Wed, 01 Dec 2010 22:34:15 +0000
move repeated R/W bit-shifting stuff into macros and fix RAM addressing issue
philpem@0 | 1 | #include <stdio.h> |
philpem@7 | 2 | #include <stdlib.h> |
philpem@4 | 3 | #include <stdint.h> |
philpem@7 | 4 | #include <stdbool.h> |
philpem@7 | 5 | #include <malloc.h> |
philpem@7 | 6 | #include <string.h> |
philpem@18 | 7 | |
philpem@20 | 8 | #include "SDL.h" |
philpem@20 | 9 | |
philpem@4 | 10 | #include "musashi/m68k.h" |
philpem@7 | 11 | #include "version.h" |
philpem@18 | 12 | #include "state.h" |
philpem@7 | 13 | |
philpem@7 | 14 | void FAIL(char *err) |
philpem@7 | 15 | { |
philpem@7 | 16 | state_done(); |
philpem@7 | 17 | fprintf(stderr, "ERROR: %s\nExiting...\n", err); |
philpem@7 | 18 | exit(EXIT_FAILURE); |
philpem@7 | 19 | } |
philpem@7 | 20 | |
philpem@26 | 21 | /*********************************** |
philpem@26 | 22 | * Array read/write utility macros |
philpem@26 | 23 | * "Don't Repeat Yourself" :) |
philpem@26 | 24 | ***********************************/ |
philpem@26 | 25 | |
philpem@26 | 26 | /// Array read, 32-bit |
philpem@26 | 27 | #define RD32(array, address, andmask) \ |
philpem@26 | 28 | (((uint32_t)array[(address + 0) & (andmask)] << 24) | \ |
philpem@26 | 29 | ((uint32_t)array[(address + 1) & (andmask)] << 16) | \ |
philpem@26 | 30 | ((uint32_t)array[(address + 2) & (andmask)] << 8) | \ |
philpem@26 | 31 | ((uint32_t)array[(address + 3) & (andmask)])) |
philpem@26 | 32 | |
philpem@26 | 33 | /// Array read, 16-bit |
philpem@26 | 34 | #define RD16(array, address, andmask) \ |
philpem@26 | 35 | (((uint32_t)array[(address + 0) & (andmask)] << 8) | \ |
philpem@26 | 36 | ((uint32_t)array[(address + 1) & (andmask)])) |
philpem@26 | 37 | |
philpem@26 | 38 | /// Array read, 8-bit |
philpem@26 | 39 | #define RD8(array, address, andmask) \ |
philpem@26 | 40 | ((uint32_t)array[(address + 0) & (andmask)]) |
philpem@26 | 41 | |
philpem@26 | 42 | /// Array write, 32-bit |
philpem@26 | 43 | #define WR32(array, address, andmask, value) { \ |
philpem@26 | 44 | array[(address + 0) & (andmask)] = (value >> 24) & 0xff; \ |
philpem@26 | 45 | array[(address + 1) & (andmask)] = (value >> 16) & 0xff; \ |
philpem@26 | 46 | array[(address + 2) & (andmask)] = (value >> 8) & 0xff; \ |
philpem@26 | 47 | array[(address + 3) & (andmask)] = value & 0xff; \ |
philpem@26 | 48 | } |
philpem@26 | 49 | |
philpem@26 | 50 | /// Array write, 16-bit |
philpem@26 | 51 | #define WR16(array, address, andmask, value) { \ |
philpem@26 | 52 | array[(address + 0) & (andmask)] = (value >> 8) & 0xff; \ |
philpem@26 | 53 | array[(address + 1) & (andmask)] = value & 0xff; \ |
philpem@26 | 54 | } |
philpem@26 | 55 | |
philpem@26 | 56 | /// Array write, 8-bit |
philpem@26 | 57 | #define WR8(array, address, andmask, value) \ |
philpem@26 | 58 | array[(address + 0) & (andmask)] = value & 0xff; |
philpem@26 | 59 | |
philpem@26 | 60 | |
philpem@26 | 61 | /******************************************************** |
philpem@26 | 62 | * m68k memory read/write support functions for Musashi |
philpem@26 | 63 | ********************************************************/ |
philpem@26 | 64 | |
philpem@26 | 65 | |
philpem@4 | 66 | // read m68k memory |
philpem@4 | 67 | uint32_t m68k_read_memory_32(uint32_t address) |
philpem@4 | 68 | { |
philpem@9 | 69 | uint32_t data = 0xFFFFFFFF; |
philpem@9 | 70 | |
philpem@7 | 71 | // If ROMLMAP is set, force system to access ROM |
philpem@7 | 72 | if (!state.romlmap) |
philpem@7 | 73 | address |= 0x800000; |
philpem@7 | 74 | |
philpem@9 | 75 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@7 | 76 | // ROM access |
philpem@26 | 77 | data = RD32(state.rom, address, ROM_SIZE - 1); |
philpem@26 | 78 | } else if (address <= (state.ram_size - 1)) { |
philpem@7 | 79 | // RAM |
philpem@26 | 80 | data = RD32(state.ram, address, state.ram_size - 1); |
philpem@24 | 81 | } else if ((address >= 0x420000) && (address <= 0x427FFF)) { |
philpem@24 | 82 | // VRAM |
philpem@26 | 83 | data = RD32(state.vram, address, 0x7FFF); |
philpem@21 | 84 | } else { |
philpem@21 | 85 | // I/O register -- TODO |
philpem@22 | 86 | printf("RD32 0x%08X [unknown I/O register]\n", address); |
philpem@7 | 87 | } |
philpem@9 | 88 | return data; |
philpem@4 | 89 | } |
philpem@4 | 90 | |
philpem@4 | 91 | uint32_t m68k_read_memory_16(uint32_t address) |
philpem@4 | 92 | { |
philpem@9 | 93 | uint16_t data = 0xFFFF; |
philpem@9 | 94 | |
philpem@9 | 95 | // If ROMLMAP is set, force system to access ROM |
philpem@9 | 96 | if (!state.romlmap) |
philpem@9 | 97 | address |= 0x800000; |
philpem@9 | 98 | |
philpem@10 | 99 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@10 | 100 | // ROM access |
philpem@26 | 101 | data = RD16(state.rom, address, ROM_SIZE - 1); |
philpem@26 | 102 | } else if (address <= (state.ram_size - 1)) { |
philpem@10 | 103 | // RAM |
philpem@26 | 104 | data = RD16(state.ram, address, state.ram_size - 1); |
philpem@24 | 105 | } else if ((address >= 0x420000) && (address <= 0x427FFF)) { |
philpem@24 | 106 | // VRAM |
philpem@26 | 107 | data = RD16(state.vram, address, 0x7FFF); |
philpem@21 | 108 | } else { |
philpem@21 | 109 | // I/O register -- TODO |
philpem@22 | 110 | printf("RD16 0x%08X [unknown I/O register]\n", address); |
philpem@10 | 111 | } |
philpem@9 | 112 | |
philpem@9 | 113 | return data; |
philpem@4 | 114 | } |
philpem@4 | 115 | |
philpem@4 | 116 | uint32_t m68k_read_memory_8(uint32_t address) |
philpem@4 | 117 | { |
philpem@9 | 118 | uint8_t data = 0xFF; |
philpem@9 | 119 | |
philpem@7 | 120 | // If ROMLMAP is set, force system to access ROM |
philpem@7 | 121 | if (!state.romlmap) |
philpem@7 | 122 | address |= 0x800000; |
philpem@7 | 123 | |
philpem@10 | 124 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@10 | 125 | // ROM access |
philpem@26 | 126 | data = RD8(state.rom, address, ROM_SIZE - 1); |
philpem@26 | 127 | } else if (address <= (state.ram_size - 1)) { |
philpem@26 | 128 | // RAM |
philpem@26 | 129 | data = RD8(state.ram, address, state.ram_size - 1); |
philpem@24 | 130 | } else if ((address >= 0x420000) && (address <= 0x427FFF)) { |
philpem@24 | 131 | // VRAM |
philpem@26 | 132 | data = RD8(state.vram, address, 0x7FFF); |
philpem@21 | 133 | } else { |
philpem@21 | 134 | // I/O register -- TODO |
philpem@22 | 135 | printf("RD08 0x%08X [unknown I/O register]\n", address); |
philpem@10 | 136 | } |
philpem@9 | 137 | |
philpem@9 | 138 | return data; |
philpem@4 | 139 | } |
philpem@4 | 140 | |
philpem@4 | 141 | // write m68k memory |
philpem@4 | 142 | void m68k_write_memory_32(uint32_t address, uint32_t value) |
philpem@4 | 143 | { |
philpem@7 | 144 | // If ROMLMAP is set, force system to access ROM |
philpem@7 | 145 | if (!state.romlmap) |
philpem@7 | 146 | address |= 0x800000; |
philpem@7 | 147 | |
philpem@9 | 148 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@7 | 149 | // ROM access |
philpem@7 | 150 | // TODO: bus error here? can't write to rom! |
philpem@26 | 151 | } else if (address <= (state.ram_size - 1)) { |
philpem@10 | 152 | // RAM access |
philpem@26 | 153 | WR32(state.ram, address, state.ram_size - 1, value); |
philpem@24 | 154 | } else if ((address >= 0x420000) && (address <= 0x427FFF)) { |
philpem@24 | 155 | // VRAM access |
philpem@26 | 156 | WR32(state.vram, address, 0x7fff, value); |
philpem@9 | 157 | } else { |
philpem@9 | 158 | switch (address) { |
philpem@21 | 159 | case 0xE43000: state.romlmap = ((value & 0x8000) == 0x8000); break; // GCR3: ROMLMAP |
philpem@22 | 160 | default: printf("WR32 0x%08X ==> 0x%08X\n", address, value); break; |
philpem@9 | 161 | } |
philpem@7 | 162 | } |
philpem@4 | 163 | } |
philpem@4 | 164 | |
philpem@4 | 165 | void m68k_write_memory_16(uint32_t address, uint32_t value) |
philpem@4 | 166 | { |
philpem@7 | 167 | // If ROMLMAP is set, force system to access ROM |
philpem@7 | 168 | if (!state.romlmap) |
philpem@7 | 169 | address |= 0x800000; |
philpem@7 | 170 | |
philpem@9 | 171 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@7 | 172 | // ROM access |
philpem@7 | 173 | // TODO: bus error here? can't write to rom! |
philpem@26 | 174 | } else if (address <= (state.ram_size - 1)) { |
philpem@10 | 175 | // RAM access |
philpem@26 | 176 | WR16(state.ram, address, state.ram_size - 1, value); |
philpem@24 | 177 | } else if ((address >= 0x420000) && (address <= 0x427FFF)) { |
philpem@24 | 178 | // VRAM access |
philpem@26 | 179 | WR16(state.vram, address, 0x7fff, value); |
philpem@9 | 180 | } else { |
philpem@9 | 181 | switch (address) { |
philpem@21 | 182 | case 0xE43000: state.romlmap = ((value & 0x8000) == 0x8000); break; // GCR3: ROMLMAP |
philpem@22 | 183 | default: printf("WR16 0x%08X ==> 0x%04X\n", address, value); break; |
philpem@9 | 184 | } |
philpem@25 | 185 | if (address == 0x4A0000) { |
philpem@25 | 186 | printf("\tLED WRITE: %s %s %s %s\n", |
philpem@25 | 187 | value & 0x800 ? "-" : "R", |
philpem@25 | 188 | value & 0x400 ? "-" : "G", |
philpem@25 | 189 | value & 0x200 ? "-" : "Y", |
philpem@25 | 190 | value & 0x100 ? "-" : "R" |
philpem@25 | 191 | ); |
philpem@25 | 192 | } |
philpem@7 | 193 | } |
philpem@4 | 194 | } |
philpem@4 | 195 | |
philpem@4 | 196 | void m68k_write_memory_8(uint32_t address, uint32_t value) |
philpem@4 | 197 | { |
philpem@7 | 198 | // If ROMLMAP is set, force system to access ROM |
philpem@7 | 199 | if (!state.romlmap) |
philpem@7 | 200 | address |= 0x800000; |
philpem@7 | 201 | |
philpem@9 | 202 | if ((address >= 0x800000) && (address <= 0xBFFFFF)) { |
philpem@7 | 203 | // ROM access |
philpem@7 | 204 | // TODO: bus error here? can't write to rom! |
philpem@26 | 205 | } else if (address <= (state.ram_size - 1)) { |
philpem@26 | 206 | // RAM access |
philpem@26 | 207 | WR8(state.ram, address, state.ram_size - 1, value); |
philpem@24 | 208 | } else if ((address >= 0x420000) && (address <= 0x427FFF)) { |
philpem@24 | 209 | // VRAM access |
philpem@26 | 210 | WR8(state.vram, address, 0x7fff, value); |
philpem@9 | 211 | } else { |
philpem@9 | 212 | switch (address) { |
philpem@21 | 213 | case 0xE43000: state.romlmap = ((value & 0x80) == 0x80); break; // GCR3: ROMLMAP |
philpem@22 | 214 | default: printf("WR08 0x%08X ==> 0x%02X\n", address, value); break; |
philpem@9 | 215 | } |
philpem@7 | 216 | } |
philpem@4 | 217 | } |
philpem@4 | 218 | |
philpem@10 | 219 | // for the disassembler |
philpem@9 | 220 | uint32_t m68k_read_disassembler_32(uint32_t addr) { return m68k_read_memory_32(addr); } |
philpem@9 | 221 | uint32_t m68k_read_disassembler_16(uint32_t addr) { return m68k_read_memory_16(addr); } |
philpem@9 | 222 | uint32_t m68k_read_disassembler_8 (uint32_t addr) { return m68k_read_memory_8 (addr); } |
philpem@9 | 223 | |
philpem@0 | 224 | int main(void) |
philpem@0 | 225 | { |
philpem@7 | 226 | // copyright banner |
philpem@16 | 227 | printf("FreeBee: A Quick-and-Dirty AT&T 3B1 Emulator. Version %s, %s mode.\n", VER_FULLSTR, VER_BUILD_TYPE); |
philpem@17 | 228 | printf("Copyright (C) 2010 P. A. Pemberton. All rights reserved.\nLicensed under the Apache License Version 2.0.\n"); |
philpem@17 | 229 | printf("Musashi M680x0 emulator engine developed by Karl Stenerud <kstenerud@gmail.com>\n"); |
philpem@16 | 230 | printf("Built %s by %s@%s.\n", VER_COMPILE_DATETIME, VER_COMPILE_BY, VER_COMPILE_HOST); |
philpem@16 | 231 | printf("Compiler: %s\n", VER_COMPILER); |
philpem@16 | 232 | printf("CFLAGS: %s\n", VER_CFLAGS); |
philpem@17 | 233 | printf("\n"); |
philpem@7 | 234 | |
philpem@7 | 235 | // set up system state |
philpem@7 | 236 | // 512K of RAM |
philpem@18 | 237 | state_init(512*1024); |
philpem@7 | 238 | |
philpem@20 | 239 | // set up musashi and reset the CPU |
philpem@7 | 240 | m68k_set_cpu_type(M68K_CPU_TYPE_68010); |
philpem@7 | 241 | m68k_pulse_reset(); |
philpem@20 | 242 | /* |
philpem@20 | 243 | size_t i = 0x80001a; |
philpem@20 | 244 | size_t len; |
philpem@20 | 245 | do { |
philpem@20 | 246 | char dasm[512]; |
philpem@20 | 247 | len = m68k_disassemble(dasm, i, M68K_CPU_TYPE_68010); |
philpem@20 | 248 | printf("%06X: %s\n", i, dasm); |
philpem@20 | 249 | i += len; |
philpem@20 | 250 | } while (i < 0x8000ff); |
philpem@20 | 251 | */ |
philpem@9 | 252 | |
philpem@7 | 253 | // set up SDL |
philpem@20 | 254 | if (SDL_Init(SDL_INIT_VIDEO | SDL_INIT_TIMER) == -1) { |
philpem@20 | 255 | printf("Could not initialise SDL: %s.\n", SDL_GetError()); |
philpem@20 | 256 | return -1; |
philpem@20 | 257 | } |
philpem@7 | 258 | |
philpem@20 | 259 | /*** |
philpem@20 | 260 | * The 3B1 CPU runs at 10MHz, with DMA running at 1MHz and video refreshing at |
philpem@20 | 261 | * around 60Hz (???), with a 60Hz periodic interrupt. |
philpem@20 | 262 | */ |
philpem@20 | 263 | const uint32_t TIMESLOT_FREQUENCY = 240; // Hz |
philpem@20 | 264 | const uint32_t MILLISECS_PER_TIMESLOT = 1e3 / TIMESLOT_FREQUENCY; |
philpem@20 | 265 | const uint32_t CLOCKS_PER_60HZ = (10e6 / 60); |
philpem@20 | 266 | uint32_t next_timeslot = SDL_GetTicks() + MILLISECS_PER_TIMESLOT; |
philpem@20 | 267 | uint32_t clock_cycles = 0; |
philpem@16 | 268 | bool exitEmu = false; |
philpem@16 | 269 | for (;;) { |
philpem@20 | 270 | // Run the CPU for however many cycles we need to. CPU core clock is |
philpem@20 | 271 | // 10MHz, and we're running at 240Hz/timeslot. Thus: 10e6/240 or |
philpem@20 | 272 | // 41667 cycles per timeslot. |
philpem@20 | 273 | clock_cycles += m68k_execute(10e6/TIMESLOT_FREQUENCY); |
philpem@20 | 274 | |
philpem@20 | 275 | // TODO: run DMA here |
philpem@16 | 276 | |
philpem@20 | 277 | // Is it time to run the 60Hz periodic interrupt yet? |
philpem@20 | 278 | if (clock_cycles > CLOCKS_PER_60HZ) { |
philpem@20 | 279 | // TODO: refresh screen |
philpem@20 | 280 | // TODO: trigger periodic interrupt (if enabled) |
philpem@20 | 281 | // decrement clock cycle counter, we've handled the intr. |
philpem@20 | 282 | clock_cycles -= CLOCKS_PER_60HZ; |
philpem@16 | 283 | } |
philpem@16 | 284 | |
philpem@20 | 285 | // make sure frame rate is equal to real time |
philpem@20 | 286 | uint32_t now = SDL_GetTicks(); |
philpem@20 | 287 | if (now < next_timeslot) { |
philpem@20 | 288 | // timeslot finished early -- eat up some time |
philpem@20 | 289 | SDL_Delay(next_timeslot - now); |
philpem@20 | 290 | } else { |
philpem@20 | 291 | // timeslot finished late -- skip ahead to gain time |
philpem@20 | 292 | // TODO: if this happens a lot, we should let the user know |
philpem@20 | 293 | // that their PC might not be fast enough... |
philpem@20 | 294 | next_timeslot = now; |
philpem@20 | 295 | } |
philpem@20 | 296 | // advance to the next timeslot |
philpem@20 | 297 | next_timeslot += MILLISECS_PER_TIMESLOT; |
philpem@20 | 298 | |
philpem@20 | 299 | // if we've been asked to exit the emulator, then do so. |
philpem@16 | 300 | if (exitEmu) break; |
philpem@16 | 301 | } |
philpem@7 | 302 | |
philpem@7 | 303 | // shut down and exit |
philpem@20 | 304 | SDL_Quit(); |
philpem@7 | 305 | |
philpem@0 | 306 | return 0; |
philpem@0 | 307 | } |