Mon, 03 Aug 2009 14:09:20 +0100
added P-touch decoder source
1 /*
2 #
3 # File : edge_explorer.cpp
4 # ( C++ source file )
5 #
6 # Description : Real time edge detection while moving a ROI
7 # (rectangle of interest) over the original image.
8 # This file is a part of the CImg Library project.
9 # ( http://cimg.sourceforge.net )
10 #
11 # Copyright : Orges Leka
12 # ( oleka(at)students.uni-mainz.de )
13 #
14 # License : CeCILL v2.0
15 # ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
16 #
17 # This software is governed by the CeCILL license under French law and
18 # abiding by the rules of distribution of free software. You can use,
19 # modify and/ or redistribute the software under the terms of the CeCILL
20 # license as circulated by CEA, CNRS and INRIA at the following URL
21 # "http://www.cecill.info".
22 #
23 # As a counterpart to the access to the source code and rights to copy,
24 # modify and redistribute granted by the license, users are provided only
25 # with a limited warranty and the software's author, the holder of the
26 # economic rights, and the successive licensors have only limited
27 # liability.
28 #
29 # In this respect, the user's attention is drawn to the risks associated
30 # with loading, using, modifying and/or developing or reproducing the
31 # software by the user in light of its specific status of free software,
32 # that may mean that it is complicated to manipulate, and that also
33 # therefore means that it is reserved for developers and experienced
34 # professionals having in-depth computer knowledge. Users are therefore
35 # encouraged to load and test the software's suitability as regards their
36 # requirements in conditions enabling the security of their systems and/or
37 # data to be ensured and, more generally, to use and operate it in the
38 # same conditions as regards security.
39 #
40 # The fact that you are presently reading this means that you have had
41 # knowledge of the CeCILL license and that you accept its terms.
42 #
43 */
45 #include "CImg.h"
46 using namespace cimg_library;
48 // The lines below are necessary when using a non-standard compiler as visualcpp6.
49 #ifdef cimg_use_visualcpp6
50 #define std
51 #endif
52 #ifdef min
53 #undef min
54 #undef max
55 #endif
57 #ifndef cimg_imagepath
58 #define cimg_imagepath "img/"
59 #endif
61 // Start main procedure
62 //-----------------------
63 int main(int argc, char** argv) {
65 // Usage of the program displayed at the command line
66 cimg_usage("Real time edge detection with CImg. (c) Orges Leka");
68 // Read command line arguments
69 // With cimg_option we can get a new name for the image which is to be loaded from the command line.
70 const char* img_name = cimg_option("-i", cimg_imagepath "lena.pgm","Input image.");
71 double
72 alpha = cimg_option("-a",1.0,"Blurring the gradient image."),
73 thresL = cimg_option("-tl",13.5,"Lower thresholding used in Hysteresis."),
74 thresH = cimg_option("-th",13.6,"Higher thresholding used in Hysteresis.");
75 const unsigned int
76 mode = cimg_option("-m",1,"Detection mode: 1 = Hysteresis, 2 = Gradient angle."),
77 factor = cimg_option("-s",80,"Half-size of edge-explorer window.");
79 cimg_help("\nAdditional notes : user can press following keys on main display window :\n"
80 " - Left arrow : Decrease alpha.\n"
81 " - Right arrow : Increase alpha.\n");
83 // Construct a new image called 'edge' of size (2*factor,2*factor)
84 // and of type 'unsigned char'.
85 CImg<unsigned char> edge(2*factor,2*factor);
86 CImgDisplay disp_edge(512,512,"Edge Explorer");
88 // Load the image with the name 'img_name' into the CImg 'img'.
89 // and create a display window 'disp' for the image 'img'.
90 const CImg<unsigned char> img(img_name);
91 CImgDisplay disp(img,"Original Image");
93 // Begin main interaction loop.
94 int x = 0, y = 0;
95 bool redraw = false;
96 while (!disp.is_closed && !disp.is_keyQ && !disp.is_keyESC) {
97 disp.wait(100);
98 if (disp.button&1) { alpha+=0.05; redraw = true; }
99 if (disp.button&2) { alpha-=0.05; redraw = true; }
100 if (disp.wheel) { alpha+=0.05*disp.wheel; disp.wheel = 0; redraw = true; }
101 if (alpha<0) alpha = 0;
102 if (disp_edge.is_resized) { disp_edge.resize(); redraw = true; }
103 if (disp_edge.is_closed) disp_edge.show();
104 if (disp.is_resized) disp.resize(disp);
105 if (disp.mouse_x>=0) {
106 x = disp.mouse_x; // Getting the current position of the mouse.
107 y = disp.mouse_y; //
108 redraw = true; // The image should be redrawn.
109 }
110 if (redraw) {
111 disp_edge.set_title("Edge explorer (alpha=%g)",alpha);
112 const int
113 x0 = x-factor, y0 = y-factor, // These are the coordinates for the red rectangle
114 x1 = x+factor, y1 = y+factor; // to be drawn on the original image.
115 const unsigned char
116 red[3] = { 255,0,0 }, //
117 black[3] = { 0,0,0 }; // Defining the colors we need for drawing.
119 (+img).draw_rectangle(x0,y0,x1,y1,red,1.0f,0x55555555U).display(disp);
120 //^ We draw the red rectangle on the original window using 'draw_line'. Then we display the result via '.display(disp)' .
121 // Observe, that the color 'red' has to be of type 'const unsigned char',
122 // since the image 'img' is of type 'const CImg<unsigned char>'.
124 //'normalize' is used to get a greyscaled image.
125 CImg<> visu_bw = CImg<>(img).get_crop(x0,y0,x1,y1).get_pointwise_norm().normalize(0,255).resize(-100,-100,1,2,2);
126 // get_crop(x0,y0,x1,y1) gets the rectangle we are interested in.
128 edge.fill(255); // Background color in the edge-detection window is white.
130 // grad[0] is the gradient image of 'visu_bw' in x-direction.
131 // grad[1] is the gradient image of 'visu_bw' in y-direction.
132 CImgList<> grad(visu_bw.blur((float)alpha).normalize(0,255).get_gradient());
134 // To avoid unnecessary calculations in the image loops:
135 const double
136 pi = cimg::valuePI,
137 p8 = pi/8.0, p38 = 3.0*p8,
138 p58 = 5.0*p8, p78 = 7.0*p8;
140 cimg_forXY(visu_bw,s,t) {
141 // We take s,t instead of x,y, since x,y are already used.
142 // s corresponds to the x-ordinate of the pixel while t corresponds to the y-ordinate.
143 if ( 1 <= s && s <= visu_bw.dimx()-1 && 1 <= t && t <=visu_bw.dimy()-1) { // if - good points
144 double
145 Gs = grad[0](s,t), //
146 Gt = grad[1](s,t), // The actual pixel is (s,t)
147 Gst = cimg::abs(Gs) + cimg::abs(Gt), //
148 // ^-- For efficient computation we observe that |Gs|+ |Gt| ~=~ sqrt( Gs^2 + Gt^2)
149 Gr, Gur, Gu, Gul, Gl, Gdl, Gd, Gdr;
150 // ^-- right, up right, up, up left, left, down left, down, down right.
151 double theta = std::atan2(Gt,Gs)+pi; // theta is from the interval [0,Pi]
152 switch(mode) {
153 case 1: // Hysterese is applied
154 if (Gst>=thresH) { edge.draw_point(s,t,black); }
155 else if (thresL <= Gst && Gst < thresH) {
156 // Neighbourhood of the actual pixel:
157 Gr = cimg::abs(grad[0](s+1,t)) + cimg::abs(grad[1](s+1,t)); // right
158 Gl = cimg::abs(grad[0](s-1,t)) + cimg::abs(grad[1](s-1,t)); // left
159 Gur = cimg::abs(grad[0](s+1,t+1)) + cimg::abs(grad[1](s+1,t+1)); // up right
160 Gdl = cimg::abs(grad[0](s-1,t-1)) + cimg::abs(grad[1](s-1,t-1)); // down left
161 Gu = cimg::abs(grad[0](s,t+1)) + cimg::abs(grad[1](s,t+1)); // up
162 Gd = cimg::abs(grad[0](s,t-1)) + cimg::abs(grad[1](s,t-1)); // down
163 Gul = cimg::abs(grad[0](s-1,t+1)) + cimg::abs(grad[1](s-1,t+1)); // up left
164 Gdr = cimg::abs(grad[0](s+1,t-1)) + cimg::abs(grad[1](s+1,t-1)); // down right
165 if (Gr>=thresH || Gur>=thresH || Gu>=thresH || Gul>=thresH
166 || Gl>=thresH || Gdl >=thresH || Gu >=thresH || Gdr >=thresH) {
167 edge.draw_point(s,t,black);
168 }
169 };
170 break;
171 case 2: // Angle 'theta' of the gradient (Gs,Gt) at the point (s,t).
172 if(theta >= pi)theta-=pi;
173 //rounding theta:
174 if ((p8 < theta && theta <= p38 ) || (p78 < theta && theta <= pi)) {
175 // See (*) below for explanation of the vocabulary used.
176 // Direction-pixel is (s+1,t) with corresponding gradient value Gr.
177 Gr = cimg::abs(grad[0](s+1,t)) + cimg::abs(grad[1](s+1,t)); // right
178 // Contra-direction-pixel is (s-1,t) with corresponding gradient value Gl.
179 Gl = cimg::abs(grad[0](s-1,t)) + cimg::abs(grad[1](s-1,t)); // left
180 if (Gr < Gst && Gl < Gst) {
181 edge.draw_point(s,t,black);
182 }
183 }
184 else if ( p8 < theta && theta <= p38) {
185 // Direction-pixel is (s+1,t+1) with corresponding gradient value Gur.
186 Gur = cimg::abs(grad[0](s+1,t+1)) + cimg::abs(grad[1](s+1,t+1)); // up right
187 // Contra-direction-pixel is (s-1,t-1) with corresponding gradient value Gdl.
188 Gdl = cimg::abs(grad[0](s-1,t-1)) + cimg::abs(grad[1](s-1,t-1)); // down left
189 if (Gur < Gst && Gdl < Gst) {
190 edge.draw_point(s,t,black);
191 }
192 }
193 else if ( p38 < theta && theta <= p58) {
194 // Direction-pixel is (s,t+1) with corresponding gradient value Gu.
195 Gu = cimg::abs(grad[0](s,t+1)) + cimg::abs(grad[1](s,t+1)); // up
196 // Contra-direction-pixel is (s,t-1) with corresponding gradient value Gd.
197 Gd = cimg::abs(grad[0](s,t-1)) + cimg::abs(grad[1](s,t-1)); // down
198 if (Gu < Gst && Gd < Gst) {
199 edge.draw_point(s,t,black);
200 }
201 }
202 else if (p58 < theta && theta <= p78) {
203 // Direction-pixel is (s-1,t+1) with corresponding gradient value Gul.
204 Gul = cimg::abs(grad[0](s-1,t+1)) + cimg::abs(grad[1](s-1,t+1)); // up left
205 // Contra-direction-pixel is (s+1,t-1) with corresponding gradient value Gdr.
206 Gdr = cimg::abs(grad[0](s+1,t-1)) + cimg::abs(grad[1](s+1,t-1)); // down right
207 if (Gul < Gst && Gdr < Gst) {
208 edge.draw_point(s,t,black);
209 }
210 };
211 break;
212 } // switch
213 } // if good-points
214 } // cimg_forXY */
215 edge.display(disp_edge);
216 }// if redraw
217 } // while
218 return 0;
219 }
221 // (*) Comments to the vocabulary used:
222 // If (s,t) is the current pixel, and G=(Gs,Gt) is the gradient at (s,t),
223 // then the _direction_pixel_ of (s,t) shall be the one of the eight neighbour pixels
224 // of (s,t) in whose direction the gradient G shows.
225 // The _contra_direction_pixel is the pixel in the opposite direction in which the gradient G shows.
226 // The _corresponding_gradient_value_ of the pixel (x,y) with gradient G = (Gx,Gy)
227 // shall be |Gx|+|Gy| ~=~ sqrt(Gx^2+Gy^2).