Thu, 02 Dec 2010 16:37:55 +0000
[musashi] fix mis-named pulse_bus_error func
philpem@0 | 1 | #include <stdio.h> |
philpem@7 | 2 | #include <stdlib.h> |
philpem@4 | 3 | #include <stdint.h> |
philpem@7 | 4 | #include <stdbool.h> |
philpem@7 | 5 | #include <malloc.h> |
philpem@7 | 6 | #include <string.h> |
philpem@18 | 7 | |
philpem@20 | 8 | #include "SDL.h" |
philpem@20 | 9 | |
philpem@4 | 10 | #include "musashi/m68k.h" |
philpem@7 | 11 | #include "version.h" |
philpem@18 | 12 | #include "state.h" |
philpem@7 | 13 | |
philpem@7 | 14 | void FAIL(char *err) |
philpem@7 | 15 | { |
philpem@7 | 16 | state_done(); |
philpem@7 | 17 | fprintf(stderr, "ERROR: %s\nExiting...\n", err); |
philpem@7 | 18 | exit(EXIT_FAILURE); |
philpem@7 | 19 | } |
philpem@7 | 20 | |
philpem@26 | 21 | /*********************************** |
philpem@26 | 22 | * Array read/write utility macros |
philpem@26 | 23 | * "Don't Repeat Yourself" :) |
philpem@26 | 24 | ***********************************/ |
philpem@26 | 25 | |
philpem@26 | 26 | /// Array read, 32-bit |
philpem@26 | 27 | #define RD32(array, address, andmask) \ |
philpem@26 | 28 | (((uint32_t)array[(address + 0) & (andmask)] << 24) | \ |
philpem@26 | 29 | ((uint32_t)array[(address + 1) & (andmask)] << 16) | \ |
philpem@26 | 30 | ((uint32_t)array[(address + 2) & (andmask)] << 8) | \ |
philpem@26 | 31 | ((uint32_t)array[(address + 3) & (andmask)])) |
philpem@26 | 32 | |
philpem@26 | 33 | /// Array read, 16-bit |
philpem@26 | 34 | #define RD16(array, address, andmask) \ |
philpem@26 | 35 | (((uint32_t)array[(address + 0) & (andmask)] << 8) | \ |
philpem@26 | 36 | ((uint32_t)array[(address + 1) & (andmask)])) |
philpem@26 | 37 | |
philpem@26 | 38 | /// Array read, 8-bit |
philpem@26 | 39 | #define RD8(array, address, andmask) \ |
philpem@26 | 40 | ((uint32_t)array[(address + 0) & (andmask)]) |
philpem@26 | 41 | |
philpem@26 | 42 | /// Array write, 32-bit |
philpem@26 | 43 | #define WR32(array, address, andmask, value) { \ |
philpem@26 | 44 | array[(address + 0) & (andmask)] = (value >> 24) & 0xff; \ |
philpem@26 | 45 | array[(address + 1) & (andmask)] = (value >> 16) & 0xff; \ |
philpem@26 | 46 | array[(address + 2) & (andmask)] = (value >> 8) & 0xff; \ |
philpem@26 | 47 | array[(address + 3) & (andmask)] = value & 0xff; \ |
philpem@26 | 48 | } |
philpem@26 | 49 | |
philpem@26 | 50 | /// Array write, 16-bit |
philpem@26 | 51 | #define WR16(array, address, andmask, value) { \ |
philpem@26 | 52 | array[(address + 0) & (andmask)] = (value >> 8) & 0xff; \ |
philpem@26 | 53 | array[(address + 1) & (andmask)] = value & 0xff; \ |
philpem@26 | 54 | } |
philpem@26 | 55 | |
philpem@26 | 56 | /// Array write, 8-bit |
philpem@26 | 57 | #define WR8(array, address, andmask, value) \ |
philpem@26 | 58 | array[(address + 0) & (andmask)] = value & 0xff; |
philpem@26 | 59 | |
philpem@30 | 60 | /****************** |
philpem@30 | 61 | * Memory mapping |
philpem@30 | 62 | ******************/ |
philpem@30 | 63 | |
philpem@30 | 64 | #define MAPRAM(addr) (((uint16_t)state.map[addr*2] << 8) + ((uint16_t)state.map[(addr*2)+1])) |
philpem@30 | 65 | |
philpem@30 | 66 | uint32_t mapAddr(uint32_t addr, bool writing) |
philpem@30 | 67 | { |
philpem@30 | 68 | if (addr < 0x400000) { |
philpem@30 | 69 | // RAM access. Check against the Map RAM |
philpem@30 | 70 | // Start by getting the original page address |
philpem@30 | 71 | uint16_t page = (addr >> 12) & 0x3FF; |
philpem@30 | 72 | |
philpem@30 | 73 | // Look it up in the map RAM and get the physical page address |
philpem@30 | 74 | uint32_t new_page_addr = MAPRAM(page) & 0x3FF; |
philpem@30 | 75 | |
philpem@30 | 76 | // Update the Page Status bits |
philpem@30 | 77 | uint8_t pagebits = (MAPRAM(page) >> 13) & 0x03; |
philpem@30 | 78 | if (pagebits != 0) { |
philpem@30 | 79 | if (writing) |
philpem@30 | 80 | state.map[addr*2] |= 0x60; // Page written to (dirty) |
philpem@30 | 81 | else |
philpem@30 | 82 | state.map[addr*2] |= 0x40; // Page accessed but not written |
philpem@30 | 83 | } |
philpem@30 | 84 | |
philpem@30 | 85 | // Return the address with the new physical page spliced in |
philpem@30 | 86 | return (new_page_addr << 12) + (addr & 0xFFF); |
philpem@30 | 87 | } else { |
philpem@30 | 88 | // I/O, VRAM or MapRAM space; no mapping is performed or required |
philpem@30 | 89 | // TODO: assert here? |
philpem@30 | 90 | return addr; |
philpem@30 | 91 | } |
philpem@30 | 92 | } |
philpem@30 | 93 | |
philpem@30 | 94 | typedef enum { |
philpem@30 | 95 | MEM_ALLOWED = 0, |
philpem@30 | 96 | MEM_PAGEFAULT, // Page fault -- page not present |
philpem@30 | 97 | MEM_PAGE_NO_WE, // Page not write enabled |
philpem@30 | 98 | MEM_KERNEL, // User attempted to access kernel memory |
philpem@30 | 99 | MEM_UIE // User Nonmemory Location Access |
philpem@30 | 100 | } MEM_STATUS; |
philpem@30 | 101 | |
philpem@30 | 102 | // check memory access permissions |
philpem@30 | 103 | MEM_STATUS checkMemoryAccess(uint32_t addr, bool writing) |
philpem@30 | 104 | { |
philpem@30 | 105 | // Are we in Supervisor mode? |
philpem@30 | 106 | if (m68k_get_reg(NULL, M68K_REG_SR) & 0x2000) |
philpem@30 | 107 | // Yes. We can do anything we like. |
philpem@30 | 108 | return MEM_ALLOWED; |
philpem@30 | 109 | |
philpem@30 | 110 | // If we're here, then we must be in User mode. |
philpem@30 | 111 | // Check that the user didn't access memory outside of the RAM area |
philpem@30 | 112 | if (addr >= 0x400000) |
philpem@30 | 113 | return MEM_UIE; |
philpem@30 | 114 | |
philpem@30 | 115 | // This leaves us with Page Fault checking. Get the page bits for this page. |
philpem@30 | 116 | uint16_t page = (addr >> 12) & 0x3FF; |
philpem@30 | 117 | uint8_t pagebits = (MAPRAM(page) >> 13) & 0x07; |
philpem@30 | 118 | |
philpem@30 | 119 | // Check page is present |
philpem@30 | 120 | if ((pagebits & 0x03) == 0) |
philpem@30 | 121 | return MEM_PAGEFAULT; |
philpem@30 | 122 | |
philpem@30 | 123 | // User attempt to access the kernel |
philpem@30 | 124 | // A19, A20, A21, A22 low (kernel access): RAM addr before paging; not in Supervisor mode |
philpem@30 | 125 | if (((addr >> 19) & 0x0F) == 0) |
philpem@30 | 126 | return MEM_KERNEL; |
philpem@30 | 127 | |
philpem@30 | 128 | // Check page is write enabled |
philpem@30 | 129 | if ((pagebits & 0x04) == 0) |
philpem@30 | 130 | return MEM_PAGE_NO_WE; |
philpem@30 | 131 | |
philpem@30 | 132 | // Page access allowed. |
philpem@30 | 133 | return MEM_ALLOWED; |
philpem@30 | 134 | } |
philpem@30 | 135 | |
philpem@30 | 136 | #undef MAPRAM |
philpem@26 | 137 | |
philpem@26 | 138 | /******************************************************** |
philpem@26 | 139 | * m68k memory read/write support functions for Musashi |
philpem@26 | 140 | ********************************************************/ |
philpem@26 | 141 | |
philpem@4 | 142 | // read m68k memory |
philpem@4 | 143 | uint32_t m68k_read_memory_32(uint32_t address) |
philpem@4 | 144 | { |
philpem@9 | 145 | uint32_t data = 0xFFFFFFFF; |
philpem@9 | 146 | |
philpem@7 | 147 | // If ROMLMAP is set, force system to access ROM |
philpem@7 | 148 | if (!state.romlmap) |
philpem@7 | 149 | address |= 0x800000; |
philpem@7 | 150 | |
philpem@9 | 151 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@7 | 152 | // ROM access |
philpem@26 | 153 | data = RD32(state.rom, address, ROM_SIZE - 1); |
philpem@26 | 154 | } else if (address <= (state.ram_size - 1)) { |
philpem@27 | 155 | // RAM access -- TODO: mapping |
philpem@26 | 156 | data = RD32(state.ram, address, state.ram_size - 1); |
philpem@24 | 157 | } else if ((address >= 0x420000) && (address <= 0x427FFF)) { |
philpem@27 | 158 | // VRAM access |
philpem@26 | 159 | data = RD32(state.vram, address, 0x7FFF); |
philpem@27 | 160 | } else if ((address >= 0x400000) && (address <= 0x4007FF)) { |
philpem@27 | 161 | // Map RAM access |
philpem@27 | 162 | data = RD32(state.map, address, 0x7FF); |
philpem@21 | 163 | } else { |
philpem@21 | 164 | // I/O register -- TODO |
philpem@29 | 165 | printf("RD32 0x%08X ==> ??? %s\n", address, m68k_get_reg(NULL, M68K_REG_SR) & 0x2000 ? "[SV]" : ""); |
philpem@7 | 166 | } |
philpem@9 | 167 | return data; |
philpem@4 | 168 | } |
philpem@4 | 169 | |
philpem@4 | 170 | uint32_t m68k_read_memory_16(uint32_t address) |
philpem@4 | 171 | { |
philpem@9 | 172 | uint16_t data = 0xFFFF; |
philpem@9 | 173 | |
philpem@9 | 174 | // If ROMLMAP is set, force system to access ROM |
philpem@9 | 175 | if (!state.romlmap) |
philpem@9 | 176 | address |= 0x800000; |
philpem@9 | 177 | |
philpem@10 | 178 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@10 | 179 | // ROM access |
philpem@26 | 180 | data = RD16(state.rom, address, ROM_SIZE - 1); |
philpem@26 | 181 | } else if (address <= (state.ram_size - 1)) { |
philpem@27 | 182 | // RAM access -- TODO: mapping |
philpem@26 | 183 | data = RD16(state.ram, address, state.ram_size - 1); |
philpem@24 | 184 | } else if ((address >= 0x420000) && (address <= 0x427FFF)) { |
philpem@27 | 185 | // VRAM access |
philpem@26 | 186 | data = RD16(state.vram, address, 0x7FFF); |
philpem@27 | 187 | } else if ((address >= 0x400000) && (address <= 0x4007FF)) { |
philpem@27 | 188 | // Map RAM access |
philpem@27 | 189 | data = RD16(state.map, address, 0x7FF); |
philpem@21 | 190 | } else { |
philpem@21 | 191 | // I/O register -- TODO |
philpem@29 | 192 | printf("RD16 0x%08X ==> ??? %s\n", address, m68k_get_reg(NULL, M68K_REG_SR) & 0x2000 ? "[SV]" : ""); |
philpem@10 | 193 | } |
philpem@9 | 194 | |
philpem@9 | 195 | return data; |
philpem@4 | 196 | } |
philpem@4 | 197 | |
philpem@4 | 198 | uint32_t m68k_read_memory_8(uint32_t address) |
philpem@4 | 199 | { |
philpem@9 | 200 | uint8_t data = 0xFF; |
philpem@9 | 201 | |
philpem@7 | 202 | // If ROMLMAP is set, force system to access ROM |
philpem@7 | 203 | if (!state.romlmap) |
philpem@7 | 204 | address |= 0x800000; |
philpem@7 | 205 | |
philpem@10 | 206 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@10 | 207 | // ROM access |
philpem@26 | 208 | data = RD8(state.rom, address, ROM_SIZE - 1); |
philpem@26 | 209 | } else if (address <= (state.ram_size - 1)) { |
philpem@27 | 210 | // RAM access -- TODO: mapping |
philpem@26 | 211 | data = RD8(state.ram, address, state.ram_size - 1); |
philpem@24 | 212 | } else if ((address >= 0x420000) && (address <= 0x427FFF)) { |
philpem@27 | 213 | // VRAM access |
philpem@26 | 214 | data = RD8(state.vram, address, 0x7FFF); |
philpem@27 | 215 | } else if ((address >= 0x400000) && (address <= 0x4007FF)) { |
philpem@27 | 216 | // Map RAM access |
philpem@27 | 217 | data = RD8(state.map, address, 0x7FF); |
philpem@21 | 218 | } else { |
philpem@21 | 219 | // I/O register -- TODO |
philpem@29 | 220 | printf("RD08 0x%08X ==> ??? %s\n", address, m68k_get_reg(NULL, M68K_REG_SR) & 0x2000 ? "[SV]" : ""); |
philpem@10 | 221 | } |
philpem@9 | 222 | |
philpem@9 | 223 | return data; |
philpem@4 | 224 | } |
philpem@4 | 225 | |
philpem@4 | 226 | // write m68k memory |
philpem@4 | 227 | void m68k_write_memory_32(uint32_t address, uint32_t value) |
philpem@4 | 228 | { |
philpem@7 | 229 | // If ROMLMAP is set, force system to access ROM |
philpem@7 | 230 | if (!state.romlmap) |
philpem@7 | 231 | address |= 0x800000; |
philpem@7 | 232 | |
philpem@9 | 233 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@7 | 234 | // ROM access |
philpem@7 | 235 | // TODO: bus error here? can't write to rom! |
philpem@26 | 236 | } else if (address <= (state.ram_size - 1)) { |
philpem@27 | 237 | // RAM -- TODO: mapping |
philpem@26 | 238 | WR32(state.ram, address, state.ram_size - 1, value); |
philpem@24 | 239 | } else if ((address >= 0x420000) && (address <= 0x427FFF)) { |
philpem@24 | 240 | // VRAM access |
philpem@26 | 241 | WR32(state.vram, address, 0x7fff, value); |
philpem@27 | 242 | } else if ((address >= 0x400000) && (address <= 0x4007FF)) { |
philpem@27 | 243 | // Map RAM access |
philpem@27 | 244 | WR32(state.map, address, 0x7FF, value); |
philpem@9 | 245 | } else { |
philpem@9 | 246 | switch (address) { |
philpem@21 | 247 | case 0xE43000: state.romlmap = ((value & 0x8000) == 0x8000); break; // GCR3: ROMLMAP |
philpem@29 | 248 | default: printf("WR32 0x%08X ==> 0x%08X %s\n", address, value, m68k_get_reg(NULL, M68K_REG_SR) & 0x2000 ? "[SV]" : ""); break; |
philpem@9 | 249 | } |
philpem@7 | 250 | } |
philpem@4 | 251 | } |
philpem@4 | 252 | |
philpem@4 | 253 | void m68k_write_memory_16(uint32_t address, uint32_t value) |
philpem@4 | 254 | { |
philpem@7 | 255 | // If ROMLMAP is set, force system to access ROM |
philpem@7 | 256 | if (!state.romlmap) |
philpem@7 | 257 | address |= 0x800000; |
philpem@7 | 258 | |
philpem@9 | 259 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@7 | 260 | // ROM access |
philpem@7 | 261 | // TODO: bus error here? can't write to rom! |
philpem@26 | 262 | } else if (address <= (state.ram_size - 1)) { |
philpem@27 | 263 | // RAM access -- TODO: mapping |
philpem@26 | 264 | WR16(state.ram, address, state.ram_size - 1, value); |
philpem@24 | 265 | } else if ((address >= 0x420000) && (address <= 0x427FFF)) { |
philpem@24 | 266 | // VRAM access |
philpem@26 | 267 | WR16(state.vram, address, 0x7fff, value); |
philpem@27 | 268 | } else if ((address >= 0x400000) && (address <= 0x4007FF)) { |
philpem@27 | 269 | // Map RAM access |
philpem@27 | 270 | WR16(state.map, address, 0x7FF, value); |
philpem@9 | 271 | } else { |
philpem@9 | 272 | switch (address) { |
philpem@21 | 273 | case 0xE43000: state.romlmap = ((value & 0x8000) == 0x8000); break; // GCR3: ROMLMAP |
philpem@29 | 274 | default: printf("WR16 0x%08X ==> 0x%04X %s\n", address, value, m68k_get_reg(NULL, M68K_REG_SR) & 0x2000 ? "[SV]" : ""); break; |
philpem@9 | 275 | } |
philpem@25 | 276 | if (address == 0x4A0000) { |
philpem@25 | 277 | printf("\tLED WRITE: %s %s %s %s\n", |
philpem@25 | 278 | value & 0x800 ? "-" : "R", |
philpem@25 | 279 | value & 0x400 ? "-" : "G", |
philpem@25 | 280 | value & 0x200 ? "-" : "Y", |
philpem@25 | 281 | value & 0x100 ? "-" : "R" |
philpem@25 | 282 | ); |
philpem@25 | 283 | } |
philpem@7 | 284 | } |
philpem@4 | 285 | } |
philpem@4 | 286 | |
philpem@4 | 287 | void m68k_write_memory_8(uint32_t address, uint32_t value) |
philpem@4 | 288 | { |
philpem@7 | 289 | // If ROMLMAP is set, force system to access ROM |
philpem@7 | 290 | if (!state.romlmap) |
philpem@7 | 291 | address |= 0x800000; |
philpem@7 | 292 | |
philpem@9 | 293 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@7 | 294 | // ROM access |
philpem@7 | 295 | // TODO: bus error here? can't write to rom! |
philpem@26 | 296 | } else if (address <= (state.ram_size - 1)) { |
philpem@27 | 297 | // RAM access -- TODO: mapping |
philpem@26 | 298 | WR8(state.ram, address, state.ram_size - 1, value); |
philpem@24 | 299 | } else if ((address >= 0x420000) && (address <= 0x427FFF)) { |
philpem@24 | 300 | // VRAM access |
philpem@26 | 301 | WR8(state.vram, address, 0x7fff, value); |
philpem@27 | 302 | } else if ((address >= 0x400000) && (address <= 0x4007FF)) { |
philpem@27 | 303 | // Map RAM access |
philpem@27 | 304 | WR8(state.map, address, 0x7FF, value); |
philpem@9 | 305 | } else { |
philpem@9 | 306 | switch (address) { |
philpem@21 | 307 | case 0xE43000: state.romlmap = ((value & 0x80) == 0x80); break; // GCR3: ROMLMAP |
philpem@29 | 308 | default: printf("WR08 0x%08X ==> 0x%02X %s\n", address, value, m68k_get_reg(NULL, M68K_REG_SR) & 0x2000 ? "[SV]" : ""); break; |
philpem@9 | 309 | } |
philpem@7 | 310 | } |
philpem@4 | 311 | } |
philpem@4 | 312 | |
philpem@10 | 313 | // for the disassembler |
philpem@9 | 314 | uint32_t m68k_read_disassembler_32(uint32_t addr) { return m68k_read_memory_32(addr); } |
philpem@9 | 315 | uint32_t m68k_read_disassembler_16(uint32_t addr) { return m68k_read_memory_16(addr); } |
philpem@9 | 316 | uint32_t m68k_read_disassembler_8 (uint32_t addr) { return m68k_read_memory_8 (addr); } |
philpem@9 | 317 | |
philpem@27 | 318 | |
philpem@27 | 319 | /**************************** |
philpem@27 | 320 | * blessed be thy main()... |
philpem@27 | 321 | ****************************/ |
philpem@27 | 322 | |
philpem@0 | 323 | int main(void) |
philpem@0 | 324 | { |
philpem@7 | 325 | // copyright banner |
philpem@16 | 326 | printf("FreeBee: A Quick-and-Dirty AT&T 3B1 Emulator. Version %s, %s mode.\n", VER_FULLSTR, VER_BUILD_TYPE); |
philpem@17 | 327 | printf("Copyright (C) 2010 P. A. Pemberton. All rights reserved.\nLicensed under the Apache License Version 2.0.\n"); |
philpem@17 | 328 | printf("Musashi M680x0 emulator engine developed by Karl Stenerud <kstenerud@gmail.com>\n"); |
philpem@16 | 329 | printf("Built %s by %s@%s.\n", VER_COMPILE_DATETIME, VER_COMPILE_BY, VER_COMPILE_HOST); |
philpem@16 | 330 | printf("Compiler: %s\n", VER_COMPILER); |
philpem@16 | 331 | printf("CFLAGS: %s\n", VER_CFLAGS); |
philpem@17 | 332 | printf("\n"); |
philpem@7 | 333 | |
philpem@7 | 334 | // set up system state |
philpem@7 | 335 | // 512K of RAM |
philpem@18 | 336 | state_init(512*1024); |
philpem@7 | 337 | |
philpem@20 | 338 | // set up musashi and reset the CPU |
philpem@7 | 339 | m68k_set_cpu_type(M68K_CPU_TYPE_68010); |
philpem@7 | 340 | m68k_pulse_reset(); |
philpem@9 | 341 | |
philpem@28 | 342 | // Set up SDL |
philpem@20 | 343 | if (SDL_Init(SDL_INIT_VIDEO | SDL_INIT_TIMER) == -1) { |
philpem@20 | 344 | printf("Could not initialise SDL: %s.\n", SDL_GetError()); |
philpem@28 | 345 | exit(EXIT_FAILURE); |
philpem@20 | 346 | } |
philpem@7 | 347 | |
philpem@28 | 348 | // Make sure SDL cleans up after itself |
philpem@28 | 349 | atexit(SDL_Quit); |
philpem@28 | 350 | |
philpem@28 | 351 | // Set up the video display |
philpem@28 | 352 | SDL_Surface *screen = NULL; |
philpem@28 | 353 | if ((screen = SDL_SetVideoMode(720, 384, 8, SDL_SWSURFACE | SDL_ANYFORMAT)) == NULL) { |
philpem@28 | 354 | printf("Could not find a suitable video mode: %s.\n", SDL_GetError()); |
philpem@28 | 355 | exit(EXIT_FAILURE); |
philpem@28 | 356 | } |
philpem@28 | 357 | printf("Set %dx%d at %d bits-per-pixel mode\n", screen->w, screen->h, screen->format->BitsPerPixel); |
philpem@28 | 358 | SDL_WM_SetCaption("FreeBee 3B1 emulator", "FreeBee"); |
philpem@28 | 359 | |
philpem@20 | 360 | /*** |
philpem@20 | 361 | * The 3B1 CPU runs at 10MHz, with DMA running at 1MHz and video refreshing at |
philpem@20 | 362 | * around 60Hz (???), with a 60Hz periodic interrupt. |
philpem@20 | 363 | */ |
philpem@20 | 364 | const uint32_t TIMESLOT_FREQUENCY = 240; // Hz |
philpem@20 | 365 | const uint32_t MILLISECS_PER_TIMESLOT = 1e3 / TIMESLOT_FREQUENCY; |
philpem@20 | 366 | const uint32_t CLOCKS_PER_60HZ = (10e6 / 60); |
philpem@20 | 367 | uint32_t next_timeslot = SDL_GetTicks() + MILLISECS_PER_TIMESLOT; |
philpem@20 | 368 | uint32_t clock_cycles = 0; |
philpem@16 | 369 | bool exitEmu = false; |
philpem@16 | 370 | for (;;) { |
philpem@20 | 371 | // Run the CPU for however many cycles we need to. CPU core clock is |
philpem@20 | 372 | // 10MHz, and we're running at 240Hz/timeslot. Thus: 10e6/240 or |
philpem@20 | 373 | // 41667 cycles per timeslot. |
philpem@20 | 374 | clock_cycles += m68k_execute(10e6/TIMESLOT_FREQUENCY); |
philpem@20 | 375 | |
philpem@20 | 376 | // TODO: run DMA here |
philpem@16 | 377 | |
philpem@20 | 378 | // Is it time to run the 60Hz periodic interrupt yet? |
philpem@20 | 379 | if (clock_cycles > CLOCKS_PER_60HZ) { |
philpem@20 | 380 | // TODO: refresh screen |
philpem@20 | 381 | // TODO: trigger periodic interrupt (if enabled) |
philpem@20 | 382 | // decrement clock cycle counter, we've handled the intr. |
philpem@20 | 383 | clock_cycles -= CLOCKS_PER_60HZ; |
philpem@16 | 384 | } |
philpem@16 | 385 | |
philpem@20 | 386 | // make sure frame rate is equal to real time |
philpem@20 | 387 | uint32_t now = SDL_GetTicks(); |
philpem@20 | 388 | if (now < next_timeslot) { |
philpem@20 | 389 | // timeslot finished early -- eat up some time |
philpem@20 | 390 | SDL_Delay(next_timeslot - now); |
philpem@20 | 391 | } else { |
philpem@20 | 392 | // timeslot finished late -- skip ahead to gain time |
philpem@20 | 393 | // TODO: if this happens a lot, we should let the user know |
philpem@20 | 394 | // that their PC might not be fast enough... |
philpem@20 | 395 | next_timeslot = now; |
philpem@20 | 396 | } |
philpem@20 | 397 | // advance to the next timeslot |
philpem@20 | 398 | next_timeslot += MILLISECS_PER_TIMESLOT; |
philpem@20 | 399 | |
philpem@20 | 400 | // if we've been asked to exit the emulator, then do so. |
philpem@16 | 401 | if (exitEmu) break; |
philpem@16 | 402 | } |
philpem@7 | 403 | |
philpem@7 | 404 | // shut down and exit |
philpem@20 | 405 | SDL_Quit(); |
philpem@7 | 406 | |
philpem@0 | 407 | return 0; |
philpem@0 | 408 | } |