x,y,0),
   1.202 +        b = T(x,y,1),
   1.203 +        c = T(x,y,2),
   1.204 +        ixx = Inc+Ipc-2*Icc,
   1.205 +        iyy = Icn+Icp-2*Icc,
   1.206 +        ixy = 0.25f*(Ipp+Inn-Ipn-Inp);
   1.207 +      veloc(x,y,k) = a*ixx + 2*b*ixy + c*iyy;
   1.208 +    }
   1.209 +    if (dt>0) {
   1.210 +      float m, M = veloc.maxmin(m);
   1.211 +      xdt = dt/cimg::max(cimg::abs(m),cimg::abs(M));
   1.212 +    } else xdt=-dt;
   1.213 +    img+=veloc*xdt;
   1.214 +    img.cut((float)initial_min,(float)initial_max);
   1.215 +
   1.216 +    // Display and save iterations
   1.217 +    if (disp && !(iter%visu)) {
   1.218 +      if (!view_t) img.display(disp);
   1.219 +      else {
   1.220 +        const unsigned char white[3] = {255,255,255};
   1.221 +        CImg<unsigned char> visu = img.get_resize(disp.dimx(),disp.dimy()).normalize(0,255);
   1.222 +        CImg<> isophotes(img.dimx(),img.dimy(),1,2,0);
   1.223 +        cimg_forXY(img,x,y) if (!mask.data || mask(x,y)) {
   1.224 +          T.get_tensor_at(x,y).symmetric_eigen(val,vec);
   1.225 +          isophotes(x,y,0) = vec(0,0);
   1.226 +          isophotes(x,y,1) = vec(0,1);
   1.227 +        }
   1.228 +        visu.draw_quiver(isophotes,white,0.5f,10,9,0).display(disp);
   1.229 +      }
   1.230 +    }
   1.231 +    if (save && file_o && !(iter%save)) img.save(file_o,iter);
   1.232 +    if (disp) disp.resize().display(img);
   1.233 +  }
   1.234 +
   1.235 +  // Save result and exit.
   1.236 +  if (file_o) img.save(file_o);
   1.237 +  return 0;
   1.238 +}