Thu, 02 Dec 2010 17:01:34 +0000
Implement memory mapping and access checking
philpem@0 | 1 | #include <stdio.h> |
philpem@7 | 2 | #include <stdlib.h> |
philpem@4 | 3 | #include <stdint.h> |
philpem@7 | 4 | #include <stdbool.h> |
philpem@7 | 5 | #include <malloc.h> |
philpem@7 | 6 | #include <string.h> |
philpem@18 | 7 | |
philpem@20 | 8 | #include "SDL.h" |
philpem@20 | 9 | |
philpem@4 | 10 | #include "musashi/m68k.h" |
philpem@7 | 11 | #include "version.h" |
philpem@18 | 12 | #include "state.h" |
philpem@7 | 13 | |
philpem@7 | 14 | void FAIL(char *err) |
philpem@7 | 15 | { |
philpem@7 | 16 | state_done(); |
philpem@7 | 17 | fprintf(stderr, "ERROR: %s\nExiting...\n", err); |
philpem@7 | 18 | exit(EXIT_FAILURE); |
philpem@7 | 19 | } |
philpem@7 | 20 | |
philpem@26 | 21 | /*********************************** |
philpem@26 | 22 | * Array read/write utility macros |
philpem@26 | 23 | * "Don't Repeat Yourself" :) |
philpem@26 | 24 | ***********************************/ |
philpem@26 | 25 | |
philpem@26 | 26 | /// Array read, 32-bit |
philpem@26 | 27 | #define RD32(array, address, andmask) \ |
philpem@26 | 28 | (((uint32_t)array[(address + 0) & (andmask)] << 24) | \ |
philpem@26 | 29 | ((uint32_t)array[(address + 1) & (andmask)] << 16) | \ |
philpem@26 | 30 | ((uint32_t)array[(address + 2) & (andmask)] << 8) | \ |
philpem@26 | 31 | ((uint32_t)array[(address + 3) & (andmask)])) |
philpem@26 | 32 | |
philpem@26 | 33 | /// Array read, 16-bit |
philpem@26 | 34 | #define RD16(array, address, andmask) \ |
philpem@26 | 35 | (((uint32_t)array[(address + 0) & (andmask)] << 8) | \ |
philpem@26 | 36 | ((uint32_t)array[(address + 1) & (andmask)])) |
philpem@26 | 37 | |
philpem@26 | 38 | /// Array read, 8-bit |
philpem@26 | 39 | #define RD8(array, address, andmask) \ |
philpem@26 | 40 | ((uint32_t)array[(address + 0) & (andmask)]) |
philpem@26 | 41 | |
philpem@26 | 42 | /// Array write, 32-bit |
philpem@26 | 43 | #define WR32(array, address, andmask, value) { \ |
philpem@26 | 44 | array[(address + 0) & (andmask)] = (value >> 24) & 0xff; \ |
philpem@26 | 45 | array[(address + 1) & (andmask)] = (value >> 16) & 0xff; \ |
philpem@26 | 46 | array[(address + 2) & (andmask)] = (value >> 8) & 0xff; \ |
philpem@26 | 47 | array[(address + 3) & (andmask)] = value & 0xff; \ |
philpem@26 | 48 | } |
philpem@26 | 49 | |
philpem@26 | 50 | /// Array write, 16-bit |
philpem@26 | 51 | #define WR16(array, address, andmask, value) { \ |
philpem@26 | 52 | array[(address + 0) & (andmask)] = (value >> 8) & 0xff; \ |
philpem@26 | 53 | array[(address + 1) & (andmask)] = value & 0xff; \ |
philpem@26 | 54 | } |
philpem@26 | 55 | |
philpem@26 | 56 | /// Array write, 8-bit |
philpem@26 | 57 | #define WR8(array, address, andmask, value) \ |
philpem@26 | 58 | array[(address + 0) & (andmask)] = value & 0xff; |
philpem@26 | 59 | |
philpem@30 | 60 | /****************** |
philpem@30 | 61 | * Memory mapping |
philpem@30 | 62 | ******************/ |
philpem@30 | 63 | |
philpem@30 | 64 | #define MAPRAM(addr) (((uint16_t)state.map[addr*2] << 8) + ((uint16_t)state.map[(addr*2)+1])) |
philpem@30 | 65 | |
philpem@30 | 66 | uint32_t mapAddr(uint32_t addr, bool writing) |
philpem@30 | 67 | { |
philpem@30 | 68 | if (addr < 0x400000) { |
philpem@30 | 69 | // RAM access. Check against the Map RAM |
philpem@30 | 70 | // Start by getting the original page address |
philpem@30 | 71 | uint16_t page = (addr >> 12) & 0x3FF; |
philpem@30 | 72 | |
philpem@30 | 73 | // Look it up in the map RAM and get the physical page address |
philpem@30 | 74 | uint32_t new_page_addr = MAPRAM(page) & 0x3FF; |
philpem@30 | 75 | |
philpem@30 | 76 | // Update the Page Status bits |
philpem@30 | 77 | uint8_t pagebits = (MAPRAM(page) >> 13) & 0x03; |
philpem@30 | 78 | if (pagebits != 0) { |
philpem@30 | 79 | if (writing) |
philpem@32 | 80 | state.map[page*2] |= 0x60; // Page written to (dirty) |
philpem@30 | 81 | else |
philpem@32 | 82 | state.map[page*2] |= 0x40; // Page accessed but not written |
philpem@30 | 83 | } |
philpem@30 | 84 | |
philpem@30 | 85 | // Return the address with the new physical page spliced in |
philpem@30 | 86 | return (new_page_addr << 12) + (addr & 0xFFF); |
philpem@30 | 87 | } else { |
philpem@30 | 88 | // I/O, VRAM or MapRAM space; no mapping is performed or required |
philpem@30 | 89 | // TODO: assert here? |
philpem@30 | 90 | return addr; |
philpem@30 | 91 | } |
philpem@30 | 92 | } |
philpem@30 | 93 | |
philpem@30 | 94 | typedef enum { |
philpem@30 | 95 | MEM_ALLOWED = 0, |
philpem@30 | 96 | MEM_PAGEFAULT, // Page fault -- page not present |
philpem@30 | 97 | MEM_PAGE_NO_WE, // Page not write enabled |
philpem@30 | 98 | MEM_KERNEL, // User attempted to access kernel memory |
philpem@30 | 99 | MEM_UIE // User Nonmemory Location Access |
philpem@30 | 100 | } MEM_STATUS; |
philpem@30 | 101 | |
philpem@30 | 102 | // check memory access permissions |
philpem@30 | 103 | MEM_STATUS checkMemoryAccess(uint32_t addr, bool writing) |
philpem@30 | 104 | { |
philpem@30 | 105 | // Are we in Supervisor mode? |
philpem@30 | 106 | if (m68k_get_reg(NULL, M68K_REG_SR) & 0x2000) |
philpem@30 | 107 | // Yes. We can do anything we like. |
philpem@30 | 108 | return MEM_ALLOWED; |
philpem@30 | 109 | |
philpem@30 | 110 | // If we're here, then we must be in User mode. |
philpem@30 | 111 | // Check that the user didn't access memory outside of the RAM area |
philpem@30 | 112 | if (addr >= 0x400000) |
philpem@30 | 113 | return MEM_UIE; |
philpem@30 | 114 | |
philpem@30 | 115 | // This leaves us with Page Fault checking. Get the page bits for this page. |
philpem@30 | 116 | uint16_t page = (addr >> 12) & 0x3FF; |
philpem@30 | 117 | uint8_t pagebits = (MAPRAM(page) >> 13) & 0x07; |
philpem@30 | 118 | |
philpem@30 | 119 | // Check page is present |
philpem@30 | 120 | if ((pagebits & 0x03) == 0) |
philpem@30 | 121 | return MEM_PAGEFAULT; |
philpem@30 | 122 | |
philpem@30 | 123 | // User attempt to access the kernel |
philpem@30 | 124 | // A19, A20, A21, A22 low (kernel access): RAM addr before paging; not in Supervisor mode |
philpem@30 | 125 | if (((addr >> 19) & 0x0F) == 0) |
philpem@30 | 126 | return MEM_KERNEL; |
philpem@30 | 127 | |
philpem@30 | 128 | // Check page is write enabled |
philpem@30 | 129 | if ((pagebits & 0x04) == 0) |
philpem@30 | 130 | return MEM_PAGE_NO_WE; |
philpem@30 | 131 | |
philpem@30 | 132 | // Page access allowed. |
philpem@30 | 133 | return MEM_ALLOWED; |
philpem@30 | 134 | } |
philpem@30 | 135 | |
philpem@30 | 136 | #undef MAPRAM |
philpem@26 | 137 | |
philpem@26 | 138 | /******************************************************** |
philpem@26 | 139 | * m68k memory read/write support functions for Musashi |
philpem@26 | 140 | ********************************************************/ |
philpem@26 | 141 | |
philpem@32 | 142 | /** |
philpem@32 | 143 | * @brief Check memory access permissions for a write operation. |
philpem@32 | 144 | * @note This used to be a single macro (merged with ACCESS_CHECK_RD), but |
philpem@32 | 145 | * gcc throws warnings when you have a return-with-value in a void |
philpem@32 | 146 | * function, even if the return-with-value is completely unreachable. |
philpem@32 | 147 | * Similarly it doesn't like it if you have a return without a value |
philpem@32 | 148 | * in a non-void function, even if it's impossible to ever reach the |
philpem@32 | 149 | * return-with-no-value. UGH! |
philpem@32 | 150 | */ |
philpem@32 | 151 | #define ACCESS_CHECK_WR() do { \ |
philpem@32 | 152 | /* MEM_STATUS st; */ \ |
philpem@32 | 153 | switch (checkMemoryAccess(address, true)) { \ |
philpem@32 | 154 | case MEM_ALLOWED: \ |
philpem@32 | 155 | /* Access allowed */ \ |
philpem@32 | 156 | break; \ |
philpem@32 | 157 | case MEM_PAGEFAULT: \ |
philpem@32 | 158 | /* Page fault */ \ |
philpem@32 | 159 | state.genstat = 0x8FFF; \ |
philpem@32 | 160 | m68k_pulse_bus_error(); \ |
philpem@32 | 161 | return; \ |
philpem@32 | 162 | case MEM_UIE: \ |
philpem@32 | 163 | /* User access to memory above 4MB */ \ |
philpem@32 | 164 | state.genstat = 0x9EFF; \ |
philpem@32 | 165 | m68k_pulse_bus_error(); \ |
philpem@32 | 166 | return; \ |
philpem@32 | 167 | case MEM_KERNEL: \ |
philpem@32 | 168 | case MEM_PAGE_NO_WE: \ |
philpem@32 | 169 | /* kernel access or page not write enabled */ \ |
philpem@32 | 170 | /* TODO: which regs need setting? */ \ |
philpem@32 | 171 | m68k_pulse_bus_error(); \ |
philpem@32 | 172 | return; \ |
philpem@32 | 173 | } \ |
philpem@32 | 174 | } while (false) |
philpem@32 | 175 | |
philpem@32 | 176 | /** |
philpem@32 | 177 | * @brief Check memory access permissions for a read operation. |
philpem@32 | 178 | * @note This used to be a single macro (merged with ACCESS_CHECK_WR), but |
philpem@32 | 179 | * gcc throws warnings when you have a return-with-value in a void |
philpem@32 | 180 | * function, even if the return-with-value is completely unreachable. |
philpem@32 | 181 | * Similarly it doesn't like it if you have a return without a value |
philpem@32 | 182 | * in a non-void function, even if it's impossible to ever reach the |
philpem@32 | 183 | * return-with-no-value. UGH! |
philpem@32 | 184 | */ |
philpem@32 | 185 | #define ACCESS_CHECK_RD() do { \ |
philpem@32 | 186 | /* MEM_STATUS st; */ \ |
philpem@32 | 187 | switch (checkMemoryAccess(address, false)) { \ |
philpem@32 | 188 | case MEM_ALLOWED: \ |
philpem@32 | 189 | /* Access allowed */ \ |
philpem@32 | 190 | break; \ |
philpem@32 | 191 | case MEM_PAGEFAULT: \ |
philpem@32 | 192 | /* Page fault */ \ |
philpem@32 | 193 | state.genstat = 0xCFFF; \ |
philpem@32 | 194 | m68k_pulse_bus_error(); \ |
philpem@32 | 195 | return 0xFFFFFFFF; \ |
philpem@32 | 196 | case MEM_UIE: \ |
philpem@32 | 197 | /* User access to memory above 4MB */ \ |
philpem@32 | 198 | state.genstat = 0xDEFF; \ |
philpem@32 | 199 | m68k_pulse_bus_error(); \ |
philpem@32 | 200 | return 0xFFFFFFFF; \ |
philpem@32 | 201 | case MEM_KERNEL: \ |
philpem@32 | 202 | case MEM_PAGE_NO_WE: \ |
philpem@32 | 203 | /* kernel access or page not write enabled */ \ |
philpem@32 | 204 | /* TODO: which regs need setting? */ \ |
philpem@32 | 205 | m68k_pulse_bus_error(); \ |
philpem@32 | 206 | return 0xFFFFFFFF; \ |
philpem@32 | 207 | } \ |
philpem@32 | 208 | } while (false) |
philpem@32 | 209 | |
philpem@32 | 210 | /** |
philpem@32 | 211 | * @brief Read M68K memory, 32-bit |
philpem@32 | 212 | */ |
philpem@4 | 213 | uint32_t m68k_read_memory_32(uint32_t address) |
philpem@4 | 214 | { |
philpem@9 | 215 | uint32_t data = 0xFFFFFFFF; |
philpem@9 | 216 | |
philpem@7 | 217 | // If ROMLMAP is set, force system to access ROM |
philpem@7 | 218 | if (!state.romlmap) |
philpem@7 | 219 | address |= 0x800000; |
philpem@7 | 220 | |
philpem@32 | 221 | // Check access permissions |
philpem@32 | 222 | ACCESS_CHECK_RD(); |
philpem@32 | 223 | |
philpem@9 | 224 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@7 | 225 | // ROM access |
philpem@26 | 226 | data = RD32(state.rom, address, ROM_SIZE - 1); |
philpem@26 | 227 | } else if (address <= (state.ram_size - 1)) { |
philpem@32 | 228 | // RAM access |
philpem@32 | 229 | data = RD32(state.ram, mapAddr(address, false), state.ram_size - 1); |
philpem@24 | 230 | } else if ((address >= 0x420000) && (address <= 0x427FFF)) { |
philpem@27 | 231 | // VRAM access |
philpem@26 | 232 | data = RD32(state.vram, address, 0x7FFF); |
philpem@27 | 233 | } else if ((address >= 0x400000) && (address <= 0x4007FF)) { |
philpem@27 | 234 | // Map RAM access |
philpem@27 | 235 | data = RD32(state.map, address, 0x7FF); |
philpem@21 | 236 | } else { |
philpem@21 | 237 | // I/O register -- TODO |
philpem@29 | 238 | printf("RD32 0x%08X ==> ??? %s\n", address, m68k_get_reg(NULL, M68K_REG_SR) & 0x2000 ? "[SV]" : ""); |
philpem@7 | 239 | } |
philpem@9 | 240 | return data; |
philpem@4 | 241 | } |
philpem@4 | 242 | |
philpem@32 | 243 | /** |
philpem@32 | 244 | * @brief Read M68K memory, 16-bit |
philpem@32 | 245 | */ |
philpem@4 | 246 | uint32_t m68k_read_memory_16(uint32_t address) |
philpem@4 | 247 | { |
philpem@9 | 248 | uint16_t data = 0xFFFF; |
philpem@9 | 249 | |
philpem@9 | 250 | // If ROMLMAP is set, force system to access ROM |
philpem@9 | 251 | if (!state.romlmap) |
philpem@9 | 252 | address |= 0x800000; |
philpem@9 | 253 | |
philpem@32 | 254 | // Check access permissions |
philpem@32 | 255 | ACCESS_CHECK_RD(); |
philpem@32 | 256 | |
philpem@10 | 257 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@10 | 258 | // ROM access |
philpem@26 | 259 | data = RD16(state.rom, address, ROM_SIZE - 1); |
philpem@26 | 260 | } else if (address <= (state.ram_size - 1)) { |
philpem@32 | 261 | // RAM access |
philpem@32 | 262 | data = RD16(state.ram, mapAddr(address, false), state.ram_size - 1); |
philpem@24 | 263 | } else if ((address >= 0x420000) && (address <= 0x427FFF)) { |
philpem@27 | 264 | // VRAM access |
philpem@26 | 265 | data = RD16(state.vram, address, 0x7FFF); |
philpem@27 | 266 | } else if ((address >= 0x400000) && (address <= 0x4007FF)) { |
philpem@27 | 267 | // Map RAM access |
philpem@27 | 268 | data = RD16(state.map, address, 0x7FF); |
philpem@21 | 269 | } else { |
philpem@21 | 270 | // I/O register -- TODO |
philpem@29 | 271 | printf("RD16 0x%08X ==> ??? %s\n", address, m68k_get_reg(NULL, M68K_REG_SR) & 0x2000 ? "[SV]" : ""); |
philpem@10 | 272 | } |
philpem@9 | 273 | |
philpem@9 | 274 | return data; |
philpem@4 | 275 | } |
philpem@4 | 276 | |
philpem@32 | 277 | /** |
philpem@32 | 278 | * @brief Read M68K memory, 8-bit |
philpem@32 | 279 | */ |
philpem@4 | 280 | uint32_t m68k_read_memory_8(uint32_t address) |
philpem@4 | 281 | { |
philpem@9 | 282 | uint8_t data = 0xFF; |
philpem@9 | 283 | |
philpem@7 | 284 | // If ROMLMAP is set, force system to access ROM |
philpem@7 | 285 | if (!state.romlmap) |
philpem@7 | 286 | address |= 0x800000; |
philpem@7 | 287 | |
philpem@32 | 288 | // Check access permissions |
philpem@32 | 289 | ACCESS_CHECK_RD(); |
philpem@32 | 290 | |
philpem@10 | 291 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@10 | 292 | // ROM access |
philpem@26 | 293 | data = RD8(state.rom, address, ROM_SIZE - 1); |
philpem@26 | 294 | } else if (address <= (state.ram_size - 1)) { |
philpem@32 | 295 | // RAM access |
philpem@32 | 296 | data = RD8(state.ram, mapAddr(address, false), state.ram_size - 1); |
philpem@24 | 297 | } else if ((address >= 0x420000) && (address <= 0x427FFF)) { |
philpem@27 | 298 | // VRAM access |
philpem@26 | 299 | data = RD8(state.vram, address, 0x7FFF); |
philpem@27 | 300 | } else if ((address >= 0x400000) && (address <= 0x4007FF)) { |
philpem@27 | 301 | // Map RAM access |
philpem@27 | 302 | data = RD8(state.map, address, 0x7FF); |
philpem@21 | 303 | } else { |
philpem@21 | 304 | // I/O register -- TODO |
philpem@29 | 305 | printf("RD08 0x%08X ==> ??? %s\n", address, m68k_get_reg(NULL, M68K_REG_SR) & 0x2000 ? "[SV]" : ""); |
philpem@10 | 306 | } |
philpem@9 | 307 | |
philpem@9 | 308 | return data; |
philpem@4 | 309 | } |
philpem@4 | 310 | |
philpem@32 | 311 | /** |
philpem@32 | 312 | * @brief Write M68K memory, 32-bit |
philpem@32 | 313 | */ |
philpem@4 | 314 | void m68k_write_memory_32(uint32_t address, uint32_t value) |
philpem@4 | 315 | { |
philpem@7 | 316 | // If ROMLMAP is set, force system to access ROM |
philpem@7 | 317 | if (!state.romlmap) |
philpem@7 | 318 | address |= 0x800000; |
philpem@7 | 319 | |
philpem@32 | 320 | // Check access permissions |
philpem@32 | 321 | ACCESS_CHECK_WR(); |
philpem@32 | 322 | |
philpem@9 | 323 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@7 | 324 | // ROM access |
philpem@32 | 325 | // According to HwNote15 (John B. Milton), there is no write protection |
philpem@32 | 326 | // here. You can write to ROM, but nothing happens. |
philpem@26 | 327 | } else if (address <= (state.ram_size - 1)) { |
philpem@32 | 328 | // RAM access |
philpem@32 | 329 | WR32(state.ram, mapAddr(address, true), state.ram_size - 1, value); |
philpem@24 | 330 | } else if ((address >= 0x420000) && (address <= 0x427FFF)) { |
philpem@24 | 331 | // VRAM access |
philpem@26 | 332 | WR32(state.vram, address, 0x7fff, value); |
philpem@27 | 333 | } else if ((address >= 0x400000) && (address <= 0x4007FF)) { |
philpem@27 | 334 | // Map RAM access |
philpem@27 | 335 | WR32(state.map, address, 0x7FF, value); |
philpem@9 | 336 | } else { |
philpem@9 | 337 | switch (address) { |
philpem@21 | 338 | case 0xE43000: state.romlmap = ((value & 0x8000) == 0x8000); break; // GCR3: ROMLMAP |
philpem@29 | 339 | default: printf("WR32 0x%08X ==> 0x%08X %s\n", address, value, m68k_get_reg(NULL, M68K_REG_SR) & 0x2000 ? "[SV]" : ""); break; |
philpem@9 | 340 | } |
philpem@7 | 341 | } |
philpem@4 | 342 | } |
philpem@4 | 343 | |
philpem@32 | 344 | /** |
philpem@32 | 345 | * @brief Write M68K memory, 16-bit |
philpem@32 | 346 | */ |
philpem@4 | 347 | void m68k_write_memory_16(uint32_t address, uint32_t value) |
philpem@4 | 348 | { |
philpem@7 | 349 | // If ROMLMAP is set, force system to access ROM |
philpem@7 | 350 | if (!state.romlmap) |
philpem@7 | 351 | address |= 0x800000; |
philpem@7 | 352 | |
philpem@32 | 353 | // Check access permissions |
philpem@32 | 354 | ACCESS_CHECK_WR(); |
philpem@32 | 355 | |
philpem@9 | 356 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@7 | 357 | // ROM access |
philpem@32 | 358 | // According to HwNote15 (John B. Milton), there is no write protection |
philpem@32 | 359 | // here. You can write to ROM, but nothing happens. |
philpem@26 | 360 | } else if (address <= (state.ram_size - 1)) { |
philpem@32 | 361 | // RAM access |
philpem@32 | 362 | WR16(state.ram, mapAddr(address, true), state.ram_size - 1, value); |
philpem@24 | 363 | } else if ((address >= 0x420000) && (address <= 0x427FFF)) { |
philpem@24 | 364 | // VRAM access |
philpem@26 | 365 | WR16(state.vram, address, 0x7fff, value); |
philpem@27 | 366 | } else if ((address >= 0x400000) && (address <= 0x4007FF)) { |
philpem@27 | 367 | // Map RAM access |
philpem@27 | 368 | WR16(state.map, address, 0x7FF, value); |
philpem@9 | 369 | } else { |
philpem@9 | 370 | switch (address) { |
philpem@21 | 371 | case 0xE43000: state.romlmap = ((value & 0x8000) == 0x8000); break; // GCR3: ROMLMAP |
philpem@29 | 372 | default: printf("WR16 0x%08X ==> 0x%04X %s\n", address, value, m68k_get_reg(NULL, M68K_REG_SR) & 0x2000 ? "[SV]" : ""); break; |
philpem@9 | 373 | } |
philpem@25 | 374 | if (address == 0x4A0000) { |
philpem@25 | 375 | printf("\tLED WRITE: %s %s %s %s\n", |
philpem@25 | 376 | value & 0x800 ? "-" : "R", |
philpem@25 | 377 | value & 0x400 ? "-" : "G", |
philpem@25 | 378 | value & 0x200 ? "-" : "Y", |
philpem@25 | 379 | value & 0x100 ? "-" : "R" |
philpem@25 | 380 | ); |
philpem@25 | 381 | } |
philpem@7 | 382 | } |
philpem@4 | 383 | } |
philpem@4 | 384 | |
philpem@32 | 385 | /** |
philpem@32 | 386 | * @brief Write M68K memory, 8-bit |
philpem@32 | 387 | */ |
philpem@4 | 388 | void m68k_write_memory_8(uint32_t address, uint32_t value) |
philpem@4 | 389 | { |
philpem@7 | 390 | // If ROMLMAP is set, force system to access ROM |
philpem@7 | 391 | if (!state.romlmap) |
philpem@7 | 392 | address |= 0x800000; |
philpem@7 | 393 | |
philpem@32 | 394 | // Check access permissions |
philpem@32 | 395 | ACCESS_CHECK_WR(); |
philpem@32 | 396 | |
philpem@9 | 397 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@7 | 398 | // ROM access |
philpem@32 | 399 | // According to HwNote15 (John B. Milton), there is no write protection |
philpem@32 | 400 | // here. You can write to ROM, but nothing happens. |
philpem@26 | 401 | } else if (address <= (state.ram_size - 1)) { |
philpem@32 | 402 | // RAM access |
philpem@32 | 403 | WR8(state.ram, mapAddr(address, true), state.ram_size - 1, value); |
philpem@24 | 404 | } else if ((address >= 0x420000) && (address <= 0x427FFF)) { |
philpem@24 | 405 | // VRAM access |
philpem@26 | 406 | WR8(state.vram, address, 0x7fff, value); |
philpem@27 | 407 | } else if ((address >= 0x400000) && (address <= 0x4007FF)) { |
philpem@27 | 408 | // Map RAM access |
philpem@27 | 409 | WR8(state.map, address, 0x7FF, value); |
philpem@9 | 410 | } else { |
philpem@9 | 411 | switch (address) { |
philpem@21 | 412 | case 0xE43000: state.romlmap = ((value & 0x80) == 0x80); break; // GCR3: ROMLMAP |
philpem@29 | 413 | default: printf("WR08 0x%08X ==> 0x%02X %s\n", address, value, m68k_get_reg(NULL, M68K_REG_SR) & 0x2000 ? "[SV]" : ""); break; |
philpem@9 | 414 | } |
philpem@7 | 415 | } |
philpem@4 | 416 | } |
philpem@4 | 417 | |
philpem@10 | 418 | // for the disassembler |
philpem@9 | 419 | uint32_t m68k_read_disassembler_32(uint32_t addr) { return m68k_read_memory_32(addr); } |
philpem@9 | 420 | uint32_t m68k_read_disassembler_16(uint32_t addr) { return m68k_read_memory_16(addr); } |
philpem@9 | 421 | uint32_t m68k_read_disassembler_8 (uint32_t addr) { return m68k_read_memory_8 (addr); } |
philpem@9 | 422 | |
philpem@27 | 423 | |
philpem@27 | 424 | /**************************** |
philpem@27 | 425 | * blessed be thy main()... |
philpem@27 | 426 | ****************************/ |
philpem@27 | 427 | |
philpem@0 | 428 | int main(void) |
philpem@0 | 429 | { |
philpem@7 | 430 | // copyright banner |
philpem@16 | 431 | printf("FreeBee: A Quick-and-Dirty AT&T 3B1 Emulator. Version %s, %s mode.\n", VER_FULLSTR, VER_BUILD_TYPE); |
philpem@17 | 432 | printf("Copyright (C) 2010 P. A. Pemberton. All rights reserved.\nLicensed under the Apache License Version 2.0.\n"); |
philpem@17 | 433 | printf("Musashi M680x0 emulator engine developed by Karl Stenerud <kstenerud@gmail.com>\n"); |
philpem@16 | 434 | printf("Built %s by %s@%s.\n", VER_COMPILE_DATETIME, VER_COMPILE_BY, VER_COMPILE_HOST); |
philpem@16 | 435 | printf("Compiler: %s\n", VER_COMPILER); |
philpem@16 | 436 | printf("CFLAGS: %s\n", VER_CFLAGS); |
philpem@17 | 437 | printf("\n"); |
philpem@7 | 438 | |
philpem@7 | 439 | // set up system state |
philpem@7 | 440 | // 512K of RAM |
philpem@18 | 441 | state_init(512*1024); |
philpem@7 | 442 | |
philpem@20 | 443 | // set up musashi and reset the CPU |
philpem@7 | 444 | m68k_set_cpu_type(M68K_CPU_TYPE_68010); |
philpem@7 | 445 | m68k_pulse_reset(); |
philpem@9 | 446 | |
philpem@28 | 447 | // Set up SDL |
philpem@20 | 448 | if (SDL_Init(SDL_INIT_VIDEO | SDL_INIT_TIMER) == -1) { |
philpem@20 | 449 | printf("Could not initialise SDL: %s.\n", SDL_GetError()); |
philpem@28 | 450 | exit(EXIT_FAILURE); |
philpem@20 | 451 | } |
philpem@7 | 452 | |
philpem@28 | 453 | // Make sure SDL cleans up after itself |
philpem@28 | 454 | atexit(SDL_Quit); |
philpem@28 | 455 | |
philpem@28 | 456 | // Set up the video display |
philpem@28 | 457 | SDL_Surface *screen = NULL; |
philpem@28 | 458 | if ((screen = SDL_SetVideoMode(720, 384, 8, SDL_SWSURFACE | SDL_ANYFORMAT)) == NULL) { |
philpem@28 | 459 | printf("Could not find a suitable video mode: %s.\n", SDL_GetError()); |
philpem@28 | 460 | exit(EXIT_FAILURE); |
philpem@28 | 461 | } |
philpem@32 | 462 | printf("Set %dx%d at %d bits-per-pixel mode\n\n", screen->w, screen->h, screen->format->BitsPerPixel); |
philpem@28 | 463 | SDL_WM_SetCaption("FreeBee 3B1 emulator", "FreeBee"); |
philpem@28 | 464 | |
philpem@20 | 465 | /*** |
philpem@20 | 466 | * The 3B1 CPU runs at 10MHz, with DMA running at 1MHz and video refreshing at |
philpem@20 | 467 | * around 60Hz (???), with a 60Hz periodic interrupt. |
philpem@20 | 468 | */ |
philpem@20 | 469 | const uint32_t TIMESLOT_FREQUENCY = 240; // Hz |
philpem@20 | 470 | const uint32_t MILLISECS_PER_TIMESLOT = 1e3 / TIMESLOT_FREQUENCY; |
philpem@20 | 471 | const uint32_t CLOCKS_PER_60HZ = (10e6 / 60); |
philpem@20 | 472 | uint32_t next_timeslot = SDL_GetTicks() + MILLISECS_PER_TIMESLOT; |
philpem@20 | 473 | uint32_t clock_cycles = 0; |
philpem@16 | 474 | bool exitEmu = false; |
philpem@16 | 475 | for (;;) { |
philpem@20 | 476 | // Run the CPU for however many cycles we need to. CPU core clock is |
philpem@20 | 477 | // 10MHz, and we're running at 240Hz/timeslot. Thus: 10e6/240 or |
philpem@20 | 478 | // 41667 cycles per timeslot. |
philpem@20 | 479 | clock_cycles += m68k_execute(10e6/TIMESLOT_FREQUENCY); |
philpem@20 | 480 | |
philpem@20 | 481 | // TODO: run DMA here |
philpem@16 | 482 | |
philpem@20 | 483 | // Is it time to run the 60Hz periodic interrupt yet? |
philpem@20 | 484 | if (clock_cycles > CLOCKS_PER_60HZ) { |
philpem@20 | 485 | // TODO: refresh screen |
philpem@20 | 486 | // TODO: trigger periodic interrupt (if enabled) |
philpem@20 | 487 | // decrement clock cycle counter, we've handled the intr. |
philpem@20 | 488 | clock_cycles -= CLOCKS_PER_60HZ; |
philpem@16 | 489 | } |
philpem@16 | 490 | |
philpem@20 | 491 | // make sure frame rate is equal to real time |
philpem@20 | 492 | uint32_t now = SDL_GetTicks(); |
philpem@20 | 493 | if (now < next_timeslot) { |
philpem@20 | 494 | // timeslot finished early -- eat up some time |
philpem@20 | 495 | SDL_Delay(next_timeslot - now); |
philpem@20 | 496 | } else { |
philpem@20 | 497 | // timeslot finished late -- skip ahead to gain time |
philpem@20 | 498 | // TODO: if this happens a lot, we should let the user know |
philpem@20 | 499 | // that their PC might not be fast enough... |
philpem@20 | 500 | next_timeslot = now; |
philpem@20 | 501 | } |
philpem@20 | 502 | // advance to the next timeslot |
philpem@20 | 503 | next_timeslot += MILLISECS_PER_TIMESLOT; |
philpem@20 | 504 | |
philpem@20 | 505 | // if we've been asked to exit the emulator, then do so. |
philpem@16 | 506 | if (exitEmu) break; |
philpem@16 | 507 | } |
philpem@7 | 508 | |
philpem@7 | 509 | // shut down and exit |
philpem@20 | 510 | SDL_Quit(); |
philpem@7 | 511 | |
philpem@0 | 512 | return 0; |
philpem@0 | 513 | } |