Sun, 28 Nov 2010 20:02:45 +0000
remove debug fluff
philpem@0 | 1 | #include <stdio.h> |
philpem@7 | 2 | #include <stdlib.h> |
philpem@4 | 3 | #include <stdint.h> |
philpem@7 | 4 | #include <stdbool.h> |
philpem@7 | 5 | #include <malloc.h> |
philpem@7 | 6 | #include <string.h> |
philpem@4 | 7 | #include "musashi/m68k.h" |
philpem@7 | 8 | #include "version.h" |
philpem@7 | 9 | |
philpem@7 | 10 | #define ROM_SIZE (32768/4) |
philpem@7 | 11 | |
philpem@7 | 12 | void state_done(void); |
philpem@7 | 13 | |
philpem@7 | 14 | void FAIL(char *err) |
philpem@7 | 15 | { |
philpem@7 | 16 | state_done(); |
philpem@7 | 17 | fprintf(stderr, "ERROR: %s\nExiting...\n", err); |
philpem@7 | 18 | exit(EXIT_FAILURE); |
philpem@7 | 19 | } |
philpem@7 | 20 | |
philpem@7 | 21 | |
philpem@7 | 22 | struct { |
philpem@7 | 23 | // Boot PROM can be up to 32Kbytes total size |
philpem@7 | 24 | uint32_t rom[ROM_SIZE]; |
philpem@7 | 25 | |
philpem@7 | 26 | // Main system RAM |
philpem@7 | 27 | uint32_t *ram; |
philpem@7 | 28 | size_t ram_size; // number of RAM bytes allocated |
philpem@7 | 29 | uint32_t ram_addr_mask; // address mask |
philpem@7 | 30 | |
philpem@7 | 31 | // GENERAL CONTROL REGISTER |
philpem@7 | 32 | bool romlmap; |
philpem@7 | 33 | } state; |
philpem@7 | 34 | |
philpem@7 | 35 | int state_init() |
philpem@7 | 36 | { |
philpem@7 | 37 | // Free RAM if it's allocated |
philpem@7 | 38 | if (state.ram != NULL) |
philpem@7 | 39 | free(state.ram); |
philpem@7 | 40 | |
philpem@7 | 41 | // Initialise hardware registers |
philpem@7 | 42 | state.romlmap = false; |
philpem@7 | 43 | |
philpem@7 | 44 | // Allocate RAM |
philpem@7 | 45 | // TODO: make sure ram size selection is valid! |
philpem@7 | 46 | state.ram = malloc(state.ram_size); |
philpem@7 | 47 | if (state.ram == NULL) |
philpem@7 | 48 | return -1; |
philpem@7 | 49 | state.ram_addr_mask = state.ram_size - 1; |
philpem@4 | 50 | |
philpem@7 | 51 | // Load ROMs |
philpem@7 | 52 | FILE *r14c, *r15c; |
philpem@7 | 53 | r14c = fopen("roms/14c.bin", "rb"); |
philpem@7 | 54 | if (r14c == NULL) FAIL("unable to open roms/14c.bin"); |
philpem@7 | 55 | r15c = fopen("roms/15c.bin", "rb"); |
philpem@7 | 56 | if (r15c == NULL) FAIL("unable to open roms/15c.bin"); |
philpem@7 | 57 | |
philpem@7 | 58 | // get ROM file size |
philpem@7 | 59 | fseek(r14c, 0, SEEK_END); |
philpem@7 | 60 | size_t romlen = ftell(r14c); |
philpem@7 | 61 | fseek(r14c, 0, SEEK_SET); |
philpem@7 | 62 | fseek(r15c, 0, SEEK_END); |
philpem@7 | 63 | size_t romlen2 = ftell(r15c); |
philpem@7 | 64 | fseek(r15c, 0, SEEK_SET); |
philpem@7 | 65 | if (romlen2 != romlen) FAIL("ROMs are not the same size!"); |
philpem@7 | 66 | if ((romlen / 4) > (ROM_SIZE / 2)) FAIL("ROM 14C is too big!"); |
philpem@7 | 67 | if ((romlen2 / 4) > (ROM_SIZE / 2)) FAIL("ROM 15C is too big!"); |
philpem@7 | 68 | |
philpem@7 | 69 | // sanity checks completed; load the ROMs! |
philpem@7 | 70 | uint8_t *romdat1, *romdat2; |
philpem@7 | 71 | romdat1 = malloc(romlen); |
philpem@7 | 72 | romdat2 = malloc(romlen2); |
philpem@7 | 73 | fread(romdat1, 1, romlen, r15c); |
philpem@7 | 74 | fread(romdat2, 1, romlen2, r14c); |
philpem@7 | 75 | |
philpem@7 | 76 | // convert the ROM data |
philpem@7 | 77 | for (size_t i=0; i<romlen; i+=2) { |
philpem@7 | 78 | state.rom[i/2] = ( |
philpem@7 | 79 | (romdat1[i+0] << 24) | |
philpem@7 | 80 | (romdat2[i+0] << 16) | |
philpem@7 | 81 | (romdat1[i+1] << 8) | |
philpem@7 | 82 | (romdat2[i+1])); |
philpem@7 | 83 | } |
philpem@7 | 84 | |
philpem@7 | 85 | // free the data arrays and close the files |
philpem@7 | 86 | free(romdat1); |
philpem@7 | 87 | free(romdat2); |
philpem@7 | 88 | fclose(r14c); |
philpem@7 | 89 | fclose(r15c); |
philpem@7 | 90 | |
philpem@7 | 91 | return 0; |
philpem@7 | 92 | } |
philpem@7 | 93 | |
philpem@7 | 94 | void state_done() |
philpem@7 | 95 | { |
philpem@7 | 96 | if (state.ram != NULL) |
philpem@7 | 97 | free(state.ram); |
philpem@7 | 98 | } |
philpem@4 | 99 | |
philpem@4 | 100 | // read m68k memory |
philpem@7 | 101 | // TODO: refactor musashi to use stdint, and properly sized integers! |
philpem@7 | 102 | // TODO: find a way to make musashi use function pointers instead of hard coded callbacks, maybe use a context struct too |
philpem@4 | 103 | uint32_t m68k_read_memory_32(uint32_t address) |
philpem@4 | 104 | { |
philpem@7 | 105 | // If ROMLMAP is set, force system to access ROM |
philpem@7 | 106 | if (!state.romlmap) |
philpem@7 | 107 | address |= 0x800000; |
philpem@7 | 108 | |
philpem@7 | 109 | if (address >= 0xC00000) { |
philpem@7 | 110 | // I/O Registers B |
philpem@7 | 111 | // TODO |
philpem@7 | 112 | } else if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@7 | 113 | // ROM access |
philpem@7 | 114 | return state.rom[(address & (ROM_SIZE-1)) / 4]; |
philpem@7 | 115 | } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@7 | 116 | // I/O Registers A |
philpem@7 | 117 | // TODO |
philpem@7 | 118 | } else if (address <= 0x3FFFFF) { |
philpem@7 | 119 | // RAM |
philpem@7 | 120 | return state.ram[(address & state.ram_addr_mask) / 4]; |
philpem@7 | 121 | } |
philpem@7 | 122 | return 0xffffffff; |
philpem@4 | 123 | } |
philpem@4 | 124 | |
philpem@4 | 125 | uint32_t m68k_read_memory_16(uint32_t address) |
philpem@4 | 126 | { |
philpem@7 | 127 | if (address & 2) { |
philpem@7 | 128 | return m68k_read_memory_32(address) & 0xFFFF; |
philpem@7 | 129 | } else { |
philpem@7 | 130 | return (m68k_read_memory_32(address) >> 16) & 0xFFFF; |
philpem@7 | 131 | } |
philpem@4 | 132 | } |
philpem@4 | 133 | |
philpem@4 | 134 | uint32_t m68k_read_memory_8(uint32_t address) |
philpem@4 | 135 | { |
philpem@7 | 136 | // If ROMLMAP is set, force system to access ROM |
philpem@7 | 137 | if (!state.romlmap) |
philpem@7 | 138 | address |= 0x800000; |
philpem@7 | 139 | |
philpem@7 | 140 | switch (address & 3) { |
philpem@7 | 141 | case 3: return m68k_read_memory_32(address) & 0xFF; |
philpem@7 | 142 | case 2: return (m68k_read_memory_32(address) >> 8) & 0xFF; |
philpem@7 | 143 | case 1: return (m68k_read_memory_32(address) >> 16) & 0xFF; |
philpem@7 | 144 | case 0: return (m68k_read_memory_32(address) >> 24) & 0xFF; |
philpem@7 | 145 | } |
philpem@7 | 146 | return 0xffffffff; |
philpem@4 | 147 | } |
philpem@4 | 148 | |
philpem@4 | 149 | // write m68k memory |
philpem@4 | 150 | void m68k_write_memory_32(uint32_t address, uint32_t value) |
philpem@4 | 151 | { |
philpem@7 | 152 | // If ROMLMAP is set, force system to access ROM |
philpem@7 | 153 | if (!state.romlmap) |
philpem@7 | 154 | address |= 0x800000; |
philpem@7 | 155 | |
philpem@7 | 156 | if (address >= 0xC00000) { |
philpem@7 | 157 | // I/O Registers B |
philpem@7 | 158 | // TODO |
philpem@7 | 159 | } else if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@7 | 160 | // ROM access |
philpem@7 | 161 | // TODO: bus error here? can't write to rom! |
philpem@7 | 162 | } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@7 | 163 | // I/O Registers A |
philpem@7 | 164 | // TODO |
philpem@7 | 165 | } else if (address <= 0x3FFFFF) { |
philpem@7 | 166 | // RAM |
philpem@7 | 167 | state.ram[(address & state.ram_addr_mask) / 4] = value; |
philpem@7 | 168 | } |
philpem@4 | 169 | } |
philpem@4 | 170 | |
philpem@4 | 171 | void m68k_write_memory_16(uint32_t address, uint32_t value) |
philpem@4 | 172 | { |
philpem@7 | 173 | // If ROMLMAP is set, force system to access ROM |
philpem@7 | 174 | if (!state.romlmap) |
philpem@7 | 175 | address |= 0x800000; |
philpem@7 | 176 | |
philpem@7 | 177 | if (address >= 0xC00000) { |
philpem@7 | 178 | // I/O Registers B |
philpem@7 | 179 | // TODO |
philpem@7 | 180 | } else if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@7 | 181 | // ROM access |
philpem@7 | 182 | // TODO: bus error here? can't write to rom! |
philpem@7 | 183 | } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@7 | 184 | // I/O Registers A |
philpem@7 | 185 | // TODO |
philpem@7 | 186 | } else if (address <= 0x3FFFFF) { |
philpem@7 | 187 | // RAM |
philpem@7 | 188 | if (address & 2) |
philpem@7 | 189 | state.ram[(address & state.ram_addr_mask) / 4] = (state.ram[(address & state.ram_addr_mask) / 4] & 0xFFFF0000) | (value & 0xFFFF); |
philpem@7 | 190 | else |
philpem@7 | 191 | state.ram[(address & state.ram_addr_mask) / 4] = (state.ram[(address & state.ram_addr_mask) / 4] & 0x0000FFFF) | ((value & 0xFFFF) << 16); |
philpem@7 | 192 | } |
philpem@4 | 193 | } |
philpem@4 | 194 | |
philpem@4 | 195 | void m68k_write_memory_8(uint32_t address, uint32_t value) |
philpem@4 | 196 | { |
philpem@7 | 197 | // If ROMLMAP is set, force system to access ROM |
philpem@7 | 198 | if (!state.romlmap) |
philpem@7 | 199 | address |= 0x800000; |
philpem@7 | 200 | |
philpem@7 | 201 | if (address >= 0xC00000) { |
philpem@7 | 202 | // I/O Registers B |
philpem@7 | 203 | // TODO |
philpem@7 | 204 | } else if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@7 | 205 | // ROM access |
philpem@7 | 206 | // TODO: bus error here? can't write to rom! |
philpem@7 | 207 | } else if ((address >= 0x400000) && (address <= 0x7FFFFF)) { |
philpem@7 | 208 | // I/O Registers A |
philpem@7 | 209 | // TODO |
philpem@7 | 210 | } else if (address <= 0x3FFFFF) { |
philpem@7 | 211 | // RAM |
philpem@7 | 212 | switch (address & 3) { |
philpem@7 | 213 | case 3: state.ram[(address & state.ram_addr_mask) / 4] = (state.ram[(address & state.ram_addr_mask) / 4] & 0xFFFFFF00) | (value & 0xFF); |
philpem@7 | 214 | case 2: state.ram[(address & state.ram_addr_mask) / 4] = (state.ram[(address & state.ram_addr_mask) / 4] & 0xFFFF00FF) | ((value & 0xFF) << 8); |
philpem@7 | 215 | case 1: state.ram[(address & state.ram_addr_mask) / 4] = (state.ram[(address & state.ram_addr_mask) / 4] & 0xFF00FFFF) | ((value & 0xFF) << 16); |
philpem@7 | 216 | case 0: state.ram[(address & state.ram_addr_mask) / 4] = (state.ram[(address & state.ram_addr_mask) / 4] & 0x00FFFFFF) | ((value & 0xFF) << 24); |
philpem@7 | 217 | } |
philpem@7 | 218 | } |
philpem@4 | 219 | } |
philpem@4 | 220 | |
philpem@0 | 221 | int main(void) |
philpem@0 | 222 | { |
philpem@7 | 223 | // copyright banner |
philpem@7 | 224 | printf("FreeBee: A Quick-and-Dirty AT&T 3B1 Emulator\n"); |
philpem@7 | 225 | printf("Copyright (C) 2010 P. A. Pemberton.\n"); |
philpem@7 | 226 | printf("Musashi M680x0 emulator engine developed by Karl Stenerud <kstenerud@gmail.com>\n"); |
philpem@7 | 227 | |
philpem@7 | 228 | // set up system state |
philpem@7 | 229 | // 512K of RAM |
philpem@7 | 230 | state.ram_size = 512*1024; |
philpem@7 | 231 | state_init(); |
philpem@7 | 232 | |
philpem@7 | 233 | // set up musashi |
philpem@7 | 234 | m68k_set_cpu_type(M68K_CPU_TYPE_68010); |
philpem@7 | 235 | m68k_pulse_reset(); |
philpem@7 | 236 | |
philpem@7 | 237 | // set up SDL |
philpem@7 | 238 | |
philpem@7 | 239 | // emulation loop! |
philpem@7 | 240 | // repeat: |
philpem@7 | 241 | // m68k_execute() |
philpem@7 | 242 | // m68k_set_irq() every 60ms |
philpem@8 | 243 | printf("ran for %d cycles\n", m68k_execute(100000)); |
philpem@7 | 244 | |
philpem@7 | 245 | // shut down and exit |
philpem@7 | 246 | |
philpem@0 | 247 | return 0; |
philpem@0 | 248 | } |