PTdecode/CImg-1.3.0/examples/pde_TschumperleDeriche2d.cpp

Wed, 05 Aug 2009 15:00:54 +0100

author
Philip Pemberton <philpem@philpem.me.uk>
date
Wed, 05 Aug 2009 15:00:54 +0100
changeset 12
96e1df9bd27c
parent 5
1204ebf9340d
permissions
-rwxr-xr-x

small changes to hexdump code to stop a gcc warning on platforms where sizeof(int) != sizeof(int*) e.g. x86_64

     1 /*
     2  #
     3  #  File        : pde_TschumperleDeriche2D.cpp
     4  #                ( C++ source file )
     5  #
     6  #  Description : Implementation of the Tschumperle-Deriche's Regularization
     7  #                PDE, for 2D multivalued images, as described in the articles below.
     8  #                This file is a part of the CImg Library project.
     9  #                ( http://cimg.sourceforge.net )
    10  #
    11  #  (1) PDE-Based Regularization of Multivalued Images and Applications.
    12  #               (D. Tschumperle). PhD Thesis. University of Nice-Sophia Antipolis, December 2002.
    13  #  (2) Diffusion PDE's on Vector-valued Images : Local Approach and Geometric Viewpoint.
    14  #               (D. Tschumperle and R. Deriche). IEEE Signal Processing Magazine, October 2002.
    15  #  (3) Vector-Valued Image Regularization with PDE's : A Common Framework for Different Applications.
    16  #               (D. Tschumperle and R. Deriche). CVPR'2003, Computer Vision and Pattern Recognition, Madison, United States, June 2003.
    17  #
    18  #  This code can be used to perform image restoration, inpainting, magnification or flow visualization.
    19  #
    20  #  NOTE : THIS SOURCE IS DISTRIBUTED FOR EDUCATIONAL PURPOSES ONLY. A BETTER ANISOTROPIC SMOOTHING ALGORITHM CAN BE FOUND
    21  #  IN THE FILE 'greycstoration.cpp' WHICH IS THE RESULT OF MORE RECENT WORK.
    22  #
    23  #  Copyright   : David Tschumperle
    24  #                ( http://www.greyc.ensicaen.fr/~dtschump/ )
    25  #
    26  #  License     : CeCILL v2.0
    27  #                ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
    28  #
    29  #  This software is governed by the CeCILL  license under French law and
    30  #  abiding by the rules of distribution of free software.  You can  use,
    31  #  modify and/ or redistribute the software under the terms of the CeCILL
    32  #  license as circulated by CEA, CNRS and INRIA at the following URL
    33  #  "http://www.cecill.info".
    34  #
    35  #  As a counterpart to the access to the source code and  rights to copy,
    36  #  modify and redistribute granted by the license, users are provided only
    37  #  with a limited warranty  and the software's author,  the holder of the
    38  #  economic rights,  and the successive licensors  have only  limited
    39  #  liability.
    40  #
    41  #  In this respect, the user's attention is drawn to the risks associated
    42  #  with loading,  using,  modifying and/or developing or reproducing the
    43  #  software by the user in light of its specific status of free software,
    44  #  that may mean  that it is complicated to manipulate,  and  that  also
    45  #  therefore means  that it is reserved for developers  and  experienced
    46  #  professionals having in-depth computer knowledge. Users are therefore
    47  #  encouraged to load and test the software's suitability as regards their
    48  #  requirements in conditions enabling the security of their systems and/or
    49  #  data to be ensured and,  more generally, to use and operate it in the
    50  #  same conditions as regards security.
    51  #
    52  #  The fact that you are presently reading this means that you have had
    53  #  knowledge of the CeCILL license and that you accept its terms.
    54  #
    55 */
    57 #include "CImg.h"
    58 using namespace cimg_library;
    60 // The lines below are necessary when using a non-standard compiler as visualcpp6.
    61 #ifdef cimg_use_visualcpp6
    62 #define std
    63 #endif
    64 #ifdef min
    65 #undef min
    66 #undef max
    67 #endif
    69 #ifndef cimg_imagepath
    70 #define cimg_imagepath "img/"
    71 #endif
    73 int main(int argc,char **argv) {
    75   // Read command line arguments
    76   //-----------------------------
    77   cimg_usage("Tschumperle-Deriche's flow for 2D Image Restoration, Inpainting, Magnification or Flow visualization");
    78   const char *file_i  = cimg_option("-i",cimg_imagepath "milla.bmp","Input image");
    79   const char *file_m  = cimg_option("-m",(char*)NULL,"Mask image (if Inpainting)");
    80   const char *file_f  = cimg_option("-f",(char*)NULL,"Flow image (if Flow visualization)");
    81   const char *file_o  = cimg_option("-o",(char*)NULL,"Output file");
    82   const double zoom   = cimg_option("-zoom",1.0,"Image magnification");
    84   const unsigned int nb_iter  = cimg_option("-iter",100000,"Number of iterations");
    85   const double dt     = cimg_option("-dt",20.0,"Adapting time step");
    86   const double alpha  = cimg_option("-alpha",0.0,"Gradient smoothing");
    87   const double sigma  = cimg_option("-sigma",0.5,"Structure tensor smoothing");
    88   const float a1      = cimg_option("-a1",0.5f,"Diffusion limiter along minimal variations");
    89   const float a2      = cimg_option("-a2",0.9f,"Diffusion limiter along maximal variations");
    90   const double noiseg = cimg_option("-ng",0.0,"Add gauss noise before aplying the algorithm");
    91   const double noiseu = cimg_option("-nu",0.0,"Add uniform noise before applying the algorithm");
    92   const double noises = cimg_option("-ns",0.0,"Add salt&pepper noise before applying the algorithm");
    93   const bool stflag   = cimg_option("-stats",false,"Display image statistics at each iteration");
    94   const unsigned int save = cimg_option("-save",0,"Iteration saving step");
    95   const unsigned int visu = cimg_option("-visu",10,"Visualization step (0=no visualization)");
    96   const unsigned int init = cimg_option("-init",3,"Inpainting initialization (0=black, 1=white, 2=noise, 3=unchanged)");
    97   const unsigned int skip = cimg_option("-skip",1,"Step of image geometry computation");
    98   bool view_t         = cimg_option("-d",false,"View tensor directions (useful for debug)");
    99   double xdt = 0;
   101   // Variable initialization
   102   //-------------------------
   103   CImg<> img, flow;
   104   CImg<int> mask;
   106   if (file_i) {
   107     img = CImg<>(file_i).resize(-100,-100,1,-100);
   108     if (file_m) mask = CImg<unsigned char>(file_m).resize(img.dimx(),img.dimy(),1,1);
   109     else if (zoom>1) {
   110       mask = CImg<int>(img.dimx(),img.dimy(),1,1,-1).resize((int)(img.dimx()*zoom),(int)(img.dimy()*zoom),1,1,4)+1;
   111       img.resize((int)(img.dimx()*zoom),(int)(img.dimy()*zoom),1,-100,3);
   112     }
   113   } else {
   114     if (file_f) {
   115       flow = CImg<>(file_f);
   116       img = CImg<>((int)(flow.dimx()*zoom),(int)(flow.dimy()*zoom),1,1,0).noise(100,2);
   117       flow.resize(img.dimx(),img.dimy(),1,2,3);
   118     } else throw CImgException("You need to specify at least one input image (option -i), or one flow image (option -f)");
   119   }
   120   img.noise(noiseg,0).noise(noiseu,1).noise(noises,2);
   121   float initial_min, initial_max = img.maxmin(initial_min);
   122   if (mask.data && init!=3)
   123     cimg_forXYV(img,x,y,k) if (mask(x,y))
   124       img(x,y,k)=(float)((init?
   125                           (init==1?initial_max:((initial_max-initial_min)*cimg::rand())):
   126                           initial_min));
   128   CImgDisplay disp;
   129   if (visu) disp.assign(img,"Iterated Image");
   130   CImg<> G(img.dimx(),img.dimy(),1,3,0), T(G), veloc(img), val(2), vec(2,2);
   132   // PDE main iteration loop
   133   //-------------------------
   134   for (unsigned int iter=0; iter<nb_iter && (!disp || (!disp.is_closed && !disp.is_keyQ && !disp.is_keyESC)); iter++) {
   135     std::printf("\riter %u , xdt = %g               ",iter,xdt); std::fflush(stdout);
   136     if (stflag) img.print();
   137     if (disp && disp.key==cimg::keySPACE) { view_t = !view_t; disp.key=0; }
   139     if (!(iter%skip)) {
   140       // Compute the tensor field T, used to drive the diffusion
   141       //---------------------------------------------------------
   143       // When using PDE for flow visualization
   144       if (flow.data) cimg_forXY(flow,x,y) {
   145         const float
   146           u = flow(x,y,0,0),
   147           v = flow(x,y,0,1),
   148           n = (float)std::sqrt((double)(u*u+v*v)),
   149           nn = (n!=0)?n:1;
   150         T(x,y,0) = u*u/nn;
   151         T(x,y,1) = u*v/nn;
   152         T(x,y,2) = v*v/nn;
   153       } else {
   155         // Compute structure tensor field G
   156         CImgList<> grad = img.get_gradient();
   157         if (alpha!=0) cimglist_for(grad,l) grad[l].blur((float)alpha);
   158         G.fill(0);
   159         cimg_forXYV(img,x,y,k) {
   160           const float ix = grad[0](x,y,k), iy = grad[1](x,y,k);
   161           G(x,y,0) += ix*ix;
   162           G(x,y,1) += ix*iy;
   163           G(x,y,2) += iy*iy;
   164         }
   165         if (sigma!=0) G.blur((float)sigma);
   167         // When using PDE for image restoration, inpainting or zooming
   168         T.fill(0);
   169         if (!mask.data) cimg_forXY(G,x,y) {
   170           G.get_tensor_at(x,y).symmetric_eigen(val,vec);
   171           const float
   172             l1 = (float)std::pow(1.0f+val[0]+val[1],-a1),
   173             l2 = (float)std::pow(1.0f+val[0]+val[1],-a2),
   174             ux = vec(1,0),
   175             uy = vec(1,1);
   176           T(x,y,0) = l1*ux*ux + l2*uy*uy;
   177           T(x,y,1) = l1*ux*uy - l2*ux*uy;
   178           T(x,y,2) = l1*uy*uy + l2*ux*ux;
   179         }
   180         else cimg_forXY(G,x,y) if (mask(x,y)) {
   181           G.get_tensor_at(x,y).symmetric_eigen(val,vec);
   182           const float
   183             ux = vec(1,0),
   184             uy = vec(1,1);
   185           T(x,y,0) = ux*ux;
   186           T(x,y,1) = ux*uy;
   187           T(x,y,2) = uy*uy;
   188         }
   189       }
   190     }
   192     // Compute the PDE velocity and update the iterated image
   193     //--------------------------------------------------------
   194     CImg_3x3(I,float);
   195     veloc.fill(0);
   196     cimg_forV(img,k) cimg_for3x3(img,x,y,0,k,I) {
   197       const float
   198         a = T(x,y,0),
   199         b = T(x,y,1),
   200         c = T(x,y,2),
   201         ixx = Inc+Ipc-2*Icc,
   202         iyy = Icn+Icp-2*Icc,
   203         ixy = 0.25f*(Ipp+Inn-Ipn-Inp);
   204       veloc(x,y,k) = a*ixx + 2*b*ixy + c*iyy;
   205     }
   206     if (dt>0) {
   207       float m, M = veloc.maxmin(m);
   208       xdt = dt/cimg::max(cimg::abs(m),cimg::abs(M));
   209     } else xdt=-dt;
   210     img+=veloc*xdt;
   211     img.cut((float)initial_min,(float)initial_max);
   213     // Display and save iterations
   214     if (disp && !(iter%visu)) {
   215       if (!view_t) img.display(disp);
   216       else {
   217         const unsigned char white[3] = {255,255,255};
   218         CImg<unsigned char> visu = img.get_resize(disp.dimx(),disp.dimy()).normalize(0,255);
   219         CImg<> isophotes(img.dimx(),img.dimy(),1,2,0);
   220         cimg_forXY(img,x,y) if (!mask.data || mask(x,y)) {
   221           T.get_tensor_at(x,y).symmetric_eigen(val,vec);
   222           isophotes(x,y,0) = vec(0,0);
   223           isophotes(x,y,1) = vec(0,1);
   224         }
   225         visu.draw_quiver(isophotes,white,0.5f,10,9,0).display(disp);
   226       }
   227     }
   228     if (save && file_o && !(iter%save)) img.save(file_o,iter);
   229     if (disp) disp.resize().display(img);
   230   }
   232   // Save result and exit.
   233   if (file_o) img.save(file_o);
   234   return 0;
   235 }