PTdecode/CImg-1.3.0/plugins/loop_macros.h

Mon, 03 Aug 2009 14:09:20 +0100

author
Philip Pemberton <philpem@philpem.me.uk>
date
Mon, 03 Aug 2009 14:09:20 +0100
changeset 5
1204ebf9340d
permissions
-rwxr-xr-x

added P-touch decoder source

philpem@5 1 /*
philpem@5 2 #
philpem@5 3 # File : loop_macros.h
philpem@5 4 # ( C++ header file - CImg plug-in )
philpem@5 5 #
philpem@5 6 # Description : CImg plug-in adding useful loop macros in CImg, in order to
philpem@5 7 # deal with NxN neighborhoods (where N=10..32)
philpem@5 8 # and NxNxN neighborhoods (where N=4..8)
philpem@5 9 # This file has been automatically generated using the loop
philpem@5 10 # macro generator available in 'examples/generate_loop_macros.cpp'
philpem@5 11 # This file is a part of the CImg Library project.
philpem@5 12 # ( http://cimg.sourceforge.net )
philpem@5 13 #
philpem@5 14 # Copyright : David Tschumperle
philpem@5 15 # ( http://www.greyc.ensicaen.fr/~dtschump/ )
philpem@5 16 #
philpem@5 17 # License : CeCILL v2.0
philpem@5 18 # ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
philpem@5 19 #
philpem@5 20 # This software is governed by the CeCILL license under French law and
philpem@5 21 # abiding by the rules of distribution of free software. You can use,
philpem@5 22 # modify and/ or redistribute the software under the terms of the CeCILL
philpem@5 23 # license as circulated by CEA, CNRS and INRIA at the following URL
philpem@5 24 # "http://www.cecill.info".
philpem@5 25 #
philpem@5 26 # As a counterpart to the access to the source code and rights to copy,
philpem@5 27 # modify and redistribute granted by the license, users are provided only
philpem@5 28 # with a limited warranty and the software's author, the holder of the
philpem@5 29 # economic rights, and the successive licensors have only limited
philpem@5 30 # liability.
philpem@5 31 #
philpem@5 32 # In this respect, the user's attention is drawn to the risks associated
philpem@5 33 # with loading, using, modifying and/or developing or reproducing the
philpem@5 34 # software by the user in light of its specific status of free software,
philpem@5 35 # that may mean that it is complicated to manipulate, and that also
philpem@5 36 # therefore means that it is reserved for developers and experienced
philpem@5 37 # professionals having in-depth computer knowledge. Users are therefore
philpem@5 38 # encouraged to load and test the software's suitability as regards their
philpem@5 39 # requirements in conditions enabling the security of their systems and/or
philpem@5 40 # data to be ensured and, more generally, to use and operate it in the
philpem@5 41 # same conditions as regards security.
philpem@5 42 #
philpem@5 43 # The fact that you are presently reading this means that you have had
philpem@5 44 # knowledge of the CeCILL license and that you accept its terms.
philpem@5 45 #
philpem@5 46 */
philpem@5 47
philpem@5 48 #ifndef cimg_plugin_loopmacros
philpem@5 49 #define cimg_plugin_loopmacros
philpem@5 50
philpem@5 51 // Define 10x10 loop macros for CImg
philpem@5 52 //----------------------------------
philpem@5 53 #define cimg_for10(bound,i) for (int i = 0, \
philpem@5 54 _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
philpem@5 55 _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \
philpem@5 56 _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \
philpem@5 57 _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \
philpem@5 58 _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \
philpem@5 59 _n5##i = 5>=(int)(bound)?(int)(bound)-1:5; \
philpem@5 60 _n5##i<(int)(bound) || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 61 i==(_n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
philpem@5 62 _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 63 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i)
philpem@5 64
philpem@5 65 #define cimg_for10X(img,x) cimg_for10((img).width,x)
philpem@5 66 #define cimg_for10Y(img,y) cimg_for10((img).height,y)
philpem@5 67 #define cimg_for10Z(img,z) cimg_for10((img).depth,z)
philpem@5 68 #define cimg_for10V(img,v) cimg_for10((img).dim,v)
philpem@5 69 #define cimg_for10XY(img,x,y) cimg_for10Y(img,y) cimg_for10X(img,x)
philpem@5 70 #define cimg_for10XZ(img,x,z) cimg_for10Z(img,z) cimg_for10X(img,x)
philpem@5 71 #define cimg_for10XV(img,x,v) cimg_for10V(img,v) cimg_for10X(img,x)
philpem@5 72 #define cimg_for10YZ(img,y,z) cimg_for10Z(img,z) cimg_for10Y(img,y)
philpem@5 73 #define cimg_for10YV(img,y,v) cimg_for10V(img,v) cimg_for10Y(img,y)
philpem@5 74 #define cimg_for10ZV(img,z,v) cimg_for10V(img,v) cimg_for10Z(img,z)
philpem@5 75 #define cimg_for10XYZ(img,x,y,z) cimg_for10Z(img,z) cimg_for10XY(img,x,y)
philpem@5 76 #define cimg_for10XZV(img,x,z,v) cimg_for10V(img,v) cimg_for10XZ(img,x,z)
philpem@5 77 #define cimg_for10YZV(img,y,z,v) cimg_for10V(img,v) cimg_for10YZ(img,y,z)
philpem@5 78 #define cimg_for10XYZV(img,x,y,z,v) cimg_for10V(img,v) cimg_for10XYZ(img,x,y,z)
philpem@5 79
philpem@5 80 #define cimg_for_in10(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
philpem@5 81 _p4##i = i-4<0?0:i-4, \
philpem@5 82 _p3##i = i-3<0?0:i-3, \
philpem@5 83 _p2##i = i-2<0?0:i-2, \
philpem@5 84 _p1##i = i-1<0?0:i-1, \
philpem@5 85 _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \
philpem@5 86 _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \
philpem@5 87 _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \
philpem@5 88 _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \
philpem@5 89 _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5; \
philpem@5 90 i<=(int)(i1) && (_n5##i<(int)(bound) || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 91 i==(_n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
philpem@5 92 _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 93 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i)
philpem@5 94
philpem@5 95 #define cimg_for_in10X(img,x0,x1,x) cimg_for_in10((img).width,x0,x1,x)
philpem@5 96 #define cimg_for_in10Y(img,y0,y1,y) cimg_for_in10((img).height,y0,y1,y)
philpem@5 97 #define cimg_for_in10Z(img,z0,z1,z) cimg_for_in10((img).depth,z0,z1,z)
philpem@5 98 #define cimg_for_in10V(img,v0,v1,v) cimg_for_in10((img).dim,v0,v1,v)
philpem@5 99 #define cimg_for_in10XY(img,x0,y0,x1,y1,x,y) cimg_for_in10Y(img,y0,y1,y) cimg_for_in10X(img,x0,x1,x)
philpem@5 100 #define cimg_for_in10XZ(img,x0,z0,x1,z1,x,z) cimg_for_in10Z(img,z0,z1,z) cimg_for_in10X(img,x0,x1,x)
philpem@5 101 #define cimg_for_in10XV(img,x0,v0,x1,v1,x,v) cimg_for_in10V(img,v0,v1,v) cimg_for_in10X(img,x0,x1,x)
philpem@5 102 #define cimg_for_in10YZ(img,y0,z0,y1,z1,y,z) cimg_for_in10Z(img,z0,z1,z) cimg_for_in10Y(img,y0,y1,y)
philpem@5 103 #define cimg_for_in10YV(img,y0,v0,y1,v1,y,v) cimg_for_in10V(img,v0,v1,v) cimg_for_in10Y(img,y0,y1,y)
philpem@5 104 #define cimg_for_in10ZV(img,z0,v0,z1,v1,z,v) cimg_for_in10V(img,v0,v1,v) cimg_for_in10Z(img,z0,z1,z)
philpem@5 105 #define cimg_for_in10XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in10Z(img,z0,z1,z) cimg_for_in10XY(img,x0,y0,x1,y1,x,y)
philpem@5 106 #define cimg_for_in10XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in10V(img,v0,v1,v) cimg_for_in10XZ(img,x0,y0,x1,y1,x,z)
philpem@5 107 #define cimg_for_in10YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in10V(img,v0,v1,v) cimg_for_in10YZ(img,y0,z0,y1,z1,y,z)
philpem@5 108 #define cimg_for_in10XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in10V(img,v0,v1,v) cimg_for_in10XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
philpem@5 109
philpem@5 110 #define cimg_for10x10(img,x,y,z,v,I) \
philpem@5 111 cimg_for10((img).height,y) for (int x = 0, \
philpem@5 112 _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
philpem@5 113 _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \
philpem@5 114 _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \
philpem@5 115 _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \
philpem@5 116 _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \
philpem@5 117 _n5##x = (int)( \
philpem@5 118 (I[0] = I[1] = I[2] = I[3] = I[4] = (img)(0,_p4##y,z,v)), \
philpem@5 119 (I[10] = I[11] = I[12] = I[13] = I[14] = (img)(0,_p3##y,z,v)), \
philpem@5 120 (I[20] = I[21] = I[22] = I[23] = I[24] = (img)(0,_p2##y,z,v)), \
philpem@5 121 (I[30] = I[31] = I[32] = I[33] = I[34] = (img)(0,_p1##y,z,v)), \
philpem@5 122 (I[40] = I[41] = I[42] = I[43] = I[44] = (img)(0,y,z,v)), \
philpem@5 123 (I[50] = I[51] = I[52] = I[53] = I[54] = (img)(0,_n1##y,z,v)), \
philpem@5 124 (I[60] = I[61] = I[62] = I[63] = I[64] = (img)(0,_n2##y,z,v)), \
philpem@5 125 (I[70] = I[71] = I[72] = I[73] = I[74] = (img)(0,_n3##y,z,v)), \
philpem@5 126 (I[80] = I[81] = I[82] = I[83] = I[84] = (img)(0,_n4##y,z,v)), \
philpem@5 127 (I[90] = I[91] = I[92] = I[93] = I[94] = (img)(0,_n5##y,z,v)), \
philpem@5 128 (I[5] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 129 (I[15] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 130 (I[25] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 131 (I[35] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 132 (I[45] = (img)(_n1##x,y,z,v)), \
philpem@5 133 (I[55] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 134 (I[65] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 135 (I[75] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 136 (I[85] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 137 (I[95] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 138 (I[6] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 139 (I[16] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 140 (I[26] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 141 (I[36] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 142 (I[46] = (img)(_n2##x,y,z,v)), \
philpem@5 143 (I[56] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 144 (I[66] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 145 (I[76] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 146 (I[86] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 147 (I[96] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 148 (I[7] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 149 (I[17] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 150 (I[27] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 151 (I[37] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 152 (I[47] = (img)(_n3##x,y,z,v)), \
philpem@5 153 (I[57] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 154 (I[67] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 155 (I[77] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 156 (I[87] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 157 (I[97] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 158 (I[8] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 159 (I[18] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 160 (I[28] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 161 (I[38] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 162 (I[48] = (img)(_n4##x,y,z,v)), \
philpem@5 163 (I[58] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 164 (I[68] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 165 (I[78] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 166 (I[88] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 167 (I[98] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 168 5>=((img).width)?(int)((img).width)-1:5); \
philpem@5 169 (_n5##x<(int)((img).width) && ( \
philpem@5 170 (I[9] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 171 (I[19] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 172 (I[29] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 173 (I[39] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 174 (I[49] = (img)(_n5##x,y,z,v)), \
philpem@5 175 (I[59] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 176 (I[69] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 177 (I[79] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 178 (I[89] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 179 (I[99] = (img)(_n5##x,_n5##y,z,v)),1)) || \
philpem@5 180 _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
philpem@5 181 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], \
philpem@5 182 I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \
philpem@5 183 I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
philpem@5 184 I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
philpem@5 185 I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], \
philpem@5 186 I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
philpem@5 187 I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \
philpem@5 188 I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
philpem@5 189 I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
philpem@5 190 I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \
philpem@5 191 _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x)
philpem@5 192
philpem@5 193 #define cimg_for_in10x10(img,x0,y0,x1,y1,x,y,z,v,I) \
philpem@5 194 cimg_for_in10((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
philpem@5 195 _p4##x = x-4<0?0:x-4, \
philpem@5 196 _p3##x = x-3<0?0:x-3, \
philpem@5 197 _p2##x = x-2<0?0:x-2, \
philpem@5 198 _p1##x = x-1<0?0:x-1, \
philpem@5 199 _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \
philpem@5 200 _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \
philpem@5 201 _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \
philpem@5 202 _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \
philpem@5 203 _n5##x = (int)( \
philpem@5 204 (I[0] = (img)(_p4##x,_p4##y,z,v)), \
philpem@5 205 (I[10] = (img)(_p4##x,_p3##y,z,v)), \
philpem@5 206 (I[20] = (img)(_p4##x,_p2##y,z,v)), \
philpem@5 207 (I[30] = (img)(_p4##x,_p1##y,z,v)), \
philpem@5 208 (I[40] = (img)(_p4##x,y,z,v)), \
philpem@5 209 (I[50] = (img)(_p4##x,_n1##y,z,v)), \
philpem@5 210 (I[60] = (img)(_p4##x,_n2##y,z,v)), \
philpem@5 211 (I[70] = (img)(_p4##x,_n3##y,z,v)), \
philpem@5 212 (I[80] = (img)(_p4##x,_n4##y,z,v)), \
philpem@5 213 (I[90] = (img)(_p4##x,_n5##y,z,v)), \
philpem@5 214 (I[1] = (img)(_p3##x,_p4##y,z,v)), \
philpem@5 215 (I[11] = (img)(_p3##x,_p3##y,z,v)), \
philpem@5 216 (I[21] = (img)(_p3##x,_p2##y,z,v)), \
philpem@5 217 (I[31] = (img)(_p3##x,_p1##y,z,v)), \
philpem@5 218 (I[41] = (img)(_p3##x,y,z,v)), \
philpem@5 219 (I[51] = (img)(_p3##x,_n1##y,z,v)), \
philpem@5 220 (I[61] = (img)(_p3##x,_n2##y,z,v)), \
philpem@5 221 (I[71] = (img)(_p3##x,_n3##y,z,v)), \
philpem@5 222 (I[81] = (img)(_p3##x,_n4##y,z,v)), \
philpem@5 223 (I[91] = (img)(_p3##x,_n5##y,z,v)), \
philpem@5 224 (I[2] = (img)(_p2##x,_p4##y,z,v)), \
philpem@5 225 (I[12] = (img)(_p2##x,_p3##y,z,v)), \
philpem@5 226 (I[22] = (img)(_p2##x,_p2##y,z,v)), \
philpem@5 227 (I[32] = (img)(_p2##x,_p1##y,z,v)), \
philpem@5 228 (I[42] = (img)(_p2##x,y,z,v)), \
philpem@5 229 (I[52] = (img)(_p2##x,_n1##y,z,v)), \
philpem@5 230 (I[62] = (img)(_p2##x,_n2##y,z,v)), \
philpem@5 231 (I[72] = (img)(_p2##x,_n3##y,z,v)), \
philpem@5 232 (I[82] = (img)(_p2##x,_n4##y,z,v)), \
philpem@5 233 (I[92] = (img)(_p2##x,_n5##y,z,v)), \
philpem@5 234 (I[3] = (img)(_p1##x,_p4##y,z,v)), \
philpem@5 235 (I[13] = (img)(_p1##x,_p3##y,z,v)), \
philpem@5 236 (I[23] = (img)(_p1##x,_p2##y,z,v)), \
philpem@5 237 (I[33] = (img)(_p1##x,_p1##y,z,v)), \
philpem@5 238 (I[43] = (img)(_p1##x,y,z,v)), \
philpem@5 239 (I[53] = (img)(_p1##x,_n1##y,z,v)), \
philpem@5 240 (I[63] = (img)(_p1##x,_n2##y,z,v)), \
philpem@5 241 (I[73] = (img)(_p1##x,_n3##y,z,v)), \
philpem@5 242 (I[83] = (img)(_p1##x,_n4##y,z,v)), \
philpem@5 243 (I[93] = (img)(_p1##x,_n5##y,z,v)), \
philpem@5 244 (I[4] = (img)(x,_p4##y,z,v)), \
philpem@5 245 (I[14] = (img)(x,_p3##y,z,v)), \
philpem@5 246 (I[24] = (img)(x,_p2##y,z,v)), \
philpem@5 247 (I[34] = (img)(x,_p1##y,z,v)), \
philpem@5 248 (I[44] = (img)(x,y,z,v)), \
philpem@5 249 (I[54] = (img)(x,_n1##y,z,v)), \
philpem@5 250 (I[64] = (img)(x,_n2##y,z,v)), \
philpem@5 251 (I[74] = (img)(x,_n3##y,z,v)), \
philpem@5 252 (I[84] = (img)(x,_n4##y,z,v)), \
philpem@5 253 (I[94] = (img)(x,_n5##y,z,v)), \
philpem@5 254 (I[5] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 255 (I[15] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 256 (I[25] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 257 (I[35] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 258 (I[45] = (img)(_n1##x,y,z,v)), \
philpem@5 259 (I[55] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 260 (I[65] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 261 (I[75] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 262 (I[85] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 263 (I[95] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 264 (I[6] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 265 (I[16] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 266 (I[26] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 267 (I[36] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 268 (I[46] = (img)(_n2##x,y,z,v)), \
philpem@5 269 (I[56] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 270 (I[66] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 271 (I[76] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 272 (I[86] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 273 (I[96] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 274 (I[7] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 275 (I[17] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 276 (I[27] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 277 (I[37] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 278 (I[47] = (img)(_n3##x,y,z,v)), \
philpem@5 279 (I[57] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 280 (I[67] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 281 (I[77] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 282 (I[87] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 283 (I[97] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 284 (I[8] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 285 (I[18] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 286 (I[28] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 287 (I[38] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 288 (I[48] = (img)(_n4##x,y,z,v)), \
philpem@5 289 (I[58] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 290 (I[68] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 291 (I[78] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 292 (I[88] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 293 (I[98] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 294 x+5>=(int)((img).width)?(int)((img).width)-1:x+5); \
philpem@5 295 x<=(int)(x1) && ((_n5##x<(int)((img).width) && ( \
philpem@5 296 (I[9] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 297 (I[19] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 298 (I[29] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 299 (I[39] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 300 (I[49] = (img)(_n5##x,y,z,v)), \
philpem@5 301 (I[59] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 302 (I[69] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 303 (I[79] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 304 (I[89] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 305 (I[99] = (img)(_n5##x,_n5##y,z,v)),1)) || \
philpem@5 306 _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
philpem@5 307 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], \
philpem@5 308 I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \
philpem@5 309 I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
philpem@5 310 I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
philpem@5 311 I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], \
philpem@5 312 I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
philpem@5 313 I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \
philpem@5 314 I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
philpem@5 315 I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
philpem@5 316 I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \
philpem@5 317 _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x)
philpem@5 318
philpem@5 319 #define cimg_get10x10(img,x,y,z,v,I) \
philpem@5 320 I[0] = (img)(_p4##x,_p4##y,z,v), I[1] = (img)(_p3##x,_p4##y,z,v), I[2] = (img)(_p2##x,_p4##y,z,v), I[3] = (img)(_p1##x,_p4##y,z,v), I[4] = (img)(x,_p4##y,z,v), I[5] = (img)(_n1##x,_p4##y,z,v), I[6] = (img)(_n2##x,_p4##y,z,v), I[7] = (img)(_n3##x,_p4##y,z,v), I[8] = (img)(_n4##x,_p4##y,z,v), I[9] = (img)(_n5##x,_p4##y,z,v), \
philpem@5 321 I[10] = (img)(_p4##x,_p3##y,z,v), I[11] = (img)(_p3##x,_p3##y,z,v), I[12] = (img)(_p2##x,_p3##y,z,v), I[13] = (img)(_p1##x,_p3##y,z,v), I[14] = (img)(x,_p3##y,z,v), I[15] = (img)(_n1##x,_p3##y,z,v), I[16] = (img)(_n2##x,_p3##y,z,v), I[17] = (img)(_n3##x,_p3##y,z,v), I[18] = (img)(_n4##x,_p3##y,z,v), I[19] = (img)(_n5##x,_p3##y,z,v), \
philpem@5 322 I[20] = (img)(_p4##x,_p2##y,z,v), I[21] = (img)(_p3##x,_p2##y,z,v), I[22] = (img)(_p2##x,_p2##y,z,v), I[23] = (img)(_p1##x,_p2##y,z,v), I[24] = (img)(x,_p2##y,z,v), I[25] = (img)(_n1##x,_p2##y,z,v), I[26] = (img)(_n2##x,_p2##y,z,v), I[27] = (img)(_n3##x,_p2##y,z,v), I[28] = (img)(_n4##x,_p2##y,z,v), I[29] = (img)(_n5##x,_p2##y,z,v), \
philpem@5 323 I[30] = (img)(_p4##x,_p1##y,z,v), I[31] = (img)(_p3##x,_p1##y,z,v), I[32] = (img)(_p2##x,_p1##y,z,v), I[33] = (img)(_p1##x,_p1##y,z,v), I[34] = (img)(x,_p1##y,z,v), I[35] = (img)(_n1##x,_p1##y,z,v), I[36] = (img)(_n2##x,_p1##y,z,v), I[37] = (img)(_n3##x,_p1##y,z,v), I[38] = (img)(_n4##x,_p1##y,z,v), I[39] = (img)(_n5##x,_p1##y,z,v), \
philpem@5 324 I[40] = (img)(_p4##x,y,z,v), I[41] = (img)(_p3##x,y,z,v), I[42] = (img)(_p2##x,y,z,v), I[43] = (img)(_p1##x,y,z,v), I[44] = (img)(x,y,z,v), I[45] = (img)(_n1##x,y,z,v), I[46] = (img)(_n2##x,y,z,v), I[47] = (img)(_n3##x,y,z,v), I[48] = (img)(_n4##x,y,z,v), I[49] = (img)(_n5##x,y,z,v), \
philpem@5 325 I[50] = (img)(_p4##x,_n1##y,z,v), I[51] = (img)(_p3##x,_n1##y,z,v), I[52] = (img)(_p2##x,_n1##y,z,v), I[53] = (img)(_p1##x,_n1##y,z,v), I[54] = (img)(x,_n1##y,z,v), I[55] = (img)(_n1##x,_n1##y,z,v), I[56] = (img)(_n2##x,_n1##y,z,v), I[57] = (img)(_n3##x,_n1##y,z,v), I[58] = (img)(_n4##x,_n1##y,z,v), I[59] = (img)(_n5##x,_n1##y,z,v), \
philpem@5 326 I[60] = (img)(_p4##x,_n2##y,z,v), I[61] = (img)(_p3##x,_n2##y,z,v), I[62] = (img)(_p2##x,_n2##y,z,v), I[63] = (img)(_p1##x,_n2##y,z,v), I[64] = (img)(x,_n2##y,z,v), I[65] = (img)(_n1##x,_n2##y,z,v), I[66] = (img)(_n2##x,_n2##y,z,v), I[67] = (img)(_n3##x,_n2##y,z,v), I[68] = (img)(_n4##x,_n2##y,z,v), I[69] = (img)(_n5##x,_n2##y,z,v), \
philpem@5 327 I[70] = (img)(_p4##x,_n3##y,z,v), I[71] = (img)(_p3##x,_n3##y,z,v), I[72] = (img)(_p2##x,_n3##y,z,v), I[73] = (img)(_p1##x,_n3##y,z,v), I[74] = (img)(x,_n3##y,z,v), I[75] = (img)(_n1##x,_n3##y,z,v), I[76] = (img)(_n2##x,_n3##y,z,v), I[77] = (img)(_n3##x,_n3##y,z,v), I[78] = (img)(_n4##x,_n3##y,z,v), I[79] = (img)(_n5##x,_n3##y,z,v), \
philpem@5 328 I[80] = (img)(_p4##x,_n4##y,z,v), I[81] = (img)(_p3##x,_n4##y,z,v), I[82] = (img)(_p2##x,_n4##y,z,v), I[83] = (img)(_p1##x,_n4##y,z,v), I[84] = (img)(x,_n4##y,z,v), I[85] = (img)(_n1##x,_n4##y,z,v), I[86] = (img)(_n2##x,_n4##y,z,v), I[87] = (img)(_n3##x,_n4##y,z,v), I[88] = (img)(_n4##x,_n4##y,z,v), I[89] = (img)(_n5##x,_n4##y,z,v), \
philpem@5 329 I[90] = (img)(_p4##x,_n5##y,z,v), I[91] = (img)(_p3##x,_n5##y,z,v), I[92] = (img)(_p2##x,_n5##y,z,v), I[93] = (img)(_p1##x,_n5##y,z,v), I[94] = (img)(x,_n5##y,z,v), I[95] = (img)(_n1##x,_n5##y,z,v), I[96] = (img)(_n2##x,_n5##y,z,v), I[97] = (img)(_n3##x,_n5##y,z,v), I[98] = (img)(_n4##x,_n5##y,z,v), I[99] = (img)(_n5##x,_n5##y,z,v);
philpem@5 330
philpem@5 331 // Define 11x11 loop macros for CImg
philpem@5 332 //----------------------------------
philpem@5 333 #define cimg_for11(bound,i) for (int i = 0, \
philpem@5 334 _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
philpem@5 335 _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \
philpem@5 336 _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \
philpem@5 337 _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \
philpem@5 338 _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \
philpem@5 339 _n5##i = 5>=(int)(bound)?(int)(bound)-1:5; \
philpem@5 340 _n5##i<(int)(bound) || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 341 i==(_n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
philpem@5 342 _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 343 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i)
philpem@5 344
philpem@5 345 #define cimg_for11X(img,x) cimg_for11((img).width,x)
philpem@5 346 #define cimg_for11Y(img,y) cimg_for11((img).height,y)
philpem@5 347 #define cimg_for11Z(img,z) cimg_for11((img).depth,z)
philpem@5 348 #define cimg_for11V(img,v) cimg_for11((img).dim,v)
philpem@5 349 #define cimg_for11XY(img,x,y) cimg_for11Y(img,y) cimg_for11X(img,x)
philpem@5 350 #define cimg_for11XZ(img,x,z) cimg_for11Z(img,z) cimg_for11X(img,x)
philpem@5 351 #define cimg_for11XV(img,x,v) cimg_for11V(img,v) cimg_for11X(img,x)
philpem@5 352 #define cimg_for11YZ(img,y,z) cimg_for11Z(img,z) cimg_for11Y(img,y)
philpem@5 353 #define cimg_for11YV(img,y,v) cimg_for11V(img,v) cimg_for11Y(img,y)
philpem@5 354 #define cimg_for11ZV(img,z,v) cimg_for11V(img,v) cimg_for11Z(img,z)
philpem@5 355 #define cimg_for11XYZ(img,x,y,z) cimg_for11Z(img,z) cimg_for11XY(img,x,y)
philpem@5 356 #define cimg_for11XZV(img,x,z,v) cimg_for11V(img,v) cimg_for11XZ(img,x,z)
philpem@5 357 #define cimg_for11YZV(img,y,z,v) cimg_for11V(img,v) cimg_for11YZ(img,y,z)
philpem@5 358 #define cimg_for11XYZV(img,x,y,z,v) cimg_for11V(img,v) cimg_for11XYZ(img,x,y,z)
philpem@5 359
philpem@5 360 #define cimg_for_in11(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
philpem@5 361 _p5##i = i-5<0?0:i-5, \
philpem@5 362 _p4##i = i-4<0?0:i-4, \
philpem@5 363 _p3##i = i-3<0?0:i-3, \
philpem@5 364 _p2##i = i-2<0?0:i-2, \
philpem@5 365 _p1##i = i-1<0?0:i-1, \
philpem@5 366 _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \
philpem@5 367 _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \
philpem@5 368 _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \
philpem@5 369 _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \
philpem@5 370 _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5; \
philpem@5 371 i<=(int)(i1) && (_n5##i<(int)(bound) || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 372 i==(_n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
philpem@5 373 _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 374 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i)
philpem@5 375
philpem@5 376 #define cimg_for_in11X(img,x0,x1,x) cimg_for_in11((img).width,x0,x1,x)
philpem@5 377 #define cimg_for_in11Y(img,y0,y1,y) cimg_for_in11((img).height,y0,y1,y)
philpem@5 378 #define cimg_for_in11Z(img,z0,z1,z) cimg_for_in11((img).depth,z0,z1,z)
philpem@5 379 #define cimg_for_in11V(img,v0,v1,v) cimg_for_in11((img).dim,v0,v1,v)
philpem@5 380 #define cimg_for_in11XY(img,x0,y0,x1,y1,x,y) cimg_for_in11Y(img,y0,y1,y) cimg_for_in11X(img,x0,x1,x)
philpem@5 381 #define cimg_for_in11XZ(img,x0,z0,x1,z1,x,z) cimg_for_in11Z(img,z0,z1,z) cimg_for_in11X(img,x0,x1,x)
philpem@5 382 #define cimg_for_in11XV(img,x0,v0,x1,v1,x,v) cimg_for_in11V(img,v0,v1,v) cimg_for_in11X(img,x0,x1,x)
philpem@5 383 #define cimg_for_in11YZ(img,y0,z0,y1,z1,y,z) cimg_for_in11Z(img,z0,z1,z) cimg_for_in11Y(img,y0,y1,y)
philpem@5 384 #define cimg_for_in11YV(img,y0,v0,y1,v1,y,v) cimg_for_in11V(img,v0,v1,v) cimg_for_in11Y(img,y0,y1,y)
philpem@5 385 #define cimg_for_in11ZV(img,z0,v0,z1,v1,z,v) cimg_for_in11V(img,v0,v1,v) cimg_for_in11Z(img,z0,z1,z)
philpem@5 386 #define cimg_for_in11XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in11Z(img,z0,z1,z) cimg_for_in11XY(img,x0,y0,x1,y1,x,y)
philpem@5 387 #define cimg_for_in11XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in11V(img,v0,v1,v) cimg_for_in11XZ(img,x0,y0,x1,y1,x,z)
philpem@5 388 #define cimg_for_in11YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in11V(img,v0,v1,v) cimg_for_in11YZ(img,y0,z0,y1,z1,y,z)
philpem@5 389 #define cimg_for_in11XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in11V(img,v0,v1,v) cimg_for_in11XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
philpem@5 390
philpem@5 391 #define cimg_for11x11(img,x,y,z,v,I) \
philpem@5 392 cimg_for11((img).height,y) for (int x = 0, \
philpem@5 393 _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
philpem@5 394 _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \
philpem@5 395 _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \
philpem@5 396 _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \
philpem@5 397 _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \
philpem@5 398 _n5##x = (int)( \
philpem@5 399 (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = (img)(0,_p5##y,z,v)), \
philpem@5 400 (I[11] = I[12] = I[13] = I[14] = I[15] = I[16] = (img)(0,_p4##y,z,v)), \
philpem@5 401 (I[22] = I[23] = I[24] = I[25] = I[26] = I[27] = (img)(0,_p3##y,z,v)), \
philpem@5 402 (I[33] = I[34] = I[35] = I[36] = I[37] = I[38] = (img)(0,_p2##y,z,v)), \
philpem@5 403 (I[44] = I[45] = I[46] = I[47] = I[48] = I[49] = (img)(0,_p1##y,z,v)), \
philpem@5 404 (I[55] = I[56] = I[57] = I[58] = I[59] = I[60] = (img)(0,y,z,v)), \
philpem@5 405 (I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = (img)(0,_n1##y,z,v)), \
philpem@5 406 (I[77] = I[78] = I[79] = I[80] = I[81] = I[82] = (img)(0,_n2##y,z,v)), \
philpem@5 407 (I[88] = I[89] = I[90] = I[91] = I[92] = I[93] = (img)(0,_n3##y,z,v)), \
philpem@5 408 (I[99] = I[100] = I[101] = I[102] = I[103] = I[104] = (img)(0,_n4##y,z,v)), \
philpem@5 409 (I[110] = I[111] = I[112] = I[113] = I[114] = I[115] = (img)(0,_n5##y,z,v)), \
philpem@5 410 (I[6] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 411 (I[17] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 412 (I[28] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 413 (I[39] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 414 (I[50] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 415 (I[61] = (img)(_n1##x,y,z,v)), \
philpem@5 416 (I[72] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 417 (I[83] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 418 (I[94] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 419 (I[105] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 420 (I[116] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 421 (I[7] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 422 (I[18] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 423 (I[29] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 424 (I[40] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 425 (I[51] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 426 (I[62] = (img)(_n2##x,y,z,v)), \
philpem@5 427 (I[73] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 428 (I[84] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 429 (I[95] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 430 (I[106] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 431 (I[117] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 432 (I[8] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 433 (I[19] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 434 (I[30] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 435 (I[41] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 436 (I[52] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 437 (I[63] = (img)(_n3##x,y,z,v)), \
philpem@5 438 (I[74] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 439 (I[85] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 440 (I[96] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 441 (I[107] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 442 (I[118] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 443 (I[9] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 444 (I[20] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 445 (I[31] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 446 (I[42] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 447 (I[53] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 448 (I[64] = (img)(_n4##x,y,z,v)), \
philpem@5 449 (I[75] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 450 (I[86] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 451 (I[97] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 452 (I[108] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 453 (I[119] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 454 5>=((img).width)?(int)((img).width)-1:5); \
philpem@5 455 (_n5##x<(int)((img).width) && ( \
philpem@5 456 (I[10] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 457 (I[21] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 458 (I[32] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 459 (I[43] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 460 (I[54] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 461 (I[65] = (img)(_n5##x,y,z,v)), \
philpem@5 462 (I[76] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 463 (I[87] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 464 (I[98] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 465 (I[109] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 466 (I[120] = (img)(_n5##x,_n5##y,z,v)),1)) || \
philpem@5 467 _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
philpem@5 468 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], \
philpem@5 469 I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], \
philpem@5 470 I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], \
philpem@5 471 I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], \
philpem@5 472 I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], \
philpem@5 473 I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], \
philpem@5 474 I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], \
philpem@5 475 I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], \
philpem@5 476 I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], \
philpem@5 477 I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], \
philpem@5 478 I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], \
philpem@5 479 _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x)
philpem@5 480
philpem@5 481 #define cimg_for_in11x11(img,x0,y0,x1,y1,x,y,z,v,I) \
philpem@5 482 cimg_for_in11((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
philpem@5 483 _p5##x = x-5<0?0:x-5, \
philpem@5 484 _p4##x = x-4<0?0:x-4, \
philpem@5 485 _p3##x = x-3<0?0:x-3, \
philpem@5 486 _p2##x = x-2<0?0:x-2, \
philpem@5 487 _p1##x = x-1<0?0:x-1, \
philpem@5 488 _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \
philpem@5 489 _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \
philpem@5 490 _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \
philpem@5 491 _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \
philpem@5 492 _n5##x = (int)( \
philpem@5 493 (I[0] = (img)(_p5##x,_p5##y,z,v)), \
philpem@5 494 (I[11] = (img)(_p5##x,_p4##y,z,v)), \
philpem@5 495 (I[22] = (img)(_p5##x,_p3##y,z,v)), \
philpem@5 496 (I[33] = (img)(_p5##x,_p2##y,z,v)), \
philpem@5 497 (I[44] = (img)(_p5##x,_p1##y,z,v)), \
philpem@5 498 (I[55] = (img)(_p5##x,y,z,v)), \
philpem@5 499 (I[66] = (img)(_p5##x,_n1##y,z,v)), \
philpem@5 500 (I[77] = (img)(_p5##x,_n2##y,z,v)), \
philpem@5 501 (I[88] = (img)(_p5##x,_n3##y,z,v)), \
philpem@5 502 (I[99] = (img)(_p5##x,_n4##y,z,v)), \
philpem@5 503 (I[110] = (img)(_p5##x,_n5##y,z,v)), \
philpem@5 504 (I[1] = (img)(_p4##x,_p5##y,z,v)), \
philpem@5 505 (I[12] = (img)(_p4##x,_p4##y,z,v)), \
philpem@5 506 (I[23] = (img)(_p4##x,_p3##y,z,v)), \
philpem@5 507 (I[34] = (img)(_p4##x,_p2##y,z,v)), \
philpem@5 508 (I[45] = (img)(_p4##x,_p1##y,z,v)), \
philpem@5 509 (I[56] = (img)(_p4##x,y,z,v)), \
philpem@5 510 (I[67] = (img)(_p4##x,_n1##y,z,v)), \
philpem@5 511 (I[78] = (img)(_p4##x,_n2##y,z,v)), \
philpem@5 512 (I[89] = (img)(_p4##x,_n3##y,z,v)), \
philpem@5 513 (I[100] = (img)(_p4##x,_n4##y,z,v)), \
philpem@5 514 (I[111] = (img)(_p4##x,_n5##y,z,v)), \
philpem@5 515 (I[2] = (img)(_p3##x,_p5##y,z,v)), \
philpem@5 516 (I[13] = (img)(_p3##x,_p4##y,z,v)), \
philpem@5 517 (I[24] = (img)(_p3##x,_p3##y,z,v)), \
philpem@5 518 (I[35] = (img)(_p3##x,_p2##y,z,v)), \
philpem@5 519 (I[46] = (img)(_p3##x,_p1##y,z,v)), \
philpem@5 520 (I[57] = (img)(_p3##x,y,z,v)), \
philpem@5 521 (I[68] = (img)(_p3##x,_n1##y,z,v)), \
philpem@5 522 (I[79] = (img)(_p3##x,_n2##y,z,v)), \
philpem@5 523 (I[90] = (img)(_p3##x,_n3##y,z,v)), \
philpem@5 524 (I[101] = (img)(_p3##x,_n4##y,z,v)), \
philpem@5 525 (I[112] = (img)(_p3##x,_n5##y,z,v)), \
philpem@5 526 (I[3] = (img)(_p2##x,_p5##y,z,v)), \
philpem@5 527 (I[14] = (img)(_p2##x,_p4##y,z,v)), \
philpem@5 528 (I[25] = (img)(_p2##x,_p3##y,z,v)), \
philpem@5 529 (I[36] = (img)(_p2##x,_p2##y,z,v)), \
philpem@5 530 (I[47] = (img)(_p2##x,_p1##y,z,v)), \
philpem@5 531 (I[58] = (img)(_p2##x,y,z,v)), \
philpem@5 532 (I[69] = (img)(_p2##x,_n1##y,z,v)), \
philpem@5 533 (I[80] = (img)(_p2##x,_n2##y,z,v)), \
philpem@5 534 (I[91] = (img)(_p2##x,_n3##y,z,v)), \
philpem@5 535 (I[102] = (img)(_p2##x,_n4##y,z,v)), \
philpem@5 536 (I[113] = (img)(_p2##x,_n5##y,z,v)), \
philpem@5 537 (I[4] = (img)(_p1##x,_p5##y,z,v)), \
philpem@5 538 (I[15] = (img)(_p1##x,_p4##y,z,v)), \
philpem@5 539 (I[26] = (img)(_p1##x,_p3##y,z,v)), \
philpem@5 540 (I[37] = (img)(_p1##x,_p2##y,z,v)), \
philpem@5 541 (I[48] = (img)(_p1##x,_p1##y,z,v)), \
philpem@5 542 (I[59] = (img)(_p1##x,y,z,v)), \
philpem@5 543 (I[70] = (img)(_p1##x,_n1##y,z,v)), \
philpem@5 544 (I[81] = (img)(_p1##x,_n2##y,z,v)), \
philpem@5 545 (I[92] = (img)(_p1##x,_n3##y,z,v)), \
philpem@5 546 (I[103] = (img)(_p1##x,_n4##y,z,v)), \
philpem@5 547 (I[114] = (img)(_p1##x,_n5##y,z,v)), \
philpem@5 548 (I[5] = (img)(x,_p5##y,z,v)), \
philpem@5 549 (I[16] = (img)(x,_p4##y,z,v)), \
philpem@5 550 (I[27] = (img)(x,_p3##y,z,v)), \
philpem@5 551 (I[38] = (img)(x,_p2##y,z,v)), \
philpem@5 552 (I[49] = (img)(x,_p1##y,z,v)), \
philpem@5 553 (I[60] = (img)(x,y,z,v)), \
philpem@5 554 (I[71] = (img)(x,_n1##y,z,v)), \
philpem@5 555 (I[82] = (img)(x,_n2##y,z,v)), \
philpem@5 556 (I[93] = (img)(x,_n3##y,z,v)), \
philpem@5 557 (I[104] = (img)(x,_n4##y,z,v)), \
philpem@5 558 (I[115] = (img)(x,_n5##y,z,v)), \
philpem@5 559 (I[6] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 560 (I[17] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 561 (I[28] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 562 (I[39] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 563 (I[50] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 564 (I[61] = (img)(_n1##x,y,z,v)), \
philpem@5 565 (I[72] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 566 (I[83] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 567 (I[94] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 568 (I[105] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 569 (I[116] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 570 (I[7] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 571 (I[18] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 572 (I[29] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 573 (I[40] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 574 (I[51] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 575 (I[62] = (img)(_n2##x,y,z,v)), \
philpem@5 576 (I[73] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 577 (I[84] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 578 (I[95] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 579 (I[106] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 580 (I[117] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 581 (I[8] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 582 (I[19] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 583 (I[30] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 584 (I[41] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 585 (I[52] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 586 (I[63] = (img)(_n3##x,y,z,v)), \
philpem@5 587 (I[74] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 588 (I[85] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 589 (I[96] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 590 (I[107] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 591 (I[118] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 592 (I[9] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 593 (I[20] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 594 (I[31] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 595 (I[42] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 596 (I[53] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 597 (I[64] = (img)(_n4##x,y,z,v)), \
philpem@5 598 (I[75] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 599 (I[86] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 600 (I[97] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 601 (I[108] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 602 (I[119] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 603 x+5>=(int)((img).width)?(int)((img).width)-1:x+5); \
philpem@5 604 x<=(int)(x1) && ((_n5##x<(int)((img).width) && ( \
philpem@5 605 (I[10] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 606 (I[21] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 607 (I[32] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 608 (I[43] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 609 (I[54] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 610 (I[65] = (img)(_n5##x,y,z,v)), \
philpem@5 611 (I[76] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 612 (I[87] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 613 (I[98] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 614 (I[109] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 615 (I[120] = (img)(_n5##x,_n5##y,z,v)),1)) || \
philpem@5 616 _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
philpem@5 617 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], \
philpem@5 618 I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], \
philpem@5 619 I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], \
philpem@5 620 I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], \
philpem@5 621 I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], \
philpem@5 622 I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], \
philpem@5 623 I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], \
philpem@5 624 I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], \
philpem@5 625 I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], \
philpem@5 626 I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], \
philpem@5 627 I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], \
philpem@5 628 _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x)
philpem@5 629
philpem@5 630 #define cimg_get11x11(img,x,y,z,v,I) \
philpem@5 631 I[0] = (img)(_p5##x,_p5##y,z,v), I[1] = (img)(_p4##x,_p5##y,z,v), I[2] = (img)(_p3##x,_p5##y,z,v), I[3] = (img)(_p2##x,_p5##y,z,v), I[4] = (img)(_p1##x,_p5##y,z,v), I[5] = (img)(x,_p5##y,z,v), I[6] = (img)(_n1##x,_p5##y,z,v), I[7] = (img)(_n2##x,_p5##y,z,v), I[8] = (img)(_n3##x,_p5##y,z,v), I[9] = (img)(_n4##x,_p5##y,z,v), I[10] = (img)(_n5##x,_p5##y,z,v), \
philpem@5 632 I[11] = (img)(_p5##x,_p4##y,z,v), I[12] = (img)(_p4##x,_p4##y,z,v), I[13] = (img)(_p3##x,_p4##y,z,v), I[14] = (img)(_p2##x,_p4##y,z,v), I[15] = (img)(_p1##x,_p4##y,z,v), I[16] = (img)(x,_p4##y,z,v), I[17] = (img)(_n1##x,_p4##y,z,v), I[18] = (img)(_n2##x,_p4##y,z,v), I[19] = (img)(_n3##x,_p4##y,z,v), I[20] = (img)(_n4##x,_p4##y,z,v), I[21] = (img)(_n5##x,_p4##y,z,v), \
philpem@5 633 I[22] = (img)(_p5##x,_p3##y,z,v), I[23] = (img)(_p4##x,_p3##y,z,v), I[24] = (img)(_p3##x,_p3##y,z,v), I[25] = (img)(_p2##x,_p3##y,z,v), I[26] = (img)(_p1##x,_p3##y,z,v), I[27] = (img)(x,_p3##y,z,v), I[28] = (img)(_n1##x,_p3##y,z,v), I[29] = (img)(_n2##x,_p3##y,z,v), I[30] = (img)(_n3##x,_p3##y,z,v), I[31] = (img)(_n4##x,_p3##y,z,v), I[32] = (img)(_n5##x,_p3##y,z,v), \
philpem@5 634 I[33] = (img)(_p5##x,_p2##y,z,v), I[34] = (img)(_p4##x,_p2##y,z,v), I[35] = (img)(_p3##x,_p2##y,z,v), I[36] = (img)(_p2##x,_p2##y,z,v), I[37] = (img)(_p1##x,_p2##y,z,v), I[38] = (img)(x,_p2##y,z,v), I[39] = (img)(_n1##x,_p2##y,z,v), I[40] = (img)(_n2##x,_p2##y,z,v), I[41] = (img)(_n3##x,_p2##y,z,v), I[42] = (img)(_n4##x,_p2##y,z,v), I[43] = (img)(_n5##x,_p2##y,z,v), \
philpem@5 635 I[44] = (img)(_p5##x,_p1##y,z,v), I[45] = (img)(_p4##x,_p1##y,z,v), I[46] = (img)(_p3##x,_p1##y,z,v), I[47] = (img)(_p2##x,_p1##y,z,v), I[48] = (img)(_p1##x,_p1##y,z,v), I[49] = (img)(x,_p1##y,z,v), I[50] = (img)(_n1##x,_p1##y,z,v), I[51] = (img)(_n2##x,_p1##y,z,v), I[52] = (img)(_n3##x,_p1##y,z,v), I[53] = (img)(_n4##x,_p1##y,z,v), I[54] = (img)(_n5##x,_p1##y,z,v), \
philpem@5 636 I[55] = (img)(_p5##x,y,z,v), I[56] = (img)(_p4##x,y,z,v), I[57] = (img)(_p3##x,y,z,v), I[58] = (img)(_p2##x,y,z,v), I[59] = (img)(_p1##x,y,z,v), I[60] = (img)(x,y,z,v), I[61] = (img)(_n1##x,y,z,v), I[62] = (img)(_n2##x,y,z,v), I[63] = (img)(_n3##x,y,z,v), I[64] = (img)(_n4##x,y,z,v), I[65] = (img)(_n5##x,y,z,v), \
philpem@5 637 I[66] = (img)(_p5##x,_n1##y,z,v), I[67] = (img)(_p4##x,_n1##y,z,v), I[68] = (img)(_p3##x,_n1##y,z,v), I[69] = (img)(_p2##x,_n1##y,z,v), I[70] = (img)(_p1##x,_n1##y,z,v), I[71] = (img)(x,_n1##y,z,v), I[72] = (img)(_n1##x,_n1##y,z,v), I[73] = (img)(_n2##x,_n1##y,z,v), I[74] = (img)(_n3##x,_n1##y,z,v), I[75] = (img)(_n4##x,_n1##y,z,v), I[76] = (img)(_n5##x,_n1##y,z,v), \
philpem@5 638 I[77] = (img)(_p5##x,_n2##y,z,v), I[78] = (img)(_p4##x,_n2##y,z,v), I[79] = (img)(_p3##x,_n2##y,z,v), I[80] = (img)(_p2##x,_n2##y,z,v), I[81] = (img)(_p1##x,_n2##y,z,v), I[82] = (img)(x,_n2##y,z,v), I[83] = (img)(_n1##x,_n2##y,z,v), I[84] = (img)(_n2##x,_n2##y,z,v), I[85] = (img)(_n3##x,_n2##y,z,v), I[86] = (img)(_n4##x,_n2##y,z,v), I[87] = (img)(_n5##x,_n2##y,z,v), \
philpem@5 639 I[88] = (img)(_p5##x,_n3##y,z,v), I[89] = (img)(_p4##x,_n3##y,z,v), I[90] = (img)(_p3##x,_n3##y,z,v), I[91] = (img)(_p2##x,_n3##y,z,v), I[92] = (img)(_p1##x,_n3##y,z,v), I[93] = (img)(x,_n3##y,z,v), I[94] = (img)(_n1##x,_n3##y,z,v), I[95] = (img)(_n2##x,_n3##y,z,v), I[96] = (img)(_n3##x,_n3##y,z,v), I[97] = (img)(_n4##x,_n3##y,z,v), I[98] = (img)(_n5##x,_n3##y,z,v), \
philpem@5 640 I[99] = (img)(_p5##x,_n4##y,z,v), I[100] = (img)(_p4##x,_n4##y,z,v), I[101] = (img)(_p3##x,_n4##y,z,v), I[102] = (img)(_p2##x,_n4##y,z,v), I[103] = (img)(_p1##x,_n4##y,z,v), I[104] = (img)(x,_n4##y,z,v), I[105] = (img)(_n1##x,_n4##y,z,v), I[106] = (img)(_n2##x,_n4##y,z,v), I[107] = (img)(_n3##x,_n4##y,z,v), I[108] = (img)(_n4##x,_n4##y,z,v), I[109] = (img)(_n5##x,_n4##y,z,v), \
philpem@5 641 I[110] = (img)(_p5##x,_n5##y,z,v), I[111] = (img)(_p4##x,_n5##y,z,v), I[112] = (img)(_p3##x,_n5##y,z,v), I[113] = (img)(_p2##x,_n5##y,z,v), I[114] = (img)(_p1##x,_n5##y,z,v), I[115] = (img)(x,_n5##y,z,v), I[116] = (img)(_n1##x,_n5##y,z,v), I[117] = (img)(_n2##x,_n5##y,z,v), I[118] = (img)(_n3##x,_n5##y,z,v), I[119] = (img)(_n4##x,_n5##y,z,v), I[120] = (img)(_n5##x,_n5##y,z,v);
philpem@5 642
philpem@5 643 // Define 12x12 loop macros for CImg
philpem@5 644 //----------------------------------
philpem@5 645 #define cimg_for12(bound,i) for (int i = 0, \
philpem@5 646 _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
philpem@5 647 _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \
philpem@5 648 _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \
philpem@5 649 _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \
philpem@5 650 _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \
philpem@5 651 _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \
philpem@5 652 _n6##i = 6>=(int)(bound)?(int)(bound)-1:6; \
philpem@5 653 _n6##i<(int)(bound) || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 654 i==(_n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
philpem@5 655 _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 656 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i)
philpem@5 657
philpem@5 658 #define cimg_for12X(img,x) cimg_for12((img).width,x)
philpem@5 659 #define cimg_for12Y(img,y) cimg_for12((img).height,y)
philpem@5 660 #define cimg_for12Z(img,z) cimg_for12((img).depth,z)
philpem@5 661 #define cimg_for12V(img,v) cimg_for12((img).dim,v)
philpem@5 662 #define cimg_for12XY(img,x,y) cimg_for12Y(img,y) cimg_for12X(img,x)
philpem@5 663 #define cimg_for12XZ(img,x,z) cimg_for12Z(img,z) cimg_for12X(img,x)
philpem@5 664 #define cimg_for12XV(img,x,v) cimg_for12V(img,v) cimg_for12X(img,x)
philpem@5 665 #define cimg_for12YZ(img,y,z) cimg_for12Z(img,z) cimg_for12Y(img,y)
philpem@5 666 #define cimg_for12YV(img,y,v) cimg_for12V(img,v) cimg_for12Y(img,y)
philpem@5 667 #define cimg_for12ZV(img,z,v) cimg_for12V(img,v) cimg_for12Z(img,z)
philpem@5 668 #define cimg_for12XYZ(img,x,y,z) cimg_for12Z(img,z) cimg_for12XY(img,x,y)
philpem@5 669 #define cimg_for12XZV(img,x,z,v) cimg_for12V(img,v) cimg_for12XZ(img,x,z)
philpem@5 670 #define cimg_for12YZV(img,y,z,v) cimg_for12V(img,v) cimg_for12YZ(img,y,z)
philpem@5 671 #define cimg_for12XYZV(img,x,y,z,v) cimg_for12V(img,v) cimg_for12XYZ(img,x,y,z)
philpem@5 672
philpem@5 673 #define cimg_for_in12(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
philpem@5 674 _p5##i = i-5<0?0:i-5, \
philpem@5 675 _p4##i = i-4<0?0:i-4, \
philpem@5 676 _p3##i = i-3<0?0:i-3, \
philpem@5 677 _p2##i = i-2<0?0:i-2, \
philpem@5 678 _p1##i = i-1<0?0:i-1, \
philpem@5 679 _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \
philpem@5 680 _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \
philpem@5 681 _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \
philpem@5 682 _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \
philpem@5 683 _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \
philpem@5 684 _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6; \
philpem@5 685 i<=(int)(i1) && (_n6##i<(int)(bound) || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 686 i==(_n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
philpem@5 687 _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 688 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i)
philpem@5 689
philpem@5 690 #define cimg_for_in12X(img,x0,x1,x) cimg_for_in12((img).width,x0,x1,x)
philpem@5 691 #define cimg_for_in12Y(img,y0,y1,y) cimg_for_in12((img).height,y0,y1,y)
philpem@5 692 #define cimg_for_in12Z(img,z0,z1,z) cimg_for_in12((img).depth,z0,z1,z)
philpem@5 693 #define cimg_for_in12V(img,v0,v1,v) cimg_for_in12((img).dim,v0,v1,v)
philpem@5 694 #define cimg_for_in12XY(img,x0,y0,x1,y1,x,y) cimg_for_in12Y(img,y0,y1,y) cimg_for_in12X(img,x0,x1,x)
philpem@5 695 #define cimg_for_in12XZ(img,x0,z0,x1,z1,x,z) cimg_for_in12Z(img,z0,z1,z) cimg_for_in12X(img,x0,x1,x)
philpem@5 696 #define cimg_for_in12XV(img,x0,v0,x1,v1,x,v) cimg_for_in12V(img,v0,v1,v) cimg_for_in12X(img,x0,x1,x)
philpem@5 697 #define cimg_for_in12YZ(img,y0,z0,y1,z1,y,z) cimg_for_in12Z(img,z0,z1,z) cimg_for_in12Y(img,y0,y1,y)
philpem@5 698 #define cimg_for_in12YV(img,y0,v0,y1,v1,y,v) cimg_for_in12V(img,v0,v1,v) cimg_for_in12Y(img,y0,y1,y)
philpem@5 699 #define cimg_for_in12ZV(img,z0,v0,z1,v1,z,v) cimg_for_in12V(img,v0,v1,v) cimg_for_in12Z(img,z0,z1,z)
philpem@5 700 #define cimg_for_in12XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in12Z(img,z0,z1,z) cimg_for_in12XY(img,x0,y0,x1,y1,x,y)
philpem@5 701 #define cimg_for_in12XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in12V(img,v0,v1,v) cimg_for_in12XZ(img,x0,y0,x1,y1,x,z)
philpem@5 702 #define cimg_for_in12YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in12V(img,v0,v1,v) cimg_for_in12YZ(img,y0,z0,y1,z1,y,z)
philpem@5 703 #define cimg_for_in12XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in12V(img,v0,v1,v) cimg_for_in12XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
philpem@5 704
philpem@5 705 #define cimg_for12x12(img,x,y,z,v,I) \
philpem@5 706 cimg_for12((img).height,y) for (int x = 0, \
philpem@5 707 _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
philpem@5 708 _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \
philpem@5 709 _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \
philpem@5 710 _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \
philpem@5 711 _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \
philpem@5 712 _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \
philpem@5 713 _n6##x = (int)( \
philpem@5 714 (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = (img)(0,_p5##y,z,v)), \
philpem@5 715 (I[12] = I[13] = I[14] = I[15] = I[16] = I[17] = (img)(0,_p4##y,z,v)), \
philpem@5 716 (I[24] = I[25] = I[26] = I[27] = I[28] = I[29] = (img)(0,_p3##y,z,v)), \
philpem@5 717 (I[36] = I[37] = I[38] = I[39] = I[40] = I[41] = (img)(0,_p2##y,z,v)), \
philpem@5 718 (I[48] = I[49] = I[50] = I[51] = I[52] = I[53] = (img)(0,_p1##y,z,v)), \
philpem@5 719 (I[60] = I[61] = I[62] = I[63] = I[64] = I[65] = (img)(0,y,z,v)), \
philpem@5 720 (I[72] = I[73] = I[74] = I[75] = I[76] = I[77] = (img)(0,_n1##y,z,v)), \
philpem@5 721 (I[84] = I[85] = I[86] = I[87] = I[88] = I[89] = (img)(0,_n2##y,z,v)), \
philpem@5 722 (I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = (img)(0,_n3##y,z,v)), \
philpem@5 723 (I[108] = I[109] = I[110] = I[111] = I[112] = I[113] = (img)(0,_n4##y,z,v)), \
philpem@5 724 (I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = (img)(0,_n5##y,z,v)), \
philpem@5 725 (I[132] = I[133] = I[134] = I[135] = I[136] = I[137] = (img)(0,_n6##y,z,v)), \
philpem@5 726 (I[6] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 727 (I[18] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 728 (I[30] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 729 (I[42] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 730 (I[54] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 731 (I[66] = (img)(_n1##x,y,z,v)), \
philpem@5 732 (I[78] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 733 (I[90] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 734 (I[102] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 735 (I[114] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 736 (I[126] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 737 (I[138] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 738 (I[7] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 739 (I[19] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 740 (I[31] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 741 (I[43] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 742 (I[55] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 743 (I[67] = (img)(_n2##x,y,z,v)), \
philpem@5 744 (I[79] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 745 (I[91] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 746 (I[103] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 747 (I[115] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 748 (I[127] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 749 (I[139] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 750 (I[8] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 751 (I[20] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 752 (I[32] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 753 (I[44] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 754 (I[56] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 755 (I[68] = (img)(_n3##x,y,z,v)), \
philpem@5 756 (I[80] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 757 (I[92] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 758 (I[104] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 759 (I[116] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 760 (I[128] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 761 (I[140] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 762 (I[9] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 763 (I[21] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 764 (I[33] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 765 (I[45] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 766 (I[57] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 767 (I[69] = (img)(_n4##x,y,z,v)), \
philpem@5 768 (I[81] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 769 (I[93] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 770 (I[105] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 771 (I[117] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 772 (I[129] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 773 (I[141] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 774 (I[10] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 775 (I[22] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 776 (I[34] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 777 (I[46] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 778 (I[58] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 779 (I[70] = (img)(_n5##x,y,z,v)), \
philpem@5 780 (I[82] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 781 (I[94] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 782 (I[106] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 783 (I[118] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 784 (I[130] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 785 (I[142] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 786 6>=((img).width)?(int)((img).width)-1:6); \
philpem@5 787 (_n6##x<(int)((img).width) && ( \
philpem@5 788 (I[11] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 789 (I[23] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 790 (I[35] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 791 (I[47] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 792 (I[59] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 793 (I[71] = (img)(_n6##x,y,z,v)), \
philpem@5 794 (I[83] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 795 (I[95] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 796 (I[107] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 797 (I[119] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 798 (I[131] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 799 (I[143] = (img)(_n6##x,_n6##y,z,v)),1)) || \
philpem@5 800 _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
philpem@5 801 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], \
philpem@5 802 I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
philpem@5 803 I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \
philpem@5 804 I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
philpem@5 805 I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
philpem@5 806 I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
philpem@5 807 I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
philpem@5 808 I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
philpem@5 809 I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \
philpem@5 810 I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
philpem@5 811 I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], \
philpem@5 812 I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
philpem@5 813 _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x)
philpem@5 814
philpem@5 815 #define cimg_for_in12x12(img,x0,y0,x1,y1,x,y,z,v,I) \
philpem@5 816 cimg_for_in12((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
philpem@5 817 _p5##x = x-5<0?0:x-5, \
philpem@5 818 _p4##x = x-4<0?0:x-4, \
philpem@5 819 _p3##x = x-3<0?0:x-3, \
philpem@5 820 _p2##x = x-2<0?0:x-2, \
philpem@5 821 _p1##x = x-1<0?0:x-1, \
philpem@5 822 _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \
philpem@5 823 _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \
philpem@5 824 _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \
philpem@5 825 _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \
philpem@5 826 _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \
philpem@5 827 _n6##x = (int)( \
philpem@5 828 (I[0] = (img)(_p5##x,_p5##y,z,v)), \
philpem@5 829 (I[12] = (img)(_p5##x,_p4##y,z,v)), \
philpem@5 830 (I[24] = (img)(_p5##x,_p3##y,z,v)), \
philpem@5 831 (I[36] = (img)(_p5##x,_p2##y,z,v)), \
philpem@5 832 (I[48] = (img)(_p5##x,_p1##y,z,v)), \
philpem@5 833 (I[60] = (img)(_p5##x,y,z,v)), \
philpem@5 834 (I[72] = (img)(_p5##x,_n1##y,z,v)), \
philpem@5 835 (I[84] = (img)(_p5##x,_n2##y,z,v)), \
philpem@5 836 (I[96] = (img)(_p5##x,_n3##y,z,v)), \
philpem@5 837 (I[108] = (img)(_p5##x,_n4##y,z,v)), \
philpem@5 838 (I[120] = (img)(_p5##x,_n5##y,z,v)), \
philpem@5 839 (I[132] = (img)(_p5##x,_n6##y,z,v)), \
philpem@5 840 (I[1] = (img)(_p4##x,_p5##y,z,v)), \
philpem@5 841 (I[13] = (img)(_p4##x,_p4##y,z,v)), \
philpem@5 842 (I[25] = (img)(_p4##x,_p3##y,z,v)), \
philpem@5 843 (I[37] = (img)(_p4##x,_p2##y,z,v)), \
philpem@5 844 (I[49] = (img)(_p4##x,_p1##y,z,v)), \
philpem@5 845 (I[61] = (img)(_p4##x,y,z,v)), \
philpem@5 846 (I[73] = (img)(_p4##x,_n1##y,z,v)), \
philpem@5 847 (I[85] = (img)(_p4##x,_n2##y,z,v)), \
philpem@5 848 (I[97] = (img)(_p4##x,_n3##y,z,v)), \
philpem@5 849 (I[109] = (img)(_p4##x,_n4##y,z,v)), \
philpem@5 850 (I[121] = (img)(_p4##x,_n5##y,z,v)), \
philpem@5 851 (I[133] = (img)(_p4##x,_n6##y,z,v)), \
philpem@5 852 (I[2] = (img)(_p3##x,_p5##y,z,v)), \
philpem@5 853 (I[14] = (img)(_p3##x,_p4##y,z,v)), \
philpem@5 854 (I[26] = (img)(_p3##x,_p3##y,z,v)), \
philpem@5 855 (I[38] = (img)(_p3##x,_p2##y,z,v)), \
philpem@5 856 (I[50] = (img)(_p3##x,_p1##y,z,v)), \
philpem@5 857 (I[62] = (img)(_p3##x,y,z,v)), \
philpem@5 858 (I[74] = (img)(_p3##x,_n1##y,z,v)), \
philpem@5 859 (I[86] = (img)(_p3##x,_n2##y,z,v)), \
philpem@5 860 (I[98] = (img)(_p3##x,_n3##y,z,v)), \
philpem@5 861 (I[110] = (img)(_p3##x,_n4##y,z,v)), \
philpem@5 862 (I[122] = (img)(_p3##x,_n5##y,z,v)), \
philpem@5 863 (I[134] = (img)(_p3##x,_n6##y,z,v)), \
philpem@5 864 (I[3] = (img)(_p2##x,_p5##y,z,v)), \
philpem@5 865 (I[15] = (img)(_p2##x,_p4##y,z,v)), \
philpem@5 866 (I[27] = (img)(_p2##x,_p3##y,z,v)), \
philpem@5 867 (I[39] = (img)(_p2##x,_p2##y,z,v)), \
philpem@5 868 (I[51] = (img)(_p2##x,_p1##y,z,v)), \
philpem@5 869 (I[63] = (img)(_p2##x,y,z,v)), \
philpem@5 870 (I[75] = (img)(_p2##x,_n1##y,z,v)), \
philpem@5 871 (I[87] = (img)(_p2##x,_n2##y,z,v)), \
philpem@5 872 (I[99] = (img)(_p2##x,_n3##y,z,v)), \
philpem@5 873 (I[111] = (img)(_p2##x,_n4##y,z,v)), \
philpem@5 874 (I[123] = (img)(_p2##x,_n5##y,z,v)), \
philpem@5 875 (I[135] = (img)(_p2##x,_n6##y,z,v)), \
philpem@5 876 (I[4] = (img)(_p1##x,_p5##y,z,v)), \
philpem@5 877 (I[16] = (img)(_p1##x,_p4##y,z,v)), \
philpem@5 878 (I[28] = (img)(_p1##x,_p3##y,z,v)), \
philpem@5 879 (I[40] = (img)(_p1##x,_p2##y,z,v)), \
philpem@5 880 (I[52] = (img)(_p1##x,_p1##y,z,v)), \
philpem@5 881 (I[64] = (img)(_p1##x,y,z,v)), \
philpem@5 882 (I[76] = (img)(_p1##x,_n1##y,z,v)), \
philpem@5 883 (I[88] = (img)(_p1##x,_n2##y,z,v)), \
philpem@5 884 (I[100] = (img)(_p1##x,_n3##y,z,v)), \
philpem@5 885 (I[112] = (img)(_p1##x,_n4##y,z,v)), \
philpem@5 886 (I[124] = (img)(_p1##x,_n5##y,z,v)), \
philpem@5 887 (I[136] = (img)(_p1##x,_n6##y,z,v)), \
philpem@5 888 (I[5] = (img)(x,_p5##y,z,v)), \
philpem@5 889 (I[17] = (img)(x,_p4##y,z,v)), \
philpem@5 890 (I[29] = (img)(x,_p3##y,z,v)), \
philpem@5 891 (I[41] = (img)(x,_p2##y,z,v)), \
philpem@5 892 (I[53] = (img)(x,_p1##y,z,v)), \
philpem@5 893 (I[65] = (img)(x,y,z,v)), \
philpem@5 894 (I[77] = (img)(x,_n1##y,z,v)), \
philpem@5 895 (I[89] = (img)(x,_n2##y,z,v)), \
philpem@5 896 (I[101] = (img)(x,_n3##y,z,v)), \
philpem@5 897 (I[113] = (img)(x,_n4##y,z,v)), \
philpem@5 898 (I[125] = (img)(x,_n5##y,z,v)), \
philpem@5 899 (I[137] = (img)(x,_n6##y,z,v)), \
philpem@5 900 (I[6] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 901 (I[18] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 902 (I[30] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 903 (I[42] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 904 (I[54] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 905 (I[66] = (img)(_n1##x,y,z,v)), \
philpem@5 906 (I[78] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 907 (I[90] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 908 (I[102] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 909 (I[114] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 910 (I[126] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 911 (I[138] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 912 (I[7] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 913 (I[19] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 914 (I[31] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 915 (I[43] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 916 (I[55] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 917 (I[67] = (img)(_n2##x,y,z,v)), \
philpem@5 918 (I[79] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 919 (I[91] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 920 (I[103] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 921 (I[115] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 922 (I[127] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 923 (I[139] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 924 (I[8] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 925 (I[20] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 926 (I[32] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 927 (I[44] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 928 (I[56] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 929 (I[68] = (img)(_n3##x,y,z,v)), \
philpem@5 930 (I[80] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 931 (I[92] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 932 (I[104] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 933 (I[116] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 934 (I[128] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 935 (I[140] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 936 (I[9] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 937 (I[21] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 938 (I[33] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 939 (I[45] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 940 (I[57] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 941 (I[69] = (img)(_n4##x,y,z,v)), \
philpem@5 942 (I[81] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 943 (I[93] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 944 (I[105] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 945 (I[117] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 946 (I[129] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 947 (I[141] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 948 (I[10] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 949 (I[22] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 950 (I[34] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 951 (I[46] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 952 (I[58] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 953 (I[70] = (img)(_n5##x,y,z,v)), \
philpem@5 954 (I[82] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 955 (I[94] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 956 (I[106] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 957 (I[118] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 958 (I[130] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 959 (I[142] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 960 x+6>=(int)((img).width)?(int)((img).width)-1:x+6); \
philpem@5 961 x<=(int)(x1) && ((_n6##x<(int)((img).width) && ( \
philpem@5 962 (I[11] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 963 (I[23] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 964 (I[35] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 965 (I[47] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 966 (I[59] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 967 (I[71] = (img)(_n6##x,y,z,v)), \
philpem@5 968 (I[83] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 969 (I[95] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 970 (I[107] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 971 (I[119] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 972 (I[131] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 973 (I[143] = (img)(_n6##x,_n6##y,z,v)),1)) || \
philpem@5 974 _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
philpem@5 975 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], \
philpem@5 976 I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
philpem@5 977 I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \
philpem@5 978 I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
philpem@5 979 I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
philpem@5 980 I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
philpem@5 981 I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
philpem@5 982 I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
philpem@5 983 I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \
philpem@5 984 I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
philpem@5 985 I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], \
philpem@5 986 I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
philpem@5 987 _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x)
philpem@5 988
philpem@5 989 #define cimg_get12x12(img,x,y,z,v,I) \
philpem@5 990 I[0] = (img)(_p5##x,_p5##y,z,v), I[1] = (img)(_p4##x,_p5##y,z,v), I[2] = (img)(_p3##x,_p5##y,z,v), I[3] = (img)(_p2##x,_p5##y,z,v), I[4] = (img)(_p1##x,_p5##y,z,v), I[5] = (img)(x,_p5##y,z,v), I[6] = (img)(_n1##x,_p5##y,z,v), I[7] = (img)(_n2##x,_p5##y,z,v), I[8] = (img)(_n3##x,_p5##y,z,v), I[9] = (img)(_n4##x,_p5##y,z,v), I[10] = (img)(_n5##x,_p5##y,z,v), I[11] = (img)(_n6##x,_p5##y,z,v), \
philpem@5 991 I[12] = (img)(_p5##x,_p4##y,z,v), I[13] = (img)(_p4##x,_p4##y,z,v), I[14] = (img)(_p3##x,_p4##y,z,v), I[15] = (img)(_p2##x,_p4##y,z,v), I[16] = (img)(_p1##x,_p4##y,z,v), I[17] = (img)(x,_p4##y,z,v), I[18] = (img)(_n1##x,_p4##y,z,v), I[19] = (img)(_n2##x,_p4##y,z,v), I[20] = (img)(_n3##x,_p4##y,z,v), I[21] = (img)(_n4##x,_p4##y,z,v), I[22] = (img)(_n5##x,_p4##y,z,v), I[23] = (img)(_n6##x,_p4##y,z,v), \
philpem@5 992 I[24] = (img)(_p5##x,_p3##y,z,v), I[25] = (img)(_p4##x,_p3##y,z,v), I[26] = (img)(_p3##x,_p3##y,z,v), I[27] = (img)(_p2##x,_p3##y,z,v), I[28] = (img)(_p1##x,_p3##y,z,v), I[29] = (img)(x,_p3##y,z,v), I[30] = (img)(_n1##x,_p3##y,z,v), I[31] = (img)(_n2##x,_p3##y,z,v), I[32] = (img)(_n3##x,_p3##y,z,v), I[33] = (img)(_n4##x,_p3##y,z,v), I[34] = (img)(_n5##x,_p3##y,z,v), I[35] = (img)(_n6##x,_p3##y,z,v), \
philpem@5 993 I[36] = (img)(_p5##x,_p2##y,z,v), I[37] = (img)(_p4##x,_p2##y,z,v), I[38] = (img)(_p3##x,_p2##y,z,v), I[39] = (img)(_p2##x,_p2##y,z,v), I[40] = (img)(_p1##x,_p2##y,z,v), I[41] = (img)(x,_p2##y,z,v), I[42] = (img)(_n1##x,_p2##y,z,v), I[43] = (img)(_n2##x,_p2##y,z,v), I[44] = (img)(_n3##x,_p2##y,z,v), I[45] = (img)(_n4##x,_p2##y,z,v), I[46] = (img)(_n5##x,_p2##y,z,v), I[47] = (img)(_n6##x,_p2##y,z,v), \
philpem@5 994 I[48] = (img)(_p5##x,_p1##y,z,v), I[49] = (img)(_p4##x,_p1##y,z,v), I[50] = (img)(_p3##x,_p1##y,z,v), I[51] = (img)(_p2##x,_p1##y,z,v), I[52] = (img)(_p1##x,_p1##y,z,v), I[53] = (img)(x,_p1##y,z,v), I[54] = (img)(_n1##x,_p1##y,z,v), I[55] = (img)(_n2##x,_p1##y,z,v), I[56] = (img)(_n3##x,_p1##y,z,v), I[57] = (img)(_n4##x,_p1##y,z,v), I[58] = (img)(_n5##x,_p1##y,z,v), I[59] = (img)(_n6##x,_p1##y,z,v), \
philpem@5 995 I[60] = (img)(_p5##x,y,z,v), I[61] = (img)(_p4##x,y,z,v), I[62] = (img)(_p3##x,y,z,v), I[63] = (img)(_p2##x,y,z,v), I[64] = (img)(_p1##x,y,z,v), I[65] = (img)(x,y,z,v), I[66] = (img)(_n1##x,y,z,v), I[67] = (img)(_n2##x,y,z,v), I[68] = (img)(_n3##x,y,z,v), I[69] = (img)(_n4##x,y,z,v), I[70] = (img)(_n5##x,y,z,v), I[71] = (img)(_n6##x,y,z,v), \
philpem@5 996 I[72] = (img)(_p5##x,_n1##y,z,v), I[73] = (img)(_p4##x,_n1##y,z,v), I[74] = (img)(_p3##x,_n1##y,z,v), I[75] = (img)(_p2##x,_n1##y,z,v), I[76] = (img)(_p1##x,_n1##y,z,v), I[77] = (img)(x,_n1##y,z,v), I[78] = (img)(_n1##x,_n1##y,z,v), I[79] = (img)(_n2##x,_n1##y,z,v), I[80] = (img)(_n3##x,_n1##y,z,v), I[81] = (img)(_n4##x,_n1##y,z,v), I[82] = (img)(_n5##x,_n1##y,z,v), I[83] = (img)(_n6##x,_n1##y,z,v), \
philpem@5 997 I[84] = (img)(_p5##x,_n2##y,z,v), I[85] = (img)(_p4##x,_n2##y,z,v), I[86] = (img)(_p3##x,_n2##y,z,v), I[87] = (img)(_p2##x,_n2##y,z,v), I[88] = (img)(_p1##x,_n2##y,z,v), I[89] = (img)(x,_n2##y,z,v), I[90] = (img)(_n1##x,_n2##y,z,v), I[91] = (img)(_n2##x,_n2##y,z,v), I[92] = (img)(_n3##x,_n2##y,z,v), I[93] = (img)(_n4##x,_n2##y,z,v), I[94] = (img)(_n5##x,_n2##y,z,v), I[95] = (img)(_n6##x,_n2##y,z,v), \
philpem@5 998 I[96] = (img)(_p5##x,_n3##y,z,v), I[97] = (img)(_p4##x,_n3##y,z,v), I[98] = (img)(_p3##x,_n3##y,z,v), I[99] = (img)(_p2##x,_n3##y,z,v), I[100] = (img)(_p1##x,_n3##y,z,v), I[101] = (img)(x,_n3##y,z,v), I[102] = (img)(_n1##x,_n3##y,z,v), I[103] = (img)(_n2##x,_n3##y,z,v), I[104] = (img)(_n3##x,_n3##y,z,v), I[105] = (img)(_n4##x,_n3##y,z,v), I[106] = (img)(_n5##x,_n3##y,z,v), I[107] = (img)(_n6##x,_n3##y,z,v), \
philpem@5 999 I[108] = (img)(_p5##x,_n4##y,z,v), I[109] = (img)(_p4##x,_n4##y,z,v), I[110] = (img)(_p3##x,_n4##y,z,v), I[111] = (img)(_p2##x,_n4##y,z,v), I[112] = (img)(_p1##x,_n4##y,z,v), I[113] = (img)(x,_n4##y,z,v), I[114] = (img)(_n1##x,_n4##y,z,v), I[115] = (img)(_n2##x,_n4##y,z,v), I[116] = (img)(_n3##x,_n4##y,z,v), I[117] = (img)(_n4##x,_n4##y,z,v), I[118] = (img)(_n5##x,_n4##y,z,v), I[119] = (img)(_n6##x,_n4##y,z,v), \
philpem@5 1000 I[120] = (img)(_p5##x,_n5##y,z,v), I[121] = (img)(_p4##x,_n5##y,z,v), I[122] = (img)(_p3##x,_n5##y,z,v), I[123] = (img)(_p2##x,_n5##y,z,v), I[124] = (img)(_p1##x,_n5##y,z,v), I[125] = (img)(x,_n5##y,z,v), I[126] = (img)(_n1##x,_n5##y,z,v), I[127] = (img)(_n2##x,_n5##y,z,v), I[128] = (img)(_n3##x,_n5##y,z,v), I[129] = (img)(_n4##x,_n5##y,z,v), I[130] = (img)(_n5##x,_n5##y,z,v), I[131] = (img)(_n6##x,_n5##y,z,v), \
philpem@5 1001 I[132] = (img)(_p5##x,_n6##y,z,v), I[133] = (img)(_p4##x,_n6##y,z,v), I[134] = (img)(_p3##x,_n6##y,z,v), I[135] = (img)(_p2##x,_n6##y,z,v), I[136] = (img)(_p1##x,_n6##y,z,v), I[137] = (img)(x,_n6##y,z,v), I[138] = (img)(_n1##x,_n6##y,z,v), I[139] = (img)(_n2##x,_n6##y,z,v), I[140] = (img)(_n3##x,_n6##y,z,v), I[141] = (img)(_n4##x,_n6##y,z,v), I[142] = (img)(_n5##x,_n6##y,z,v), I[143] = (img)(_n6##x,_n6##y,z,v);
philpem@5 1002
philpem@5 1003 // Define 13x13 loop macros for CImg
philpem@5 1004 //----------------------------------
philpem@5 1005 #define cimg_for13(bound,i) for (int i = 0, \
philpem@5 1006 _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
philpem@5 1007 _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \
philpem@5 1008 _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \
philpem@5 1009 _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \
philpem@5 1010 _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \
philpem@5 1011 _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \
philpem@5 1012 _n6##i = 6>=(int)(bound)?(int)(bound)-1:6; \
philpem@5 1013 _n6##i<(int)(bound) || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 1014 i==(_n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
philpem@5 1015 _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 1016 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i)
philpem@5 1017
philpem@5 1018 #define cimg_for13X(img,x) cimg_for13((img).width,x)
philpem@5 1019 #define cimg_for13Y(img,y) cimg_for13((img).height,y)
philpem@5 1020 #define cimg_for13Z(img,z) cimg_for13((img).depth,z)
philpem@5 1021 #define cimg_for13V(img,v) cimg_for13((img).dim,v)
philpem@5 1022 #define cimg_for13XY(img,x,y) cimg_for13Y(img,y) cimg_for13X(img,x)
philpem@5 1023 #define cimg_for13XZ(img,x,z) cimg_for13Z(img,z) cimg_for13X(img,x)
philpem@5 1024 #define cimg_for13XV(img,x,v) cimg_for13V(img,v) cimg_for13X(img,x)
philpem@5 1025 #define cimg_for13YZ(img,y,z) cimg_for13Z(img,z) cimg_for13Y(img,y)
philpem@5 1026 #define cimg_for13YV(img,y,v) cimg_for13V(img,v) cimg_for13Y(img,y)
philpem@5 1027 #define cimg_for13ZV(img,z,v) cimg_for13V(img,v) cimg_for13Z(img,z)
philpem@5 1028 #define cimg_for13XYZ(img,x,y,z) cimg_for13Z(img,z) cimg_for13XY(img,x,y)
philpem@5 1029 #define cimg_for13XZV(img,x,z,v) cimg_for13V(img,v) cimg_for13XZ(img,x,z)
philpem@5 1030 #define cimg_for13YZV(img,y,z,v) cimg_for13V(img,v) cimg_for13YZ(img,y,z)
philpem@5 1031 #define cimg_for13XYZV(img,x,y,z,v) cimg_for13V(img,v) cimg_for13XYZ(img,x,y,z)
philpem@5 1032
philpem@5 1033 #define cimg_for_in13(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
philpem@5 1034 _p6##i = i-6<0?0:i-6, \
philpem@5 1035 _p5##i = i-5<0?0:i-5, \
philpem@5 1036 _p4##i = i-4<0?0:i-4, \
philpem@5 1037 _p3##i = i-3<0?0:i-3, \
philpem@5 1038 _p2##i = i-2<0?0:i-2, \
philpem@5 1039 _p1##i = i-1<0?0:i-1, \
philpem@5 1040 _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \
philpem@5 1041 _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \
philpem@5 1042 _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \
philpem@5 1043 _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \
philpem@5 1044 _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \
philpem@5 1045 _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6; \
philpem@5 1046 i<=(int)(i1) && (_n6##i<(int)(bound) || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 1047 i==(_n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
philpem@5 1048 _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 1049 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i)
philpem@5 1050
philpem@5 1051 #define cimg_for_in13X(img,x0,x1,x) cimg_for_in13((img).width,x0,x1,x)
philpem@5 1052 #define cimg_for_in13Y(img,y0,y1,y) cimg_for_in13((img).height,y0,y1,y)
philpem@5 1053 #define cimg_for_in13Z(img,z0,z1,z) cimg_for_in13((img).depth,z0,z1,z)
philpem@5 1054 #define cimg_for_in13V(img,v0,v1,v) cimg_for_in13((img).dim,v0,v1,v)
philpem@5 1055 #define cimg_for_in13XY(img,x0,y0,x1,y1,x,y) cimg_for_in13Y(img,y0,y1,y) cimg_for_in13X(img,x0,x1,x)
philpem@5 1056 #define cimg_for_in13XZ(img,x0,z0,x1,z1,x,z) cimg_for_in13Z(img,z0,z1,z) cimg_for_in13X(img,x0,x1,x)
philpem@5 1057 #define cimg_for_in13XV(img,x0,v0,x1,v1,x,v) cimg_for_in13V(img,v0,v1,v) cimg_for_in13X(img,x0,x1,x)
philpem@5 1058 #define cimg_for_in13YZ(img,y0,z0,y1,z1,y,z) cimg_for_in13Z(img,z0,z1,z) cimg_for_in13Y(img,y0,y1,y)
philpem@5 1059 #define cimg_for_in13YV(img,y0,v0,y1,v1,y,v) cimg_for_in13V(img,v0,v1,v) cimg_for_in13Y(img,y0,y1,y)
philpem@5 1060 #define cimg_for_in13ZV(img,z0,v0,z1,v1,z,v) cimg_for_in13V(img,v0,v1,v) cimg_for_in13Z(img,z0,z1,z)
philpem@5 1061 #define cimg_for_in13XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in13Z(img,z0,z1,z) cimg_for_in13XY(img,x0,y0,x1,y1,x,y)
philpem@5 1062 #define cimg_for_in13XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in13V(img,v0,v1,v) cimg_for_in13XZ(img,x0,y0,x1,y1,x,z)
philpem@5 1063 #define cimg_for_in13YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in13V(img,v0,v1,v) cimg_for_in13YZ(img,y0,z0,y1,z1,y,z)
philpem@5 1064 #define cimg_for_in13XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in13V(img,v0,v1,v) cimg_for_in13XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
philpem@5 1065
philpem@5 1066 #define cimg_for13x13(img,x,y,z,v,I) \
philpem@5 1067 cimg_for13((img).height,y) for (int x = 0, \
philpem@5 1068 _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
philpem@5 1069 _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \
philpem@5 1070 _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \
philpem@5 1071 _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \
philpem@5 1072 _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \
philpem@5 1073 _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \
philpem@5 1074 _n6##x = (int)( \
philpem@5 1075 (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = (img)(0,_p6##y,z,v)), \
philpem@5 1076 (I[13] = I[14] = I[15] = I[16] = I[17] = I[18] = I[19] = (img)(0,_p5##y,z,v)), \
philpem@5 1077 (I[26] = I[27] = I[28] = I[29] = I[30] = I[31] = I[32] = (img)(0,_p4##y,z,v)), \
philpem@5 1078 (I[39] = I[40] = I[41] = I[42] = I[43] = I[44] = I[45] = (img)(0,_p3##y,z,v)), \
philpem@5 1079 (I[52] = I[53] = I[54] = I[55] = I[56] = I[57] = I[58] = (img)(0,_p2##y,z,v)), \
philpem@5 1080 (I[65] = I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = (img)(0,_p1##y,z,v)), \
philpem@5 1081 (I[78] = I[79] = I[80] = I[81] = I[82] = I[83] = I[84] = (img)(0,y,z,v)), \
philpem@5 1082 (I[91] = I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = (img)(0,_n1##y,z,v)), \
philpem@5 1083 (I[104] = I[105] = I[106] = I[107] = I[108] = I[109] = I[110] = (img)(0,_n2##y,z,v)), \
philpem@5 1084 (I[117] = I[118] = I[119] = I[120] = I[121] = I[122] = I[123] = (img)(0,_n3##y,z,v)), \
philpem@5 1085 (I[130] = I[131] = I[132] = I[133] = I[134] = I[135] = I[136] = (img)(0,_n4##y,z,v)), \
philpem@5 1086 (I[143] = I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = (img)(0,_n5##y,z,v)), \
philpem@5 1087 (I[156] = I[157] = I[158] = I[159] = I[160] = I[161] = I[162] = (img)(0,_n6##y,z,v)), \
philpem@5 1088 (I[7] = (img)(_n1##x,_p6##y,z,v)), \
philpem@5 1089 (I[20] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 1090 (I[33] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 1091 (I[46] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 1092 (I[59] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 1093 (I[72] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 1094 (I[85] = (img)(_n1##x,y,z,v)), \
philpem@5 1095 (I[98] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 1096 (I[111] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 1097 (I[124] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 1098 (I[137] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 1099 (I[150] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 1100 (I[163] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 1101 (I[8] = (img)(_n2##x,_p6##y,z,v)), \
philpem@5 1102 (I[21] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 1103 (I[34] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 1104 (I[47] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 1105 (I[60] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 1106 (I[73] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 1107 (I[86] = (img)(_n2##x,y,z,v)), \
philpem@5 1108 (I[99] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 1109 (I[112] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 1110 (I[125] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 1111 (I[138] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 1112 (I[151] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 1113 (I[164] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 1114 (I[9] = (img)(_n3##x,_p6##y,z,v)), \
philpem@5 1115 (I[22] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 1116 (I[35] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 1117 (I[48] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 1118 (I[61] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 1119 (I[74] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 1120 (I[87] = (img)(_n3##x,y,z,v)), \
philpem@5 1121 (I[100] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 1122 (I[113] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 1123 (I[126] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 1124 (I[139] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 1125 (I[152] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 1126 (I[165] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 1127 (I[10] = (img)(_n4##x,_p6##y,z,v)), \
philpem@5 1128 (I[23] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 1129 (I[36] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 1130 (I[49] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 1131 (I[62] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 1132 (I[75] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 1133 (I[88] = (img)(_n4##x,y,z,v)), \
philpem@5 1134 (I[101] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 1135 (I[114] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 1136 (I[127] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 1137 (I[140] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 1138 (I[153] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 1139 (I[166] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 1140 (I[11] = (img)(_n5##x,_p6##y,z,v)), \
philpem@5 1141 (I[24] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 1142 (I[37] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 1143 (I[50] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 1144 (I[63] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 1145 (I[76] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 1146 (I[89] = (img)(_n5##x,y,z,v)), \
philpem@5 1147 (I[102] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 1148 (I[115] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 1149 (I[128] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 1150 (I[141] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 1151 (I[154] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 1152 (I[167] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 1153 6>=((img).width)?(int)((img).width)-1:6); \
philpem@5 1154 (_n6##x<(int)((img).width) && ( \
philpem@5 1155 (I[12] = (img)(_n6##x,_p6##y,z,v)), \
philpem@5 1156 (I[25] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 1157 (I[38] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 1158 (I[51] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 1159 (I[64] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 1160 (I[77] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 1161 (I[90] = (img)(_n6##x,y,z,v)), \
philpem@5 1162 (I[103] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 1163 (I[116] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 1164 (I[129] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 1165 (I[142] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 1166 (I[155] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 1167 (I[168] = (img)(_n6##x,_n6##y,z,v)),1)) || \
philpem@5 1168 _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
philpem@5 1169 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], \
philpem@5 1170 I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], \
philpem@5 1171 I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], \
philpem@5 1172 I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], \
philpem@5 1173 I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], \
philpem@5 1174 I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], \
philpem@5 1175 I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], \
philpem@5 1176 I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], \
philpem@5 1177 I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], \
philpem@5 1178 I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], \
philpem@5 1179 I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], \
philpem@5 1180 I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], \
philpem@5 1181 I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], \
philpem@5 1182 _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x)
philpem@5 1183
philpem@5 1184 #define cimg_for_in13x13(img,x0,y0,x1,y1,x,y,z,v,I) \
philpem@5 1185 cimg_for_in13((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
philpem@5 1186 _p6##x = x-6<0?0:x-6, \
philpem@5 1187 _p5##x = x-5<0?0:x-5, \
philpem@5 1188 _p4##x = x-4<0?0:x-4, \
philpem@5 1189 _p3##x = x-3<0?0:x-3, \
philpem@5 1190 _p2##x = x-2<0?0:x-2, \
philpem@5 1191 _p1##x = x-1<0?0:x-1, \
philpem@5 1192 _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \
philpem@5 1193 _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \
philpem@5 1194 _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \
philpem@5 1195 _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \
philpem@5 1196 _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \
philpem@5 1197 _n6##x = (int)( \
philpem@5 1198 (I[0] = (img)(_p6##x,_p6##y,z,v)), \
philpem@5 1199 (I[13] = (img)(_p6##x,_p5##y,z,v)), \
philpem@5 1200 (I[26] = (img)(_p6##x,_p4##y,z,v)), \
philpem@5 1201 (I[39] = (img)(_p6##x,_p3##y,z,v)), \
philpem@5 1202 (I[52] = (img)(_p6##x,_p2##y,z,v)), \
philpem@5 1203 (I[65] = (img)(_p6##x,_p1##y,z,v)), \
philpem@5 1204 (I[78] = (img)(_p6##x,y,z,v)), \
philpem@5 1205 (I[91] = (img)(_p6##x,_n1##y,z,v)), \
philpem@5 1206 (I[104] = (img)(_p6##x,_n2##y,z,v)), \
philpem@5 1207 (I[117] = (img)(_p6##x,_n3##y,z,v)), \
philpem@5 1208 (I[130] = (img)(_p6##x,_n4##y,z,v)), \
philpem@5 1209 (I[143] = (img)(_p6##x,_n5##y,z,v)), \
philpem@5 1210 (I[156] = (img)(_p6##x,_n6##y,z,v)), \
philpem@5 1211 (I[1] = (img)(_p5##x,_p6##y,z,v)), \
philpem@5 1212 (I[14] = (img)(_p5##x,_p5##y,z,v)), \
philpem@5 1213 (I[27] = (img)(_p5##x,_p4##y,z,v)), \
philpem@5 1214 (I[40] = (img)(_p5##x,_p3##y,z,v)), \
philpem@5 1215 (I[53] = (img)(_p5##x,_p2##y,z,v)), \
philpem@5 1216 (I[66] = (img)(_p5##x,_p1##y,z,v)), \
philpem@5 1217 (I[79] = (img)(_p5##x,y,z,v)), \
philpem@5 1218 (I[92] = (img)(_p5##x,_n1##y,z,v)), \
philpem@5 1219 (I[105] = (img)(_p5##x,_n2##y,z,v)), \
philpem@5 1220 (I[118] = (img)(_p5##x,_n3##y,z,v)), \
philpem@5 1221 (I[131] = (img)(_p5##x,_n4##y,z,v)), \
philpem@5 1222 (I[144] = (img)(_p5##x,_n5##y,z,v)), \
philpem@5 1223 (I[157] = (img)(_p5##x,_n6##y,z,v)), \
philpem@5 1224 (I[2] = (img)(_p4##x,_p6##y,z,v)), \
philpem@5 1225 (I[15] = (img)(_p4##x,_p5##y,z,v)), \
philpem@5 1226 (I[28] = (img)(_p4##x,_p4##y,z,v)), \
philpem@5 1227 (I[41] = (img)(_p4##x,_p3##y,z,v)), \
philpem@5 1228 (I[54] = (img)(_p4##x,_p2##y,z,v)), \
philpem@5 1229 (I[67] = (img)(_p4##x,_p1##y,z,v)), \
philpem@5 1230 (I[80] = (img)(_p4##x,y,z,v)), \
philpem@5 1231 (I[93] = (img)(_p4##x,_n1##y,z,v)), \
philpem@5 1232 (I[106] = (img)(_p4##x,_n2##y,z,v)), \
philpem@5 1233 (I[119] = (img)(_p4##x,_n3##y,z,v)), \
philpem@5 1234 (I[132] = (img)(_p4##x,_n4##y,z,v)), \
philpem@5 1235 (I[145] = (img)(_p4##x,_n5##y,z,v)), \
philpem@5 1236 (I[158] = (img)(_p4##x,_n6##y,z,v)), \
philpem@5 1237 (I[3] = (img)(_p3##x,_p6##y,z,v)), \
philpem@5 1238 (I[16] = (img)(_p3##x,_p5##y,z,v)), \
philpem@5 1239 (I[29] = (img)(_p3##x,_p4##y,z,v)), \
philpem@5 1240 (I[42] = (img)(_p3##x,_p3##y,z,v)), \
philpem@5 1241 (I[55] = (img)(_p3##x,_p2##y,z,v)), \
philpem@5 1242 (I[68] = (img)(_p3##x,_p1##y,z,v)), \
philpem@5 1243 (I[81] = (img)(_p3##x,y,z,v)), \
philpem@5 1244 (I[94] = (img)(_p3##x,_n1##y,z,v)), \
philpem@5 1245 (I[107] = (img)(_p3##x,_n2##y,z,v)), \
philpem@5 1246 (I[120] = (img)(_p3##x,_n3##y,z,v)), \
philpem@5 1247 (I[133] = (img)(_p3##x,_n4##y,z,v)), \
philpem@5 1248 (I[146] = (img)(_p3##x,_n5##y,z,v)), \
philpem@5 1249 (I[159] = (img)(_p3##x,_n6##y,z,v)), \
philpem@5 1250 (I[4] = (img)(_p2##x,_p6##y,z,v)), \
philpem@5 1251 (I[17] = (img)(_p2##x,_p5##y,z,v)), \
philpem@5 1252 (I[30] = (img)(_p2##x,_p4##y,z,v)), \
philpem@5 1253 (I[43] = (img)(_p2##x,_p3##y,z,v)), \
philpem@5 1254 (I[56] = (img)(_p2##x,_p2##y,z,v)), \
philpem@5 1255 (I[69] = (img)(_p2##x,_p1##y,z,v)), \
philpem@5 1256 (I[82] = (img)(_p2##x,y,z,v)), \
philpem@5 1257 (I[95] = (img)(_p2##x,_n1##y,z,v)), \
philpem@5 1258 (I[108] = (img)(_p2##x,_n2##y,z,v)), \
philpem@5 1259 (I[121] = (img)(_p2##x,_n3##y,z,v)), \
philpem@5 1260 (I[134] = (img)(_p2##x,_n4##y,z,v)), \
philpem@5 1261 (I[147] = (img)(_p2##x,_n5##y,z,v)), \
philpem@5 1262 (I[160] = (img)(_p2##x,_n6##y,z,v)), \
philpem@5 1263 (I[5] = (img)(_p1##x,_p6##y,z,v)), \
philpem@5 1264 (I[18] = (img)(_p1##x,_p5##y,z,v)), \
philpem@5 1265 (I[31] = (img)(_p1##x,_p4##y,z,v)), \
philpem@5 1266 (I[44] = (img)(_p1##x,_p3##y,z,v)), \
philpem@5 1267 (I[57] = (img)(_p1##x,_p2##y,z,v)), \
philpem@5 1268 (I[70] = (img)(_p1##x,_p1##y,z,v)), \
philpem@5 1269 (I[83] = (img)(_p1##x,y,z,v)), \
philpem@5 1270 (I[96] = (img)(_p1##x,_n1##y,z,v)), \
philpem@5 1271 (I[109] = (img)(_p1##x,_n2##y,z,v)), \
philpem@5 1272 (I[122] = (img)(_p1##x,_n3##y,z,v)), \
philpem@5 1273 (I[135] = (img)(_p1##x,_n4##y,z,v)), \
philpem@5 1274 (I[148] = (img)(_p1##x,_n5##y,z,v)), \
philpem@5 1275 (I[161] = (img)(_p1##x,_n6##y,z,v)), \
philpem@5 1276 (I[6] = (img)(x,_p6##y,z,v)), \
philpem@5 1277 (I[19] = (img)(x,_p5##y,z,v)), \
philpem@5 1278 (I[32] = (img)(x,_p4##y,z,v)), \
philpem@5 1279 (I[45] = (img)(x,_p3##y,z,v)), \
philpem@5 1280 (I[58] = (img)(x,_p2##y,z,v)), \
philpem@5 1281 (I[71] = (img)(x,_p1##y,z,v)), \
philpem@5 1282 (I[84] = (img)(x,y,z,v)), \
philpem@5 1283 (I[97] = (img)(x,_n1##y,z,v)), \
philpem@5 1284 (I[110] = (img)(x,_n2##y,z,v)), \
philpem@5 1285 (I[123] = (img)(x,_n3##y,z,v)), \
philpem@5 1286 (I[136] = (img)(x,_n4##y,z,v)), \
philpem@5 1287 (I[149] = (img)(x,_n5##y,z,v)), \
philpem@5 1288 (I[162] = (img)(x,_n6##y,z,v)), \
philpem@5 1289 (I[7] = (img)(_n1##x,_p6##y,z,v)), \
philpem@5 1290 (I[20] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 1291 (I[33] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 1292 (I[46] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 1293 (I[59] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 1294 (I[72] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 1295 (I[85] = (img)(_n1##x,y,z,v)), \
philpem@5 1296 (I[98] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 1297 (I[111] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 1298 (I[124] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 1299 (I[137] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 1300 (I[150] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 1301 (I[163] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 1302 (I[8] = (img)(_n2##x,_p6##y,z,v)), \
philpem@5 1303 (I[21] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 1304 (I[34] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 1305 (I[47] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 1306 (I[60] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 1307 (I[73] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 1308 (I[86] = (img)(_n2##x,y,z,v)), \
philpem@5 1309 (I[99] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 1310 (I[112] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 1311 (I[125] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 1312 (I[138] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 1313 (I[151] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 1314 (I[164] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 1315 (I[9] = (img)(_n3##x,_p6##y,z,v)), \
philpem@5 1316 (I[22] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 1317 (I[35] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 1318 (I[48] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 1319 (I[61] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 1320 (I[74] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 1321 (I[87] = (img)(_n3##x,y,z,v)), \
philpem@5 1322 (I[100] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 1323 (I[113] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 1324 (I[126] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 1325 (I[139] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 1326 (I[152] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 1327 (I[165] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 1328 (I[10] = (img)(_n4##x,_p6##y,z,v)), \
philpem@5 1329 (I[23] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 1330 (I[36] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 1331 (I[49] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 1332 (I[62] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 1333 (I[75] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 1334 (I[88] = (img)(_n4##x,y,z,v)), \
philpem@5 1335 (I[101] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 1336 (I[114] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 1337 (I[127] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 1338 (I[140] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 1339 (I[153] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 1340 (I[166] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 1341 (I[11] = (img)(_n5##x,_p6##y,z,v)), \
philpem@5 1342 (I[24] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 1343 (I[37] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 1344 (I[50] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 1345 (I[63] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 1346 (I[76] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 1347 (I[89] = (img)(_n5##x,y,z,v)), \
philpem@5 1348 (I[102] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 1349 (I[115] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 1350 (I[128] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 1351 (I[141] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 1352 (I[154] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 1353 (I[167] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 1354 x+6>=(int)((img).width)?(int)((img).width)-1:x+6); \
philpem@5 1355 x<=(int)(x1) && ((_n6##x<(int)((img).width) && ( \
philpem@5 1356 (I[12] = (img)(_n6##x,_p6##y,z,v)), \
philpem@5 1357 (I[25] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 1358 (I[38] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 1359 (I[51] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 1360 (I[64] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 1361 (I[77] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 1362 (I[90] = (img)(_n6##x,y,z,v)), \
philpem@5 1363 (I[103] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 1364 (I[116] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 1365 (I[129] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 1366 (I[142] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 1367 (I[155] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 1368 (I[168] = (img)(_n6##x,_n6##y,z,v)),1)) || \
philpem@5 1369 _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
philpem@5 1370 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], \
philpem@5 1371 I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], \
philpem@5 1372 I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], \
philpem@5 1373 I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], \
philpem@5 1374 I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], \
philpem@5 1375 I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], \
philpem@5 1376 I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], \
philpem@5 1377 I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], \
philpem@5 1378 I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], \
philpem@5 1379 I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], \
philpem@5 1380 I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], \
philpem@5 1381 I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], \
philpem@5 1382 I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], \
philpem@5 1383 _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x)
philpem@5 1384
philpem@5 1385 #define cimg_get13x13(img,x,y,z,v,I) \
philpem@5 1386 I[0] = (img)(_p6##x,_p6##y,z,v), I[1] = (img)(_p5##x,_p6##y,z,v), I[2] = (img)(_p4##x,_p6##y,z,v), I[3] = (img)(_p3##x,_p6##y,z,v), I[4] = (img)(_p2##x,_p6##y,z,v), I[5] = (img)(_p1##x,_p6##y,z,v), I[6] = (img)(x,_p6##y,z,v), I[7] = (img)(_n1##x,_p6##y,z,v), I[8] = (img)(_n2##x,_p6##y,z,v), I[9] = (img)(_n3##x,_p6##y,z,v), I[10] = (img)(_n4##x,_p6##y,z,v), I[11] = (img)(_n5##x,_p6##y,z,v), I[12] = (img)(_n6##x,_p6##y,z,v), \
philpem@5 1387 I[13] = (img)(_p6##x,_p5##y,z,v), I[14] = (img)(_p5##x,_p5##y,z,v), I[15] = (img)(_p4##x,_p5##y,z,v), I[16] = (img)(_p3##x,_p5##y,z,v), I[17] = (img)(_p2##x,_p5##y,z,v), I[18] = (img)(_p1##x,_p5##y,z,v), I[19] = (img)(x,_p5##y,z,v), I[20] = (img)(_n1##x,_p5##y,z,v), I[21] = (img)(_n2##x,_p5##y,z,v), I[22] = (img)(_n3##x,_p5##y,z,v), I[23] = (img)(_n4##x,_p5##y,z,v), I[24] = (img)(_n5##x,_p5##y,z,v), I[25] = (img)(_n6##x,_p5##y,z,v), \
philpem@5 1388 I[26] = (img)(_p6##x,_p4##y,z,v), I[27] = (img)(_p5##x,_p4##y,z,v), I[28] = (img)(_p4##x,_p4##y,z,v), I[29] = (img)(_p3##x,_p4##y,z,v), I[30] = (img)(_p2##x,_p4##y,z,v), I[31] = (img)(_p1##x,_p4##y,z,v), I[32] = (img)(x,_p4##y,z,v), I[33] = (img)(_n1##x,_p4##y,z,v), I[34] = (img)(_n2##x,_p4##y,z,v), I[35] = (img)(_n3##x,_p4##y,z,v), I[36] = (img)(_n4##x,_p4##y,z,v), I[37] = (img)(_n5##x,_p4##y,z,v), I[38] = (img)(_n6##x,_p4##y,z,v), \
philpem@5 1389 I[39] = (img)(_p6##x,_p3##y,z,v), I[40] = (img)(_p5##x,_p3##y,z,v), I[41] = (img)(_p4##x,_p3##y,z,v), I[42] = (img)(_p3##x,_p3##y,z,v), I[43] = (img)(_p2##x,_p3##y,z,v), I[44] = (img)(_p1##x,_p3##y,z,v), I[45] = (img)(x,_p3##y,z,v), I[46] = (img)(_n1##x,_p3##y,z,v), I[47] = (img)(_n2##x,_p3##y,z,v), I[48] = (img)(_n3##x,_p3##y,z,v), I[49] = (img)(_n4##x,_p3##y,z,v), I[50] = (img)(_n5##x,_p3##y,z,v), I[51] = (img)(_n6##x,_p3##y,z,v), \
philpem@5 1390 I[52] = (img)(_p6##x,_p2##y,z,v), I[53] = (img)(_p5##x,_p2##y,z,v), I[54] = (img)(_p4##x,_p2##y,z,v), I[55] = (img)(_p3##x,_p2##y,z,v), I[56] = (img)(_p2##x,_p2##y,z,v), I[57] = (img)(_p1##x,_p2##y,z,v), I[58] = (img)(x,_p2##y,z,v), I[59] = (img)(_n1##x,_p2##y,z,v), I[60] = (img)(_n2##x,_p2##y,z,v), I[61] = (img)(_n3##x,_p2##y,z,v), I[62] = (img)(_n4##x,_p2##y,z,v), I[63] = (img)(_n5##x,_p2##y,z,v), I[64] = (img)(_n6##x,_p2##y,z,v), \
philpem@5 1391 I[65] = (img)(_p6##x,_p1##y,z,v), I[66] = (img)(_p5##x,_p1##y,z,v), I[67] = (img)(_p4##x,_p1##y,z,v), I[68] = (img)(_p3##x,_p1##y,z,v), I[69] = (img)(_p2##x,_p1##y,z,v), I[70] = (img)(_p1##x,_p1##y,z,v), I[71] = (img)(x,_p1##y,z,v), I[72] = (img)(_n1##x,_p1##y,z,v), I[73] = (img)(_n2##x,_p1##y,z,v), I[74] = (img)(_n3##x,_p1##y,z,v), I[75] = (img)(_n4##x,_p1##y,z,v), I[76] = (img)(_n5##x,_p1##y,z,v), I[77] = (img)(_n6##x,_p1##y,z,v), \
philpem@5 1392 I[78] = (img)(_p6##x,y,z,v), I[79] = (img)(_p5##x,y,z,v), I[80] = (img)(_p4##x,y,z,v), I[81] = (img)(_p3##x,y,z,v), I[82] = (img)(_p2##x,y,z,v), I[83] = (img)(_p1##x,y,z,v), I[84] = (img)(x,y,z,v), I[85] = (img)(_n1##x,y,z,v), I[86] = (img)(_n2##x,y,z,v), I[87] = (img)(_n3##x,y,z,v), I[88] = (img)(_n4##x,y,z,v), I[89] = (img)(_n5##x,y,z,v), I[90] = (img)(_n6##x,y,z,v), \
philpem@5 1393 I[91] = (img)(_p6##x,_n1##y,z,v), I[92] = (img)(_p5##x,_n1##y,z,v), I[93] = (img)(_p4##x,_n1##y,z,v), I[94] = (img)(_p3##x,_n1##y,z,v), I[95] = (img)(_p2##x,_n1##y,z,v), I[96] = (img)(_p1##x,_n1##y,z,v), I[97] = (img)(x,_n1##y,z,v), I[98] = (img)(_n1##x,_n1##y,z,v), I[99] = (img)(_n2##x,_n1##y,z,v), I[100] = (img)(_n3##x,_n1##y,z,v), I[101] = (img)(_n4##x,_n1##y,z,v), I[102] = (img)(_n5##x,_n1##y,z,v), I[103] = (img)(_n6##x,_n1##y,z,v), \
philpem@5 1394 I[104] = (img)(_p6##x,_n2##y,z,v), I[105] = (img)(_p5##x,_n2##y,z,v), I[106] = (img)(_p4##x,_n2##y,z,v), I[107] = (img)(_p3##x,_n2##y,z,v), I[108] = (img)(_p2##x,_n2##y,z,v), I[109] = (img)(_p1##x,_n2##y,z,v), I[110] = (img)(x,_n2##y,z,v), I[111] = (img)(_n1##x,_n2##y,z,v), I[112] = (img)(_n2##x,_n2##y,z,v), I[113] = (img)(_n3##x,_n2##y,z,v), I[114] = (img)(_n4##x,_n2##y,z,v), I[115] = (img)(_n5##x,_n2##y,z,v), I[116] = (img)(_n6##x,_n2##y,z,v), \
philpem@5 1395 I[117] = (img)(_p6##x,_n3##y,z,v), I[118] = (img)(_p5##x,_n3##y,z,v), I[119] = (img)(_p4##x,_n3##y,z,v), I[120] = (img)(_p3##x,_n3##y,z,v), I[121] = (img)(_p2##x,_n3##y,z,v), I[122] = (img)(_p1##x,_n3##y,z,v), I[123] = (img)(x,_n3##y,z,v), I[124] = (img)(_n1##x,_n3##y,z,v), I[125] = (img)(_n2##x,_n3##y,z,v), I[126] = (img)(_n3##x,_n3##y,z,v), I[127] = (img)(_n4##x,_n3##y,z,v), I[128] = (img)(_n5##x,_n3##y,z,v), I[129] = (img)(_n6##x,_n3##y,z,v), \
philpem@5 1396 I[130] = (img)(_p6##x,_n4##y,z,v), I[131] = (img)(_p5##x,_n4##y,z,v), I[132] = (img)(_p4##x,_n4##y,z,v), I[133] = (img)(_p3##x,_n4##y,z,v), I[134] = (img)(_p2##x,_n4##y,z,v), I[135] = (img)(_p1##x,_n4##y,z,v), I[136] = (img)(x,_n4##y,z,v), I[137] = (img)(_n1##x,_n4##y,z,v), I[138] = (img)(_n2##x,_n4##y,z,v), I[139] = (img)(_n3##x,_n4##y,z,v), I[140] = (img)(_n4##x,_n4##y,z,v), I[141] = (img)(_n5##x,_n4##y,z,v), I[142] = (img)(_n6##x,_n4##y,z,v), \
philpem@5 1397 I[143] = (img)(_p6##x,_n5##y,z,v), I[144] = (img)(_p5##x,_n5##y,z,v), I[145] = (img)(_p4##x,_n5##y,z,v), I[146] = (img)(_p3##x,_n5##y,z,v), I[147] = (img)(_p2##x,_n5##y,z,v), I[148] = (img)(_p1##x,_n5##y,z,v), I[149] = (img)(x,_n5##y,z,v), I[150] = (img)(_n1##x,_n5##y,z,v), I[151] = (img)(_n2##x,_n5##y,z,v), I[152] = (img)(_n3##x,_n5##y,z,v), I[153] = (img)(_n4##x,_n5##y,z,v), I[154] = (img)(_n5##x,_n5##y,z,v), I[155] = (img)(_n6##x,_n5##y,z,v), \
philpem@5 1398 I[156] = (img)(_p6##x,_n6##y,z,v), I[157] = (img)(_p5##x,_n6##y,z,v), I[158] = (img)(_p4##x,_n6##y,z,v), I[159] = (img)(_p3##x,_n6##y,z,v), I[160] = (img)(_p2##x,_n6##y,z,v), I[161] = (img)(_p1##x,_n6##y,z,v), I[162] = (img)(x,_n6##y,z,v), I[163] = (img)(_n1##x,_n6##y,z,v), I[164] = (img)(_n2##x,_n6##y,z,v), I[165] = (img)(_n3##x,_n6##y,z,v), I[166] = (img)(_n4##x,_n6##y,z,v), I[167] = (img)(_n5##x,_n6##y,z,v), I[168] = (img)(_n6##x,_n6##y,z,v);
philpem@5 1399
philpem@5 1400 // Define 14x14 loop macros for CImg
philpem@5 1401 //----------------------------------
philpem@5 1402 #define cimg_for14(bound,i) for (int i = 0, \
philpem@5 1403 _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
philpem@5 1404 _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \
philpem@5 1405 _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \
philpem@5 1406 _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \
philpem@5 1407 _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \
philpem@5 1408 _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \
philpem@5 1409 _n6##i = 6>=(int)(bound)?(int)(bound)-1:6, \
philpem@5 1410 _n7##i = 7>=(int)(bound)?(int)(bound)-1:7; \
philpem@5 1411 _n7##i<(int)(bound) || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 1412 i==(_n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
philpem@5 1413 _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 1414 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i)
philpem@5 1415
philpem@5 1416 #define cimg_for14X(img,x) cimg_for14((img).width,x)
philpem@5 1417 #define cimg_for14Y(img,y) cimg_for14((img).height,y)
philpem@5 1418 #define cimg_for14Z(img,z) cimg_for14((img).depth,z)
philpem@5 1419 #define cimg_for14V(img,v) cimg_for14((img).dim,v)
philpem@5 1420 #define cimg_for14XY(img,x,y) cimg_for14Y(img,y) cimg_for14X(img,x)
philpem@5 1421 #define cimg_for14XZ(img,x,z) cimg_for14Z(img,z) cimg_for14X(img,x)
philpem@5 1422 #define cimg_for14XV(img,x,v) cimg_for14V(img,v) cimg_for14X(img,x)
philpem@5 1423 #define cimg_for14YZ(img,y,z) cimg_for14Z(img,z) cimg_for14Y(img,y)
philpem@5 1424 #define cimg_for14YV(img,y,v) cimg_for14V(img,v) cimg_for14Y(img,y)
philpem@5 1425 #define cimg_for14ZV(img,z,v) cimg_for14V(img,v) cimg_for14Z(img,z)
philpem@5 1426 #define cimg_for14XYZ(img,x,y,z) cimg_for14Z(img,z) cimg_for14XY(img,x,y)
philpem@5 1427 #define cimg_for14XZV(img,x,z,v) cimg_for14V(img,v) cimg_for14XZ(img,x,z)
philpem@5 1428 #define cimg_for14YZV(img,y,z,v) cimg_for14V(img,v) cimg_for14YZ(img,y,z)
philpem@5 1429 #define cimg_for14XYZV(img,x,y,z,v) cimg_for14V(img,v) cimg_for14XYZ(img,x,y,z)
philpem@5 1430
philpem@5 1431 #define cimg_for_in14(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
philpem@5 1432 _p6##i = i-6<0?0:i-6, \
philpem@5 1433 _p5##i = i-5<0?0:i-5, \
philpem@5 1434 _p4##i = i-4<0?0:i-4, \
philpem@5 1435 _p3##i = i-3<0?0:i-3, \
philpem@5 1436 _p2##i = i-2<0?0:i-2, \
philpem@5 1437 _p1##i = i-1<0?0:i-1, \
philpem@5 1438 _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \
philpem@5 1439 _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \
philpem@5 1440 _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \
philpem@5 1441 _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \
philpem@5 1442 _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \
philpem@5 1443 _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6, \
philpem@5 1444 _n7##i = i+7>=(int)(bound)?(int)(bound)-1:i+7; \
philpem@5 1445 i<=(int)(i1) && (_n7##i<(int)(bound) || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 1446 i==(_n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
philpem@5 1447 _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 1448 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i)
philpem@5 1449
philpem@5 1450 #define cimg_for_in14X(img,x0,x1,x) cimg_for_in14((img).width,x0,x1,x)
philpem@5 1451 #define cimg_for_in14Y(img,y0,y1,y) cimg_for_in14((img).height,y0,y1,y)
philpem@5 1452 #define cimg_for_in14Z(img,z0,z1,z) cimg_for_in14((img).depth,z0,z1,z)
philpem@5 1453 #define cimg_for_in14V(img,v0,v1,v) cimg_for_in14((img).dim,v0,v1,v)
philpem@5 1454 #define cimg_for_in14XY(img,x0,y0,x1,y1,x,y) cimg_for_in14Y(img,y0,y1,y) cimg_for_in14X(img,x0,x1,x)
philpem@5 1455 #define cimg_for_in14XZ(img,x0,z0,x1,z1,x,z) cimg_for_in14Z(img,z0,z1,z) cimg_for_in14X(img,x0,x1,x)
philpem@5 1456 #define cimg_for_in14XV(img,x0,v0,x1,v1,x,v) cimg_for_in14V(img,v0,v1,v) cimg_for_in14X(img,x0,x1,x)
philpem@5 1457 #define cimg_for_in14YZ(img,y0,z0,y1,z1,y,z) cimg_for_in14Z(img,z0,z1,z) cimg_for_in14Y(img,y0,y1,y)
philpem@5 1458 #define cimg_for_in14YV(img,y0,v0,y1,v1,y,v) cimg_for_in14V(img,v0,v1,v) cimg_for_in14Y(img,y0,y1,y)
philpem@5 1459 #define cimg_for_in14ZV(img,z0,v0,z1,v1,z,v) cimg_for_in14V(img,v0,v1,v) cimg_for_in14Z(img,z0,z1,z)
philpem@5 1460 #define cimg_for_in14XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in14Z(img,z0,z1,z) cimg_for_in14XY(img,x0,y0,x1,y1,x,y)
philpem@5 1461 #define cimg_for_in14XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in14V(img,v0,v1,v) cimg_for_in14XZ(img,x0,y0,x1,y1,x,z)
philpem@5 1462 #define cimg_for_in14YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in14V(img,v0,v1,v) cimg_for_in14YZ(img,y0,z0,y1,z1,y,z)
philpem@5 1463 #define cimg_for_in14XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in14V(img,v0,v1,v) cimg_for_in14XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
philpem@5 1464
philpem@5 1465 #define cimg_for14x14(img,x,y,z,v,I) \
philpem@5 1466 cimg_for14((img).height,y) for (int x = 0, \
philpem@5 1467 _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
philpem@5 1468 _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \
philpem@5 1469 _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \
philpem@5 1470 _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \
philpem@5 1471 _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \
philpem@5 1472 _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \
philpem@5 1473 _n6##x = 6>=((img).width)?(int)((img).width)-1:6, \
philpem@5 1474 _n7##x = (int)( \
philpem@5 1475 (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = (img)(0,_p6##y,z,v)), \
philpem@5 1476 (I[14] = I[15] = I[16] = I[17] = I[18] = I[19] = I[20] = (img)(0,_p5##y,z,v)), \
philpem@5 1477 (I[28] = I[29] = I[30] = I[31] = I[32] = I[33] = I[34] = (img)(0,_p4##y,z,v)), \
philpem@5 1478 (I[42] = I[43] = I[44] = I[45] = I[46] = I[47] = I[48] = (img)(0,_p3##y,z,v)), \
philpem@5 1479 (I[56] = I[57] = I[58] = I[59] = I[60] = I[61] = I[62] = (img)(0,_p2##y,z,v)), \
philpem@5 1480 (I[70] = I[71] = I[72] = I[73] = I[74] = I[75] = I[76] = (img)(0,_p1##y,z,v)), \
philpem@5 1481 (I[84] = I[85] = I[86] = I[87] = I[88] = I[89] = I[90] = (img)(0,y,z,v)), \
philpem@5 1482 (I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = I[104] = (img)(0,_n1##y,z,v)), \
philpem@5 1483 (I[112] = I[113] = I[114] = I[115] = I[116] = I[117] = I[118] = (img)(0,_n2##y,z,v)), \
philpem@5 1484 (I[126] = I[127] = I[128] = I[129] = I[130] = I[131] = I[132] = (img)(0,_n3##y,z,v)), \
philpem@5 1485 (I[140] = I[141] = I[142] = I[143] = I[144] = I[145] = I[146] = (img)(0,_n4##y,z,v)), \
philpem@5 1486 (I[154] = I[155] = I[156] = I[157] = I[158] = I[159] = I[160] = (img)(0,_n5##y,z,v)), \
philpem@5 1487 (I[168] = I[169] = I[170] = I[171] = I[172] = I[173] = I[174] = (img)(0,_n6##y,z,v)), \
philpem@5 1488 (I[182] = I[183] = I[184] = I[185] = I[186] = I[187] = I[188] = (img)(0,_n7##y,z,v)), \
philpem@5 1489 (I[7] = (img)(_n1##x,_p6##y,z,v)), \
philpem@5 1490 (I[21] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 1491 (I[35] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 1492 (I[49] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 1493 (I[63] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 1494 (I[77] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 1495 (I[91] = (img)(_n1##x,y,z,v)), \
philpem@5 1496 (I[105] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 1497 (I[119] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 1498 (I[133] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 1499 (I[147] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 1500 (I[161] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 1501 (I[175] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 1502 (I[189] = (img)(_n1##x,_n7##y,z,v)), \
philpem@5 1503 (I[8] = (img)(_n2##x,_p6##y,z,v)), \
philpem@5 1504 (I[22] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 1505 (I[36] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 1506 (I[50] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 1507 (I[64] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 1508 (I[78] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 1509 (I[92] = (img)(_n2##x,y,z,v)), \
philpem@5 1510 (I[106] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 1511 (I[120] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 1512 (I[134] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 1513 (I[148] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 1514 (I[162] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 1515 (I[176] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 1516 (I[190] = (img)(_n2##x,_n7##y,z,v)), \
philpem@5 1517 (I[9] = (img)(_n3##x,_p6##y,z,v)), \
philpem@5 1518 (I[23] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 1519 (I[37] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 1520 (I[51] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 1521 (I[65] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 1522 (I[79] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 1523 (I[93] = (img)(_n3##x,y,z,v)), \
philpem@5 1524 (I[107] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 1525 (I[121] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 1526 (I[135] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 1527 (I[149] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 1528 (I[163] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 1529 (I[177] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 1530 (I[191] = (img)(_n3##x,_n7##y,z,v)), \
philpem@5 1531 (I[10] = (img)(_n4##x,_p6##y,z,v)), \
philpem@5 1532 (I[24] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 1533 (I[38] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 1534 (I[52] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 1535 (I[66] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 1536 (I[80] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 1537 (I[94] = (img)(_n4##x,y,z,v)), \
philpem@5 1538 (I[108] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 1539 (I[122] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 1540 (I[136] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 1541 (I[150] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 1542 (I[164] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 1543 (I[178] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 1544 (I[192] = (img)(_n4##x,_n7##y,z,v)), \
philpem@5 1545 (I[11] = (img)(_n5##x,_p6##y,z,v)), \
philpem@5 1546 (I[25] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 1547 (I[39] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 1548 (I[53] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 1549 (I[67] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 1550 (I[81] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 1551 (I[95] = (img)(_n5##x,y,z,v)), \
philpem@5 1552 (I[109] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 1553 (I[123] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 1554 (I[137] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 1555 (I[151] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 1556 (I[165] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 1557 (I[179] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 1558 (I[193] = (img)(_n5##x,_n7##y,z,v)), \
philpem@5 1559 (I[12] = (img)(_n6##x,_p6##y,z,v)), \
philpem@5 1560 (I[26] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 1561 (I[40] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 1562 (I[54] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 1563 (I[68] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 1564 (I[82] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 1565 (I[96] = (img)(_n6##x,y,z,v)), \
philpem@5 1566 (I[110] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 1567 (I[124] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 1568 (I[138] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 1569 (I[152] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 1570 (I[166] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 1571 (I[180] = (img)(_n6##x,_n6##y,z,v)), \
philpem@5 1572 (I[194] = (img)(_n6##x,_n7##y,z,v)), \
philpem@5 1573 7>=((img).width)?(int)((img).width)-1:7); \
philpem@5 1574 (_n7##x<(int)((img).width) && ( \
philpem@5 1575 (I[13] = (img)(_n7##x,_p6##y,z,v)), \
philpem@5 1576 (I[27] = (img)(_n7##x,_p5##y,z,v)), \
philpem@5 1577 (I[41] = (img)(_n7##x,_p4##y,z,v)), \
philpem@5 1578 (I[55] = (img)(_n7##x,_p3##y,z,v)), \
philpem@5 1579 (I[69] = (img)(_n7##x,_p2##y,z,v)), \
philpem@5 1580 (I[83] = (img)(_n7##x,_p1##y,z,v)), \
philpem@5 1581 (I[97] = (img)(_n7##x,y,z,v)), \
philpem@5 1582 (I[111] = (img)(_n7##x,_n1##y,z,v)), \
philpem@5 1583 (I[125] = (img)(_n7##x,_n2##y,z,v)), \
philpem@5 1584 (I[139] = (img)(_n7##x,_n3##y,z,v)), \
philpem@5 1585 (I[153] = (img)(_n7##x,_n4##y,z,v)), \
philpem@5 1586 (I[167] = (img)(_n7##x,_n5##y,z,v)), \
philpem@5 1587 (I[181] = (img)(_n7##x,_n6##y,z,v)), \
philpem@5 1588 (I[195] = (img)(_n7##x,_n7##y,z,v)),1)) || \
philpem@5 1589 _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
philpem@5 1590 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \
philpem@5 1591 I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \
philpem@5 1592 I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
philpem@5 1593 I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \
philpem@5 1594 I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \
philpem@5 1595 I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
philpem@5 1596 I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], \
philpem@5 1597 I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
philpem@5 1598 I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
philpem@5 1599 I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \
philpem@5 1600 I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], \
philpem@5 1601 I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
philpem@5 1602 I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], \
philpem@5 1603 I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], \
philpem@5 1604 _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x)
philpem@5 1605
philpem@5 1606 #define cimg_for_in14x14(img,x0,y0,x1,y1,x,y,z,v,I) \
philpem@5 1607 cimg_for_in14((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
philpem@5 1608 _p6##x = x-6<0?0:x-6, \
philpem@5 1609 _p5##x = x-5<0?0:x-5, \
philpem@5 1610 _p4##x = x-4<0?0:x-4, \
philpem@5 1611 _p3##x = x-3<0?0:x-3, \
philpem@5 1612 _p2##x = x-2<0?0:x-2, \
philpem@5 1613 _p1##x = x-1<0?0:x-1, \
philpem@5 1614 _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \
philpem@5 1615 _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \
philpem@5 1616 _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \
philpem@5 1617 _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \
philpem@5 1618 _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \
philpem@5 1619 _n6##x = x+6>=(int)((img).width)?(int)((img).width)-1:x+6, \
philpem@5 1620 _n7##x = (int)( \
philpem@5 1621 (I[0] = (img)(_p6##x,_p6##y,z,v)), \
philpem@5 1622 (I[14] = (img)(_p6##x,_p5##y,z,v)), \
philpem@5 1623 (I[28] = (img)(_p6##x,_p4##y,z,v)), \
philpem@5 1624 (I[42] = (img)(_p6##x,_p3##y,z,v)), \
philpem@5 1625 (I[56] = (img)(_p6##x,_p2##y,z,v)), \
philpem@5 1626 (I[70] = (img)(_p6##x,_p1##y,z,v)), \
philpem@5 1627 (I[84] = (img)(_p6##x,y,z,v)), \
philpem@5 1628 (I[98] = (img)(_p6##x,_n1##y,z,v)), \
philpem@5 1629 (I[112] = (img)(_p6##x,_n2##y,z,v)), \
philpem@5 1630 (I[126] = (img)(_p6##x,_n3##y,z,v)), \
philpem@5 1631 (I[140] = (img)(_p6##x,_n4##y,z,v)), \
philpem@5 1632 (I[154] = (img)(_p6##x,_n5##y,z,v)), \
philpem@5 1633 (I[168] = (img)(_p6##x,_n6##y,z,v)), \
philpem@5 1634 (I[182] = (img)(_p6##x,_n7##y,z,v)), \
philpem@5 1635 (I[1] = (img)(_p5##x,_p6##y,z,v)), \
philpem@5 1636 (I[15] = (img)(_p5##x,_p5##y,z,v)), \
philpem@5 1637 (I[29] = (img)(_p5##x,_p4##y,z,v)), \
philpem@5 1638 (I[43] = (img)(_p5##x,_p3##y,z,v)), \
philpem@5 1639 (I[57] = (img)(_p5##x,_p2##y,z,v)), \
philpem@5 1640 (I[71] = (img)(_p5##x,_p1##y,z,v)), \
philpem@5 1641 (I[85] = (img)(_p5##x,y,z,v)), \
philpem@5 1642 (I[99] = (img)(_p5##x,_n1##y,z,v)), \
philpem@5 1643 (I[113] = (img)(_p5##x,_n2##y,z,v)), \
philpem@5 1644 (I[127] = (img)(_p5##x,_n3##y,z,v)), \
philpem@5 1645 (I[141] = (img)(_p5##x,_n4##y,z,v)), \
philpem@5 1646 (I[155] = (img)(_p5##x,_n5##y,z,v)), \
philpem@5 1647 (I[169] = (img)(_p5##x,_n6##y,z,v)), \
philpem@5 1648 (I[183] = (img)(_p5##x,_n7##y,z,v)), \
philpem@5 1649 (I[2] = (img)(_p4##x,_p6##y,z,v)), \
philpem@5 1650 (I[16] = (img)(_p4##x,_p5##y,z,v)), \
philpem@5 1651 (I[30] = (img)(_p4##x,_p4##y,z,v)), \
philpem@5 1652 (I[44] = (img)(_p4##x,_p3##y,z,v)), \
philpem@5 1653 (I[58] = (img)(_p4##x,_p2##y,z,v)), \
philpem@5 1654 (I[72] = (img)(_p4##x,_p1##y,z,v)), \
philpem@5 1655 (I[86] = (img)(_p4##x,y,z,v)), \
philpem@5 1656 (I[100] = (img)(_p4##x,_n1##y,z,v)), \
philpem@5 1657 (I[114] = (img)(_p4##x,_n2##y,z,v)), \
philpem@5 1658 (I[128] = (img)(_p4##x,_n3##y,z,v)), \
philpem@5 1659 (I[142] = (img)(_p4##x,_n4##y,z,v)), \
philpem@5 1660 (I[156] = (img)(_p4##x,_n5##y,z,v)), \
philpem@5 1661 (I[170] = (img)(_p4##x,_n6##y,z,v)), \
philpem@5 1662 (I[184] = (img)(_p4##x,_n7##y,z,v)), \
philpem@5 1663 (I[3] = (img)(_p3##x,_p6##y,z,v)), \
philpem@5 1664 (I[17] = (img)(_p3##x,_p5##y,z,v)), \
philpem@5 1665 (I[31] = (img)(_p3##x,_p4##y,z,v)), \
philpem@5 1666 (I[45] = (img)(_p3##x,_p3##y,z,v)), \
philpem@5 1667 (I[59] = (img)(_p3##x,_p2##y,z,v)), \
philpem@5 1668 (I[73] = (img)(_p3##x,_p1##y,z,v)), \
philpem@5 1669 (I[87] = (img)(_p3##x,y,z,v)), \
philpem@5 1670 (I[101] = (img)(_p3##x,_n1##y,z,v)), \
philpem@5 1671 (I[115] = (img)(_p3##x,_n2##y,z,v)), \
philpem@5 1672 (I[129] = (img)(_p3##x,_n3##y,z,v)), \
philpem@5 1673 (I[143] = (img)(_p3##x,_n4##y,z,v)), \
philpem@5 1674 (I[157] = (img)(_p3##x,_n5##y,z,v)), \
philpem@5 1675 (I[171] = (img)(_p3##x,_n6##y,z,v)), \
philpem@5 1676 (I[185] = (img)(_p3##x,_n7##y,z,v)), \
philpem@5 1677 (I[4] = (img)(_p2##x,_p6##y,z,v)), \
philpem@5 1678 (I[18] = (img)(_p2##x,_p5##y,z,v)), \
philpem@5 1679 (I[32] = (img)(_p2##x,_p4##y,z,v)), \
philpem@5 1680 (I[46] = (img)(_p2##x,_p3##y,z,v)), \
philpem@5 1681 (I[60] = (img)(_p2##x,_p2##y,z,v)), \
philpem@5 1682 (I[74] = (img)(_p2##x,_p1##y,z,v)), \
philpem@5 1683 (I[88] = (img)(_p2##x,y,z,v)), \
philpem@5 1684 (I[102] = (img)(_p2##x,_n1##y,z,v)), \
philpem@5 1685 (I[116] = (img)(_p2##x,_n2##y,z,v)), \
philpem@5 1686 (I[130] = (img)(_p2##x,_n3##y,z,v)), \
philpem@5 1687 (I[144] = (img)(_p2##x,_n4##y,z,v)), \
philpem@5 1688 (I[158] = (img)(_p2##x,_n5##y,z,v)), \
philpem@5 1689 (I[172] = (img)(_p2##x,_n6##y,z,v)), \
philpem@5 1690 (I[186] = (img)(_p2##x,_n7##y,z,v)), \
philpem@5 1691 (I[5] = (img)(_p1##x,_p6##y,z,v)), \
philpem@5 1692 (I[19] = (img)(_p1##x,_p5##y,z,v)), \
philpem@5 1693 (I[33] = (img)(_p1##x,_p4##y,z,v)), \
philpem@5 1694 (I[47] = (img)(_p1##x,_p3##y,z,v)), \
philpem@5 1695 (I[61] = (img)(_p1##x,_p2##y,z,v)), \
philpem@5 1696 (I[75] = (img)(_p1##x,_p1##y,z,v)), \
philpem@5 1697 (I[89] = (img)(_p1##x,y,z,v)), \
philpem@5 1698 (I[103] = (img)(_p1##x,_n1##y,z,v)), \
philpem@5 1699 (I[117] = (img)(_p1##x,_n2##y,z,v)), \
philpem@5 1700 (I[131] = (img)(_p1##x,_n3##y,z,v)), \
philpem@5 1701 (I[145] = (img)(_p1##x,_n4##y,z,v)), \
philpem@5 1702 (I[159] = (img)(_p1##x,_n5##y,z,v)), \
philpem@5 1703 (I[173] = (img)(_p1##x,_n6##y,z,v)), \
philpem@5 1704 (I[187] = (img)(_p1##x,_n7##y,z,v)), \
philpem@5 1705 (I[6] = (img)(x,_p6##y,z,v)), \
philpem@5 1706 (I[20] = (img)(x,_p5##y,z,v)), \
philpem@5 1707 (I[34] = (img)(x,_p4##y,z,v)), \
philpem@5 1708 (I[48] = (img)(x,_p3##y,z,v)), \
philpem@5 1709 (I[62] = (img)(x,_p2##y,z,v)), \
philpem@5 1710 (I[76] = (img)(x,_p1##y,z,v)), \
philpem@5 1711 (I[90] = (img)(x,y,z,v)), \
philpem@5 1712 (I[104] = (img)(x,_n1##y,z,v)), \
philpem@5 1713 (I[118] = (img)(x,_n2##y,z,v)), \
philpem@5 1714 (I[132] = (img)(x,_n3##y,z,v)), \
philpem@5 1715 (I[146] = (img)(x,_n4##y,z,v)), \
philpem@5 1716 (I[160] = (img)(x,_n5##y,z,v)), \
philpem@5 1717 (I[174] = (img)(x,_n6##y,z,v)), \
philpem@5 1718 (I[188] = (img)(x,_n7##y,z,v)), \
philpem@5 1719 (I[7] = (img)(_n1##x,_p6##y,z,v)), \
philpem@5 1720 (I[21] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 1721 (I[35] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 1722 (I[49] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 1723 (I[63] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 1724 (I[77] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 1725 (I[91] = (img)(_n1##x,y,z,v)), \
philpem@5 1726 (I[105] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 1727 (I[119] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 1728 (I[133] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 1729 (I[147] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 1730 (I[161] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 1731 (I[175] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 1732 (I[189] = (img)(_n1##x,_n7##y,z,v)), \
philpem@5 1733 (I[8] = (img)(_n2##x,_p6##y,z,v)), \
philpem@5 1734 (I[22] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 1735 (I[36] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 1736 (I[50] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 1737 (I[64] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 1738 (I[78] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 1739 (I[92] = (img)(_n2##x,y,z,v)), \
philpem@5 1740 (I[106] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 1741 (I[120] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 1742 (I[134] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 1743 (I[148] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 1744 (I[162] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 1745 (I[176] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 1746 (I[190] = (img)(_n2##x,_n7##y,z,v)), \
philpem@5 1747 (I[9] = (img)(_n3##x,_p6##y,z,v)), \
philpem@5 1748 (I[23] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 1749 (I[37] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 1750 (I[51] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 1751 (I[65] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 1752 (I[79] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 1753 (I[93] = (img)(_n3##x,y,z,v)), \
philpem@5 1754 (I[107] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 1755 (I[121] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 1756 (I[135] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 1757 (I[149] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 1758 (I[163] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 1759 (I[177] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 1760 (I[191] = (img)(_n3##x,_n7##y,z,v)), \
philpem@5 1761 (I[10] = (img)(_n4##x,_p6##y,z,v)), \
philpem@5 1762 (I[24] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 1763 (I[38] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 1764 (I[52] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 1765 (I[66] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 1766 (I[80] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 1767 (I[94] = (img)(_n4##x,y,z,v)), \
philpem@5 1768 (I[108] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 1769 (I[122] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 1770 (I[136] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 1771 (I[150] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 1772 (I[164] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 1773 (I[178] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 1774 (I[192] = (img)(_n4##x,_n7##y,z,v)), \
philpem@5 1775 (I[11] = (img)(_n5##x,_p6##y,z,v)), \
philpem@5 1776 (I[25] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 1777 (I[39] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 1778 (I[53] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 1779 (I[67] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 1780 (I[81] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 1781 (I[95] = (img)(_n5##x,y,z,v)), \
philpem@5 1782 (I[109] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 1783 (I[123] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 1784 (I[137] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 1785 (I[151] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 1786 (I[165] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 1787 (I[179] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 1788 (I[193] = (img)(_n5##x,_n7##y,z,v)), \
philpem@5 1789 (I[12] = (img)(_n6##x,_p6##y,z,v)), \
philpem@5 1790 (I[26] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 1791 (I[40] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 1792 (I[54] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 1793 (I[68] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 1794 (I[82] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 1795 (I[96] = (img)(_n6##x,y,z,v)), \
philpem@5 1796 (I[110] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 1797 (I[124] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 1798 (I[138] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 1799 (I[152] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 1800 (I[166] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 1801 (I[180] = (img)(_n6##x,_n6##y,z,v)), \
philpem@5 1802 (I[194] = (img)(_n6##x,_n7##y,z,v)), \
philpem@5 1803 x+7>=(int)((img).width)?(int)((img).width)-1:x+7); \
philpem@5 1804 x<=(int)(x1) && ((_n7##x<(int)((img).width) && ( \
philpem@5 1805 (I[13] = (img)(_n7##x,_p6##y,z,v)), \
philpem@5 1806 (I[27] = (img)(_n7##x,_p5##y,z,v)), \
philpem@5 1807 (I[41] = (img)(_n7##x,_p4##y,z,v)), \
philpem@5 1808 (I[55] = (img)(_n7##x,_p3##y,z,v)), \
philpem@5 1809 (I[69] = (img)(_n7##x,_p2##y,z,v)), \
philpem@5 1810 (I[83] = (img)(_n7##x,_p1##y,z,v)), \
philpem@5 1811 (I[97] = (img)(_n7##x,y,z,v)), \
philpem@5 1812 (I[111] = (img)(_n7##x,_n1##y,z,v)), \
philpem@5 1813 (I[125] = (img)(_n7##x,_n2##y,z,v)), \
philpem@5 1814 (I[139] = (img)(_n7##x,_n3##y,z,v)), \
philpem@5 1815 (I[153] = (img)(_n7##x,_n4##y,z,v)), \
philpem@5 1816 (I[167] = (img)(_n7##x,_n5##y,z,v)), \
philpem@5 1817 (I[181] = (img)(_n7##x,_n6##y,z,v)), \
philpem@5 1818 (I[195] = (img)(_n7##x,_n7##y,z,v)),1)) || \
philpem@5 1819 _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
philpem@5 1820 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \
philpem@5 1821 I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \
philpem@5 1822 I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
philpem@5 1823 I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \
philpem@5 1824 I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \
philpem@5 1825 I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
philpem@5 1826 I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], \
philpem@5 1827 I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
philpem@5 1828 I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
philpem@5 1829 I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \
philpem@5 1830 I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], \
philpem@5 1831 I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
philpem@5 1832 I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], \
philpem@5 1833 I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], \
philpem@5 1834 _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x)
philpem@5 1835
philpem@5 1836 #define cimg_get14x14(img,x,y,z,v,I) \
philpem@5 1837 I[0] = (img)(_p6##x,_p6##y,z,v), I[1] = (img)(_p5##x,_p6##y,z,v), I[2] = (img)(_p4##x,_p6##y,z,v), I[3] = (img)(_p3##x,_p6##y,z,v), I[4] = (img)(_p2##x,_p6##y,z,v), I[5] = (img)(_p1##x,_p6##y,z,v), I[6] = (img)(x,_p6##y,z,v), I[7] = (img)(_n1##x,_p6##y,z,v), I[8] = (img)(_n2##x,_p6##y,z,v), I[9] = (img)(_n3##x,_p6##y,z,v), I[10] = (img)(_n4##x,_p6##y,z,v), I[11] = (img)(_n5##x,_p6##y,z,v), I[12] = (img)(_n6##x,_p6##y,z,v), I[13] = (img)(_n7##x,_p6##y,z,v), \
philpem@5 1838 I[14] = (img)(_p6##x,_p5##y,z,v), I[15] = (img)(_p5##x,_p5##y,z,v), I[16] = (img)(_p4##x,_p5##y,z,v), I[17] = (img)(_p3##x,_p5##y,z,v), I[18] = (img)(_p2##x,_p5##y,z,v), I[19] = (img)(_p1##x,_p5##y,z,v), I[20] = (img)(x,_p5##y,z,v), I[21] = (img)(_n1##x,_p5##y,z,v), I[22] = (img)(_n2##x,_p5##y,z,v), I[23] = (img)(_n3##x,_p5##y,z,v), I[24] = (img)(_n4##x,_p5##y,z,v), I[25] = (img)(_n5##x,_p5##y,z,v), I[26] = (img)(_n6##x,_p5##y,z,v), I[27] = (img)(_n7##x,_p5##y,z,v), \
philpem@5 1839 I[28] = (img)(_p6##x,_p4##y,z,v), I[29] = (img)(_p5##x,_p4##y,z,v), I[30] = (img)(_p4##x,_p4##y,z,v), I[31] = (img)(_p3##x,_p4##y,z,v), I[32] = (img)(_p2##x,_p4##y,z,v), I[33] = (img)(_p1##x,_p4##y,z,v), I[34] = (img)(x,_p4##y,z,v), I[35] = (img)(_n1##x,_p4##y,z,v), I[36] = (img)(_n2##x,_p4##y,z,v), I[37] = (img)(_n3##x,_p4##y,z,v), I[38] = (img)(_n4##x,_p4##y,z,v), I[39] = (img)(_n5##x,_p4##y,z,v), I[40] = (img)(_n6##x,_p4##y,z,v), I[41] = (img)(_n7##x,_p4##y,z,v), \
philpem@5 1840 I[42] = (img)(_p6##x,_p3##y,z,v), I[43] = (img)(_p5##x,_p3##y,z,v), I[44] = (img)(_p4##x,_p3##y,z,v), I[45] = (img)(_p3##x,_p3##y,z,v), I[46] = (img)(_p2##x,_p3##y,z,v), I[47] = (img)(_p1##x,_p3##y,z,v), I[48] = (img)(x,_p3##y,z,v), I[49] = (img)(_n1##x,_p3##y,z,v), I[50] = (img)(_n2##x,_p3##y,z,v), I[51] = (img)(_n3##x,_p3##y,z,v), I[52] = (img)(_n4##x,_p3##y,z,v), I[53] = (img)(_n5##x,_p3##y,z,v), I[54] = (img)(_n6##x,_p3##y,z,v), I[55] = (img)(_n7##x,_p3##y,z,v), \
philpem@5 1841 I[56] = (img)(_p6##x,_p2##y,z,v), I[57] = (img)(_p5##x,_p2##y,z,v), I[58] = (img)(_p4##x,_p2##y,z,v), I[59] = (img)(_p3##x,_p2##y,z,v), I[60] = (img)(_p2##x,_p2##y,z,v), I[61] = (img)(_p1##x,_p2##y,z,v), I[62] = (img)(x,_p2##y,z,v), I[63] = (img)(_n1##x,_p2##y,z,v), I[64] = (img)(_n2##x,_p2##y,z,v), I[65] = (img)(_n3##x,_p2##y,z,v), I[66] = (img)(_n4##x,_p2##y,z,v), I[67] = (img)(_n5##x,_p2##y,z,v), I[68] = (img)(_n6##x,_p2##y,z,v), I[69] = (img)(_n7##x,_p2##y,z,v), \
philpem@5 1842 I[70] = (img)(_p6##x,_p1##y,z,v), I[71] = (img)(_p5##x,_p1##y,z,v), I[72] = (img)(_p4##x,_p1##y,z,v), I[73] = (img)(_p3##x,_p1##y,z,v), I[74] = (img)(_p2##x,_p1##y,z,v), I[75] = (img)(_p1##x,_p1##y,z,v), I[76] = (img)(x,_p1##y,z,v), I[77] = (img)(_n1##x,_p1##y,z,v), I[78] = (img)(_n2##x,_p1##y,z,v), I[79] = (img)(_n3##x,_p1##y,z,v), I[80] = (img)(_n4##x,_p1##y,z,v), I[81] = (img)(_n5##x,_p1##y,z,v), I[82] = (img)(_n6##x,_p1##y,z,v), I[83] = (img)(_n7##x,_p1##y,z,v), \
philpem@5 1843 I[84] = (img)(_p6##x,y,z,v), I[85] = (img)(_p5##x,y,z,v), I[86] = (img)(_p4##x,y,z,v), I[87] = (img)(_p3##x,y,z,v), I[88] = (img)(_p2##x,y,z,v), I[89] = (img)(_p1##x,y,z,v), I[90] = (img)(x,y,z,v), I[91] = (img)(_n1##x,y,z,v), I[92] = (img)(_n2##x,y,z,v), I[93] = (img)(_n3##x,y,z,v), I[94] = (img)(_n4##x,y,z,v), I[95] = (img)(_n5##x,y,z,v), I[96] = (img)(_n6##x,y,z,v), I[97] = (img)(_n7##x,y,z,v), \
philpem@5 1844 I[98] = (img)(_p6##x,_n1##y,z,v), I[99] = (img)(_p5##x,_n1##y,z,v), I[100] = (img)(_p4##x,_n1##y,z,v), I[101] = (img)(_p3##x,_n1##y,z,v), I[102] = (img)(_p2##x,_n1##y,z,v), I[103] = (img)(_p1##x,_n1##y,z,v), I[104] = (img)(x,_n1##y,z,v), I[105] = (img)(_n1##x,_n1##y,z,v), I[106] = (img)(_n2##x,_n1##y,z,v), I[107] = (img)(_n3##x,_n1##y,z,v), I[108] = (img)(_n4##x,_n1##y,z,v), I[109] = (img)(_n5##x,_n1##y,z,v), I[110] = (img)(_n6##x,_n1##y,z,v), I[111] = (img)(_n7##x,_n1##y,z,v), \
philpem@5 1845 I[112] = (img)(_p6##x,_n2##y,z,v), I[113] = (img)(_p5##x,_n2##y,z,v), I[114] = (img)(_p4##x,_n2##y,z,v), I[115] = (img)(_p3##x,_n2##y,z,v), I[116] = (img)(_p2##x,_n2##y,z,v), I[117] = (img)(_p1##x,_n2##y,z,v), I[118] = (img)(x,_n2##y,z,v), I[119] = (img)(_n1##x,_n2##y,z,v), I[120] = (img)(_n2##x,_n2##y,z,v), I[121] = (img)(_n3##x,_n2##y,z,v), I[122] = (img)(_n4##x,_n2##y,z,v), I[123] = (img)(_n5##x,_n2##y,z,v), I[124] = (img)(_n6##x,_n2##y,z,v), I[125] = (img)(_n7##x,_n2##y,z,v), \
philpem@5 1846 I[126] = (img)(_p6##x,_n3##y,z,v), I[127] = (img)(_p5##x,_n3##y,z,v), I[128] = (img)(_p4##x,_n3##y,z,v), I[129] = (img)(_p3##x,_n3##y,z,v), I[130] = (img)(_p2##x,_n3##y,z,v), I[131] = (img)(_p1##x,_n3##y,z,v), I[132] = (img)(x,_n3##y,z,v), I[133] = (img)(_n1##x,_n3##y,z,v), I[134] = (img)(_n2##x,_n3##y,z,v), I[135] = (img)(_n3##x,_n3##y,z,v), I[136] = (img)(_n4##x,_n3##y,z,v), I[137] = (img)(_n5##x,_n3##y,z,v), I[138] = (img)(_n6##x,_n3##y,z,v), I[139] = (img)(_n7##x,_n3##y,z,v), \
philpem@5 1847 I[140] = (img)(_p6##x,_n4##y,z,v), I[141] = (img)(_p5##x,_n4##y,z,v), I[142] = (img)(_p4##x,_n4##y,z,v), I[143] = (img)(_p3##x,_n4##y,z,v), I[144] = (img)(_p2##x,_n4##y,z,v), I[145] = (img)(_p1##x,_n4##y,z,v), I[146] = (img)(x,_n4##y,z,v), I[147] = (img)(_n1##x,_n4##y,z,v), I[148] = (img)(_n2##x,_n4##y,z,v), I[149] = (img)(_n3##x,_n4##y,z,v), I[150] = (img)(_n4##x,_n4##y,z,v), I[151] = (img)(_n5##x,_n4##y,z,v), I[152] = (img)(_n6##x,_n4##y,z,v), I[153] = (img)(_n7##x,_n4##y,z,v), \
philpem@5 1848 I[154] = (img)(_p6##x,_n5##y,z,v), I[155] = (img)(_p5##x,_n5##y,z,v), I[156] = (img)(_p4##x,_n5##y,z,v), I[157] = (img)(_p3##x,_n5##y,z,v), I[158] = (img)(_p2##x,_n5##y,z,v), I[159] = (img)(_p1##x,_n5##y,z,v), I[160] = (img)(x,_n5##y,z,v), I[161] = (img)(_n1##x,_n5##y,z,v), I[162] = (img)(_n2##x,_n5##y,z,v), I[163] = (img)(_n3##x,_n5##y,z,v), I[164] = (img)(_n4##x,_n5##y,z,v), I[165] = (img)(_n5##x,_n5##y,z,v), I[166] = (img)(_n6##x,_n5##y,z,v), I[167] = (img)(_n7##x,_n5##y,z,v), \
philpem@5 1849 I[168] = (img)(_p6##x,_n6##y,z,v), I[169] = (img)(_p5##x,_n6##y,z,v), I[170] = (img)(_p4##x,_n6##y,z,v), I[171] = (img)(_p3##x,_n6##y,z,v), I[172] = (img)(_p2##x,_n6##y,z,v), I[173] = (img)(_p1##x,_n6##y,z,v), I[174] = (img)(x,_n6##y,z,v), I[175] = (img)(_n1##x,_n6##y,z,v), I[176] = (img)(_n2##x,_n6##y,z,v), I[177] = (img)(_n3##x,_n6##y,z,v), I[178] = (img)(_n4##x,_n6##y,z,v), I[179] = (img)(_n5##x,_n6##y,z,v), I[180] = (img)(_n6##x,_n6##y,z,v), I[181] = (img)(_n7##x,_n6##y,z,v), \
philpem@5 1850 I[182] = (img)(_p6##x,_n7##y,z,v), I[183] = (img)(_p5##x,_n7##y,z,v), I[184] = (img)(_p4##x,_n7##y,z,v), I[185] = (img)(_p3##x,_n7##y,z,v), I[186] = (img)(_p2##x,_n7##y,z,v), I[187] = (img)(_p1##x,_n7##y,z,v), I[188] = (img)(x,_n7##y,z,v), I[189] = (img)(_n1##x,_n7##y,z,v), I[190] = (img)(_n2##x,_n7##y,z,v), I[191] = (img)(_n3##x,_n7##y,z,v), I[192] = (img)(_n4##x,_n7##y,z,v), I[193] = (img)(_n5##x,_n7##y,z,v), I[194] = (img)(_n6##x,_n7##y,z,v), I[195] = (img)(_n7##x,_n7##y,z,v);
philpem@5 1851
philpem@5 1852 // Define 15x15 loop macros for CImg
philpem@5 1853 //----------------------------------
philpem@5 1854 #define cimg_for15(bound,i) for (int i = 0, \
philpem@5 1855 _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
philpem@5 1856 _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \
philpem@5 1857 _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \
philpem@5 1858 _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \
philpem@5 1859 _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \
philpem@5 1860 _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \
philpem@5 1861 _n6##i = 6>=(int)(bound)?(int)(bound)-1:6, \
philpem@5 1862 _n7##i = 7>=(int)(bound)?(int)(bound)-1:7; \
philpem@5 1863 _n7##i<(int)(bound) || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 1864 i==(_n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
philpem@5 1865 _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 1866 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i)
philpem@5 1867
philpem@5 1868 #define cimg_for15X(img,x) cimg_for15((img).width,x)
philpem@5 1869 #define cimg_for15Y(img,y) cimg_for15((img).height,y)
philpem@5 1870 #define cimg_for15Z(img,z) cimg_for15((img).depth,z)
philpem@5 1871 #define cimg_for15V(img,v) cimg_for15((img).dim,v)
philpem@5 1872 #define cimg_for15XY(img,x,y) cimg_for15Y(img,y) cimg_for15X(img,x)
philpem@5 1873 #define cimg_for15XZ(img,x,z) cimg_for15Z(img,z) cimg_for15X(img,x)
philpem@5 1874 #define cimg_for15XV(img,x,v) cimg_for15V(img,v) cimg_for15X(img,x)
philpem@5 1875 #define cimg_for15YZ(img,y,z) cimg_for15Z(img,z) cimg_for15Y(img,y)
philpem@5 1876 #define cimg_for15YV(img,y,v) cimg_for15V(img,v) cimg_for15Y(img,y)
philpem@5 1877 #define cimg_for15ZV(img,z,v) cimg_for15V(img,v) cimg_for15Z(img,z)
philpem@5 1878 #define cimg_for15XYZ(img,x,y,z) cimg_for15Z(img,z) cimg_for15XY(img,x,y)
philpem@5 1879 #define cimg_for15XZV(img,x,z,v) cimg_for15V(img,v) cimg_for15XZ(img,x,z)
philpem@5 1880 #define cimg_for15YZV(img,y,z,v) cimg_for15V(img,v) cimg_for15YZ(img,y,z)
philpem@5 1881 #define cimg_for15XYZV(img,x,y,z,v) cimg_for15V(img,v) cimg_for15XYZ(img,x,y,z)
philpem@5 1882
philpem@5 1883 #define cimg_for_in15(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
philpem@5 1884 _p7##i = i-7<0?0:i-7, \
philpem@5 1885 _p6##i = i-6<0?0:i-6, \
philpem@5 1886 _p5##i = i-5<0?0:i-5, \
philpem@5 1887 _p4##i = i-4<0?0:i-4, \
philpem@5 1888 _p3##i = i-3<0?0:i-3, \
philpem@5 1889 _p2##i = i-2<0?0:i-2, \
philpem@5 1890 _p1##i = i-1<0?0:i-1, \
philpem@5 1891 _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \
philpem@5 1892 _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \
philpem@5 1893 _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \
philpem@5 1894 _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \
philpem@5 1895 _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \
philpem@5 1896 _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6, \
philpem@5 1897 _n7##i = i+7>=(int)(bound)?(int)(bound)-1:i+7; \
philpem@5 1898 i<=(int)(i1) && (_n7##i<(int)(bound) || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 1899 i==(_n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
philpem@5 1900 _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 1901 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i)
philpem@5 1902
philpem@5 1903 #define cimg_for_in15X(img,x0,x1,x) cimg_for_in15((img).width,x0,x1,x)
philpem@5 1904 #define cimg_for_in15Y(img,y0,y1,y) cimg_for_in15((img).height,y0,y1,y)
philpem@5 1905 #define cimg_for_in15Z(img,z0,z1,z) cimg_for_in15((img).depth,z0,z1,z)
philpem@5 1906 #define cimg_for_in15V(img,v0,v1,v) cimg_for_in15((img).dim,v0,v1,v)
philpem@5 1907 #define cimg_for_in15XY(img,x0,y0,x1,y1,x,y) cimg_for_in15Y(img,y0,y1,y) cimg_for_in15X(img,x0,x1,x)
philpem@5 1908 #define cimg_for_in15XZ(img,x0,z0,x1,z1,x,z) cimg_for_in15Z(img,z0,z1,z) cimg_for_in15X(img,x0,x1,x)
philpem@5 1909 #define cimg_for_in15XV(img,x0,v0,x1,v1,x,v) cimg_for_in15V(img,v0,v1,v) cimg_for_in15X(img,x0,x1,x)
philpem@5 1910 #define cimg_for_in15YZ(img,y0,z0,y1,z1,y,z) cimg_for_in15Z(img,z0,z1,z) cimg_for_in15Y(img,y0,y1,y)
philpem@5 1911 #define cimg_for_in15YV(img,y0,v0,y1,v1,y,v) cimg_for_in15V(img,v0,v1,v) cimg_for_in15Y(img,y0,y1,y)
philpem@5 1912 #define cimg_for_in15ZV(img,z0,v0,z1,v1,z,v) cimg_for_in15V(img,v0,v1,v) cimg_for_in15Z(img,z0,z1,z)
philpem@5 1913 #define cimg_for_in15XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in15Z(img,z0,z1,z) cimg_for_in15XY(img,x0,y0,x1,y1,x,y)
philpem@5 1914 #define cimg_for_in15XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in15V(img,v0,v1,v) cimg_for_in15XZ(img,x0,y0,x1,y1,x,z)
philpem@5 1915 #define cimg_for_in15YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in15V(img,v0,v1,v) cimg_for_in15YZ(img,y0,z0,y1,z1,y,z)
philpem@5 1916 #define cimg_for_in15XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in15V(img,v0,v1,v) cimg_for_in15XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
philpem@5 1917
philpem@5 1918 #define cimg_for15x15(img,x,y,z,v,I) \
philpem@5 1919 cimg_for15((img).height,y) for (int x = 0, \
philpem@5 1920 _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
philpem@5 1921 _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \
philpem@5 1922 _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \
philpem@5 1923 _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \
philpem@5 1924 _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \
philpem@5 1925 _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \
philpem@5 1926 _n6##x = 6>=((img).width)?(int)((img).width)-1:6, \
philpem@5 1927 _n7##x = (int)( \
philpem@5 1928 (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = (img)(0,_p7##y,z,v)), \
philpem@5 1929 (I[15] = I[16] = I[17] = I[18] = I[19] = I[20] = I[21] = I[22] = (img)(0,_p6##y,z,v)), \
philpem@5 1930 (I[30] = I[31] = I[32] = I[33] = I[34] = I[35] = I[36] = I[37] = (img)(0,_p5##y,z,v)), \
philpem@5 1931 (I[45] = I[46] = I[47] = I[48] = I[49] = I[50] = I[51] = I[52] = (img)(0,_p4##y,z,v)), \
philpem@5 1932 (I[60] = I[61] = I[62] = I[63] = I[64] = I[65] = I[66] = I[67] = (img)(0,_p3##y,z,v)), \
philpem@5 1933 (I[75] = I[76] = I[77] = I[78] = I[79] = I[80] = I[81] = I[82] = (img)(0,_p2##y,z,v)), \
philpem@5 1934 (I[90] = I[91] = I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = (img)(0,_p1##y,z,v)), \
philpem@5 1935 (I[105] = I[106] = I[107] = I[108] = I[109] = I[110] = I[111] = I[112] = (img)(0,y,z,v)), \
philpem@5 1936 (I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = I[126] = I[127] = (img)(0,_n1##y,z,v)), \
philpem@5 1937 (I[135] = I[136] = I[137] = I[138] = I[139] = I[140] = I[141] = I[142] = (img)(0,_n2##y,z,v)), \
philpem@5 1938 (I[150] = I[151] = I[152] = I[153] = I[154] = I[155] = I[156] = I[157] = (img)(0,_n3##y,z,v)), \
philpem@5 1939 (I[165] = I[166] = I[167] = I[168] = I[169] = I[170] = I[171] = I[172] = (img)(0,_n4##y,z,v)), \
philpem@5 1940 (I[180] = I[181] = I[182] = I[183] = I[184] = I[185] = I[186] = I[187] = (img)(0,_n5##y,z,v)), \
philpem@5 1941 (I[195] = I[196] = I[197] = I[198] = I[199] = I[200] = I[201] = I[202] = (img)(0,_n6##y,z,v)), \
philpem@5 1942 (I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = I[216] = I[217] = (img)(0,_n7##y,z,v)), \
philpem@5 1943 (I[8] = (img)(_n1##x,_p7##y,z,v)), \
philpem@5 1944 (I[23] = (img)(_n1##x,_p6##y,z,v)), \
philpem@5 1945 (I[38] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 1946 (I[53] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 1947 (I[68] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 1948 (I[83] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 1949 (I[98] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 1950 (I[113] = (img)(_n1##x,y,z,v)), \
philpem@5 1951 (I[128] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 1952 (I[143] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 1953 (I[158] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 1954 (I[173] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 1955 (I[188] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 1956 (I[203] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 1957 (I[218] = (img)(_n1##x,_n7##y,z,v)), \
philpem@5 1958 (I[9] = (img)(_n2##x,_p7##y,z,v)), \
philpem@5 1959 (I[24] = (img)(_n2##x,_p6##y,z,v)), \
philpem@5 1960 (I[39] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 1961 (I[54] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 1962 (I[69] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 1963 (I[84] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 1964 (I[99] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 1965 (I[114] = (img)(_n2##x,y,z,v)), \
philpem@5 1966 (I[129] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 1967 (I[144] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 1968 (I[159] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 1969 (I[174] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 1970 (I[189] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 1971 (I[204] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 1972 (I[219] = (img)(_n2##x,_n7##y,z,v)), \
philpem@5 1973 (I[10] = (img)(_n3##x,_p7##y,z,v)), \
philpem@5 1974 (I[25] = (img)(_n3##x,_p6##y,z,v)), \
philpem@5 1975 (I[40] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 1976 (I[55] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 1977 (I[70] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 1978 (I[85] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 1979 (I[100] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 1980 (I[115] = (img)(_n3##x,y,z,v)), \
philpem@5 1981 (I[130] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 1982 (I[145] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 1983 (I[160] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 1984 (I[175] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 1985 (I[190] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 1986 (I[205] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 1987 (I[220] = (img)(_n3##x,_n7##y,z,v)), \
philpem@5 1988 (I[11] = (img)(_n4##x,_p7##y,z,v)), \
philpem@5 1989 (I[26] = (img)(_n4##x,_p6##y,z,v)), \
philpem@5 1990 (I[41] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 1991 (I[56] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 1992 (I[71] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 1993 (I[86] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 1994 (I[101] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 1995 (I[116] = (img)(_n4##x,y,z,v)), \
philpem@5 1996 (I[131] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 1997 (I[146] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 1998 (I[161] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 1999 (I[176] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 2000 (I[191] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 2001 (I[206] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 2002 (I[221] = (img)(_n4##x,_n7##y,z,v)), \
philpem@5 2003 (I[12] = (img)(_n5##x,_p7##y,z,v)), \
philpem@5 2004 (I[27] = (img)(_n5##x,_p6##y,z,v)), \
philpem@5 2005 (I[42] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 2006 (I[57] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 2007 (I[72] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 2008 (I[87] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 2009 (I[102] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 2010 (I[117] = (img)(_n5##x,y,z,v)), \
philpem@5 2011 (I[132] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 2012 (I[147] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 2013 (I[162] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 2014 (I[177] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 2015 (I[192] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 2016 (I[207] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 2017 (I[222] = (img)(_n5##x,_n7##y,z,v)), \
philpem@5 2018 (I[13] = (img)(_n6##x,_p7##y,z,v)), \
philpem@5 2019 (I[28] = (img)(_n6##x,_p6##y,z,v)), \
philpem@5 2020 (I[43] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 2021 (I[58] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 2022 (I[73] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 2023 (I[88] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 2024 (I[103] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 2025 (I[118] = (img)(_n6##x,y,z,v)), \
philpem@5 2026 (I[133] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 2027 (I[148] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 2028 (I[163] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 2029 (I[178] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 2030 (I[193] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 2031 (I[208] = (img)(_n6##x,_n6##y,z,v)), \
philpem@5 2032 (I[223] = (img)(_n6##x,_n7##y,z,v)), \
philpem@5 2033 7>=((img).width)?(int)((img).width)-1:7); \
philpem@5 2034 (_n7##x<(int)((img).width) && ( \
philpem@5 2035 (I[14] = (img)(_n7##x,_p7##y,z,v)), \
philpem@5 2036 (I[29] = (img)(_n7##x,_p6##y,z,v)), \
philpem@5 2037 (I[44] = (img)(_n7##x,_p5##y,z,v)), \
philpem@5 2038 (I[59] = (img)(_n7##x,_p4##y,z,v)), \
philpem@5 2039 (I[74] = (img)(_n7##x,_p3##y,z,v)), \
philpem@5 2040 (I[89] = (img)(_n7##x,_p2##y,z,v)), \
philpem@5 2041 (I[104] = (img)(_n7##x,_p1##y,z,v)), \
philpem@5 2042 (I[119] = (img)(_n7##x,y,z,v)), \
philpem@5 2043 (I[134] = (img)(_n7##x,_n1##y,z,v)), \
philpem@5 2044 (I[149] = (img)(_n7##x,_n2##y,z,v)), \
philpem@5 2045 (I[164] = (img)(_n7##x,_n3##y,z,v)), \
philpem@5 2046 (I[179] = (img)(_n7##x,_n4##y,z,v)), \
philpem@5 2047 (I[194] = (img)(_n7##x,_n5##y,z,v)), \
philpem@5 2048 (I[209] = (img)(_n7##x,_n6##y,z,v)), \
philpem@5 2049 (I[224] = (img)(_n7##x,_n7##y,z,v)),1)) || \
philpem@5 2050 _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
philpem@5 2051 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], \
philpem@5 2052 I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
philpem@5 2053 I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], \
philpem@5 2054 I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
philpem@5 2055 I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], \
philpem@5 2056 I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
philpem@5 2057 I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \
philpem@5 2058 I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
philpem@5 2059 I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], \
philpem@5 2060 I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], \
philpem@5 2061 I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], \
philpem@5 2062 I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
philpem@5 2063 I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], \
philpem@5 2064 I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
philpem@5 2065 I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], \
philpem@5 2066 _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x)
philpem@5 2067
philpem@5 2068 #define cimg_for_in15x15(img,x0,y0,x1,y1,x,y,z,v,I) \
philpem@5 2069 cimg_for_in15((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
philpem@5 2070 _p7##x = x-7<0?0:x-7, \
philpem@5 2071 _p6##x = x-6<0?0:x-6, \
philpem@5 2072 _p5##x = x-5<0?0:x-5, \
philpem@5 2073 _p4##x = x-4<0?0:x-4, \
philpem@5 2074 _p3##x = x-3<0?0:x-3, \
philpem@5 2075 _p2##x = x-2<0?0:x-2, \
philpem@5 2076 _p1##x = x-1<0?0:x-1, \
philpem@5 2077 _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \
philpem@5 2078 _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \
philpem@5 2079 _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \
philpem@5 2080 _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \
philpem@5 2081 _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \
philpem@5 2082 _n6##x = x+6>=(int)((img).width)?(int)((img).width)-1:x+6, \
philpem@5 2083 _n7##x = (int)( \
philpem@5 2084 (I[0] = (img)(_p7##x,_p7##y,z,v)), \
philpem@5 2085 (I[15] = (img)(_p7##x,_p6##y,z,v)), \
philpem@5 2086 (I[30] = (img)(_p7##x,_p5##y,z,v)), \
philpem@5 2087 (I[45] = (img)(_p7##x,_p4##y,z,v)), \
philpem@5 2088 (I[60] = (img)(_p7##x,_p3##y,z,v)), \
philpem@5 2089 (I[75] = (img)(_p7##x,_p2##y,z,v)), \
philpem@5 2090 (I[90] = (img)(_p7##x,_p1##y,z,v)), \
philpem@5 2091 (I[105] = (img)(_p7##x,y,z,v)), \
philpem@5 2092 (I[120] = (img)(_p7##x,_n1##y,z,v)), \
philpem@5 2093 (I[135] = (img)(_p7##x,_n2##y,z,v)), \
philpem@5 2094 (I[150] = (img)(_p7##x,_n3##y,z,v)), \
philpem@5 2095 (I[165] = (img)(_p7##x,_n4##y,z,v)), \
philpem@5 2096 (I[180] = (img)(_p7##x,_n5##y,z,v)), \
philpem@5 2097 (I[195] = (img)(_p7##x,_n6##y,z,v)), \
philpem@5 2098 (I[210] = (img)(_p7##x,_n7##y,z,v)), \
philpem@5 2099 (I[1] = (img)(_p6##x,_p7##y,z,v)), \
philpem@5 2100 (I[16] = (img)(_p6##x,_p6##y,z,v)), \
philpem@5 2101 (I[31] = (img)(_p6##x,_p5##y,z,v)), \
philpem@5 2102 (I[46] = (img)(_p6##x,_p4##y,z,v)), \
philpem@5 2103 (I[61] = (img)(_p6##x,_p3##y,z,v)), \
philpem@5 2104 (I[76] = (img)(_p6##x,_p2##y,z,v)), \
philpem@5 2105 (I[91] = (img)(_p6##x,_p1##y,z,v)), \
philpem@5 2106 (I[106] = (img)(_p6##x,y,z,v)), \
philpem@5 2107 (I[121] = (img)(_p6##x,_n1##y,z,v)), \
philpem@5 2108 (I[136] = (img)(_p6##x,_n2##y,z,v)), \
philpem@5 2109 (I[151] = (img)(_p6##x,_n3##y,z,v)), \
philpem@5 2110 (I[166] = (img)(_p6##x,_n4##y,z,v)), \
philpem@5 2111 (I[181] = (img)(_p6##x,_n5##y,z,v)), \
philpem@5 2112 (I[196] = (img)(_p6##x,_n6##y,z,v)), \
philpem@5 2113 (I[211] = (img)(_p6##x,_n7##y,z,v)), \
philpem@5 2114 (I[2] = (img)(_p5##x,_p7##y,z,v)), \
philpem@5 2115 (I[17] = (img)(_p5##x,_p6##y,z,v)), \
philpem@5 2116 (I[32] = (img)(_p5##x,_p5##y,z,v)), \
philpem@5 2117 (I[47] = (img)(_p5##x,_p4##y,z,v)), \
philpem@5 2118 (I[62] = (img)(_p5##x,_p3##y,z,v)), \
philpem@5 2119 (I[77] = (img)(_p5##x,_p2##y,z,v)), \
philpem@5 2120 (I[92] = (img)(_p5##x,_p1##y,z,v)), \
philpem@5 2121 (I[107] = (img)(_p5##x,y,z,v)), \
philpem@5 2122 (I[122] = (img)(_p5##x,_n1##y,z,v)), \
philpem@5 2123 (I[137] = (img)(_p5##x,_n2##y,z,v)), \
philpem@5 2124 (I[152] = (img)(_p5##x,_n3##y,z,v)), \
philpem@5 2125 (I[167] = (img)(_p5##x,_n4##y,z,v)), \
philpem@5 2126 (I[182] = (img)(_p5##x,_n5##y,z,v)), \
philpem@5 2127 (I[197] = (img)(_p5##x,_n6##y,z,v)), \
philpem@5 2128 (I[212] = (img)(_p5##x,_n7##y,z,v)), \
philpem@5 2129 (I[3] = (img)(_p4##x,_p7##y,z,v)), \
philpem@5 2130 (I[18] = (img)(_p4##x,_p6##y,z,v)), \
philpem@5 2131 (I[33] = (img)(_p4##x,_p5##y,z,v)), \
philpem@5 2132 (I[48] = (img)(_p4##x,_p4##y,z,v)), \
philpem@5 2133 (I[63] = (img)(_p4##x,_p3##y,z,v)), \
philpem@5 2134 (I[78] = (img)(_p4##x,_p2##y,z,v)), \
philpem@5 2135 (I[93] = (img)(_p4##x,_p1##y,z,v)), \
philpem@5 2136 (I[108] = (img)(_p4##x,y,z,v)), \
philpem@5 2137 (I[123] = (img)(_p4##x,_n1##y,z,v)), \
philpem@5 2138 (I[138] = (img)(_p4##x,_n2##y,z,v)), \
philpem@5 2139 (I[153] = (img)(_p4##x,_n3##y,z,v)), \
philpem@5 2140 (I[168] = (img)(_p4##x,_n4##y,z,v)), \
philpem@5 2141 (I[183] = (img)(_p4##x,_n5##y,z,v)), \
philpem@5 2142 (I[198] = (img)(_p4##x,_n6##y,z,v)), \
philpem@5 2143 (I[213] = (img)(_p4##x,_n7##y,z,v)), \
philpem@5 2144 (I[4] = (img)(_p3##x,_p7##y,z,v)), \
philpem@5 2145 (I[19] = (img)(_p3##x,_p6##y,z,v)), \
philpem@5 2146 (I[34] = (img)(_p3##x,_p5##y,z,v)), \
philpem@5 2147 (I[49] = (img)(_p3##x,_p4##y,z,v)), \
philpem@5 2148 (I[64] = (img)(_p3##x,_p3##y,z,v)), \
philpem@5 2149 (I[79] = (img)(_p3##x,_p2##y,z,v)), \
philpem@5 2150 (I[94] = (img)(_p3##x,_p1##y,z,v)), \
philpem@5 2151 (I[109] = (img)(_p3##x,y,z,v)), \
philpem@5 2152 (I[124] = (img)(_p3##x,_n1##y,z,v)), \
philpem@5 2153 (I[139] = (img)(_p3##x,_n2##y,z,v)), \
philpem@5 2154 (I[154] = (img)(_p3##x,_n3##y,z,v)), \
philpem@5 2155 (I[169] = (img)(_p3##x,_n4##y,z,v)), \
philpem@5 2156 (I[184] = (img)(_p3##x,_n5##y,z,v)), \
philpem@5 2157 (I[199] = (img)(_p3##x,_n6##y,z,v)), \
philpem@5 2158 (I[214] = (img)(_p3##x,_n7##y,z,v)), \
philpem@5 2159 (I[5] = (img)(_p2##x,_p7##y,z,v)), \
philpem@5 2160 (I[20] = (img)(_p2##x,_p6##y,z,v)), \
philpem@5 2161 (I[35] = (img)(_p2##x,_p5##y,z,v)), \
philpem@5 2162 (I[50] = (img)(_p2##x,_p4##y,z,v)), \
philpem@5 2163 (I[65] = (img)(_p2##x,_p3##y,z,v)), \
philpem@5 2164 (I[80] = (img)(_p2##x,_p2##y,z,v)), \
philpem@5 2165 (I[95] = (img)(_p2##x,_p1##y,z,v)), \
philpem@5 2166 (I[110] = (img)(_p2##x,y,z,v)), \
philpem@5 2167 (I[125] = (img)(_p2##x,_n1##y,z,v)), \
philpem@5 2168 (I[140] = (img)(_p2##x,_n2##y,z,v)), \
philpem@5 2169 (I[155] = (img)(_p2##x,_n3##y,z,v)), \
philpem@5 2170 (I[170] = (img)(_p2##x,_n4##y,z,v)), \
philpem@5 2171 (I[185] = (img)(_p2##x,_n5##y,z,v)), \
philpem@5 2172 (I[200] = (img)(_p2##x,_n6##y,z,v)), \
philpem@5 2173 (I[215] = (img)(_p2##x,_n7##y,z,v)), \
philpem@5 2174 (I[6] = (img)(_p1##x,_p7##y,z,v)), \
philpem@5 2175 (I[21] = (img)(_p1##x,_p6##y,z,v)), \
philpem@5 2176 (I[36] = (img)(_p1##x,_p5##y,z,v)), \
philpem@5 2177 (I[51] = (img)(_p1##x,_p4##y,z,v)), \
philpem@5 2178 (I[66] = (img)(_p1##x,_p3##y,z,v)), \
philpem@5 2179 (I[81] = (img)(_p1##x,_p2##y,z,v)), \
philpem@5 2180 (I[96] = (img)(_p1##x,_p1##y,z,v)), \
philpem@5 2181 (I[111] = (img)(_p1##x,y,z,v)), \
philpem@5 2182 (I[126] = (img)(_p1##x,_n1##y,z,v)), \
philpem@5 2183 (I[141] = (img)(_p1##x,_n2##y,z,v)), \
philpem@5 2184 (I[156] = (img)(_p1##x,_n3##y,z,v)), \
philpem@5 2185 (I[171] = (img)(_p1##x,_n4##y,z,v)), \
philpem@5 2186 (I[186] = (img)(_p1##x,_n5##y,z,v)), \
philpem@5 2187 (I[201] = (img)(_p1##x,_n6##y,z,v)), \
philpem@5 2188 (I[216] = (img)(_p1##x,_n7##y,z,v)), \
philpem@5 2189 (I[7] = (img)(x,_p7##y,z,v)), \
philpem@5 2190 (I[22] = (img)(x,_p6##y,z,v)), \
philpem@5 2191 (I[37] = (img)(x,_p5##y,z,v)), \
philpem@5 2192 (I[52] = (img)(x,_p4##y,z,v)), \
philpem@5 2193 (I[67] = (img)(x,_p3##y,z,v)), \
philpem@5 2194 (I[82] = (img)(x,_p2##y,z,v)), \
philpem@5 2195 (I[97] = (img)(x,_p1##y,z,v)), \
philpem@5 2196 (I[112] = (img)(x,y,z,v)), \
philpem@5 2197 (I[127] = (img)(x,_n1##y,z,v)), \
philpem@5 2198 (I[142] = (img)(x,_n2##y,z,v)), \
philpem@5 2199 (I[157] = (img)(x,_n3##y,z,v)), \
philpem@5 2200 (I[172] = (img)(x,_n4##y,z,v)), \
philpem@5 2201 (I[187] = (img)(x,_n5##y,z,v)), \
philpem@5 2202 (I[202] = (img)(x,_n6##y,z,v)), \
philpem@5 2203 (I[217] = (img)(x,_n7##y,z,v)), \
philpem@5 2204 (I[8] = (img)(_n1##x,_p7##y,z,v)), \
philpem@5 2205 (I[23] = (img)(_n1##x,_p6##y,z,v)), \
philpem@5 2206 (I[38] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 2207 (I[53] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 2208 (I[68] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 2209 (I[83] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 2210 (I[98] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 2211 (I[113] = (img)(_n1##x,y,z,v)), \
philpem@5 2212 (I[128] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 2213 (I[143] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 2214 (I[158] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 2215 (I[173] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 2216 (I[188] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 2217 (I[203] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 2218 (I[218] = (img)(_n1##x,_n7##y,z,v)), \
philpem@5 2219 (I[9] = (img)(_n2##x,_p7##y,z,v)), \
philpem@5 2220 (I[24] = (img)(_n2##x,_p6##y,z,v)), \
philpem@5 2221 (I[39] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 2222 (I[54] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 2223 (I[69] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 2224 (I[84] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 2225 (I[99] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 2226 (I[114] = (img)(_n2##x,y,z,v)), \
philpem@5 2227 (I[129] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 2228 (I[144] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 2229 (I[159] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 2230 (I[174] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 2231 (I[189] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 2232 (I[204] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 2233 (I[219] = (img)(_n2##x,_n7##y,z,v)), \
philpem@5 2234 (I[10] = (img)(_n3##x,_p7##y,z,v)), \
philpem@5 2235 (I[25] = (img)(_n3##x,_p6##y,z,v)), \
philpem@5 2236 (I[40] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 2237 (I[55] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 2238 (I[70] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 2239 (I[85] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 2240 (I[100] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 2241 (I[115] = (img)(_n3##x,y,z,v)), \
philpem@5 2242 (I[130] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 2243 (I[145] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 2244 (I[160] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 2245 (I[175] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 2246 (I[190] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 2247 (I[205] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 2248 (I[220] = (img)(_n3##x,_n7##y,z,v)), \
philpem@5 2249 (I[11] = (img)(_n4##x,_p7##y,z,v)), \
philpem@5 2250 (I[26] = (img)(_n4##x,_p6##y,z,v)), \
philpem@5 2251 (I[41] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 2252 (I[56] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 2253 (I[71] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 2254 (I[86] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 2255 (I[101] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 2256 (I[116] = (img)(_n4##x,y,z,v)), \
philpem@5 2257 (I[131] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 2258 (I[146] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 2259 (I[161] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 2260 (I[176] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 2261 (I[191] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 2262 (I[206] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 2263 (I[221] = (img)(_n4##x,_n7##y,z,v)), \
philpem@5 2264 (I[12] = (img)(_n5##x,_p7##y,z,v)), \
philpem@5 2265 (I[27] = (img)(_n5##x,_p6##y,z,v)), \
philpem@5 2266 (I[42] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 2267 (I[57] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 2268 (I[72] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 2269 (I[87] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 2270 (I[102] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 2271 (I[117] = (img)(_n5##x,y,z,v)), \
philpem@5 2272 (I[132] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 2273 (I[147] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 2274 (I[162] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 2275 (I[177] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 2276 (I[192] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 2277 (I[207] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 2278 (I[222] = (img)(_n5##x,_n7##y,z,v)), \
philpem@5 2279 (I[13] = (img)(_n6##x,_p7##y,z,v)), \
philpem@5 2280 (I[28] = (img)(_n6##x,_p6##y,z,v)), \
philpem@5 2281 (I[43] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 2282 (I[58] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 2283 (I[73] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 2284 (I[88] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 2285 (I[103] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 2286 (I[118] = (img)(_n6##x,y,z,v)), \
philpem@5 2287 (I[133] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 2288 (I[148] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 2289 (I[163] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 2290 (I[178] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 2291 (I[193] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 2292 (I[208] = (img)(_n6##x,_n6##y,z,v)), \
philpem@5 2293 (I[223] = (img)(_n6##x,_n7##y,z,v)), \
philpem@5 2294 x+7>=(int)((img).width)?(int)((img).width)-1:x+7); \
philpem@5 2295 x<=(int)(x1) && ((_n7##x<(int)((img).width) && ( \
philpem@5 2296 (I[14] = (img)(_n7##x,_p7##y,z,v)), \
philpem@5 2297 (I[29] = (img)(_n7##x,_p6##y,z,v)), \
philpem@5 2298 (I[44] = (img)(_n7##x,_p5##y,z,v)), \
philpem@5 2299 (I[59] = (img)(_n7##x,_p4##y,z,v)), \
philpem@5 2300 (I[74] = (img)(_n7##x,_p3##y,z,v)), \
philpem@5 2301 (I[89] = (img)(_n7##x,_p2##y,z,v)), \
philpem@5 2302 (I[104] = (img)(_n7##x,_p1##y,z,v)), \
philpem@5 2303 (I[119] = (img)(_n7##x,y,z,v)), \
philpem@5 2304 (I[134] = (img)(_n7##x,_n1##y,z,v)), \
philpem@5 2305 (I[149] = (img)(_n7##x,_n2##y,z,v)), \
philpem@5 2306 (I[164] = (img)(_n7##x,_n3##y,z,v)), \
philpem@5 2307 (I[179] = (img)(_n7##x,_n4##y,z,v)), \
philpem@5 2308 (I[194] = (img)(_n7##x,_n5##y,z,v)), \
philpem@5 2309 (I[209] = (img)(_n7##x,_n6##y,z,v)), \
philpem@5 2310 (I[224] = (img)(_n7##x,_n7##y,z,v)),1)) || \
philpem@5 2311 _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
philpem@5 2312 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], \
philpem@5 2313 I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
philpem@5 2314 I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], \
philpem@5 2315 I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
philpem@5 2316 I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], \
philpem@5 2317 I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
philpem@5 2318 I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \
philpem@5 2319 I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
philpem@5 2320 I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], \
philpem@5 2321 I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], \
philpem@5 2322 I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], \
philpem@5 2323 I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
philpem@5 2324 I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], \
philpem@5 2325 I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
philpem@5 2326 I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], \
philpem@5 2327 _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x)
philpem@5 2328
philpem@5 2329 #define cimg_get15x15(img,x,y,z,v,I) \
philpem@5 2330 I[0] = (img)(_p7##x,_p7##y,z,v), I[1] = (img)(_p6##x,_p7##y,z,v), I[2] = (img)(_p5##x,_p7##y,z,v), I[3] = (img)(_p4##x,_p7##y,z,v), I[4] = (img)(_p3##x,_p7##y,z,v), I[5] = (img)(_p2##x,_p7##y,z,v), I[6] = (img)(_p1##x,_p7##y,z,v), I[7] = (img)(x,_p7##y,z,v), I[8] = (img)(_n1##x,_p7##y,z,v), I[9] = (img)(_n2##x,_p7##y,z,v), I[10] = (img)(_n3##x,_p7##y,z,v), I[11] = (img)(_n4##x,_p7##y,z,v), I[12] = (img)(_n5##x,_p7##y,z,v), I[13] = (img)(_n6##x,_p7##y,z,v), I[14] = (img)(_n7##x,_p7##y,z,v), \
philpem@5 2331 I[15] = (img)(_p7##x,_p6##y,z,v), I[16] = (img)(_p6##x,_p6##y,z,v), I[17] = (img)(_p5##x,_p6##y,z,v), I[18] = (img)(_p4##x,_p6##y,z,v), I[19] = (img)(_p3##x,_p6##y,z,v), I[20] = (img)(_p2##x,_p6##y,z,v), I[21] = (img)(_p1##x,_p6##y,z,v), I[22] = (img)(x,_p6##y,z,v), I[23] = (img)(_n1##x,_p6##y,z,v), I[24] = (img)(_n2##x,_p6##y,z,v), I[25] = (img)(_n3##x,_p6##y,z,v), I[26] = (img)(_n4##x,_p6##y,z,v), I[27] = (img)(_n5##x,_p6##y,z,v), I[28] = (img)(_n6##x,_p6##y,z,v), I[29] = (img)(_n7##x,_p6##y,z,v), \
philpem@5 2332 I[30] = (img)(_p7##x,_p5##y,z,v), I[31] = (img)(_p6##x,_p5##y,z,v), I[32] = (img)(_p5##x,_p5##y,z,v), I[33] = (img)(_p4##x,_p5##y,z,v), I[34] = (img)(_p3##x,_p5##y,z,v), I[35] = (img)(_p2##x,_p5##y,z,v), I[36] = (img)(_p1##x,_p5##y,z,v), I[37] = (img)(x,_p5##y,z,v), I[38] = (img)(_n1##x,_p5##y,z,v), I[39] = (img)(_n2##x,_p5##y,z,v), I[40] = (img)(_n3##x,_p5##y,z,v), I[41] = (img)(_n4##x,_p5##y,z,v), I[42] = (img)(_n5##x,_p5##y,z,v), I[43] = (img)(_n6##x,_p5##y,z,v), I[44] = (img)(_n7##x,_p5##y,z,v), \
philpem@5 2333 I[45] = (img)(_p7##x,_p4##y,z,v), I[46] = (img)(_p6##x,_p4##y,z,v), I[47] = (img)(_p5##x,_p4##y,z,v), I[48] = (img)(_p4##x,_p4##y,z,v), I[49] = (img)(_p3##x,_p4##y,z,v), I[50] = (img)(_p2##x,_p4##y,z,v), I[51] = (img)(_p1##x,_p4##y,z,v), I[52] = (img)(x,_p4##y,z,v), I[53] = (img)(_n1##x,_p4##y,z,v), I[54] = (img)(_n2##x,_p4##y,z,v), I[55] = (img)(_n3##x,_p4##y,z,v), I[56] = (img)(_n4##x,_p4##y,z,v), I[57] = (img)(_n5##x,_p4##y,z,v), I[58] = (img)(_n6##x,_p4##y,z,v), I[59] = (img)(_n7##x,_p4##y,z,v), \
philpem@5 2334 I[60] = (img)(_p7##x,_p3##y,z,v), I[61] = (img)(_p6##x,_p3##y,z,v), I[62] = (img)(_p5##x,_p3##y,z,v), I[63] = (img)(_p4##x,_p3##y,z,v), I[64] = (img)(_p3##x,_p3##y,z,v), I[65] = (img)(_p2##x,_p3##y,z,v), I[66] = (img)(_p1##x,_p3##y,z,v), I[67] = (img)(x,_p3##y,z,v), I[68] = (img)(_n1##x,_p3##y,z,v), I[69] = (img)(_n2##x,_p3##y,z,v), I[70] = (img)(_n3##x,_p3##y,z,v), I[71] = (img)(_n4##x,_p3##y,z,v), I[72] = (img)(_n5##x,_p3##y,z,v), I[73] = (img)(_n6##x,_p3##y,z,v), I[74] = (img)(_n7##x,_p3##y,z,v), \
philpem@5 2335 I[75] = (img)(_p7##x,_p2##y,z,v), I[76] = (img)(_p6##x,_p2##y,z,v), I[77] = (img)(_p5##x,_p2##y,z,v), I[78] = (img)(_p4##x,_p2##y,z,v), I[79] = (img)(_p3##x,_p2##y,z,v), I[80] = (img)(_p2##x,_p2##y,z,v), I[81] = (img)(_p1##x,_p2##y,z,v), I[82] = (img)(x,_p2##y,z,v), I[83] = (img)(_n1##x,_p2##y,z,v), I[84] = (img)(_n2##x,_p2##y,z,v), I[85] = (img)(_n3##x,_p2##y,z,v), I[86] = (img)(_n4##x,_p2##y,z,v), I[87] = (img)(_n5##x,_p2##y,z,v), I[88] = (img)(_n6##x,_p2##y,z,v), I[89] = (img)(_n7##x,_p2##y,z,v), \
philpem@5 2336 I[90] = (img)(_p7##x,_p1##y,z,v), I[91] = (img)(_p6##x,_p1##y,z,v), I[92] = (img)(_p5##x,_p1##y,z,v), I[93] = (img)(_p4##x,_p1##y,z,v), I[94] = (img)(_p3##x,_p1##y,z,v), I[95] = (img)(_p2##x,_p1##y,z,v), I[96] = (img)(_p1##x,_p1##y,z,v), I[97] = (img)(x,_p1##y,z,v), I[98] = (img)(_n1##x,_p1##y,z,v), I[99] = (img)(_n2##x,_p1##y,z,v), I[100] = (img)(_n3##x,_p1##y,z,v), I[101] = (img)(_n4##x,_p1##y,z,v), I[102] = (img)(_n5##x,_p1##y,z,v), I[103] = (img)(_n6##x,_p1##y,z,v), I[104] = (img)(_n7##x,_p1##y,z,v), \
philpem@5 2337 I[105] = (img)(_p7##x,y,z,v), I[106] = (img)(_p6##x,y,z,v), I[107] = (img)(_p5##x,y,z,v), I[108] = (img)(_p4##x,y,z,v), I[109] = (img)(_p3##x,y,z,v), I[110] = (img)(_p2##x,y,z,v), I[111] = (img)(_p1##x,y,z,v), I[112] = (img)(x,y,z,v), I[113] = (img)(_n1##x,y,z,v), I[114] = (img)(_n2##x,y,z,v), I[115] = (img)(_n3##x,y,z,v), I[116] = (img)(_n4##x,y,z,v), I[117] = (img)(_n5##x,y,z,v), I[118] = (img)(_n6##x,y,z,v), I[119] = (img)(_n7##x,y,z,v), \
philpem@5 2338 I[120] = (img)(_p7##x,_n1##y,z,v), I[121] = (img)(_p6##x,_n1##y,z,v), I[122] = (img)(_p5##x,_n1##y,z,v), I[123] = (img)(_p4##x,_n1##y,z,v), I[124] = (img)(_p3##x,_n1##y,z,v), I[125] = (img)(_p2##x,_n1##y,z,v), I[126] = (img)(_p1##x,_n1##y,z,v), I[127] = (img)(x,_n1##y,z,v), I[128] = (img)(_n1##x,_n1##y,z,v), I[129] = (img)(_n2##x,_n1##y,z,v), I[130] = (img)(_n3##x,_n1##y,z,v), I[131] = (img)(_n4##x,_n1##y,z,v), I[132] = (img)(_n5##x,_n1##y,z,v), I[133] = (img)(_n6##x,_n1##y,z,v), I[134] = (img)(_n7##x,_n1##y,z,v), \
philpem@5 2339 I[135] = (img)(_p7##x,_n2##y,z,v), I[136] = (img)(_p6##x,_n2##y,z,v), I[137] = (img)(_p5##x,_n2##y,z,v), I[138] = (img)(_p4##x,_n2##y,z,v), I[139] = (img)(_p3##x,_n2##y,z,v), I[140] = (img)(_p2##x,_n2##y,z,v), I[141] = (img)(_p1##x,_n2##y,z,v), I[142] = (img)(x,_n2##y,z,v), I[143] = (img)(_n1##x,_n2##y,z,v), I[144] = (img)(_n2##x,_n2##y,z,v), I[145] = (img)(_n3##x,_n2##y,z,v), I[146] = (img)(_n4##x,_n2##y,z,v), I[147] = (img)(_n5##x,_n2##y,z,v), I[148] = (img)(_n6##x,_n2##y,z,v), I[149] = (img)(_n7##x,_n2##y,z,v), \
philpem@5 2340 I[150] = (img)(_p7##x,_n3##y,z,v), I[151] = (img)(_p6##x,_n3##y,z,v), I[152] = (img)(_p5##x,_n3##y,z,v), I[153] = (img)(_p4##x,_n3##y,z,v), I[154] = (img)(_p3##x,_n3##y,z,v), I[155] = (img)(_p2##x,_n3##y,z,v), I[156] = (img)(_p1##x,_n3##y,z,v), I[157] = (img)(x,_n3##y,z,v), I[158] = (img)(_n1##x,_n3##y,z,v), I[159] = (img)(_n2##x,_n3##y,z,v), I[160] = (img)(_n3##x,_n3##y,z,v), I[161] = (img)(_n4##x,_n3##y,z,v), I[162] = (img)(_n5##x,_n3##y,z,v), I[163] = (img)(_n6##x,_n3##y,z,v), I[164] = (img)(_n7##x,_n3##y,z,v), \
philpem@5 2341 I[165] = (img)(_p7##x,_n4##y,z,v), I[166] = (img)(_p6##x,_n4##y,z,v), I[167] = (img)(_p5##x,_n4##y,z,v), I[168] = (img)(_p4##x,_n4##y,z,v), I[169] = (img)(_p3##x,_n4##y,z,v), I[170] = (img)(_p2##x,_n4##y,z,v), I[171] = (img)(_p1##x,_n4##y,z,v), I[172] = (img)(x,_n4##y,z,v), I[173] = (img)(_n1##x,_n4##y,z,v), I[174] = (img)(_n2##x,_n4##y,z,v), I[175] = (img)(_n3##x,_n4##y,z,v), I[176] = (img)(_n4##x,_n4##y,z,v), I[177] = (img)(_n5##x,_n4##y,z,v), I[178] = (img)(_n6##x,_n4##y,z,v), I[179] = (img)(_n7##x,_n4##y,z,v), \
philpem@5 2342 I[180] = (img)(_p7##x,_n5##y,z,v), I[181] = (img)(_p6##x,_n5##y,z,v), I[182] = (img)(_p5##x,_n5##y,z,v), I[183] = (img)(_p4##x,_n5##y,z,v), I[184] = (img)(_p3##x,_n5##y,z,v), I[185] = (img)(_p2##x,_n5##y,z,v), I[186] = (img)(_p1##x,_n5##y,z,v), I[187] = (img)(x,_n5##y,z,v), I[188] = (img)(_n1##x,_n5##y,z,v), I[189] = (img)(_n2##x,_n5##y,z,v), I[190] = (img)(_n3##x,_n5##y,z,v), I[191] = (img)(_n4##x,_n5##y,z,v), I[192] = (img)(_n5##x,_n5##y,z,v), I[193] = (img)(_n6##x,_n5##y,z,v), I[194] = (img)(_n7##x,_n5##y,z,v), \
philpem@5 2343 I[195] = (img)(_p7##x,_n6##y,z,v), I[196] = (img)(_p6##x,_n6##y,z,v), I[197] = (img)(_p5##x,_n6##y,z,v), I[198] = (img)(_p4##x,_n6##y,z,v), I[199] = (img)(_p3##x,_n6##y,z,v), I[200] = (img)(_p2##x,_n6##y,z,v), I[201] = (img)(_p1##x,_n6##y,z,v), I[202] = (img)(x,_n6##y,z,v), I[203] = (img)(_n1##x,_n6##y,z,v), I[204] = (img)(_n2##x,_n6##y,z,v), I[205] = (img)(_n3##x,_n6##y,z,v), I[206] = (img)(_n4##x,_n6##y,z,v), I[207] = (img)(_n5##x,_n6##y,z,v), I[208] = (img)(_n6##x,_n6##y,z,v), I[209] = (img)(_n7##x,_n6##y,z,v), \
philpem@5 2344 I[210] = (img)(_p7##x,_n7##y,z,v), I[211] = (img)(_p6##x,_n7##y,z,v), I[212] = (img)(_p5##x,_n7##y,z,v), I[213] = (img)(_p4##x,_n7##y,z,v), I[214] = (img)(_p3##x,_n7##y,z,v), I[215] = (img)(_p2##x,_n7##y,z,v), I[216] = (img)(_p1##x,_n7##y,z,v), I[217] = (img)(x,_n7##y,z,v), I[218] = (img)(_n1##x,_n7##y,z,v), I[219] = (img)(_n2##x,_n7##y,z,v), I[220] = (img)(_n3##x,_n7##y,z,v), I[221] = (img)(_n4##x,_n7##y,z,v), I[222] = (img)(_n5##x,_n7##y,z,v), I[223] = (img)(_n6##x,_n7##y,z,v), I[224] = (img)(_n7##x,_n7##y,z,v);
philpem@5 2345
philpem@5 2346 // Define 16x16 loop macros for CImg
philpem@5 2347 //----------------------------------
philpem@5 2348 #define cimg_for16(bound,i) for (int i = 0, \
philpem@5 2349 _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
philpem@5 2350 _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \
philpem@5 2351 _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \
philpem@5 2352 _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \
philpem@5 2353 _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \
philpem@5 2354 _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \
philpem@5 2355 _n6##i = 6>=(int)(bound)?(int)(bound)-1:6, \
philpem@5 2356 _n7##i = 7>=(int)(bound)?(int)(bound)-1:7, \
philpem@5 2357 _n8##i = 8>=(int)(bound)?(int)(bound)-1:8; \
philpem@5 2358 _n8##i<(int)(bound) || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 2359 i==(_n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
philpem@5 2360 _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 2361 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i)
philpem@5 2362
philpem@5 2363 #define cimg_for16X(img,x) cimg_for16((img).width,x)
philpem@5 2364 #define cimg_for16Y(img,y) cimg_for16((img).height,y)
philpem@5 2365 #define cimg_for16Z(img,z) cimg_for16((img).depth,z)
philpem@5 2366 #define cimg_for16V(img,v) cimg_for16((img).dim,v)
philpem@5 2367 #define cimg_for16XY(img,x,y) cimg_for16Y(img,y) cimg_for16X(img,x)
philpem@5 2368 #define cimg_for16XZ(img,x,z) cimg_for16Z(img,z) cimg_for16X(img,x)
philpem@5 2369 #define cimg_for16XV(img,x,v) cimg_for16V(img,v) cimg_for16X(img,x)
philpem@5 2370 #define cimg_for16YZ(img,y,z) cimg_for16Z(img,z) cimg_for16Y(img,y)
philpem@5 2371 #define cimg_for16YV(img,y,v) cimg_for16V(img,v) cimg_for16Y(img,y)
philpem@5 2372 #define cimg_for16ZV(img,z,v) cimg_for16V(img,v) cimg_for16Z(img,z)
philpem@5 2373 #define cimg_for16XYZ(img,x,y,z) cimg_for16Z(img,z) cimg_for16XY(img,x,y)
philpem@5 2374 #define cimg_for16XZV(img,x,z,v) cimg_for16V(img,v) cimg_for16XZ(img,x,z)
philpem@5 2375 #define cimg_for16YZV(img,y,z,v) cimg_for16V(img,v) cimg_for16YZ(img,y,z)
philpem@5 2376 #define cimg_for16XYZV(img,x,y,z,v) cimg_for16V(img,v) cimg_for16XYZ(img,x,y,z)
philpem@5 2377
philpem@5 2378 #define cimg_for_in16(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
philpem@5 2379 _p7##i = i-7<0?0:i-7, \
philpem@5 2380 _p6##i = i-6<0?0:i-6, \
philpem@5 2381 _p5##i = i-5<0?0:i-5, \
philpem@5 2382 _p4##i = i-4<0?0:i-4, \
philpem@5 2383 _p3##i = i-3<0?0:i-3, \
philpem@5 2384 _p2##i = i-2<0?0:i-2, \
philpem@5 2385 _p1##i = i-1<0?0:i-1, \
philpem@5 2386 _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \
philpem@5 2387 _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \
philpem@5 2388 _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \
philpem@5 2389 _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \
philpem@5 2390 _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \
philpem@5 2391 _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6, \
philpem@5 2392 _n7##i = i+7>=(int)(bound)?(int)(bound)-1:i+7, \
philpem@5 2393 _n8##i = i+8>=(int)(bound)?(int)(bound)-1:i+8; \
philpem@5 2394 i<=(int)(i1) && (_n8##i<(int)(bound) || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 2395 i==(_n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
philpem@5 2396 _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 2397 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i)
philpem@5 2398
philpem@5 2399 #define cimg_for_in16X(img,x0,x1,x) cimg_for_in16((img).width,x0,x1,x)
philpem@5 2400 #define cimg_for_in16Y(img,y0,y1,y) cimg_for_in16((img).height,y0,y1,y)
philpem@5 2401 #define cimg_for_in16Z(img,z0,z1,z) cimg_for_in16((img).depth,z0,z1,z)
philpem@5 2402 #define cimg_for_in16V(img,v0,v1,v) cimg_for_in16((img).dim,v0,v1,v)
philpem@5 2403 #define cimg_for_in16XY(img,x0,y0,x1,y1,x,y) cimg_for_in16Y(img,y0,y1,y) cimg_for_in16X(img,x0,x1,x)
philpem@5 2404 #define cimg_for_in16XZ(img,x0,z0,x1,z1,x,z) cimg_for_in16Z(img,z0,z1,z) cimg_for_in16X(img,x0,x1,x)
philpem@5 2405 #define cimg_for_in16XV(img,x0,v0,x1,v1,x,v) cimg_for_in16V(img,v0,v1,v) cimg_for_in16X(img,x0,x1,x)
philpem@5 2406 #define cimg_for_in16YZ(img,y0,z0,y1,z1,y,z) cimg_for_in16Z(img,z0,z1,z) cimg_for_in16Y(img,y0,y1,y)
philpem@5 2407 #define cimg_for_in16YV(img,y0,v0,y1,v1,y,v) cimg_for_in16V(img,v0,v1,v) cimg_for_in16Y(img,y0,y1,y)
philpem@5 2408 #define cimg_for_in16ZV(img,z0,v0,z1,v1,z,v) cimg_for_in16V(img,v0,v1,v) cimg_for_in16Z(img,z0,z1,z)
philpem@5 2409 #define cimg_for_in16XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in16Z(img,z0,z1,z) cimg_for_in16XY(img,x0,y0,x1,y1,x,y)
philpem@5 2410 #define cimg_for_in16XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in16V(img,v0,v1,v) cimg_for_in16XZ(img,x0,y0,x1,y1,x,z)
philpem@5 2411 #define cimg_for_in16YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in16V(img,v0,v1,v) cimg_for_in16YZ(img,y0,z0,y1,z1,y,z)
philpem@5 2412 #define cimg_for_in16XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in16V(img,v0,v1,v) cimg_for_in16XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
philpem@5 2413
philpem@5 2414 #define cimg_for16x16(img,x,y,z,v,I) \
philpem@5 2415 cimg_for16((img).height,y) for (int x = 0, \
philpem@5 2416 _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
philpem@5 2417 _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \
philpem@5 2418 _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \
philpem@5 2419 _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \
philpem@5 2420 _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \
philpem@5 2421 _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \
philpem@5 2422 _n6##x = 6>=((img).width)?(int)((img).width)-1:6, \
philpem@5 2423 _n7##x = 7>=((img).width)?(int)((img).width)-1:7, \
philpem@5 2424 _n8##x = (int)( \
philpem@5 2425 (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = (img)(0,_p7##y,z,v)), \
philpem@5 2426 (I[16] = I[17] = I[18] = I[19] = I[20] = I[21] = I[22] = I[23] = (img)(0,_p6##y,z,v)), \
philpem@5 2427 (I[32] = I[33] = I[34] = I[35] = I[36] = I[37] = I[38] = I[39] = (img)(0,_p5##y,z,v)), \
philpem@5 2428 (I[48] = I[49] = I[50] = I[51] = I[52] = I[53] = I[54] = I[55] = (img)(0,_p4##y,z,v)), \
philpem@5 2429 (I[64] = I[65] = I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = (img)(0,_p3##y,z,v)), \
philpem@5 2430 (I[80] = I[81] = I[82] = I[83] = I[84] = I[85] = I[86] = I[87] = (img)(0,_p2##y,z,v)), \
philpem@5 2431 (I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = (img)(0,_p1##y,z,v)), \
philpem@5 2432 (I[112] = I[113] = I[114] = I[115] = I[116] = I[117] = I[118] = I[119] = (img)(0,y,z,v)), \
philpem@5 2433 (I[128] = I[129] = I[130] = I[131] = I[132] = I[133] = I[134] = I[135] = (img)(0,_n1##y,z,v)), \
philpem@5 2434 (I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = I[150] = I[151] = (img)(0,_n2##y,z,v)), \
philpem@5 2435 (I[160] = I[161] = I[162] = I[163] = I[164] = I[165] = I[166] = I[167] = (img)(0,_n3##y,z,v)), \
philpem@5 2436 (I[176] = I[177] = I[178] = I[179] = I[180] = I[181] = I[182] = I[183] = (img)(0,_n4##y,z,v)), \
philpem@5 2437 (I[192] = I[193] = I[194] = I[195] = I[196] = I[197] = I[198] = I[199] = (img)(0,_n5##y,z,v)), \
philpem@5 2438 (I[208] = I[209] = I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = (img)(0,_n6##y,z,v)), \
philpem@5 2439 (I[224] = I[225] = I[226] = I[227] = I[228] = I[229] = I[230] = I[231] = (img)(0,_n7##y,z,v)), \
philpem@5 2440 (I[240] = I[241] = I[242] = I[243] = I[244] = I[245] = I[246] = I[247] = (img)(0,_n8##y,z,v)), \
philpem@5 2441 (I[8] = (img)(_n1##x,_p7##y,z,v)), \
philpem@5 2442 (I[24] = (img)(_n1##x,_p6##y,z,v)), \
philpem@5 2443 (I[40] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 2444 (I[56] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 2445 (I[72] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 2446 (I[88] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 2447 (I[104] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 2448 (I[120] = (img)(_n1##x,y,z,v)), \
philpem@5 2449 (I[136] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 2450 (I[152] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 2451 (I[168] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 2452 (I[184] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 2453 (I[200] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 2454 (I[216] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 2455 (I[232] = (img)(_n1##x,_n7##y,z,v)), \
philpem@5 2456 (I[248] = (img)(_n1##x,_n8##y,z,v)), \
philpem@5 2457 (I[9] = (img)(_n2##x,_p7##y,z,v)), \
philpem@5 2458 (I[25] = (img)(_n2##x,_p6##y,z,v)), \
philpem@5 2459 (I[41] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 2460 (I[57] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 2461 (I[73] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 2462 (I[89] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 2463 (I[105] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 2464 (I[121] = (img)(_n2##x,y,z,v)), \
philpem@5 2465 (I[137] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 2466 (I[153] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 2467 (I[169] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 2468 (I[185] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 2469 (I[201] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 2470 (I[217] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 2471 (I[233] = (img)(_n2##x,_n7##y,z,v)), \
philpem@5 2472 (I[249] = (img)(_n2##x,_n8##y,z,v)), \
philpem@5 2473 (I[10] = (img)(_n3##x,_p7##y,z,v)), \
philpem@5 2474 (I[26] = (img)(_n3##x,_p6##y,z,v)), \
philpem@5 2475 (I[42] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 2476 (I[58] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 2477 (I[74] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 2478 (I[90] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 2479 (I[106] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 2480 (I[122] = (img)(_n3##x,y,z,v)), \
philpem@5 2481 (I[138] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 2482 (I[154] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 2483 (I[170] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 2484 (I[186] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 2485 (I[202] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 2486 (I[218] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 2487 (I[234] = (img)(_n3##x,_n7##y,z,v)), \
philpem@5 2488 (I[250] = (img)(_n3##x,_n8##y,z,v)), \
philpem@5 2489 (I[11] = (img)(_n4##x,_p7##y,z,v)), \
philpem@5 2490 (I[27] = (img)(_n4##x,_p6##y,z,v)), \
philpem@5 2491 (I[43] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 2492 (I[59] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 2493 (I[75] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 2494 (I[91] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 2495 (I[107] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 2496 (I[123] = (img)(_n4##x,y,z,v)), \
philpem@5 2497 (I[139] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 2498 (I[155] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 2499 (I[171] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 2500 (I[187] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 2501 (I[203] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 2502 (I[219] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 2503 (I[235] = (img)(_n4##x,_n7##y,z,v)), \
philpem@5 2504 (I[251] = (img)(_n4##x,_n8##y,z,v)), \
philpem@5 2505 (I[12] = (img)(_n5##x,_p7##y,z,v)), \
philpem@5 2506 (I[28] = (img)(_n5##x,_p6##y,z,v)), \
philpem@5 2507 (I[44] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 2508 (I[60] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 2509 (I[76] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 2510 (I[92] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 2511 (I[108] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 2512 (I[124] = (img)(_n5##x,y,z,v)), \
philpem@5 2513 (I[140] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 2514 (I[156] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 2515 (I[172] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 2516 (I[188] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 2517 (I[204] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 2518 (I[220] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 2519 (I[236] = (img)(_n5##x,_n7##y,z,v)), \
philpem@5 2520 (I[252] = (img)(_n5##x,_n8##y,z,v)), \
philpem@5 2521 (I[13] = (img)(_n6##x,_p7##y,z,v)), \
philpem@5 2522 (I[29] = (img)(_n6##x,_p6##y,z,v)), \
philpem@5 2523 (I[45] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 2524 (I[61] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 2525 (I[77] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 2526 (I[93] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 2527 (I[109] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 2528 (I[125] = (img)(_n6##x,y,z,v)), \
philpem@5 2529 (I[141] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 2530 (I[157] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 2531 (I[173] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 2532 (I[189] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 2533 (I[205] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 2534 (I[221] = (img)(_n6##x,_n6##y,z,v)), \
philpem@5 2535 (I[237] = (img)(_n6##x,_n7##y,z,v)), \
philpem@5 2536 (I[253] = (img)(_n6##x,_n8##y,z,v)), \
philpem@5 2537 (I[14] = (img)(_n7##x,_p7##y,z,v)), \
philpem@5 2538 (I[30] = (img)(_n7##x,_p6##y,z,v)), \
philpem@5 2539 (I[46] = (img)(_n7##x,_p5##y,z,v)), \
philpem@5 2540 (I[62] = (img)(_n7##x,_p4##y,z,v)), \
philpem@5 2541 (I[78] = (img)(_n7##x,_p3##y,z,v)), \
philpem@5 2542 (I[94] = (img)(_n7##x,_p2##y,z,v)), \
philpem@5 2543 (I[110] = (img)(_n7##x,_p1##y,z,v)), \
philpem@5 2544 (I[126] = (img)(_n7##x,y,z,v)), \
philpem@5 2545 (I[142] = (img)(_n7##x,_n1##y,z,v)), \
philpem@5 2546 (I[158] = (img)(_n7##x,_n2##y,z,v)), \
philpem@5 2547 (I[174] = (img)(_n7##x,_n3##y,z,v)), \
philpem@5 2548 (I[190] = (img)(_n7##x,_n4##y,z,v)), \
philpem@5 2549 (I[206] = (img)(_n7##x,_n5##y,z,v)), \
philpem@5 2550 (I[222] = (img)(_n7##x,_n6##y,z,v)), \
philpem@5 2551 (I[238] = (img)(_n7##x,_n7##y,z,v)), \
philpem@5 2552 (I[254] = (img)(_n7##x,_n8##y,z,v)), \
philpem@5 2553 8>=((img).width)?(int)((img).width)-1:8); \
philpem@5 2554 (_n8##x<(int)((img).width) && ( \
philpem@5 2555 (I[15] = (img)(_n8##x,_p7##y,z,v)), \
philpem@5 2556 (I[31] = (img)(_n8##x,_p6##y,z,v)), \
philpem@5 2557 (I[47] = (img)(_n8##x,_p5##y,z,v)), \
philpem@5 2558 (I[63] = (img)(_n8##x,_p4##y,z,v)), \
philpem@5 2559 (I[79] = (img)(_n8##x,_p3##y,z,v)), \
philpem@5 2560 (I[95] = (img)(_n8##x,_p2##y,z,v)), \
philpem@5 2561 (I[111] = (img)(_n8##x,_p1##y,z,v)), \
philpem@5 2562 (I[127] = (img)(_n8##x,y,z,v)), \
philpem@5 2563 (I[143] = (img)(_n8##x,_n1##y,z,v)), \
philpem@5 2564 (I[159] = (img)(_n8##x,_n2##y,z,v)), \
philpem@5 2565 (I[175] = (img)(_n8##x,_n3##y,z,v)), \
philpem@5 2566 (I[191] = (img)(_n8##x,_n4##y,z,v)), \
philpem@5 2567 (I[207] = (img)(_n8##x,_n5##y,z,v)), \
philpem@5 2568 (I[223] = (img)(_n8##x,_n6##y,z,v)), \
philpem@5 2569 (I[239] = (img)(_n8##x,_n7##y,z,v)), \
philpem@5 2570 (I[255] = (img)(_n8##x,_n8##y,z,v)),1)) || \
philpem@5 2571 _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
philpem@5 2572 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], \
philpem@5 2573 I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \
philpem@5 2574 I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
philpem@5 2575 I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \
philpem@5 2576 I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
philpem@5 2577 I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
philpem@5 2578 I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
philpem@5 2579 I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], \
philpem@5 2580 I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
philpem@5 2581 I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \
philpem@5 2582 I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], \
philpem@5 2583 I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
philpem@5 2584 I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], \
philpem@5 2585 I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
philpem@5 2586 I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
philpem@5 2587 I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], \
philpem@5 2588 _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x)
philpem@5 2589
philpem@5 2590 #define cimg_for_in16x16(img,x0,y0,x1,y1,x,y,z,v,I) \
philpem@5 2591 cimg_for_in16((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
philpem@5 2592 _p7##x = x-7<0?0:x-7, \
philpem@5 2593 _p6##x = x-6<0?0:x-6, \
philpem@5 2594 _p5##x = x-5<0?0:x-5, \
philpem@5 2595 _p4##x = x-4<0?0:x-4, \
philpem@5 2596 _p3##x = x-3<0?0:x-3, \
philpem@5 2597 _p2##x = x-2<0?0:x-2, \
philpem@5 2598 _p1##x = x-1<0?0:x-1, \
philpem@5 2599 _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \
philpem@5 2600 _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \
philpem@5 2601 _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \
philpem@5 2602 _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \
philpem@5 2603 _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \
philpem@5 2604 _n6##x = x+6>=(int)((img).width)?(int)((img).width)-1:x+6, \
philpem@5 2605 _n7##x = x+7>=(int)((img).width)?(int)((img).width)-1:x+7, \
philpem@5 2606 _n8##x = (int)( \
philpem@5 2607 (I[0] = (img)(_p7##x,_p7##y,z,v)), \
philpem@5 2608 (I[16] = (img)(_p7##x,_p6##y,z,v)), \
philpem@5 2609 (I[32] = (img)(_p7##x,_p5##y,z,v)), \
philpem@5 2610 (I[48] = (img)(_p7##x,_p4##y,z,v)), \
philpem@5 2611 (I[64] = (img)(_p7##x,_p3##y,z,v)), \
philpem@5 2612 (I[80] = (img)(_p7##x,_p2##y,z,v)), \
philpem@5 2613 (I[96] = (img)(_p7##x,_p1##y,z,v)), \
philpem@5 2614 (I[112] = (img)(_p7##x,y,z,v)), \
philpem@5 2615 (I[128] = (img)(_p7##x,_n1##y,z,v)), \
philpem@5 2616 (I[144] = (img)(_p7##x,_n2##y,z,v)), \
philpem@5 2617 (I[160] = (img)(_p7##x,_n3##y,z,v)), \
philpem@5 2618 (I[176] = (img)(_p7##x,_n4##y,z,v)), \
philpem@5 2619 (I[192] = (img)(_p7##x,_n5##y,z,v)), \
philpem@5 2620 (I[208] = (img)(_p7##x,_n6##y,z,v)), \
philpem@5 2621 (I[224] = (img)(_p7##x,_n7##y,z,v)), \
philpem@5 2622 (I[240] = (img)(_p7##x,_n8##y,z,v)), \
philpem@5 2623 (I[1] = (img)(_p6##x,_p7##y,z,v)), \
philpem@5 2624 (I[17] = (img)(_p6##x,_p6##y,z,v)), \
philpem@5 2625 (I[33] = (img)(_p6##x,_p5##y,z,v)), \
philpem@5 2626 (I[49] = (img)(_p6##x,_p4##y,z,v)), \
philpem@5 2627 (I[65] = (img)(_p6##x,_p3##y,z,v)), \
philpem@5 2628 (I[81] = (img)(_p6##x,_p2##y,z,v)), \
philpem@5 2629 (I[97] = (img)(_p6##x,_p1##y,z,v)), \
philpem@5 2630 (I[113] = (img)(_p6##x,y,z,v)), \
philpem@5 2631 (I[129] = (img)(_p6##x,_n1##y,z,v)), \
philpem@5 2632 (I[145] = (img)(_p6##x,_n2##y,z,v)), \
philpem@5 2633 (I[161] = (img)(_p6##x,_n3##y,z,v)), \
philpem@5 2634 (I[177] = (img)(_p6##x,_n4##y,z,v)), \
philpem@5 2635 (I[193] = (img)(_p6##x,_n5##y,z,v)), \
philpem@5 2636 (I[209] = (img)(_p6##x,_n6##y,z,v)), \
philpem@5 2637 (I[225] = (img)(_p6##x,_n7##y,z,v)), \
philpem@5 2638 (I[241] = (img)(_p6##x,_n8##y,z,v)), \
philpem@5 2639 (I[2] = (img)(_p5##x,_p7##y,z,v)), \
philpem@5 2640 (I[18] = (img)(_p5##x,_p6##y,z,v)), \
philpem@5 2641 (I[34] = (img)(_p5##x,_p5##y,z,v)), \
philpem@5 2642 (I[50] = (img)(_p5##x,_p4##y,z,v)), \
philpem@5 2643 (I[66] = (img)(_p5##x,_p3##y,z,v)), \
philpem@5 2644 (I[82] = (img)(_p5##x,_p2##y,z,v)), \
philpem@5 2645 (I[98] = (img)(_p5##x,_p1##y,z,v)), \
philpem@5 2646 (I[114] = (img)(_p5##x,y,z,v)), \
philpem@5 2647 (I[130] = (img)(_p5##x,_n1##y,z,v)), \
philpem@5 2648 (I[146] = (img)(_p5##x,_n2##y,z,v)), \
philpem@5 2649 (I[162] = (img)(_p5##x,_n3##y,z,v)), \
philpem@5 2650 (I[178] = (img)(_p5##x,_n4##y,z,v)), \
philpem@5 2651 (I[194] = (img)(_p5##x,_n5##y,z,v)), \
philpem@5 2652 (I[210] = (img)(_p5##x,_n6##y,z,v)), \
philpem@5 2653 (I[226] = (img)(_p5##x,_n7##y,z,v)), \
philpem@5 2654 (I[242] = (img)(_p5##x,_n8##y,z,v)), \
philpem@5 2655 (I[3] = (img)(_p4##x,_p7##y,z,v)), \
philpem@5 2656 (I[19] = (img)(_p4##x,_p6##y,z,v)), \
philpem@5 2657 (I[35] = (img)(_p4##x,_p5##y,z,v)), \
philpem@5 2658 (I[51] = (img)(_p4##x,_p4##y,z,v)), \
philpem@5 2659 (I[67] = (img)(_p4##x,_p3##y,z,v)), \
philpem@5 2660 (I[83] = (img)(_p4##x,_p2##y,z,v)), \
philpem@5 2661 (I[99] = (img)(_p4##x,_p1##y,z,v)), \
philpem@5 2662 (I[115] = (img)(_p4##x,y,z,v)), \
philpem@5 2663 (I[131] = (img)(_p4##x,_n1##y,z,v)), \
philpem@5 2664 (I[147] = (img)(_p4##x,_n2##y,z,v)), \
philpem@5 2665 (I[163] = (img)(_p4##x,_n3##y,z,v)), \
philpem@5 2666 (I[179] = (img)(_p4##x,_n4##y,z,v)), \
philpem@5 2667 (I[195] = (img)(_p4##x,_n5##y,z,v)), \
philpem@5 2668 (I[211] = (img)(_p4##x,_n6##y,z,v)), \
philpem@5 2669 (I[227] = (img)(_p4##x,_n7##y,z,v)), \
philpem@5 2670 (I[243] = (img)(_p4##x,_n8##y,z,v)), \
philpem@5 2671 (I[4] = (img)(_p3##x,_p7##y,z,v)), \
philpem@5 2672 (I[20] = (img)(_p3##x,_p6##y,z,v)), \
philpem@5 2673 (I[36] = (img)(_p3##x,_p5##y,z,v)), \
philpem@5 2674 (I[52] = (img)(_p3##x,_p4##y,z,v)), \
philpem@5 2675 (I[68] = (img)(_p3##x,_p3##y,z,v)), \
philpem@5 2676 (I[84] = (img)(_p3##x,_p2##y,z,v)), \
philpem@5 2677 (I[100] = (img)(_p3##x,_p1##y,z,v)), \
philpem@5 2678 (I[116] = (img)(_p3##x,y,z,v)), \
philpem@5 2679 (I[132] = (img)(_p3##x,_n1##y,z,v)), \
philpem@5 2680 (I[148] = (img)(_p3##x,_n2##y,z,v)), \
philpem@5 2681 (I[164] = (img)(_p3##x,_n3##y,z,v)), \
philpem@5 2682 (I[180] = (img)(_p3##x,_n4##y,z,v)), \
philpem@5 2683 (I[196] = (img)(_p3##x,_n5##y,z,v)), \
philpem@5 2684 (I[212] = (img)(_p3##x,_n6##y,z,v)), \
philpem@5 2685 (I[228] = (img)(_p3##x,_n7##y,z,v)), \
philpem@5 2686 (I[244] = (img)(_p3##x,_n8##y,z,v)), \
philpem@5 2687 (I[5] = (img)(_p2##x,_p7##y,z,v)), \
philpem@5 2688 (I[21] = (img)(_p2##x,_p6##y,z,v)), \
philpem@5 2689 (I[37] = (img)(_p2##x,_p5##y,z,v)), \
philpem@5 2690 (I[53] = (img)(_p2##x,_p4##y,z,v)), \
philpem@5 2691 (I[69] = (img)(_p2##x,_p3##y,z,v)), \
philpem@5 2692 (I[85] = (img)(_p2##x,_p2##y,z,v)), \
philpem@5 2693 (I[101] = (img)(_p2##x,_p1##y,z,v)), \
philpem@5 2694 (I[117] = (img)(_p2##x,y,z,v)), \
philpem@5 2695 (I[133] = (img)(_p2##x,_n1##y,z,v)), \
philpem@5 2696 (I[149] = (img)(_p2##x,_n2##y,z,v)), \
philpem@5 2697 (I[165] = (img)(_p2##x,_n3##y,z,v)), \
philpem@5 2698 (I[181] = (img)(_p2##x,_n4##y,z,v)), \
philpem@5 2699 (I[197] = (img)(_p2##x,_n5##y,z,v)), \
philpem@5 2700 (I[213] = (img)(_p2##x,_n6##y,z,v)), \
philpem@5 2701 (I[229] = (img)(_p2##x,_n7##y,z,v)), \
philpem@5 2702 (I[245] = (img)(_p2##x,_n8##y,z,v)), \
philpem@5 2703 (I[6] = (img)(_p1##x,_p7##y,z,v)), \
philpem@5 2704 (I[22] = (img)(_p1##x,_p6##y,z,v)), \
philpem@5 2705 (I[38] = (img)(_p1##x,_p5##y,z,v)), \
philpem@5 2706 (I[54] = (img)(_p1##x,_p4##y,z,v)), \
philpem@5 2707 (I[70] = (img)(_p1##x,_p3##y,z,v)), \
philpem@5 2708 (I[86] = (img)(_p1##x,_p2##y,z,v)), \
philpem@5 2709 (I[102] = (img)(_p1##x,_p1##y,z,v)), \
philpem@5 2710 (I[118] = (img)(_p1##x,y,z,v)), \
philpem@5 2711 (I[134] = (img)(_p1##x,_n1##y,z,v)), \
philpem@5 2712 (I[150] = (img)(_p1##x,_n2##y,z,v)), \
philpem@5 2713 (I[166] = (img)(_p1##x,_n3##y,z,v)), \
philpem@5 2714 (I[182] = (img)(_p1##x,_n4##y,z,v)), \
philpem@5 2715 (I[198] = (img)(_p1##x,_n5##y,z,v)), \
philpem@5 2716 (I[214] = (img)(_p1##x,_n6##y,z,v)), \
philpem@5 2717 (I[230] = (img)(_p1##x,_n7##y,z,v)), \
philpem@5 2718 (I[246] = (img)(_p1##x,_n8##y,z,v)), \
philpem@5 2719 (I[7] = (img)(x,_p7##y,z,v)), \
philpem@5 2720 (I[23] = (img)(x,_p6##y,z,v)), \
philpem@5 2721 (I[39] = (img)(x,_p5##y,z,v)), \
philpem@5 2722 (I[55] = (img)(x,_p4##y,z,v)), \
philpem@5 2723 (I[71] = (img)(x,_p3##y,z,v)), \
philpem@5 2724 (I[87] = (img)(x,_p2##y,z,v)), \
philpem@5 2725 (I[103] = (img)(x,_p1##y,z,v)), \
philpem@5 2726 (I[119] = (img)(x,y,z,v)), \
philpem@5 2727 (I[135] = (img)(x,_n1##y,z,v)), \
philpem@5 2728 (I[151] = (img)(x,_n2##y,z,v)), \
philpem@5 2729 (I[167] = (img)(x,_n3##y,z,v)), \
philpem@5 2730 (I[183] = (img)(x,_n4##y,z,v)), \
philpem@5 2731 (I[199] = (img)(x,_n5##y,z,v)), \
philpem@5 2732 (I[215] = (img)(x,_n6##y,z,v)), \
philpem@5 2733 (I[231] = (img)(x,_n7##y,z,v)), \
philpem@5 2734 (I[247] = (img)(x,_n8##y,z,v)), \
philpem@5 2735 (I[8] = (img)(_n1##x,_p7##y,z,v)), \
philpem@5 2736 (I[24] = (img)(_n1##x,_p6##y,z,v)), \
philpem@5 2737 (I[40] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 2738 (I[56] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 2739 (I[72] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 2740 (I[88] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 2741 (I[104] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 2742 (I[120] = (img)(_n1##x,y,z,v)), \
philpem@5 2743 (I[136] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 2744 (I[152] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 2745 (I[168] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 2746 (I[184] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 2747 (I[200] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 2748 (I[216] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 2749 (I[232] = (img)(_n1##x,_n7##y,z,v)), \
philpem@5 2750 (I[248] = (img)(_n1##x,_n8##y,z,v)), \
philpem@5 2751 (I[9] = (img)(_n2##x,_p7##y,z,v)), \
philpem@5 2752 (I[25] = (img)(_n2##x,_p6##y,z,v)), \
philpem@5 2753 (I[41] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 2754 (I[57] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 2755 (I[73] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 2756 (I[89] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 2757 (I[105] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 2758 (I[121] = (img)(_n2##x,y,z,v)), \
philpem@5 2759 (I[137] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 2760 (I[153] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 2761 (I[169] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 2762 (I[185] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 2763 (I[201] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 2764 (I[217] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 2765 (I[233] = (img)(_n2##x,_n7##y,z,v)), \
philpem@5 2766 (I[249] = (img)(_n2##x,_n8##y,z,v)), \
philpem@5 2767 (I[10] = (img)(_n3##x,_p7##y,z,v)), \
philpem@5 2768 (I[26] = (img)(_n3##x,_p6##y,z,v)), \
philpem@5 2769 (I[42] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 2770 (I[58] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 2771 (I[74] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 2772 (I[90] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 2773 (I[106] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 2774 (I[122] = (img)(_n3##x,y,z,v)), \
philpem@5 2775 (I[138] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 2776 (I[154] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 2777 (I[170] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 2778 (I[186] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 2779 (I[202] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 2780 (I[218] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 2781 (I[234] = (img)(_n3##x,_n7##y,z,v)), \
philpem@5 2782 (I[250] = (img)(_n3##x,_n8##y,z,v)), \
philpem@5 2783 (I[11] = (img)(_n4##x,_p7##y,z,v)), \
philpem@5 2784 (I[27] = (img)(_n4##x,_p6##y,z,v)), \
philpem@5 2785 (I[43] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 2786 (I[59] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 2787 (I[75] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 2788 (I[91] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 2789 (I[107] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 2790 (I[123] = (img)(_n4##x,y,z,v)), \
philpem@5 2791 (I[139] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 2792 (I[155] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 2793 (I[171] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 2794 (I[187] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 2795 (I[203] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 2796 (I[219] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 2797 (I[235] = (img)(_n4##x,_n7##y,z,v)), \
philpem@5 2798 (I[251] = (img)(_n4##x,_n8##y,z,v)), \
philpem@5 2799 (I[12] = (img)(_n5##x,_p7##y,z,v)), \
philpem@5 2800 (I[28] = (img)(_n5##x,_p6##y,z,v)), \
philpem@5 2801 (I[44] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 2802 (I[60] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 2803 (I[76] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 2804 (I[92] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 2805 (I[108] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 2806 (I[124] = (img)(_n5##x,y,z,v)), \
philpem@5 2807 (I[140] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 2808 (I[156] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 2809 (I[172] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 2810 (I[188] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 2811 (I[204] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 2812 (I[220] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 2813 (I[236] = (img)(_n5##x,_n7##y,z,v)), \
philpem@5 2814 (I[252] = (img)(_n5##x,_n8##y,z,v)), \
philpem@5 2815 (I[13] = (img)(_n6##x,_p7##y,z,v)), \
philpem@5 2816 (I[29] = (img)(_n6##x,_p6##y,z,v)), \
philpem@5 2817 (I[45] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 2818 (I[61] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 2819 (I[77] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 2820 (I[93] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 2821 (I[109] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 2822 (I[125] = (img)(_n6##x,y,z,v)), \
philpem@5 2823 (I[141] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 2824 (I[157] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 2825 (I[173] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 2826 (I[189] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 2827 (I[205] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 2828 (I[221] = (img)(_n6##x,_n6##y,z,v)), \
philpem@5 2829 (I[237] = (img)(_n6##x,_n7##y,z,v)), \
philpem@5 2830 (I[253] = (img)(_n6##x,_n8##y,z,v)), \
philpem@5 2831 (I[14] = (img)(_n7##x,_p7##y,z,v)), \
philpem@5 2832 (I[30] = (img)(_n7##x,_p6##y,z,v)), \
philpem@5 2833 (I[46] = (img)(_n7##x,_p5##y,z,v)), \
philpem@5 2834 (I[62] = (img)(_n7##x,_p4##y,z,v)), \
philpem@5 2835 (I[78] = (img)(_n7##x,_p3##y,z,v)), \
philpem@5 2836 (I[94] = (img)(_n7##x,_p2##y,z,v)), \
philpem@5 2837 (I[110] = (img)(_n7##x,_p1##y,z,v)), \
philpem@5 2838 (I[126] = (img)(_n7##x,y,z,v)), \
philpem@5 2839 (I[142] = (img)(_n7##x,_n1##y,z,v)), \
philpem@5 2840 (I[158] = (img)(_n7##x,_n2##y,z,v)), \
philpem@5 2841 (I[174] = (img)(_n7##x,_n3##y,z,v)), \
philpem@5 2842 (I[190] = (img)(_n7##x,_n4##y,z,v)), \
philpem@5 2843 (I[206] = (img)(_n7##x,_n5##y,z,v)), \
philpem@5 2844 (I[222] = (img)(_n7##x,_n6##y,z,v)), \
philpem@5 2845 (I[238] = (img)(_n7##x,_n7##y,z,v)), \
philpem@5 2846 (I[254] = (img)(_n7##x,_n8##y,z,v)), \
philpem@5 2847 x+8>=(int)((img).width)?(int)((img).width)-1:x+8); \
philpem@5 2848 x<=(int)(x1) && ((_n8##x<(int)((img).width) && ( \
philpem@5 2849 (I[15] = (img)(_n8##x,_p7##y,z,v)), \
philpem@5 2850 (I[31] = (img)(_n8##x,_p6##y,z,v)), \
philpem@5 2851 (I[47] = (img)(_n8##x,_p5##y,z,v)), \
philpem@5 2852 (I[63] = (img)(_n8##x,_p4##y,z,v)), \
philpem@5 2853 (I[79] = (img)(_n8##x,_p3##y,z,v)), \
philpem@5 2854 (I[95] = (img)(_n8##x,_p2##y,z,v)), \
philpem@5 2855 (I[111] = (img)(_n8##x,_p1##y,z,v)), \
philpem@5 2856 (I[127] = (img)(_n8##x,y,z,v)), \
philpem@5 2857 (I[143] = (img)(_n8##x,_n1##y,z,v)), \
philpem@5 2858 (I[159] = (img)(_n8##x,_n2##y,z,v)), \
philpem@5 2859 (I[175] = (img)(_n8##x,_n3##y,z,v)), \
philpem@5 2860 (I[191] = (img)(_n8##x,_n4##y,z,v)), \
philpem@5 2861 (I[207] = (img)(_n8##x,_n5##y,z,v)), \
philpem@5 2862 (I[223] = (img)(_n8##x,_n6##y,z,v)), \
philpem@5 2863 (I[239] = (img)(_n8##x,_n7##y,z,v)), \
philpem@5 2864 (I[255] = (img)(_n8##x,_n8##y,z,v)),1)) || \
philpem@5 2865 _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
philpem@5 2866 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], \
philpem@5 2867 I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \
philpem@5 2868 I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
philpem@5 2869 I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \
philpem@5 2870 I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
philpem@5 2871 I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
philpem@5 2872 I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
philpem@5 2873 I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], \
philpem@5 2874 I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
philpem@5 2875 I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \
philpem@5 2876 I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], \
philpem@5 2877 I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
philpem@5 2878 I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], \
philpem@5 2879 I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
philpem@5 2880 I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
philpem@5 2881 I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], \
philpem@5 2882 _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x)
philpem@5 2883
philpem@5 2884 #define cimg_get16x16(img,x,y,z,v,I) \
philpem@5 2885 I[0] = (img)(_p7##x,_p7##y,z,v), I[1] = (img)(_p6##x,_p7##y,z,v), I[2] = (img)(_p5##x,_p7##y,z,v), I[3] = (img)(_p4##x,_p7##y,z,v), I[4] = (img)(_p3##x,_p7##y,z,v), I[5] = (img)(_p2##x,_p7##y,z,v), I[6] = (img)(_p1##x,_p7##y,z,v), I[7] = (img)(x,_p7##y,z,v), I[8] = (img)(_n1##x,_p7##y,z,v), I[9] = (img)(_n2##x,_p7##y,z,v), I[10] = (img)(_n3##x,_p7##y,z,v), I[11] = (img)(_n4##x,_p7##y,z,v), I[12] = (img)(_n5##x,_p7##y,z,v), I[13] = (img)(_n6##x,_p7##y,z,v), I[14] = (img)(_n7##x,_p7##y,z,v), I[15] = (img)(_n8##x,_p7##y,z,v), \
philpem@5 2886 I[16] = (img)(_p7##x,_p6##y,z,v), I[17] = (img)(_p6##x,_p6##y,z,v), I[18] = (img)(_p5##x,_p6##y,z,v), I[19] = (img)(_p4##x,_p6##y,z,v), I[20] = (img)(_p3##x,_p6##y,z,v), I[21] = (img)(_p2##x,_p6##y,z,v), I[22] = (img)(_p1##x,_p6##y,z,v), I[23] = (img)(x,_p6##y,z,v), I[24] = (img)(_n1##x,_p6##y,z,v), I[25] = (img)(_n2##x,_p6##y,z,v), I[26] = (img)(_n3##x,_p6##y,z,v), I[27] = (img)(_n4##x,_p6##y,z,v), I[28] = (img)(_n5##x,_p6##y,z,v), I[29] = (img)(_n6##x,_p6##y,z,v), I[30] = (img)(_n7##x,_p6##y,z,v), I[31] = (img)(_n8##x,_p6##y,z,v), \
philpem@5 2887 I[32] = (img)(_p7##x,_p5##y,z,v), I[33] = (img)(_p6##x,_p5##y,z,v), I[34] = (img)(_p5##x,_p5##y,z,v), I[35] = (img)(_p4##x,_p5##y,z,v), I[36] = (img)(_p3##x,_p5##y,z,v), I[37] = (img)(_p2##x,_p5##y,z,v), I[38] = (img)(_p1##x,_p5##y,z,v), I[39] = (img)(x,_p5##y,z,v), I[40] = (img)(_n1##x,_p5##y,z,v), I[41] = (img)(_n2##x,_p5##y,z,v), I[42] = (img)(_n3##x,_p5##y,z,v), I[43] = (img)(_n4##x,_p5##y,z,v), I[44] = (img)(_n5##x,_p5##y,z,v), I[45] = (img)(_n6##x,_p5##y,z,v), I[46] = (img)(_n7##x,_p5##y,z,v), I[47] = (img)(_n8##x,_p5##y,z,v), \
philpem@5 2888 I[48] = (img)(_p7##x,_p4##y,z,v), I[49] = (img)(_p6##x,_p4##y,z,v), I[50] = (img)(_p5##x,_p4##y,z,v), I[51] = (img)(_p4##x,_p4##y,z,v), I[52] = (img)(_p3##x,_p4##y,z,v), I[53] = (img)(_p2##x,_p4##y,z,v), I[54] = (img)(_p1##x,_p4##y,z,v), I[55] = (img)(x,_p4##y,z,v), I[56] = (img)(_n1##x,_p4##y,z,v), I[57] = (img)(_n2##x,_p4##y,z,v), I[58] = (img)(_n3##x,_p4##y,z,v), I[59] = (img)(_n4##x,_p4##y,z,v), I[60] = (img)(_n5##x,_p4##y,z,v), I[61] = (img)(_n6##x,_p4##y,z,v), I[62] = (img)(_n7##x,_p4##y,z,v), I[63] = (img)(_n8##x,_p4##y,z,v), \
philpem@5 2889 I[64] = (img)(_p7##x,_p3##y,z,v), I[65] = (img)(_p6##x,_p3##y,z,v), I[66] = (img)(_p5##x,_p3##y,z,v), I[67] = (img)(_p4##x,_p3##y,z,v), I[68] = (img)(_p3##x,_p3##y,z,v), I[69] = (img)(_p2##x,_p3##y,z,v), I[70] = (img)(_p1##x,_p3##y,z,v), I[71] = (img)(x,_p3##y,z,v), I[72] = (img)(_n1##x,_p3##y,z,v), I[73] = (img)(_n2##x,_p3##y,z,v), I[74] = (img)(_n3##x,_p3##y,z,v), I[75] = (img)(_n4##x,_p3##y,z,v), I[76] = (img)(_n5##x,_p3##y,z,v), I[77] = (img)(_n6##x,_p3##y,z,v), I[78] = (img)(_n7##x,_p3##y,z,v), I[79] = (img)(_n8##x,_p3##y,z,v), \
philpem@5 2890 I[80] = (img)(_p7##x,_p2##y,z,v), I[81] = (img)(_p6##x,_p2##y,z,v), I[82] = (img)(_p5##x,_p2##y,z,v), I[83] = (img)(_p4##x,_p2##y,z,v), I[84] = (img)(_p3##x,_p2##y,z,v), I[85] = (img)(_p2##x,_p2##y,z,v), I[86] = (img)(_p1##x,_p2##y,z,v), I[87] = (img)(x,_p2##y,z,v), I[88] = (img)(_n1##x,_p2##y,z,v), I[89] = (img)(_n2##x,_p2##y,z,v), I[90] = (img)(_n3##x,_p2##y,z,v), I[91] = (img)(_n4##x,_p2##y,z,v), I[92] = (img)(_n5##x,_p2##y,z,v), I[93] = (img)(_n6##x,_p2##y,z,v), I[94] = (img)(_n7##x,_p2##y,z,v), I[95] = (img)(_n8##x,_p2##y,z,v), \
philpem@5 2891 I[96] = (img)(_p7##x,_p1##y,z,v), I[97] = (img)(_p6##x,_p1##y,z,v), I[98] = (img)(_p5##x,_p1##y,z,v), I[99] = (img)(_p4##x,_p1##y,z,v), I[100] = (img)(_p3##x,_p1##y,z,v), I[101] = (img)(_p2##x,_p1##y,z,v), I[102] = (img)(_p1##x,_p1##y,z,v), I[103] = (img)(x,_p1##y,z,v), I[104] = (img)(_n1##x,_p1##y,z,v), I[105] = (img)(_n2##x,_p1##y,z,v), I[106] = (img)(_n3##x,_p1##y,z,v), I[107] = (img)(_n4##x,_p1##y,z,v), I[108] = (img)(_n5##x,_p1##y,z,v), I[109] = (img)(_n6##x,_p1##y,z,v), I[110] = (img)(_n7##x,_p1##y,z,v), I[111] = (img)(_n8##x,_p1##y,z,v), \
philpem@5 2892 I[112] = (img)(_p7##x,y,z,v), I[113] = (img)(_p6##x,y,z,v), I[114] = (img)(_p5##x,y,z,v), I[115] = (img)(_p4##x,y,z,v), I[116] = (img)(_p3##x,y,z,v), I[117] = (img)(_p2##x,y,z,v), I[118] = (img)(_p1##x,y,z,v), I[119] = (img)(x,y,z,v), I[120] = (img)(_n1##x,y,z,v), I[121] = (img)(_n2##x,y,z,v), I[122] = (img)(_n3##x,y,z,v), I[123] = (img)(_n4##x,y,z,v), I[124] = (img)(_n5##x,y,z,v), I[125] = (img)(_n6##x,y,z,v), I[126] = (img)(_n7##x,y,z,v), I[127] = (img)(_n8##x,y,z,v), \
philpem@5 2893 I[128] = (img)(_p7##x,_n1##y,z,v), I[129] = (img)(_p6##x,_n1##y,z,v), I[130] = (img)(_p5##x,_n1##y,z,v), I[131] = (img)(_p4##x,_n1##y,z,v), I[132] = (img)(_p3##x,_n1##y,z,v), I[133] = (img)(_p2##x,_n1##y,z,v), I[134] = (img)(_p1##x,_n1##y,z,v), I[135] = (img)(x,_n1##y,z,v), I[136] = (img)(_n1##x,_n1##y,z,v), I[137] = (img)(_n2##x,_n1##y,z,v), I[138] = (img)(_n3##x,_n1##y,z,v), I[139] = (img)(_n4##x,_n1##y,z,v), I[140] = (img)(_n5##x,_n1##y,z,v), I[141] = (img)(_n6##x,_n1##y,z,v), I[142] = (img)(_n7##x,_n1##y,z,v), I[143] = (img)(_n8##x,_n1##y,z,v), \
philpem@5 2894 I[144] = (img)(_p7##x,_n2##y,z,v), I[145] = (img)(_p6##x,_n2##y,z,v), I[146] = (img)(_p5##x,_n2##y,z,v), I[147] = (img)(_p4##x,_n2##y,z,v), I[148] = (img)(_p3##x,_n2##y,z,v), I[149] = (img)(_p2##x,_n2##y,z,v), I[150] = (img)(_p1##x,_n2##y,z,v), I[151] = (img)(x,_n2##y,z,v), I[152] = (img)(_n1##x,_n2##y,z,v), I[153] = (img)(_n2##x,_n2##y,z,v), I[154] = (img)(_n3##x,_n2##y,z,v), I[155] = (img)(_n4##x,_n2##y,z,v), I[156] = (img)(_n5##x,_n2##y,z,v), I[157] = (img)(_n6##x,_n2##y,z,v), I[158] = (img)(_n7##x,_n2##y,z,v), I[159] = (img)(_n8##x,_n2##y,z,v), \
philpem@5 2895 I[160] = (img)(_p7##x,_n3##y,z,v), I[161] = (img)(_p6##x,_n3##y,z,v), I[162] = (img)(_p5##x,_n3##y,z,v), I[163] = (img)(_p4##x,_n3##y,z,v), I[164] = (img)(_p3##x,_n3##y,z,v), I[165] = (img)(_p2##x,_n3##y,z,v), I[166] = (img)(_p1##x,_n3##y,z,v), I[167] = (img)(x,_n3##y,z,v), I[168] = (img)(_n1##x,_n3##y,z,v), I[169] = (img)(_n2##x,_n3##y,z,v), I[170] = (img)(_n3##x,_n3##y,z,v), I[171] = (img)(_n4##x,_n3##y,z,v), I[172] = (img)(_n5##x,_n3##y,z,v), I[173] = (img)(_n6##x,_n3##y,z,v), I[174] = (img)(_n7##x,_n3##y,z,v), I[175] = (img)(_n8##x,_n3##y,z,v), \
philpem@5 2896 I[176] = (img)(_p7##x,_n4##y,z,v), I[177] = (img)(_p6##x,_n4##y,z,v), I[178] = (img)(_p5##x,_n4##y,z,v), I[179] = (img)(_p4##x,_n4##y,z,v), I[180] = (img)(_p3##x,_n4##y,z,v), I[181] = (img)(_p2##x,_n4##y,z,v), I[182] = (img)(_p1##x,_n4##y,z,v), I[183] = (img)(x,_n4##y,z,v), I[184] = (img)(_n1##x,_n4##y,z,v), I[185] = (img)(_n2##x,_n4##y,z,v), I[186] = (img)(_n3##x,_n4##y,z,v), I[187] = (img)(_n4##x,_n4##y,z,v), I[188] = (img)(_n5##x,_n4##y,z,v), I[189] = (img)(_n6##x,_n4##y,z,v), I[190] = (img)(_n7##x,_n4##y,z,v), I[191] = (img)(_n8##x,_n4##y,z,v), \
philpem@5 2897 I[192] = (img)(_p7##x,_n5##y,z,v), I[193] = (img)(_p6##x,_n5##y,z,v), I[194] = (img)(_p5##x,_n5##y,z,v), I[195] = (img)(_p4##x,_n5##y,z,v), I[196] = (img)(_p3##x,_n5##y,z,v), I[197] = (img)(_p2##x,_n5##y,z,v), I[198] = (img)(_p1##x,_n5##y,z,v), I[199] = (img)(x,_n5##y,z,v), I[200] = (img)(_n1##x,_n5##y,z,v), I[201] = (img)(_n2##x,_n5##y,z,v), I[202] = (img)(_n3##x,_n5##y,z,v), I[203] = (img)(_n4##x,_n5##y,z,v), I[204] = (img)(_n5##x,_n5##y,z,v), I[205] = (img)(_n6##x,_n5##y,z,v), I[206] = (img)(_n7##x,_n5##y,z,v), I[207] = (img)(_n8##x,_n5##y,z,v), \
philpem@5 2898 I[208] = (img)(_p7##x,_n6##y,z,v), I[209] = (img)(_p6##x,_n6##y,z,v), I[210] = (img)(_p5##x,_n6##y,z,v), I[211] = (img)(_p4##x,_n6##y,z,v), I[212] = (img)(_p3##x,_n6##y,z,v), I[213] = (img)(_p2##x,_n6##y,z,v), I[214] = (img)(_p1##x,_n6##y,z,v), I[215] = (img)(x,_n6##y,z,v), I[216] = (img)(_n1##x,_n6##y,z,v), I[217] = (img)(_n2##x,_n6##y,z,v), I[218] = (img)(_n3##x,_n6##y,z,v), I[219] = (img)(_n4##x,_n6##y,z,v), I[220] = (img)(_n5##x,_n6##y,z,v), I[221] = (img)(_n6##x,_n6##y,z,v), I[222] = (img)(_n7##x,_n6##y,z,v), I[223] = (img)(_n8##x,_n6##y,z,v), \
philpem@5 2899 I[224] = (img)(_p7##x,_n7##y,z,v), I[225] = (img)(_p6##x,_n7##y,z,v), I[226] = (img)(_p5##x,_n7##y,z,v), I[227] = (img)(_p4##x,_n7##y,z,v), I[228] = (img)(_p3##x,_n7##y,z,v), I[229] = (img)(_p2##x,_n7##y,z,v), I[230] = (img)(_p1##x,_n7##y,z,v), I[231] = (img)(x,_n7##y,z,v), I[232] = (img)(_n1##x,_n7##y,z,v), I[233] = (img)(_n2##x,_n7##y,z,v), I[234] = (img)(_n3##x,_n7##y,z,v), I[235] = (img)(_n4##x,_n7##y,z,v), I[236] = (img)(_n5##x,_n7##y,z,v), I[237] = (img)(_n6##x,_n7##y,z,v), I[238] = (img)(_n7##x,_n7##y,z,v), I[239] = (img)(_n8##x,_n7##y,z,v), \
philpem@5 2900 I[240] = (img)(_p7##x,_n8##y,z,v), I[241] = (img)(_p6##x,_n8##y,z,v), I[242] = (img)(_p5##x,_n8##y,z,v), I[243] = (img)(_p4##x,_n8##y,z,v), I[244] = (img)(_p3##x,_n8##y,z,v), I[245] = (img)(_p2##x,_n8##y,z,v), I[246] = (img)(_p1##x,_n8##y,z,v), I[247] = (img)(x,_n8##y,z,v), I[248] = (img)(_n1##x,_n8##y,z,v), I[249] = (img)(_n2##x,_n8##y,z,v), I[250] = (img)(_n3##x,_n8##y,z,v), I[251] = (img)(_n4##x,_n8##y,z,v), I[252] = (img)(_n5##x,_n8##y,z,v), I[253] = (img)(_n6##x,_n8##y,z,v), I[254] = (img)(_n7##x,_n8##y,z,v), I[255] = (img)(_n8##x,_n8##y,z,v);
philpem@5 2901
philpem@5 2902 // Define 17x17 loop macros for CImg
philpem@5 2903 //----------------------------------
philpem@5 2904 #define cimg_for17(bound,i) for (int i = 0, \
philpem@5 2905 _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
philpem@5 2906 _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \
philpem@5 2907 _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \
philpem@5 2908 _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \
philpem@5 2909 _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \
philpem@5 2910 _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \
philpem@5 2911 _n6##i = 6>=(int)(bound)?(int)(bound)-1:6, \
philpem@5 2912 _n7##i = 7>=(int)(bound)?(int)(bound)-1:7, \
philpem@5 2913 _n8##i = 8>=(int)(bound)?(int)(bound)-1:8; \
philpem@5 2914 _n8##i<(int)(bound) || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 2915 i==(_n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
philpem@5 2916 _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 2917 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i)
philpem@5 2918
philpem@5 2919 #define cimg_for17X(img,x) cimg_for17((img).width,x)
philpem@5 2920 #define cimg_for17Y(img,y) cimg_for17((img).height,y)
philpem@5 2921 #define cimg_for17Z(img,z) cimg_for17((img).depth,z)
philpem@5 2922 #define cimg_for17V(img,v) cimg_for17((img).dim,v)
philpem@5 2923 #define cimg_for17XY(img,x,y) cimg_for17Y(img,y) cimg_for17X(img,x)
philpem@5 2924 #define cimg_for17XZ(img,x,z) cimg_for17Z(img,z) cimg_for17X(img,x)
philpem@5 2925 #define cimg_for17XV(img,x,v) cimg_for17V(img,v) cimg_for17X(img,x)
philpem@5 2926 #define cimg_for17YZ(img,y,z) cimg_for17Z(img,z) cimg_for17Y(img,y)
philpem@5 2927 #define cimg_for17YV(img,y,v) cimg_for17V(img,v) cimg_for17Y(img,y)
philpem@5 2928 #define cimg_for17ZV(img,z,v) cimg_for17V(img,v) cimg_for17Z(img,z)
philpem@5 2929 #define cimg_for17XYZ(img,x,y,z) cimg_for17Z(img,z) cimg_for17XY(img,x,y)
philpem@5 2930 #define cimg_for17XZV(img,x,z,v) cimg_for17V(img,v) cimg_for17XZ(img,x,z)
philpem@5 2931 #define cimg_for17YZV(img,y,z,v) cimg_for17V(img,v) cimg_for17YZ(img,y,z)
philpem@5 2932 #define cimg_for17XYZV(img,x,y,z,v) cimg_for17V(img,v) cimg_for17XYZ(img,x,y,z)
philpem@5 2933
philpem@5 2934 #define cimg_for_in17(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
philpem@5 2935 _p8##i = i-8<0?0:i-8, \
philpem@5 2936 _p7##i = i-7<0?0:i-7, \
philpem@5 2937 _p6##i = i-6<0?0:i-6, \
philpem@5 2938 _p5##i = i-5<0?0:i-5, \
philpem@5 2939 _p4##i = i-4<0?0:i-4, \
philpem@5 2940 _p3##i = i-3<0?0:i-3, \
philpem@5 2941 _p2##i = i-2<0?0:i-2, \
philpem@5 2942 _p1##i = i-1<0?0:i-1, \
philpem@5 2943 _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \
philpem@5 2944 _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \
philpem@5 2945 _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \
philpem@5 2946 _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \
philpem@5 2947 _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \
philpem@5 2948 _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6, \
philpem@5 2949 _n7##i = i+7>=(int)(bound)?(int)(bound)-1:i+7, \
philpem@5 2950 _n8##i = i+8>=(int)(bound)?(int)(bound)-1:i+8; \
philpem@5 2951 i<=(int)(i1) && (_n8##i<(int)(bound) || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 2952 i==(_n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
philpem@5 2953 _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 2954 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i)
philpem@5 2955
philpem@5 2956 #define cimg_for_in17X(img,x0,x1,x) cimg_for_in17((img).width,x0,x1,x)
philpem@5 2957 #define cimg_for_in17Y(img,y0,y1,y) cimg_for_in17((img).height,y0,y1,y)
philpem@5 2958 #define cimg_for_in17Z(img,z0,z1,z) cimg_for_in17((img).depth,z0,z1,z)
philpem@5 2959 #define cimg_for_in17V(img,v0,v1,v) cimg_for_in17((img).dim,v0,v1,v)
philpem@5 2960 #define cimg_for_in17XY(img,x0,y0,x1,y1,x,y) cimg_for_in17Y(img,y0,y1,y) cimg_for_in17X(img,x0,x1,x)
philpem@5 2961 #define cimg_for_in17XZ(img,x0,z0,x1,z1,x,z) cimg_for_in17Z(img,z0,z1,z) cimg_for_in17X(img,x0,x1,x)
philpem@5 2962 #define cimg_for_in17XV(img,x0,v0,x1,v1,x,v) cimg_for_in17V(img,v0,v1,v) cimg_for_in17X(img,x0,x1,x)
philpem@5 2963 #define cimg_for_in17YZ(img,y0,z0,y1,z1,y,z) cimg_for_in17Z(img,z0,z1,z) cimg_for_in17Y(img,y0,y1,y)
philpem@5 2964 #define cimg_for_in17YV(img,y0,v0,y1,v1,y,v) cimg_for_in17V(img,v0,v1,v) cimg_for_in17Y(img,y0,y1,y)
philpem@5 2965 #define cimg_for_in17ZV(img,z0,v0,z1,v1,z,v) cimg_for_in17V(img,v0,v1,v) cimg_for_in17Z(img,z0,z1,z)
philpem@5 2966 #define cimg_for_in17XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in17Z(img,z0,z1,z) cimg_for_in17XY(img,x0,y0,x1,y1,x,y)
philpem@5 2967 #define cimg_for_in17XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in17V(img,v0,v1,v) cimg_for_in17XZ(img,x0,y0,x1,y1,x,z)
philpem@5 2968 #define cimg_for_in17YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in17V(img,v0,v1,v) cimg_for_in17YZ(img,y0,z0,y1,z1,y,z)
philpem@5 2969 #define cimg_for_in17XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in17V(img,v0,v1,v) cimg_for_in17XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
philpem@5 2970
philpem@5 2971 #define cimg_for17x17(img,x,y,z,v,I) \
philpem@5 2972 cimg_for17((img).height,y) for (int x = 0, \
philpem@5 2973 _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
philpem@5 2974 _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \
philpem@5 2975 _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \
philpem@5 2976 _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \
philpem@5 2977 _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \
philpem@5 2978 _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \
philpem@5 2979 _n6##x = 6>=((img).width)?(int)((img).width)-1:6, \
philpem@5 2980 _n7##x = 7>=((img).width)?(int)((img).width)-1:7, \
philpem@5 2981 _n8##x = (int)( \
philpem@5 2982 (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = (img)(0,_p8##y,z,v)), \
philpem@5 2983 (I[17] = I[18] = I[19] = I[20] = I[21] = I[22] = I[23] = I[24] = I[25] = (img)(0,_p7##y,z,v)), \
philpem@5 2984 (I[34] = I[35] = I[36] = I[37] = I[38] = I[39] = I[40] = I[41] = I[42] = (img)(0,_p6##y,z,v)), \
philpem@5 2985 (I[51] = I[52] = I[53] = I[54] = I[55] = I[56] = I[57] = I[58] = I[59] = (img)(0,_p5##y,z,v)), \
philpem@5 2986 (I[68] = I[69] = I[70] = I[71] = I[72] = I[73] = I[74] = I[75] = I[76] = (img)(0,_p4##y,z,v)), \
philpem@5 2987 (I[85] = I[86] = I[87] = I[88] = I[89] = I[90] = I[91] = I[92] = I[93] = (img)(0,_p3##y,z,v)), \
philpem@5 2988 (I[102] = I[103] = I[104] = I[105] = I[106] = I[107] = I[108] = I[109] = I[110] = (img)(0,_p2##y,z,v)), \
philpem@5 2989 (I[119] = I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = I[126] = I[127] = (img)(0,_p1##y,z,v)), \
philpem@5 2990 (I[136] = I[137] = I[138] = I[139] = I[140] = I[141] = I[142] = I[143] = I[144] = (img)(0,y,z,v)), \
philpem@5 2991 (I[153] = I[154] = I[155] = I[156] = I[157] = I[158] = I[159] = I[160] = I[161] = (img)(0,_n1##y,z,v)), \
philpem@5 2992 (I[170] = I[171] = I[172] = I[173] = I[174] = I[175] = I[176] = I[177] = I[178] = (img)(0,_n2##y,z,v)), \
philpem@5 2993 (I[187] = I[188] = I[189] = I[190] = I[191] = I[192] = I[193] = I[194] = I[195] = (img)(0,_n3##y,z,v)), \
philpem@5 2994 (I[204] = I[205] = I[206] = I[207] = I[208] = I[209] = I[210] = I[211] = I[212] = (img)(0,_n4##y,z,v)), \
philpem@5 2995 (I[221] = I[222] = I[223] = I[224] = I[225] = I[226] = I[227] = I[228] = I[229] = (img)(0,_n5##y,z,v)), \
philpem@5 2996 (I[238] = I[239] = I[240] = I[241] = I[242] = I[243] = I[244] = I[245] = I[246] = (img)(0,_n6##y,z,v)), \
philpem@5 2997 (I[255] = I[256] = I[257] = I[258] = I[259] = I[260] = I[261] = I[262] = I[263] = (img)(0,_n7##y,z,v)), \
philpem@5 2998 (I[272] = I[273] = I[274] = I[275] = I[276] = I[277] = I[278] = I[279] = I[280] = (img)(0,_n8##y,z,v)), \
philpem@5 2999 (I[9] = (img)(_n1##x,_p8##y,z,v)), \
philpem@5 3000 (I[26] = (img)(_n1##x,_p7##y,z,v)), \
philpem@5 3001 (I[43] = (img)(_n1##x,_p6##y,z,v)), \
philpem@5 3002 (I[60] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 3003 (I[77] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 3004 (I[94] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 3005 (I[111] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 3006 (I[128] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 3007 (I[145] = (img)(_n1##x,y,z,v)), \
philpem@5 3008 (I[162] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 3009 (I[179] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 3010 (I[196] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 3011 (I[213] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 3012 (I[230] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 3013 (I[247] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 3014 (I[264] = (img)(_n1##x,_n7##y,z,v)), \
philpem@5 3015 (I[281] = (img)(_n1##x,_n8##y,z,v)), \
philpem@5 3016 (I[10] = (img)(_n2##x,_p8##y,z,v)), \
philpem@5 3017 (I[27] = (img)(_n2##x,_p7##y,z,v)), \
philpem@5 3018 (I[44] = (img)(_n2##x,_p6##y,z,v)), \
philpem@5 3019 (I[61] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 3020 (I[78] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 3021 (I[95] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 3022 (I[112] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 3023 (I[129] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 3024 (I[146] = (img)(_n2##x,y,z,v)), \
philpem@5 3025 (I[163] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 3026 (I[180] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 3027 (I[197] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 3028 (I[214] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 3029 (I[231] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 3030 (I[248] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 3031 (I[265] = (img)(_n2##x,_n7##y,z,v)), \
philpem@5 3032 (I[282] = (img)(_n2##x,_n8##y,z,v)), \
philpem@5 3033 (I[11] = (img)(_n3##x,_p8##y,z,v)), \
philpem@5 3034 (I[28] = (img)(_n3##x,_p7##y,z,v)), \
philpem@5 3035 (I[45] = (img)(_n3##x,_p6##y,z,v)), \
philpem@5 3036 (I[62] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 3037 (I[79] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 3038 (I[96] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 3039 (I[113] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 3040 (I[130] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 3041 (I[147] = (img)(_n3##x,y,z,v)), \
philpem@5 3042 (I[164] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 3043 (I[181] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 3044 (I[198] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 3045 (I[215] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 3046 (I[232] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 3047 (I[249] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 3048 (I[266] = (img)(_n3##x,_n7##y,z,v)), \
philpem@5 3049 (I[283] = (img)(_n3##x,_n8##y,z,v)), \
philpem@5 3050 (I[12] = (img)(_n4##x,_p8##y,z,v)), \
philpem@5 3051 (I[29] = (img)(_n4##x,_p7##y,z,v)), \
philpem@5 3052 (I[46] = (img)(_n4##x,_p6##y,z,v)), \
philpem@5 3053 (I[63] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 3054 (I[80] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 3055 (I[97] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 3056 (I[114] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 3057 (I[131] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 3058 (I[148] = (img)(_n4##x,y,z,v)), \
philpem@5 3059 (I[165] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 3060 (I[182] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 3061 (I[199] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 3062 (I[216] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 3063 (I[233] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 3064 (I[250] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 3065 (I[267] = (img)(_n4##x,_n7##y,z,v)), \
philpem@5 3066 (I[284] = (img)(_n4##x,_n8##y,z,v)), \
philpem@5 3067 (I[13] = (img)(_n5##x,_p8##y,z,v)), \
philpem@5 3068 (I[30] = (img)(_n5##x,_p7##y,z,v)), \
philpem@5 3069 (I[47] = (img)(_n5##x,_p6##y,z,v)), \
philpem@5 3070 (I[64] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 3071 (I[81] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 3072 (I[98] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 3073 (I[115] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 3074 (I[132] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 3075 (I[149] = (img)(_n5##x,y,z,v)), \
philpem@5 3076 (I[166] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 3077 (I[183] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 3078 (I[200] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 3079 (I[217] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 3080 (I[234] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 3081 (I[251] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 3082 (I[268] = (img)(_n5##x,_n7##y,z,v)), \
philpem@5 3083 (I[285] = (img)(_n5##x,_n8##y,z,v)), \
philpem@5 3084 (I[14] = (img)(_n6##x,_p8##y,z,v)), \
philpem@5 3085 (I[31] = (img)(_n6##x,_p7##y,z,v)), \
philpem@5 3086 (I[48] = (img)(_n6##x,_p6##y,z,v)), \
philpem@5 3087 (I[65] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 3088 (I[82] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 3089 (I[99] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 3090 (I[116] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 3091 (I[133] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 3092 (I[150] = (img)(_n6##x,y,z,v)), \
philpem@5 3093 (I[167] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 3094 (I[184] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 3095 (I[201] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 3096 (I[218] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 3097 (I[235] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 3098 (I[252] = (img)(_n6##x,_n6##y,z,v)), \
philpem@5 3099 (I[269] = (img)(_n6##x,_n7##y,z,v)), \
philpem@5 3100 (I[286] = (img)(_n6##x,_n8##y,z,v)), \
philpem@5 3101 (I[15] = (img)(_n7##x,_p8##y,z,v)), \
philpem@5 3102 (I[32] = (img)(_n7##x,_p7##y,z,v)), \
philpem@5 3103 (I[49] = (img)(_n7##x,_p6##y,z,v)), \
philpem@5 3104 (I[66] = (img)(_n7##x,_p5##y,z,v)), \
philpem@5 3105 (I[83] = (img)(_n7##x,_p4##y,z,v)), \
philpem@5 3106 (I[100] = (img)(_n7##x,_p3##y,z,v)), \
philpem@5 3107 (I[117] = (img)(_n7##x,_p2##y,z,v)), \
philpem@5 3108 (I[134] = (img)(_n7##x,_p1##y,z,v)), \
philpem@5 3109 (I[151] = (img)(_n7##x,y,z,v)), \
philpem@5 3110 (I[168] = (img)(_n7##x,_n1##y,z,v)), \
philpem@5 3111 (I[185] = (img)(_n7##x,_n2##y,z,v)), \
philpem@5 3112 (I[202] = (img)(_n7##x,_n3##y,z,v)), \
philpem@5 3113 (I[219] = (img)(_n7##x,_n4##y,z,v)), \
philpem@5 3114 (I[236] = (img)(_n7##x,_n5##y,z,v)), \
philpem@5 3115 (I[253] = (img)(_n7##x,_n6##y,z,v)), \
philpem@5 3116 (I[270] = (img)(_n7##x,_n7##y,z,v)), \
philpem@5 3117 (I[287] = (img)(_n7##x,_n8##y,z,v)), \
philpem@5 3118 8>=((img).width)?(int)((img).width)-1:8); \
philpem@5 3119 (_n8##x<(int)((img).width) && ( \
philpem@5 3120 (I[16] = (img)(_n8##x,_p8##y,z,v)), \
philpem@5 3121 (I[33] = (img)(_n8##x,_p7##y,z,v)), \
philpem@5 3122 (I[50] = (img)(_n8##x,_p6##y,z,v)), \
philpem@5 3123 (I[67] = (img)(_n8##x,_p5##y,z,v)), \
philpem@5 3124 (I[84] = (img)(_n8##x,_p4##y,z,v)), \
philpem@5 3125 (I[101] = (img)(_n8##x,_p3##y,z,v)), \
philpem@5 3126 (I[118] = (img)(_n8##x,_p2##y,z,v)), \
philpem@5 3127 (I[135] = (img)(_n8##x,_p1##y,z,v)), \
philpem@5 3128 (I[152] = (img)(_n8##x,y,z,v)), \
philpem@5 3129 (I[169] = (img)(_n8##x,_n1##y,z,v)), \
philpem@5 3130 (I[186] = (img)(_n8##x,_n2##y,z,v)), \
philpem@5 3131 (I[203] = (img)(_n8##x,_n3##y,z,v)), \
philpem@5 3132 (I[220] = (img)(_n8##x,_n4##y,z,v)), \
philpem@5 3133 (I[237] = (img)(_n8##x,_n5##y,z,v)), \
philpem@5 3134 (I[254] = (img)(_n8##x,_n6##y,z,v)), \
philpem@5 3135 (I[271] = (img)(_n8##x,_n7##y,z,v)), \
philpem@5 3136 (I[288] = (img)(_n8##x,_n8##y,z,v)),1)) || \
philpem@5 3137 _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
philpem@5 3138 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], \
philpem@5 3139 I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], \
philpem@5 3140 I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], \
philpem@5 3141 I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], \
philpem@5 3142 I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], \
philpem@5 3143 I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], \
philpem@5 3144 I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], \
philpem@5 3145 I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], \
philpem@5 3146 I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], \
philpem@5 3147 I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], \
philpem@5 3148 I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], \
philpem@5 3149 I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], \
philpem@5 3150 I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], \
philpem@5 3151 I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], \
philpem@5 3152 I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], \
philpem@5 3153 I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], \
philpem@5 3154 I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], \
philpem@5 3155 _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x)
philpem@5 3156
philpem@5 3157 #define cimg_for_in17x17(img,x0,y0,x1,y1,x,y,z,v,I) \
philpem@5 3158 cimg_for_in17((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
philpem@5 3159 _p8##x = x-8<0?0:x-8, \
philpem@5 3160 _p7##x = x-7<0?0:x-7, \
philpem@5 3161 _p6##x = x-6<0?0:x-6, \
philpem@5 3162 _p5##x = x-5<0?0:x-5, \
philpem@5 3163 _p4##x = x-4<0?0:x-4, \
philpem@5 3164 _p3##x = x-3<0?0:x-3, \
philpem@5 3165 _p2##x = x-2<0?0:x-2, \
philpem@5 3166 _p1##x = x-1<0?0:x-1, \
philpem@5 3167 _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \
philpem@5 3168 _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \
philpem@5 3169 _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \
philpem@5 3170 _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \
philpem@5 3171 _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \
philpem@5 3172 _n6##x = x+6>=(int)((img).width)?(int)((img).width)-1:x+6, \
philpem@5 3173 _n7##x = x+7>=(int)((img).width)?(int)((img).width)-1:x+7, \
philpem@5 3174 _n8##x = (int)( \
philpem@5 3175 (I[0] = (img)(_p8##x,_p8##y,z,v)), \
philpem@5 3176 (I[17] = (img)(_p8##x,_p7##y,z,v)), \
philpem@5 3177 (I[34] = (img)(_p8##x,_p6##y,z,v)), \
philpem@5 3178 (I[51] = (img)(_p8##x,_p5##y,z,v)), \
philpem@5 3179 (I[68] = (img)(_p8##x,_p4##y,z,v)), \
philpem@5 3180 (I[85] = (img)(_p8##x,_p3##y,z,v)), \
philpem@5 3181 (I[102] = (img)(_p8##x,_p2##y,z,v)), \
philpem@5 3182 (I[119] = (img)(_p8##x,_p1##y,z,v)), \
philpem@5 3183 (I[136] = (img)(_p8##x,y,z,v)), \
philpem@5 3184 (I[153] = (img)(_p8##x,_n1##y,z,v)), \
philpem@5 3185 (I[170] = (img)(_p8##x,_n2##y,z,v)), \
philpem@5 3186 (I[187] = (img)(_p8##x,_n3##y,z,v)), \
philpem@5 3187 (I[204] = (img)(_p8##x,_n4##y,z,v)), \
philpem@5 3188 (I[221] = (img)(_p8##x,_n5##y,z,v)), \
philpem@5 3189 (I[238] = (img)(_p8##x,_n6##y,z,v)), \
philpem@5 3190 (I[255] = (img)(_p8##x,_n7##y,z,v)), \
philpem@5 3191 (I[272] = (img)(_p8##x,_n8##y,z,v)), \
philpem@5 3192 (I[1] = (img)(_p7##x,_p8##y,z,v)), \
philpem@5 3193 (I[18] = (img)(_p7##x,_p7##y,z,v)), \
philpem@5 3194 (I[35] = (img)(_p7##x,_p6##y,z,v)), \
philpem@5 3195 (I[52] = (img)(_p7##x,_p5##y,z,v)), \
philpem@5 3196 (I[69] = (img)(_p7##x,_p4##y,z,v)), \
philpem@5 3197 (I[86] = (img)(_p7##x,_p3##y,z,v)), \
philpem@5 3198 (I[103] = (img)(_p7##x,_p2##y,z,v)), \
philpem@5 3199 (I[120] = (img)(_p7##x,_p1##y,z,v)), \
philpem@5 3200 (I[137] = (img)(_p7##x,y,z,v)), \
philpem@5 3201 (I[154] = (img)(_p7##x,_n1##y,z,v)), \
philpem@5 3202 (I[171] = (img)(_p7##x,_n2##y,z,v)), \
philpem@5 3203 (I[188] = (img)(_p7##x,_n3##y,z,v)), \
philpem@5 3204 (I[205] = (img)(_p7##x,_n4##y,z,v)), \
philpem@5 3205 (I[222] = (img)(_p7##x,_n5##y,z,v)), \
philpem@5 3206 (I[239] = (img)(_p7##x,_n6##y,z,v)), \
philpem@5 3207 (I[256] = (img)(_p7##x,_n7##y,z,v)), \
philpem@5 3208 (I[273] = (img)(_p7##x,_n8##y,z,v)), \
philpem@5 3209 (I[2] = (img)(_p6##x,_p8##y,z,v)), \
philpem@5 3210 (I[19] = (img)(_p6##x,_p7##y,z,v)), \
philpem@5 3211 (I[36] = (img)(_p6##x,_p6##y,z,v)), \
philpem@5 3212 (I[53] = (img)(_p6##x,_p5##y,z,v)), \
philpem@5 3213 (I[70] = (img)(_p6##x,_p4##y,z,v)), \
philpem@5 3214 (I[87] = (img)(_p6##x,_p3##y,z,v)), \
philpem@5 3215 (I[104] = (img)(_p6##x,_p2##y,z,v)), \
philpem@5 3216 (I[121] = (img)(_p6##x,_p1##y,z,v)), \
philpem@5 3217 (I[138] = (img)(_p6##x,y,z,v)), \
philpem@5 3218 (I[155] = (img)(_p6##x,_n1##y,z,v)), \
philpem@5 3219 (I[172] = (img)(_p6##x,_n2##y,z,v)), \
philpem@5 3220 (I[189] = (img)(_p6##x,_n3##y,z,v)), \
philpem@5 3221 (I[206] = (img)(_p6##x,_n4##y,z,v)), \
philpem@5 3222 (I[223] = (img)(_p6##x,_n5##y,z,v)), \
philpem@5 3223 (I[240] = (img)(_p6##x,_n6##y,z,v)), \
philpem@5 3224 (I[257] = (img)(_p6##x,_n7##y,z,v)), \
philpem@5 3225 (I[274] = (img)(_p6##x,_n8##y,z,v)), \
philpem@5 3226 (I[3] = (img)(_p5##x,_p8##y,z,v)), \
philpem@5 3227 (I[20] = (img)(_p5##x,_p7##y,z,v)), \
philpem@5 3228 (I[37] = (img)(_p5##x,_p6##y,z,v)), \
philpem@5 3229 (I[54] = (img)(_p5##x,_p5##y,z,v)), \
philpem@5 3230 (I[71] = (img)(_p5##x,_p4##y,z,v)), \
philpem@5 3231 (I[88] = (img)(_p5##x,_p3##y,z,v)), \
philpem@5 3232 (I[105] = (img)(_p5##x,_p2##y,z,v)), \
philpem@5 3233 (I[122] = (img)(_p5##x,_p1##y,z,v)), \
philpem@5 3234 (I[139] = (img)(_p5##x,y,z,v)), \
philpem@5 3235 (I[156] = (img)(_p5##x,_n1##y,z,v)), \
philpem@5 3236 (I[173] = (img)(_p5##x,_n2##y,z,v)), \
philpem@5 3237 (I[190] = (img)(_p5##x,_n3##y,z,v)), \
philpem@5 3238 (I[207] = (img)(_p5##x,_n4##y,z,v)), \
philpem@5 3239 (I[224] = (img)(_p5##x,_n5##y,z,v)), \
philpem@5 3240 (I[241] = (img)(_p5##x,_n6##y,z,v)), \
philpem@5 3241 (I[258] = (img)(_p5##x,_n7##y,z,v)), \
philpem@5 3242 (I[275] = (img)(_p5##x,_n8##y,z,v)), \
philpem@5 3243 (I[4] = (img)(_p4##x,_p8##y,z,v)), \
philpem@5 3244 (I[21] = (img)(_p4##x,_p7##y,z,v)), \
philpem@5 3245 (I[38] = (img)(_p4##x,_p6##y,z,v)), \
philpem@5 3246 (I[55] = (img)(_p4##x,_p5##y,z,v)), \
philpem@5 3247 (I[72] = (img)(_p4##x,_p4##y,z,v)), \
philpem@5 3248 (I[89] = (img)(_p4##x,_p3##y,z,v)), \
philpem@5 3249 (I[106] = (img)(_p4##x,_p2##y,z,v)), \
philpem@5 3250 (I[123] = (img)(_p4##x,_p1##y,z,v)), \
philpem@5 3251 (I[140] = (img)(_p4##x,y,z,v)), \
philpem@5 3252 (I[157] = (img)(_p4##x,_n1##y,z,v)), \
philpem@5 3253 (I[174] = (img)(_p4##x,_n2##y,z,v)), \
philpem@5 3254 (I[191] = (img)(_p4##x,_n3##y,z,v)), \
philpem@5 3255 (I[208] = (img)(_p4##x,_n4##y,z,v)), \
philpem@5 3256 (I[225] = (img)(_p4##x,_n5##y,z,v)), \
philpem@5 3257 (I[242] = (img)(_p4##x,_n6##y,z,v)), \
philpem@5 3258 (I[259] = (img)(_p4##x,_n7##y,z,v)), \
philpem@5 3259 (I[276] = (img)(_p4##x,_n8##y,z,v)), \
philpem@5 3260 (I[5] = (img)(_p3##x,_p8##y,z,v)), \
philpem@5 3261 (I[22] = (img)(_p3##x,_p7##y,z,v)), \
philpem@5 3262 (I[39] = (img)(_p3##x,_p6##y,z,v)), \
philpem@5 3263 (I[56] = (img)(_p3##x,_p5##y,z,v)), \
philpem@5 3264 (I[73] = (img)(_p3##x,_p4##y,z,v)), \
philpem@5 3265 (I[90] = (img)(_p3##x,_p3##y,z,v)), \
philpem@5 3266 (I[107] = (img)(_p3##x,_p2##y,z,v)), \
philpem@5 3267 (I[124] = (img)(_p3##x,_p1##y,z,v)), \
philpem@5 3268 (I[141] = (img)(_p3##x,y,z,v)), \
philpem@5 3269 (I[158] = (img)(_p3##x,_n1##y,z,v)), \
philpem@5 3270 (I[175] = (img)(_p3##x,_n2##y,z,v)), \
philpem@5 3271 (I[192] = (img)(_p3##x,_n3##y,z,v)), \
philpem@5 3272 (I[209] = (img)(_p3##x,_n4##y,z,v)), \
philpem@5 3273 (I[226] = (img)(_p3##x,_n5##y,z,v)), \
philpem@5 3274 (I[243] = (img)(_p3##x,_n6##y,z,v)), \
philpem@5 3275 (I[260] = (img)(_p3##x,_n7##y,z,v)), \
philpem@5 3276 (I[277] = (img)(_p3##x,_n8##y,z,v)), \
philpem@5 3277 (I[6] = (img)(_p2##x,_p8##y,z,v)), \
philpem@5 3278 (I[23] = (img)(_p2##x,_p7##y,z,v)), \
philpem@5 3279 (I[40] = (img)(_p2##x,_p6##y,z,v)), \
philpem@5 3280 (I[57] = (img)(_p2##x,_p5##y,z,v)), \
philpem@5 3281 (I[74] = (img)(_p2##x,_p4##y,z,v)), \
philpem@5 3282 (I[91] = (img)(_p2##x,_p3##y,z,v)), \
philpem@5 3283 (I[108] = (img)(_p2##x,_p2##y,z,v)), \
philpem@5 3284 (I[125] = (img)(_p2##x,_p1##y,z,v)), \
philpem@5 3285 (I[142] = (img)(_p2##x,y,z,v)), \
philpem@5 3286 (I[159] = (img)(_p2##x,_n1##y,z,v)), \
philpem@5 3287 (I[176] = (img)(_p2##x,_n2##y,z,v)), \
philpem@5 3288 (I[193] = (img)(_p2##x,_n3##y,z,v)), \
philpem@5 3289 (I[210] = (img)(_p2##x,_n4##y,z,v)), \
philpem@5 3290 (I[227] = (img)(_p2##x,_n5##y,z,v)), \
philpem@5 3291 (I[244] = (img)(_p2##x,_n6##y,z,v)), \
philpem@5 3292 (I[261] = (img)(_p2##x,_n7##y,z,v)), \
philpem@5 3293 (I[278] = (img)(_p2##x,_n8##y,z,v)), \
philpem@5 3294 (I[7] = (img)(_p1##x,_p8##y,z,v)), \
philpem@5 3295 (I[24] = (img)(_p1##x,_p7##y,z,v)), \
philpem@5 3296 (I[41] = (img)(_p1##x,_p6##y,z,v)), \
philpem@5 3297 (I[58] = (img)(_p1##x,_p5##y,z,v)), \
philpem@5 3298 (I[75] = (img)(_p1##x,_p4##y,z,v)), \
philpem@5 3299 (I[92] = (img)(_p1##x,_p3##y,z,v)), \
philpem@5 3300 (I[109] = (img)(_p1##x,_p2##y,z,v)), \
philpem@5 3301 (I[126] = (img)(_p1##x,_p1##y,z,v)), \
philpem@5 3302 (I[143] = (img)(_p1##x,y,z,v)), \
philpem@5 3303 (I[160] = (img)(_p1##x,_n1##y,z,v)), \
philpem@5 3304 (I[177] = (img)(_p1##x,_n2##y,z,v)), \
philpem@5 3305 (I[194] = (img)(_p1##x,_n3##y,z,v)), \
philpem@5 3306 (I[211] = (img)(_p1##x,_n4##y,z,v)), \
philpem@5 3307 (I[228] = (img)(_p1##x,_n5##y,z,v)), \
philpem@5 3308 (I[245] = (img)(_p1##x,_n6##y,z,v)), \
philpem@5 3309 (I[262] = (img)(_p1##x,_n7##y,z,v)), \
philpem@5 3310 (I[279] = (img)(_p1##x,_n8##y,z,v)), \
philpem@5 3311 (I[8] = (img)(x,_p8##y,z,v)), \
philpem@5 3312 (I[25] = (img)(x,_p7##y,z,v)), \
philpem@5 3313 (I[42] = (img)(x,_p6##y,z,v)), \
philpem@5 3314 (I[59] = (img)(x,_p5##y,z,v)), \
philpem@5 3315 (I[76] = (img)(x,_p4##y,z,v)), \
philpem@5 3316 (I[93] = (img)(x,_p3##y,z,v)), \
philpem@5 3317 (I[110] = (img)(x,_p2##y,z,v)), \
philpem@5 3318 (I[127] = (img)(x,_p1##y,z,v)), \
philpem@5 3319 (I[144] = (img)(x,y,z,v)), \
philpem@5 3320 (I[161] = (img)(x,_n1##y,z,v)), \
philpem@5 3321 (I[178] = (img)(x,_n2##y,z,v)), \
philpem@5 3322 (I[195] = (img)(x,_n3##y,z,v)), \
philpem@5 3323 (I[212] = (img)(x,_n4##y,z,v)), \
philpem@5 3324 (I[229] = (img)(x,_n5##y,z,v)), \
philpem@5 3325 (I[246] = (img)(x,_n6##y,z,v)), \
philpem@5 3326 (I[263] = (img)(x,_n7##y,z,v)), \
philpem@5 3327 (I[280] = (img)(x,_n8##y,z,v)), \
philpem@5 3328 (I[9] = (img)(_n1##x,_p8##y,z,v)), \
philpem@5 3329 (I[26] = (img)(_n1##x,_p7##y,z,v)), \
philpem@5 3330 (I[43] = (img)(_n1##x,_p6##y,z,v)), \
philpem@5 3331 (I[60] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 3332 (I[77] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 3333 (I[94] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 3334 (I[111] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 3335 (I[128] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 3336 (I[145] = (img)(_n1##x,y,z,v)), \
philpem@5 3337 (I[162] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 3338 (I[179] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 3339 (I[196] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 3340 (I[213] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 3341 (I[230] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 3342 (I[247] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 3343 (I[264] = (img)(_n1##x,_n7##y,z,v)), \
philpem@5 3344 (I[281] = (img)(_n1##x,_n8##y,z,v)), \
philpem@5 3345 (I[10] = (img)(_n2##x,_p8##y,z,v)), \
philpem@5 3346 (I[27] = (img)(_n2##x,_p7##y,z,v)), \
philpem@5 3347 (I[44] = (img)(_n2##x,_p6##y,z,v)), \
philpem@5 3348 (I[61] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 3349 (I[78] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 3350 (I[95] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 3351 (I[112] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 3352 (I[129] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 3353 (I[146] = (img)(_n2##x,y,z,v)), \
philpem@5 3354 (I[163] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 3355 (I[180] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 3356 (I[197] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 3357 (I[214] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 3358 (I[231] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 3359 (I[248] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 3360 (I[265] = (img)(_n2##x,_n7##y,z,v)), \
philpem@5 3361 (I[282] = (img)(_n2##x,_n8##y,z,v)), \
philpem@5 3362 (I[11] = (img)(_n3##x,_p8##y,z,v)), \
philpem@5 3363 (I[28] = (img)(_n3##x,_p7##y,z,v)), \
philpem@5 3364 (I[45] = (img)(_n3##x,_p6##y,z,v)), \
philpem@5 3365 (I[62] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 3366 (I[79] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 3367 (I[96] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 3368 (I[113] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 3369 (I[130] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 3370 (I[147] = (img)(_n3##x,y,z,v)), \
philpem@5 3371 (I[164] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 3372 (I[181] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 3373 (I[198] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 3374 (I[215] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 3375 (I[232] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 3376 (I[249] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 3377 (I[266] = (img)(_n3##x,_n7##y,z,v)), \
philpem@5 3378 (I[283] = (img)(_n3##x,_n8##y,z,v)), \
philpem@5 3379 (I[12] = (img)(_n4##x,_p8##y,z,v)), \
philpem@5 3380 (I[29] = (img)(_n4##x,_p7##y,z,v)), \
philpem@5 3381 (I[46] = (img)(_n4##x,_p6##y,z,v)), \
philpem@5 3382 (I[63] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 3383 (I[80] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 3384 (I[97] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 3385 (I[114] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 3386 (I[131] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 3387 (I[148] = (img)(_n4##x,y,z,v)), \
philpem@5 3388 (I[165] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 3389 (I[182] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 3390 (I[199] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 3391 (I[216] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 3392 (I[233] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 3393 (I[250] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 3394 (I[267] = (img)(_n4##x,_n7##y,z,v)), \
philpem@5 3395 (I[284] = (img)(_n4##x,_n8##y,z,v)), \
philpem@5 3396 (I[13] = (img)(_n5##x,_p8##y,z,v)), \
philpem@5 3397 (I[30] = (img)(_n5##x,_p7##y,z,v)), \
philpem@5 3398 (I[47] = (img)(_n5##x,_p6##y,z,v)), \
philpem@5 3399 (I[64] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 3400 (I[81] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 3401 (I[98] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 3402 (I[115] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 3403 (I[132] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 3404 (I[149] = (img)(_n5##x,y,z,v)), \
philpem@5 3405 (I[166] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 3406 (I[183] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 3407 (I[200] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 3408 (I[217] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 3409 (I[234] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 3410 (I[251] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 3411 (I[268] = (img)(_n5##x,_n7##y,z,v)), \
philpem@5 3412 (I[285] = (img)(_n5##x,_n8##y,z,v)), \
philpem@5 3413 (I[14] = (img)(_n6##x,_p8##y,z,v)), \
philpem@5 3414 (I[31] = (img)(_n6##x,_p7##y,z,v)), \
philpem@5 3415 (I[48] = (img)(_n6##x,_p6##y,z,v)), \
philpem@5 3416 (I[65] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 3417 (I[82] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 3418 (I[99] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 3419 (I[116] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 3420 (I[133] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 3421 (I[150] = (img)(_n6##x,y,z,v)), \
philpem@5 3422 (I[167] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 3423 (I[184] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 3424 (I[201] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 3425 (I[218] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 3426 (I[235] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 3427 (I[252] = (img)(_n6##x,_n6##y,z,v)), \
philpem@5 3428 (I[269] = (img)(_n6##x,_n7##y,z,v)), \
philpem@5 3429 (I[286] = (img)(_n6##x,_n8##y,z,v)), \
philpem@5 3430 (I[15] = (img)(_n7##x,_p8##y,z,v)), \
philpem@5 3431 (I[32] = (img)(_n7##x,_p7##y,z,v)), \
philpem@5 3432 (I[49] = (img)(_n7##x,_p6##y,z,v)), \
philpem@5 3433 (I[66] = (img)(_n7##x,_p5##y,z,v)), \
philpem@5 3434 (I[83] = (img)(_n7##x,_p4##y,z,v)), \
philpem@5 3435 (I[100] = (img)(_n7##x,_p3##y,z,v)), \
philpem@5 3436 (I[117] = (img)(_n7##x,_p2##y,z,v)), \
philpem@5 3437 (I[134] = (img)(_n7##x,_p1##y,z,v)), \
philpem@5 3438 (I[151] = (img)(_n7##x,y,z,v)), \
philpem@5 3439 (I[168] = (img)(_n7##x,_n1##y,z,v)), \
philpem@5 3440 (I[185] = (img)(_n7##x,_n2##y,z,v)), \
philpem@5 3441 (I[202] = (img)(_n7##x,_n3##y,z,v)), \
philpem@5 3442 (I[219] = (img)(_n7##x,_n4##y,z,v)), \
philpem@5 3443 (I[236] = (img)(_n7##x,_n5##y,z,v)), \
philpem@5 3444 (I[253] = (img)(_n7##x,_n6##y,z,v)), \
philpem@5 3445 (I[270] = (img)(_n7##x,_n7##y,z,v)), \
philpem@5 3446 (I[287] = (img)(_n7##x,_n8##y,z,v)), \
philpem@5 3447 x+8>=(int)((img).width)?(int)((img).width)-1:x+8); \
philpem@5 3448 x<=(int)(x1) && ((_n8##x<(int)((img).width) && ( \
philpem@5 3449 (I[16] = (img)(_n8##x,_p8##y,z,v)), \
philpem@5 3450 (I[33] = (img)(_n8##x,_p7##y,z,v)), \
philpem@5 3451 (I[50] = (img)(_n8##x,_p6##y,z,v)), \
philpem@5 3452 (I[67] = (img)(_n8##x,_p5##y,z,v)), \
philpem@5 3453 (I[84] = (img)(_n8##x,_p4##y,z,v)), \
philpem@5 3454 (I[101] = (img)(_n8##x,_p3##y,z,v)), \
philpem@5 3455 (I[118] = (img)(_n8##x,_p2##y,z,v)), \
philpem@5 3456 (I[135] = (img)(_n8##x,_p1##y,z,v)), \
philpem@5 3457 (I[152] = (img)(_n8##x,y,z,v)), \
philpem@5 3458 (I[169] = (img)(_n8##x,_n1##y,z,v)), \
philpem@5 3459 (I[186] = (img)(_n8##x,_n2##y,z,v)), \
philpem@5 3460 (I[203] = (img)(_n8##x,_n3##y,z,v)), \
philpem@5 3461 (I[220] = (img)(_n8##x,_n4##y,z,v)), \
philpem@5 3462 (I[237] = (img)(_n8##x,_n5##y,z,v)), \
philpem@5 3463 (I[254] = (img)(_n8##x,_n6##y,z,v)), \
philpem@5 3464 (I[271] = (img)(_n8##x,_n7##y,z,v)), \
philpem@5 3465 (I[288] = (img)(_n8##x,_n8##y,z,v)),1)) || \
philpem@5 3466 _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
philpem@5 3467 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], \
philpem@5 3468 I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], \
philpem@5 3469 I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], \
philpem@5 3470 I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], \
philpem@5 3471 I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], \
philpem@5 3472 I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], \
philpem@5 3473 I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], \
philpem@5 3474 I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], \
philpem@5 3475 I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], \
philpem@5 3476 I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], \
philpem@5 3477 I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], \
philpem@5 3478 I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], \
philpem@5 3479 I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], \
philpem@5 3480 I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], \
philpem@5 3481 I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], \
philpem@5 3482 I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], \
philpem@5 3483 I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], \
philpem@5 3484 _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x)
philpem@5 3485
philpem@5 3486 #define cimg_get17x17(img,x,y,z,v,I) \
philpem@5 3487 I[0] = (img)(_p8##x,_p8##y,z,v), I[1] = (img)(_p7##x,_p8##y,z,v), I[2] = (img)(_p6##x,_p8##y,z,v), I[3] = (img)(_p5##x,_p8##y,z,v), I[4] = (img)(_p4##x,_p8##y,z,v), I[5] = (img)(_p3##x,_p8##y,z,v), I[6] = (img)(_p2##x,_p8##y,z,v), I[7] = (img)(_p1##x,_p8##y,z,v), I[8] = (img)(x,_p8##y,z,v), I[9] = (img)(_n1##x,_p8##y,z,v), I[10] = (img)(_n2##x,_p8##y,z,v), I[11] = (img)(_n3##x,_p8##y,z,v), I[12] = (img)(_n4##x,_p8##y,z,v), I[13] = (img)(_n5##x,_p8##y,z,v), I[14] = (img)(_n6##x,_p8##y,z,v), I[15] = (img)(_n7##x,_p8##y,z,v), I[16] = (img)(_n8##x,_p8##y,z,v), \
philpem@5 3488 I[17] = (img)(_p8##x,_p7##y,z,v), I[18] = (img)(_p7##x,_p7##y,z,v), I[19] = (img)(_p6##x,_p7##y,z,v), I[20] = (img)(_p5##x,_p7##y,z,v), I[21] = (img)(_p4##x,_p7##y,z,v), I[22] = (img)(_p3##x,_p7##y,z,v), I[23] = (img)(_p2##x,_p7##y,z,v), I[24] = (img)(_p1##x,_p7##y,z,v), I[25] = (img)(x,_p7##y,z,v), I[26] = (img)(_n1##x,_p7##y,z,v), I[27] = (img)(_n2##x,_p7##y,z,v), I[28] = (img)(_n3##x,_p7##y,z,v), I[29] = (img)(_n4##x,_p7##y,z,v), I[30] = (img)(_n5##x,_p7##y,z,v), I[31] = (img)(_n6##x,_p7##y,z,v), I[32] = (img)(_n7##x,_p7##y,z,v), I[33] = (img)(_n8##x,_p7##y,z,v), \
philpem@5 3489 I[34] = (img)(_p8##x,_p6##y,z,v), I[35] = (img)(_p7##x,_p6##y,z,v), I[36] = (img)(_p6##x,_p6##y,z,v), I[37] = (img)(_p5##x,_p6##y,z,v), I[38] = (img)(_p4##x,_p6##y,z,v), I[39] = (img)(_p3##x,_p6##y,z,v), I[40] = (img)(_p2##x,_p6##y,z,v), I[41] = (img)(_p1##x,_p6##y,z,v), I[42] = (img)(x,_p6##y,z,v), I[43] = (img)(_n1##x,_p6##y,z,v), I[44] = (img)(_n2##x,_p6##y,z,v), I[45] = (img)(_n3##x,_p6##y,z,v), I[46] = (img)(_n4##x,_p6##y,z,v), I[47] = (img)(_n5##x,_p6##y,z,v), I[48] = (img)(_n6##x,_p6##y,z,v), I[49] = (img)(_n7##x,_p6##y,z,v), I[50] = (img)(_n8##x,_p6##y,z,v), \
philpem@5 3490 I[51] = (img)(_p8##x,_p5##y,z,v), I[52] = (img)(_p7##x,_p5##y,z,v), I[53] = (img)(_p6##x,_p5##y,z,v), I[54] = (img)(_p5##x,_p5##y,z,v), I[55] = (img)(_p4##x,_p5##y,z,v), I[56] = (img)(_p3##x,_p5##y,z,v), I[57] = (img)(_p2##x,_p5##y,z,v), I[58] = (img)(_p1##x,_p5##y,z,v), I[59] = (img)(x,_p5##y,z,v), I[60] = (img)(_n1##x,_p5##y,z,v), I[61] = (img)(_n2##x,_p5##y,z,v), I[62] = (img)(_n3##x,_p5##y,z,v), I[63] = (img)(_n4##x,_p5##y,z,v), I[64] = (img)(_n5##x,_p5##y,z,v), I[65] = (img)(_n6##x,_p5##y,z,v), I[66] = (img)(_n7##x,_p5##y,z,v), I[67] = (img)(_n8##x,_p5##y,z,v), \
philpem@5 3491 I[68] = (img)(_p8##x,_p4##y,z,v), I[69] = (img)(_p7##x,_p4##y,z,v), I[70] = (img)(_p6##x,_p4##y,z,v), I[71] = (img)(_p5##x,_p4##y,z,v), I[72] = (img)(_p4##x,_p4##y,z,v), I[73] = (img)(_p3##x,_p4##y,z,v), I[74] = (img)(_p2##x,_p4##y,z,v), I[75] = (img)(_p1##x,_p4##y,z,v), I[76] = (img)(x,_p4##y,z,v), I[77] = (img)(_n1##x,_p4##y,z,v), I[78] = (img)(_n2##x,_p4##y,z,v), I[79] = (img)(_n3##x,_p4##y,z,v), I[80] = (img)(_n4##x,_p4##y,z,v), I[81] = (img)(_n5##x,_p4##y,z,v), I[82] = (img)(_n6##x,_p4##y,z,v), I[83] = (img)(_n7##x,_p4##y,z,v), I[84] = (img)(_n8##x,_p4##y,z,v), \
philpem@5 3492 I[85] = (img)(_p8##x,_p3##y,z,v), I[86] = (img)(_p7##x,_p3##y,z,v), I[87] = (img)(_p6##x,_p3##y,z,v), I[88] = (img)(_p5##x,_p3##y,z,v), I[89] = (img)(_p4##x,_p3##y,z,v), I[90] = (img)(_p3##x,_p3##y,z,v), I[91] = (img)(_p2##x,_p3##y,z,v), I[92] = (img)(_p1##x,_p3##y,z,v), I[93] = (img)(x,_p3##y,z,v), I[94] = (img)(_n1##x,_p3##y,z,v), I[95] = (img)(_n2##x,_p3##y,z,v), I[96] = (img)(_n3##x,_p3##y,z,v), I[97] = (img)(_n4##x,_p3##y,z,v), I[98] = (img)(_n5##x,_p3##y,z,v), I[99] = (img)(_n6##x,_p3##y,z,v), I[100] = (img)(_n7##x,_p3##y,z,v), I[101] = (img)(_n8##x,_p3##y,z,v), \
philpem@5 3493 I[102] = (img)(_p8##x,_p2##y,z,v), I[103] = (img)(_p7##x,_p2##y,z,v), I[104] = (img)(_p6##x,_p2##y,z,v), I[105] = (img)(_p5##x,_p2##y,z,v), I[106] = (img)(_p4##x,_p2##y,z,v), I[107] = (img)(_p3##x,_p2##y,z,v), I[108] = (img)(_p2##x,_p2##y,z,v), I[109] = (img)(_p1##x,_p2##y,z,v), I[110] = (img)(x,_p2##y,z,v), I[111] = (img)(_n1##x,_p2##y,z,v), I[112] = (img)(_n2##x,_p2##y,z,v), I[113] = (img)(_n3##x,_p2##y,z,v), I[114] = (img)(_n4##x,_p2##y,z,v), I[115] = (img)(_n5##x,_p2##y,z,v), I[116] = (img)(_n6##x,_p2##y,z,v), I[117] = (img)(_n7##x,_p2##y,z,v), I[118] = (img)(_n8##x,_p2##y,z,v), \
philpem@5 3494 I[119] = (img)(_p8##x,_p1##y,z,v), I[120] = (img)(_p7##x,_p1##y,z,v), I[121] = (img)(_p6##x,_p1##y,z,v), I[122] = (img)(_p5##x,_p1##y,z,v), I[123] = (img)(_p4##x,_p1##y,z,v), I[124] = (img)(_p3##x,_p1##y,z,v), I[125] = (img)(_p2##x,_p1##y,z,v), I[126] = (img)(_p1##x,_p1##y,z,v), I[127] = (img)(x,_p1##y,z,v), I[128] = (img)(_n1##x,_p1##y,z,v), I[129] = (img)(_n2##x,_p1##y,z,v), I[130] = (img)(_n3##x,_p1##y,z,v), I[131] = (img)(_n4##x,_p1##y,z,v), I[132] = (img)(_n5##x,_p1##y,z,v), I[133] = (img)(_n6##x,_p1##y,z,v), I[134] = (img)(_n7##x,_p1##y,z,v), I[135] = (img)(_n8##x,_p1##y,z,v), \
philpem@5 3495 I[136] = (img)(_p8##x,y,z,v), I[137] = (img)(_p7##x,y,z,v), I[138] = (img)(_p6##x,y,z,v), I[139] = (img)(_p5##x,y,z,v), I[140] = (img)(_p4##x,y,z,v), I[141] = (img)(_p3##x,y,z,v), I[142] = (img)(_p2##x,y,z,v), I[143] = (img)(_p1##x,y,z,v), I[144] = (img)(x,y,z,v), I[145] = (img)(_n1##x,y,z,v), I[146] = (img)(_n2##x,y,z,v), I[147] = (img)(_n3##x,y,z,v), I[148] = (img)(_n4##x,y,z,v), I[149] = (img)(_n5##x,y,z,v), I[150] = (img)(_n6##x,y,z,v), I[151] = (img)(_n7##x,y,z,v), I[152] = (img)(_n8##x,y,z,v), \
philpem@5 3496 I[153] = (img)(_p8##x,_n1##y,z,v), I[154] = (img)(_p7##x,_n1##y,z,v), I[155] = (img)(_p6##x,_n1##y,z,v), I[156] = (img)(_p5##x,_n1##y,z,v), I[157] = (img)(_p4##x,_n1##y,z,v), I[158] = (img)(_p3##x,_n1##y,z,v), I[159] = (img)(_p2##x,_n1##y,z,v), I[160] = (img)(_p1##x,_n1##y,z,v), I[161] = (img)(x,_n1##y,z,v), I[162] = (img)(_n1##x,_n1##y,z,v), I[163] = (img)(_n2##x,_n1##y,z,v), I[164] = (img)(_n3##x,_n1##y,z,v), I[165] = (img)(_n4##x,_n1##y,z,v), I[166] = (img)(_n5##x,_n1##y,z,v), I[167] = (img)(_n6##x,_n1##y,z,v), I[168] = (img)(_n7##x,_n1##y,z,v), I[169] = (img)(_n8##x,_n1##y,z,v), \
philpem@5 3497 I[170] = (img)(_p8##x,_n2##y,z,v), I[171] = (img)(_p7##x,_n2##y,z,v), I[172] = (img)(_p6##x,_n2##y,z,v), I[173] = (img)(_p5##x,_n2##y,z,v), I[174] = (img)(_p4##x,_n2##y,z,v), I[175] = (img)(_p3##x,_n2##y,z,v), I[176] = (img)(_p2##x,_n2##y,z,v), I[177] = (img)(_p1##x,_n2##y,z,v), I[178] = (img)(x,_n2##y,z,v), I[179] = (img)(_n1##x,_n2##y,z,v), I[180] = (img)(_n2##x,_n2##y,z,v), I[181] = (img)(_n3##x,_n2##y,z,v), I[182] = (img)(_n4##x,_n2##y,z,v), I[183] = (img)(_n5##x,_n2##y,z,v), I[184] = (img)(_n6##x,_n2##y,z,v), I[185] = (img)(_n7##x,_n2##y,z,v), I[186] = (img)(_n8##x,_n2##y,z,v), \
philpem@5 3498 I[187] = (img)(_p8##x,_n3##y,z,v), I[188] = (img)(_p7##x,_n3##y,z,v), I[189] = (img)(_p6##x,_n3##y,z,v), I[190] = (img)(_p5##x,_n3##y,z,v), I[191] = (img)(_p4##x,_n3##y,z,v), I[192] = (img)(_p3##x,_n3##y,z,v), I[193] = (img)(_p2##x,_n3##y,z,v), I[194] = (img)(_p1##x,_n3##y,z,v), I[195] = (img)(x,_n3##y,z,v), I[196] = (img)(_n1##x,_n3##y,z,v), I[197] = (img)(_n2##x,_n3##y,z,v), I[198] = (img)(_n3##x,_n3##y,z,v), I[199] = (img)(_n4##x,_n3##y,z,v), I[200] = (img)(_n5##x,_n3##y,z,v), I[201] = (img)(_n6##x,_n3##y,z,v), I[202] = (img)(_n7##x,_n3##y,z,v), I[203] = (img)(_n8##x,_n3##y,z,v), \
philpem@5 3499 I[204] = (img)(_p8##x,_n4##y,z,v), I[205] = (img)(_p7##x,_n4##y,z,v), I[206] = (img)(_p6##x,_n4##y,z,v), I[207] = (img)(_p5##x,_n4##y,z,v), I[208] = (img)(_p4##x,_n4##y,z,v), I[209] = (img)(_p3##x,_n4##y,z,v), I[210] = (img)(_p2##x,_n4##y,z,v), I[211] = (img)(_p1##x,_n4##y,z,v), I[212] = (img)(x,_n4##y,z,v), I[213] = (img)(_n1##x,_n4##y,z,v), I[214] = (img)(_n2##x,_n4##y,z,v), I[215] = (img)(_n3##x,_n4##y,z,v), I[216] = (img)(_n4##x,_n4##y,z,v), I[217] = (img)(_n5##x,_n4##y,z,v), I[218] = (img)(_n6##x,_n4##y,z,v), I[219] = (img)(_n7##x,_n4##y,z,v), I[220] = (img)(_n8##x,_n4##y,z,v), \
philpem@5 3500 I[221] = (img)(_p8##x,_n5##y,z,v), I[222] = (img)(_p7##x,_n5##y,z,v), I[223] = (img)(_p6##x,_n5##y,z,v), I[224] = (img)(_p5##x,_n5##y,z,v), I[225] = (img)(_p4##x,_n5##y,z,v), I[226] = (img)(_p3##x,_n5##y,z,v), I[227] = (img)(_p2##x,_n5##y,z,v), I[228] = (img)(_p1##x,_n5##y,z,v), I[229] = (img)(x,_n5##y,z,v), I[230] = (img)(_n1##x,_n5##y,z,v), I[231] = (img)(_n2##x,_n5##y,z,v), I[232] = (img)(_n3##x,_n5##y,z,v), I[233] = (img)(_n4##x,_n5##y,z,v), I[234] = (img)(_n5##x,_n5##y,z,v), I[235] = (img)(_n6##x,_n5##y,z,v), I[236] = (img)(_n7##x,_n5##y,z,v), I[237] = (img)(_n8##x,_n5##y,z,v), \
philpem@5 3501 I[238] = (img)(_p8##x,_n6##y,z,v), I[239] = (img)(_p7##x,_n6##y,z,v), I[240] = (img)(_p6##x,_n6##y,z,v), I[241] = (img)(_p5##x,_n6##y,z,v), I[242] = (img)(_p4##x,_n6##y,z,v), I[243] = (img)(_p3##x,_n6##y,z,v), I[244] = (img)(_p2##x,_n6##y,z,v), I[245] = (img)(_p1##x,_n6##y,z,v), I[246] = (img)(x,_n6##y,z,v), I[247] = (img)(_n1##x,_n6##y,z,v), I[248] = (img)(_n2##x,_n6##y,z,v), I[249] = (img)(_n3##x,_n6##y,z,v), I[250] = (img)(_n4##x,_n6##y,z,v), I[251] = (img)(_n5##x,_n6##y,z,v), I[252] = (img)(_n6##x,_n6##y,z,v), I[253] = (img)(_n7##x,_n6##y,z,v), I[254] = (img)(_n8##x,_n6##y,z,v), \
philpem@5 3502 I[255] = (img)(_p8##x,_n7##y,z,v), I[256] = (img)(_p7##x,_n7##y,z,v), I[257] = (img)(_p6##x,_n7##y,z,v), I[258] = (img)(_p5##x,_n7##y,z,v), I[259] = (img)(_p4##x,_n7##y,z,v), I[260] = (img)(_p3##x,_n7##y,z,v), I[261] = (img)(_p2##x,_n7##y,z,v), I[262] = (img)(_p1##x,_n7##y,z,v), I[263] = (img)(x,_n7##y,z,v), I[264] = (img)(_n1##x,_n7##y,z,v), I[265] = (img)(_n2##x,_n7##y,z,v), I[266] = (img)(_n3##x,_n7##y,z,v), I[267] = (img)(_n4##x,_n7##y,z,v), I[268] = (img)(_n5##x,_n7##y,z,v), I[269] = (img)(_n6##x,_n7##y,z,v), I[270] = (img)(_n7##x,_n7##y,z,v), I[271] = (img)(_n8##x,_n7##y,z,v), \
philpem@5 3503 I[272] = (img)(_p8##x,_n8##y,z,v), I[273] = (img)(_p7##x,_n8##y,z,v), I[274] = (img)(_p6##x,_n8##y,z,v), I[275] = (img)(_p5##x,_n8##y,z,v), I[276] = (img)(_p4##x,_n8##y,z,v), I[277] = (img)(_p3##x,_n8##y,z,v), I[278] = (img)(_p2##x,_n8##y,z,v), I[279] = (img)(_p1##x,_n8##y,z,v), I[280] = (img)(x,_n8##y,z,v), I[281] = (img)(_n1##x,_n8##y,z,v), I[282] = (img)(_n2##x,_n8##y,z,v), I[283] = (img)(_n3##x,_n8##y,z,v), I[284] = (img)(_n4##x,_n8##y,z,v), I[285] = (img)(_n5##x,_n8##y,z,v), I[286] = (img)(_n6##x,_n8##y,z,v), I[287] = (img)(_n7##x,_n8##y,z,v), I[288] = (img)(_n8##x,_n8##y,z,v);
philpem@5 3504
philpem@5 3505 // Define 18x18 loop macros for CImg
philpem@5 3506 //----------------------------------
philpem@5 3507 #define cimg_for18(bound,i) for (int i = 0, \
philpem@5 3508 _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
philpem@5 3509 _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \
philpem@5 3510 _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \
philpem@5 3511 _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \
philpem@5 3512 _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \
philpem@5 3513 _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \
philpem@5 3514 _n6##i = 6>=(int)(bound)?(int)(bound)-1:6, \
philpem@5 3515 _n7##i = 7>=(int)(bound)?(int)(bound)-1:7, \
philpem@5 3516 _n8##i = 8>=(int)(bound)?(int)(bound)-1:8, \
philpem@5 3517 _n9##i = 9>=(int)(bound)?(int)(bound)-1:9; \
philpem@5 3518 _n9##i<(int)(bound) || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 3519 i==(_n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
philpem@5 3520 _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 3521 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i)
philpem@5 3522
philpem@5 3523 #define cimg_for18X(img,x) cimg_for18((img).width,x)
philpem@5 3524 #define cimg_for18Y(img,y) cimg_for18((img).height,y)
philpem@5 3525 #define cimg_for18Z(img,z) cimg_for18((img).depth,z)
philpem@5 3526 #define cimg_for18V(img,v) cimg_for18((img).dim,v)
philpem@5 3527 #define cimg_for18XY(img,x,y) cimg_for18Y(img,y) cimg_for18X(img,x)
philpem@5 3528 #define cimg_for18XZ(img,x,z) cimg_for18Z(img,z) cimg_for18X(img,x)
philpem@5 3529 #define cimg_for18XV(img,x,v) cimg_for18V(img,v) cimg_for18X(img,x)
philpem@5 3530 #define cimg_for18YZ(img,y,z) cimg_for18Z(img,z) cimg_for18Y(img,y)
philpem@5 3531 #define cimg_for18YV(img,y,v) cimg_for18V(img,v) cimg_for18Y(img,y)
philpem@5 3532 #define cimg_for18ZV(img,z,v) cimg_for18V(img,v) cimg_for18Z(img,z)
philpem@5 3533 #define cimg_for18XYZ(img,x,y,z) cimg_for18Z(img,z) cimg_for18XY(img,x,y)
philpem@5 3534 #define cimg_for18XZV(img,x,z,v) cimg_for18V(img,v) cimg_for18XZ(img,x,z)
philpem@5 3535 #define cimg_for18YZV(img,y,z,v) cimg_for18V(img,v) cimg_for18YZ(img,y,z)
philpem@5 3536 #define cimg_for18XYZV(img,x,y,z,v) cimg_for18V(img,v) cimg_for18XYZ(img,x,y,z)
philpem@5 3537
philpem@5 3538 #define cimg_for_in18(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
philpem@5 3539 _p8##i = i-8<0?0:i-8, \
philpem@5 3540 _p7##i = i-7<0?0:i-7, \
philpem@5 3541 _p6##i = i-6<0?0:i-6, \
philpem@5 3542 _p5##i = i-5<0?0:i-5, \
philpem@5 3543 _p4##i = i-4<0?0:i-4, \
philpem@5 3544 _p3##i = i-3<0?0:i-3, \
philpem@5 3545 _p2##i = i-2<0?0:i-2, \
philpem@5 3546 _p1##i = i-1<0?0:i-1, \
philpem@5 3547 _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \
philpem@5 3548 _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \
philpem@5 3549 _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \
philpem@5 3550 _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \
philpem@5 3551 _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \
philpem@5 3552 _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6, \
philpem@5 3553 _n7##i = i+7>=(int)(bound)?(int)(bound)-1:i+7, \
philpem@5 3554 _n8##i = i+8>=(int)(bound)?(int)(bound)-1:i+8, \
philpem@5 3555 _n9##i = i+9>=(int)(bound)?(int)(bound)-1:i+9; \
philpem@5 3556 i<=(int)(i1) && (_n9##i<(int)(bound) || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 3557 i==(_n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
philpem@5 3558 _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 3559 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i)
philpem@5 3560
philpem@5 3561 #define cimg_for_in18X(img,x0,x1,x) cimg_for_in18((img).width,x0,x1,x)
philpem@5 3562 #define cimg_for_in18Y(img,y0,y1,y) cimg_for_in18((img).height,y0,y1,y)
philpem@5 3563 #define cimg_for_in18Z(img,z0,z1,z) cimg_for_in18((img).depth,z0,z1,z)
philpem@5 3564 #define cimg_for_in18V(img,v0,v1,v) cimg_for_in18((img).dim,v0,v1,v)
philpem@5 3565 #define cimg_for_in18XY(img,x0,y0,x1,y1,x,y) cimg_for_in18Y(img,y0,y1,y) cimg_for_in18X(img,x0,x1,x)
philpem@5 3566 #define cimg_for_in18XZ(img,x0,z0,x1,z1,x,z) cimg_for_in18Z(img,z0,z1,z) cimg_for_in18X(img,x0,x1,x)
philpem@5 3567 #define cimg_for_in18XV(img,x0,v0,x1,v1,x,v) cimg_for_in18V(img,v0,v1,v) cimg_for_in18X(img,x0,x1,x)
philpem@5 3568 #define cimg_for_in18YZ(img,y0,z0,y1,z1,y,z) cimg_for_in18Z(img,z0,z1,z) cimg_for_in18Y(img,y0,y1,y)
philpem@5 3569 #define cimg_for_in18YV(img,y0,v0,y1,v1,y,v) cimg_for_in18V(img,v0,v1,v) cimg_for_in18Y(img,y0,y1,y)
philpem@5 3570 #define cimg_for_in18ZV(img,z0,v0,z1,v1,z,v) cimg_for_in18V(img,v0,v1,v) cimg_for_in18Z(img,z0,z1,z)
philpem@5 3571 #define cimg_for_in18XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in18Z(img,z0,z1,z) cimg_for_in18XY(img,x0,y0,x1,y1,x,y)
philpem@5 3572 #define cimg_for_in18XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in18V(img,v0,v1,v) cimg_for_in18XZ(img,x0,y0,x1,y1,x,z)
philpem@5 3573 #define cimg_for_in18YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in18V(img,v0,v1,v) cimg_for_in18YZ(img,y0,z0,y1,z1,y,z)
philpem@5 3574 #define cimg_for_in18XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in18V(img,v0,v1,v) cimg_for_in18XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
philpem@5 3575
philpem@5 3576 #define cimg_for18x18(img,x,y,z,v,I) \
philpem@5 3577 cimg_for18((img).height,y) for (int x = 0, \
philpem@5 3578 _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
philpem@5 3579 _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \
philpem@5 3580 _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \
philpem@5 3581 _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \
philpem@5 3582 _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \
philpem@5 3583 _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \
philpem@5 3584 _n6##x = 6>=((img).width)?(int)((img).width)-1:6, \
philpem@5 3585 _n7##x = 7>=((img).width)?(int)((img).width)-1:7, \
philpem@5 3586 _n8##x = 8>=((img).width)?(int)((img).width)-1:8, \
philpem@5 3587 _n9##x = (int)( \
philpem@5 3588 (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = (img)(0,_p8##y,z,v)), \
philpem@5 3589 (I[18] = I[19] = I[20] = I[21] = I[22] = I[23] = I[24] = I[25] = I[26] = (img)(0,_p7##y,z,v)), \
philpem@5 3590 (I[36] = I[37] = I[38] = I[39] = I[40] = I[41] = I[42] = I[43] = I[44] = (img)(0,_p6##y,z,v)), \
philpem@5 3591 (I[54] = I[55] = I[56] = I[57] = I[58] = I[59] = I[60] = I[61] = I[62] = (img)(0,_p5##y,z,v)), \
philpem@5 3592 (I[72] = I[73] = I[74] = I[75] = I[76] = I[77] = I[78] = I[79] = I[80] = (img)(0,_p4##y,z,v)), \
philpem@5 3593 (I[90] = I[91] = I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = I[98] = (img)(0,_p3##y,z,v)), \
philpem@5 3594 (I[108] = I[109] = I[110] = I[111] = I[112] = I[113] = I[114] = I[115] = I[116] = (img)(0,_p2##y,z,v)), \
philpem@5 3595 (I[126] = I[127] = I[128] = I[129] = I[130] = I[131] = I[132] = I[133] = I[134] = (img)(0,_p1##y,z,v)), \
philpem@5 3596 (I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = I[150] = I[151] = I[152] = (img)(0,y,z,v)), \
philpem@5 3597 (I[162] = I[163] = I[164] = I[165] = I[166] = I[167] = I[168] = I[169] = I[170] = (img)(0,_n1##y,z,v)), \
philpem@5 3598 (I[180] = I[181] = I[182] = I[183] = I[184] = I[185] = I[186] = I[187] = I[188] = (img)(0,_n2##y,z,v)), \
philpem@5 3599 (I[198] = I[199] = I[200] = I[201] = I[202] = I[203] = I[204] = I[205] = I[206] = (img)(0,_n3##y,z,v)), \
philpem@5 3600 (I[216] = I[217] = I[218] = I[219] = I[220] = I[221] = I[222] = I[223] = I[224] = (img)(0,_n4##y,z,v)), \
philpem@5 3601 (I[234] = I[235] = I[236] = I[237] = I[238] = I[239] = I[240] = I[241] = I[242] = (img)(0,_n5##y,z,v)), \
philpem@5 3602 (I[252] = I[253] = I[254] = I[255] = I[256] = I[257] = I[258] = I[259] = I[260] = (img)(0,_n6##y,z,v)), \
philpem@5 3603 (I[270] = I[271] = I[272] = I[273] = I[274] = I[275] = I[276] = I[277] = I[278] = (img)(0,_n7##y,z,v)), \
philpem@5 3604 (I[288] = I[289] = I[290] = I[291] = I[292] = I[293] = I[294] = I[295] = I[296] = (img)(0,_n8##y,z,v)), \
philpem@5 3605 (I[306] = I[307] = I[308] = I[309] = I[310] = I[311] = I[312] = I[313] = I[314] = (img)(0,_n9##y,z,v)), \
philpem@5 3606 (I[9] = (img)(_n1##x,_p8##y,z,v)), \
philpem@5 3607 (I[27] = (img)(_n1##x,_p7##y,z,v)), \
philpem@5 3608 (I[45] = (img)(_n1##x,_p6##y,z,v)), \
philpem@5 3609 (I[63] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 3610 (I[81] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 3611 (I[99] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 3612 (I[117] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 3613 (I[135] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 3614 (I[153] = (img)(_n1##x,y,z,v)), \
philpem@5 3615 (I[171] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 3616 (I[189] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 3617 (I[207] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 3618 (I[225] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 3619 (I[243] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 3620 (I[261] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 3621 (I[279] = (img)(_n1##x,_n7##y,z,v)), \
philpem@5 3622 (I[297] = (img)(_n1##x,_n8##y,z,v)), \
philpem@5 3623 (I[315] = (img)(_n1##x,_n9##y,z,v)), \
philpem@5 3624 (I[10] = (img)(_n2##x,_p8##y,z,v)), \
philpem@5 3625 (I[28] = (img)(_n2##x,_p7##y,z,v)), \
philpem@5 3626 (I[46] = (img)(_n2##x,_p6##y,z,v)), \
philpem@5 3627 (I[64] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 3628 (I[82] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 3629 (I[100] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 3630 (I[118] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 3631 (I[136] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 3632 (I[154] = (img)(_n2##x,y,z,v)), \
philpem@5 3633 (I[172] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 3634 (I[190] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 3635 (I[208] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 3636 (I[226] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 3637 (I[244] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 3638 (I[262] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 3639 (I[280] = (img)(_n2##x,_n7##y,z,v)), \
philpem@5 3640 (I[298] = (img)(_n2##x,_n8##y,z,v)), \
philpem@5 3641 (I[316] = (img)(_n2##x,_n9##y,z,v)), \
philpem@5 3642 (I[11] = (img)(_n3##x,_p8##y,z,v)), \
philpem@5 3643 (I[29] = (img)(_n3##x,_p7##y,z,v)), \
philpem@5 3644 (I[47] = (img)(_n3##x,_p6##y,z,v)), \
philpem@5 3645 (I[65] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 3646 (I[83] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 3647 (I[101] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 3648 (I[119] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 3649 (I[137] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 3650 (I[155] = (img)(_n3##x,y,z,v)), \
philpem@5 3651 (I[173] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 3652 (I[191] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 3653 (I[209] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 3654 (I[227] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 3655 (I[245] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 3656 (I[263] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 3657 (I[281] = (img)(_n3##x,_n7##y,z,v)), \
philpem@5 3658 (I[299] = (img)(_n3##x,_n8##y,z,v)), \
philpem@5 3659 (I[317] = (img)(_n3##x,_n9##y,z,v)), \
philpem@5 3660 (I[12] = (img)(_n4##x,_p8##y,z,v)), \
philpem@5 3661 (I[30] = (img)(_n4##x,_p7##y,z,v)), \
philpem@5 3662 (I[48] = (img)(_n4##x,_p6##y,z,v)), \
philpem@5 3663 (I[66] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 3664 (I[84] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 3665 (I[102] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 3666 (I[120] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 3667 (I[138] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 3668 (I[156] = (img)(_n4##x,y,z,v)), \
philpem@5 3669 (I[174] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 3670 (I[192] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 3671 (I[210] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 3672 (I[228] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 3673 (I[246] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 3674 (I[264] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 3675 (I[282] = (img)(_n4##x,_n7##y,z,v)), \
philpem@5 3676 (I[300] = (img)(_n4##x,_n8##y,z,v)), \
philpem@5 3677 (I[318] = (img)(_n4##x,_n9##y,z,v)), \
philpem@5 3678 (I[13] = (img)(_n5##x,_p8##y,z,v)), \
philpem@5 3679 (I[31] = (img)(_n5##x,_p7##y,z,v)), \
philpem@5 3680 (I[49] = (img)(_n5##x,_p6##y,z,v)), \
philpem@5 3681 (I[67] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 3682 (I[85] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 3683 (I[103] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 3684 (I[121] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 3685 (I[139] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 3686 (I[157] = (img)(_n5##x,y,z,v)), \
philpem@5 3687 (I[175] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 3688 (I[193] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 3689 (I[211] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 3690 (I[229] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 3691 (I[247] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 3692 (I[265] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 3693 (I[283] = (img)(_n5##x,_n7##y,z,v)), \
philpem@5 3694 (I[301] = (img)(_n5##x,_n8##y,z,v)), \
philpem@5 3695 (I[319] = (img)(_n5##x,_n9##y,z,v)), \
philpem@5 3696 (I[14] = (img)(_n6##x,_p8##y,z,v)), \
philpem@5 3697 (I[32] = (img)(_n6##x,_p7##y,z,v)), \
philpem@5 3698 (I[50] = (img)(_n6##x,_p6##y,z,v)), \
philpem@5 3699 (I[68] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 3700 (I[86] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 3701 (I[104] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 3702 (I[122] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 3703 (I[140] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 3704 (I[158] = (img)(_n6##x,y,z,v)), \
philpem@5 3705 (I[176] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 3706 (I[194] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 3707 (I[212] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 3708 (I[230] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 3709 (I[248] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 3710 (I[266] = (img)(_n6##x,_n6##y,z,v)), \
philpem@5 3711 (I[284] = (img)(_n6##x,_n7##y,z,v)), \
philpem@5 3712 (I[302] = (img)(_n6##x,_n8##y,z,v)), \
philpem@5 3713 (I[320] = (img)(_n6##x,_n9##y,z,v)), \
philpem@5 3714 (I[15] = (img)(_n7##x,_p8##y,z,v)), \
philpem@5 3715 (I[33] = (img)(_n7##x,_p7##y,z,v)), \
philpem@5 3716 (I[51] = (img)(_n7##x,_p6##y,z,v)), \
philpem@5 3717 (I[69] = (img)(_n7##x,_p5##y,z,v)), \
philpem@5 3718 (I[87] = (img)(_n7##x,_p4##y,z,v)), \
philpem@5 3719 (I[105] = (img)(_n7##x,_p3##y,z,v)), \
philpem@5 3720 (I[123] = (img)(_n7##x,_p2##y,z,v)), \
philpem@5 3721 (I[141] = (img)(_n7##x,_p1##y,z,v)), \
philpem@5 3722 (I[159] = (img)(_n7##x,y,z,v)), \
philpem@5 3723 (I[177] = (img)(_n7##x,_n1##y,z,v)), \
philpem@5 3724 (I[195] = (img)(_n7##x,_n2##y,z,v)), \
philpem@5 3725 (I[213] = (img)(_n7##x,_n3##y,z,v)), \
philpem@5 3726 (I[231] = (img)(_n7##x,_n4##y,z,v)), \
philpem@5 3727 (I[249] = (img)(_n7##x,_n5##y,z,v)), \
philpem@5 3728 (I[267] = (img)(_n7##x,_n6##y,z,v)), \
philpem@5 3729 (I[285] = (img)(_n7##x,_n7##y,z,v)), \
philpem@5 3730 (I[303] = (img)(_n7##x,_n8##y,z,v)), \
philpem@5 3731 (I[321] = (img)(_n7##x,_n9##y,z,v)), \
philpem@5 3732 (I[16] = (img)(_n8##x,_p8##y,z,v)), \
philpem@5 3733 (I[34] = (img)(_n8##x,_p7##y,z,v)), \
philpem@5 3734 (I[52] = (img)(_n8##x,_p6##y,z,v)), \
philpem@5 3735 (I[70] = (img)(_n8##x,_p5##y,z,v)), \
philpem@5 3736 (I[88] = (img)(_n8##x,_p4##y,z,v)), \
philpem@5 3737 (I[106] = (img)(_n8##x,_p3##y,z,v)), \
philpem@5 3738 (I[124] = (img)(_n8##x,_p2##y,z,v)), \
philpem@5 3739 (I[142] = (img)(_n8##x,_p1##y,z,v)), \
philpem@5 3740 (I[160] = (img)(_n8##x,y,z,v)), \
philpem@5 3741 (I[178] = (img)(_n8##x,_n1##y,z,v)), \
philpem@5 3742 (I[196] = (img)(_n8##x,_n2##y,z,v)), \
philpem@5 3743 (I[214] = (img)(_n8##x,_n3##y,z,v)), \
philpem@5 3744 (I[232] = (img)(_n8##x,_n4##y,z,v)), \
philpem@5 3745 (I[250] = (img)(_n8##x,_n5##y,z,v)), \
philpem@5 3746 (I[268] = (img)(_n8##x,_n6##y,z,v)), \
philpem@5 3747 (I[286] = (img)(_n8##x,_n7##y,z,v)), \
philpem@5 3748 (I[304] = (img)(_n8##x,_n8##y,z,v)), \
philpem@5 3749 (I[322] = (img)(_n8##x,_n9##y,z,v)), \
philpem@5 3750 9>=((img).width)?(int)((img).width)-1:9); \
philpem@5 3751 (_n9##x<(int)((img).width) && ( \
philpem@5 3752 (I[17] = (img)(_n9##x,_p8##y,z,v)), \
philpem@5 3753 (I[35] = (img)(_n9##x,_p7##y,z,v)), \
philpem@5 3754 (I[53] = (img)(_n9##x,_p6##y,z,v)), \
philpem@5 3755 (I[71] = (img)(_n9##x,_p5##y,z,v)), \
philpem@5 3756 (I[89] = (img)(_n9##x,_p4##y,z,v)), \
philpem@5 3757 (I[107] = (img)(_n9##x,_p3##y,z,v)), \
philpem@5 3758 (I[125] = (img)(_n9##x,_p2##y,z,v)), \
philpem@5 3759 (I[143] = (img)(_n9##x,_p1##y,z,v)), \
philpem@5 3760 (I[161] = (img)(_n9##x,y,z,v)), \
philpem@5 3761 (I[179] = (img)(_n9##x,_n1##y,z,v)), \
philpem@5 3762 (I[197] = (img)(_n9##x,_n2##y,z,v)), \
philpem@5 3763 (I[215] = (img)(_n9##x,_n3##y,z,v)), \
philpem@5 3764 (I[233] = (img)(_n9##x,_n4##y,z,v)), \
philpem@5 3765 (I[251] = (img)(_n9##x,_n5##y,z,v)), \
philpem@5 3766 (I[269] = (img)(_n9##x,_n6##y,z,v)), \
philpem@5 3767 (I[287] = (img)(_n9##x,_n7##y,z,v)), \
philpem@5 3768 (I[305] = (img)(_n9##x,_n8##y,z,v)), \
philpem@5 3769 (I[323] = (img)(_n9##x,_n9##y,z,v)),1)) || \
philpem@5 3770 _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
philpem@5 3771 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], \
philpem@5 3772 I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \
philpem@5 3773 I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], \
philpem@5 3774 I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
philpem@5 3775 I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
philpem@5 3776 I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \
philpem@5 3777 I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
philpem@5 3778 I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
philpem@5 3779 I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], \
philpem@5 3780 I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
philpem@5 3781 I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], \
philpem@5 3782 I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
philpem@5 3783 I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], \
philpem@5 3784 I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \
philpem@5 3785 I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], \
philpem@5 3786 I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \
philpem@5 3787 I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], \
philpem@5 3788 I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], \
philpem@5 3789 _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x)
philpem@5 3790
philpem@5 3791 #define cimg_for_in18x18(img,x0,y0,x1,y1,x,y,z,v,I) \
philpem@5 3792 cimg_for_in18((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
philpem@5 3793 _p8##x = x-8<0?0:x-8, \
philpem@5 3794 _p7##x = x-7<0?0:x-7, \
philpem@5 3795 _p6##x = x-6<0?0:x-6, \
philpem@5 3796 _p5##x = x-5<0?0:x-5, \
philpem@5 3797 _p4##x = x-4<0?0:x-4, \
philpem@5 3798 _p3##x = x-3<0?0:x-3, \
philpem@5 3799 _p2##x = x-2<0?0:x-2, \
philpem@5 3800 _p1##x = x-1<0?0:x-1, \
philpem@5 3801 _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \
philpem@5 3802 _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \
philpem@5 3803 _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \
philpem@5 3804 _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \
philpem@5 3805 _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \
philpem@5 3806 _n6##x = x+6>=(int)((img).width)?(int)((img).width)-1:x+6, \
philpem@5 3807 _n7##x = x+7>=(int)((img).width)?(int)((img).width)-1:x+7, \
philpem@5 3808 _n8##x = x+8>=(int)((img).width)?(int)((img).width)-1:x+8, \
philpem@5 3809 _n9##x = (int)( \
philpem@5 3810 (I[0] = (img)(_p8##x,_p8##y,z,v)), \
philpem@5 3811 (I[18] = (img)(_p8##x,_p7##y,z,v)), \
philpem@5 3812 (I[36] = (img)(_p8##x,_p6##y,z,v)), \
philpem@5 3813 (I[54] = (img)(_p8##x,_p5##y,z,v)), \
philpem@5 3814 (I[72] = (img)(_p8##x,_p4##y,z,v)), \
philpem@5 3815 (I[90] = (img)(_p8##x,_p3##y,z,v)), \
philpem@5 3816 (I[108] = (img)(_p8##x,_p2##y,z,v)), \
philpem@5 3817 (I[126] = (img)(_p8##x,_p1##y,z,v)), \
philpem@5 3818 (I[144] = (img)(_p8##x,y,z,v)), \
philpem@5 3819 (I[162] = (img)(_p8##x,_n1##y,z,v)), \
philpem@5 3820 (I[180] = (img)(_p8##x,_n2##y,z,v)), \
philpem@5 3821 (I[198] = (img)(_p8##x,_n3##y,z,v)), \
philpem@5 3822 (I[216] = (img)(_p8##x,_n4##y,z,v)), \
philpem@5 3823 (I[234] = (img)(_p8##x,_n5##y,z,v)), \
philpem@5 3824 (I[252] = (img)(_p8##x,_n6##y,z,v)), \
philpem@5 3825 (I[270] = (img)(_p8##x,_n7##y,z,v)), \
philpem@5 3826 (I[288] = (img)(_p8##x,_n8##y,z,v)), \
philpem@5 3827 (I[306] = (img)(_p8##x,_n9##y,z,v)), \
philpem@5 3828 (I[1] = (img)(_p7##x,_p8##y,z,v)), \
philpem@5 3829 (I[19] = (img)(_p7##x,_p7##y,z,v)), \
philpem@5 3830 (I[37] = (img)(_p7##x,_p6##y,z,v)), \
philpem@5 3831 (I[55] = (img)(_p7##x,_p5##y,z,v)), \
philpem@5 3832 (I[73] = (img)(_p7##x,_p4##y,z,v)), \
philpem@5 3833 (I[91] = (img)(_p7##x,_p3##y,z,v)), \
philpem@5 3834 (I[109] = (img)(_p7##x,_p2##y,z,v)), \
philpem@5 3835 (I[127] = (img)(_p7##x,_p1##y,z,v)), \
philpem@5 3836 (I[145] = (img)(_p7##x,y,z,v)), \
philpem@5 3837 (I[163] = (img)(_p7##x,_n1##y,z,v)), \
philpem@5 3838 (I[181] = (img)(_p7##x,_n2##y,z,v)), \
philpem@5 3839 (I[199] = (img)(_p7##x,_n3##y,z,v)), \
philpem@5 3840 (I[217] = (img)(_p7##x,_n4##y,z,v)), \
philpem@5 3841 (I[235] = (img)(_p7##x,_n5##y,z,v)), \
philpem@5 3842 (I[253] = (img)(_p7##x,_n6##y,z,v)), \
philpem@5 3843 (I[271] = (img)(_p7##x,_n7##y,z,v)), \
philpem@5 3844 (I[289] = (img)(_p7##x,_n8##y,z,v)), \
philpem@5 3845 (I[307] = (img)(_p7##x,_n9##y,z,v)), \
philpem@5 3846 (I[2] = (img)(_p6##x,_p8##y,z,v)), \
philpem@5 3847 (I[20] = (img)(_p6##x,_p7##y,z,v)), \
philpem@5 3848 (I[38] = (img)(_p6##x,_p6##y,z,v)), \
philpem@5 3849 (I[56] = (img)(_p6##x,_p5##y,z,v)), \
philpem@5 3850 (I[74] = (img)(_p6##x,_p4##y,z,v)), \
philpem@5 3851 (I[92] = (img)(_p6##x,_p3##y,z,v)), \
philpem@5 3852 (I[110] = (img)(_p6##x,_p2##y,z,v)), \
philpem@5 3853 (I[128] = (img)(_p6##x,_p1##y,z,v)), \
philpem@5 3854 (I[146] = (img)(_p6##x,y,z,v)), \
philpem@5 3855 (I[164] = (img)(_p6##x,_n1##y,z,v)), \
philpem@5 3856 (I[182] = (img)(_p6##x,_n2##y,z,v)), \
philpem@5 3857 (I[200] = (img)(_p6##x,_n3##y,z,v)), \
philpem@5 3858 (I[218] = (img)(_p6##x,_n4##y,z,v)), \
philpem@5 3859 (I[236] = (img)(_p6##x,_n5##y,z,v)), \
philpem@5 3860 (I[254] = (img)(_p6##x,_n6##y,z,v)), \
philpem@5 3861 (I[272] = (img)(_p6##x,_n7##y,z,v)), \
philpem@5 3862 (I[290] = (img)(_p6##x,_n8##y,z,v)), \
philpem@5 3863 (I[308] = (img)(_p6##x,_n9##y,z,v)), \
philpem@5 3864 (I[3] = (img)(_p5##x,_p8##y,z,v)), \
philpem@5 3865 (I[21] = (img)(_p5##x,_p7##y,z,v)), \
philpem@5 3866 (I[39] = (img)(_p5##x,_p6##y,z,v)), \
philpem@5 3867 (I[57] = (img)(_p5##x,_p5##y,z,v)), \
philpem@5 3868 (I[75] = (img)(_p5##x,_p4##y,z,v)), \
philpem@5 3869 (I[93] = (img)(_p5##x,_p3##y,z,v)), \
philpem@5 3870 (I[111] = (img)(_p5##x,_p2##y,z,v)), \
philpem@5 3871 (I[129] = (img)(_p5##x,_p1##y,z,v)), \
philpem@5 3872 (I[147] = (img)(_p5##x,y,z,v)), \
philpem@5 3873 (I[165] = (img)(_p5##x,_n1##y,z,v)), \
philpem@5 3874 (I[183] = (img)(_p5##x,_n2##y,z,v)), \
philpem@5 3875 (I[201] = (img)(_p5##x,_n3##y,z,v)), \
philpem@5 3876 (I[219] = (img)(_p5##x,_n4##y,z,v)), \
philpem@5 3877 (I[237] = (img)(_p5##x,_n5##y,z,v)), \
philpem@5 3878 (I[255] = (img)(_p5##x,_n6##y,z,v)), \
philpem@5 3879 (I[273] = (img)(_p5##x,_n7##y,z,v)), \
philpem@5 3880 (I[291] = (img)(_p5##x,_n8##y,z,v)), \
philpem@5 3881 (I[309] = (img)(_p5##x,_n9##y,z,v)), \
philpem@5 3882 (I[4] = (img)(_p4##x,_p8##y,z,v)), \
philpem@5 3883 (I[22] = (img)(_p4##x,_p7##y,z,v)), \
philpem@5 3884 (I[40] = (img)(_p4##x,_p6##y,z,v)), \
philpem@5 3885 (I[58] = (img)(_p4##x,_p5##y,z,v)), \
philpem@5 3886 (I[76] = (img)(_p4##x,_p4##y,z,v)), \
philpem@5 3887 (I[94] = (img)(_p4##x,_p3##y,z,v)), \
philpem@5 3888 (I[112] = (img)(_p4##x,_p2##y,z,v)), \
philpem@5 3889 (I[130] = (img)(_p4##x,_p1##y,z,v)), \
philpem@5 3890 (I[148] = (img)(_p4##x,y,z,v)), \
philpem@5 3891 (I[166] = (img)(_p4##x,_n1##y,z,v)), \
philpem@5 3892 (I[184] = (img)(_p4##x,_n2##y,z,v)), \
philpem@5 3893 (I[202] = (img)(_p4##x,_n3##y,z,v)), \
philpem@5 3894 (I[220] = (img)(_p4##x,_n4##y,z,v)), \
philpem@5 3895 (I[238] = (img)(_p4##x,_n5##y,z,v)), \
philpem@5 3896 (I[256] = (img)(_p4##x,_n6##y,z,v)), \
philpem@5 3897 (I[274] = (img)(_p4##x,_n7##y,z,v)), \
philpem@5 3898 (I[292] = (img)(_p4##x,_n8##y,z,v)), \
philpem@5 3899 (I[310] = (img)(_p4##x,_n9##y,z,v)), \
philpem@5 3900 (I[5] = (img)(_p3##x,_p8##y,z,v)), \
philpem@5 3901 (I[23] = (img)(_p3##x,_p7##y,z,v)), \
philpem@5 3902 (I[41] = (img)(_p3##x,_p6##y,z,v)), \
philpem@5 3903 (I[59] = (img)(_p3##x,_p5##y,z,v)), \
philpem@5 3904 (I[77] = (img)(_p3##x,_p4##y,z,v)), \
philpem@5 3905 (I[95] = (img)(_p3##x,_p3##y,z,v)), \
philpem@5 3906 (I[113] = (img)(_p3##x,_p2##y,z,v)), \
philpem@5 3907 (I[131] = (img)(_p3##x,_p1##y,z,v)), \
philpem@5 3908 (I[149] = (img)(_p3##x,y,z,v)), \
philpem@5 3909 (I[167] = (img)(_p3##x,_n1##y,z,v)), \
philpem@5 3910 (I[185] = (img)(_p3##x,_n2##y,z,v)), \
philpem@5 3911 (I[203] = (img)(_p3##x,_n3##y,z,v)), \
philpem@5 3912 (I[221] = (img)(_p3##x,_n4##y,z,v)), \
philpem@5 3913 (I[239] = (img)(_p3##x,_n5##y,z,v)), \
philpem@5 3914 (I[257] = (img)(_p3##x,_n6##y,z,v)), \
philpem@5 3915 (I[275] = (img)(_p3##x,_n7##y,z,v)), \
philpem@5 3916 (I[293] = (img)(_p3##x,_n8##y,z,v)), \
philpem@5 3917 (I[311] = (img)(_p3##x,_n9##y,z,v)), \
philpem@5 3918 (I[6] = (img)(_p2##x,_p8##y,z,v)), \
philpem@5 3919 (I[24] = (img)(_p2##x,_p7##y,z,v)), \
philpem@5 3920 (I[42] = (img)(_p2##x,_p6##y,z,v)), \
philpem@5 3921 (I[60] = (img)(_p2##x,_p5##y,z,v)), \
philpem@5 3922 (I[78] = (img)(_p2##x,_p4##y,z,v)), \
philpem@5 3923 (I[96] = (img)(_p2##x,_p3##y,z,v)), \
philpem@5 3924 (I[114] = (img)(_p2##x,_p2##y,z,v)), \
philpem@5 3925 (I[132] = (img)(_p2##x,_p1##y,z,v)), \
philpem@5 3926 (I[150] = (img)(_p2##x,y,z,v)), \
philpem@5 3927 (I[168] = (img)(_p2##x,_n1##y,z,v)), \
philpem@5 3928 (I[186] = (img)(_p2##x,_n2##y,z,v)), \
philpem@5 3929 (I[204] = (img)(_p2##x,_n3##y,z,v)), \
philpem@5 3930 (I[222] = (img)(_p2##x,_n4##y,z,v)), \
philpem@5 3931 (I[240] = (img)(_p2##x,_n5##y,z,v)), \
philpem@5 3932 (I[258] = (img)(_p2##x,_n6##y,z,v)), \
philpem@5 3933 (I[276] = (img)(_p2##x,_n7##y,z,v)), \
philpem@5 3934 (I[294] = (img)(_p2##x,_n8##y,z,v)), \
philpem@5 3935 (I[312] = (img)(_p2##x,_n9##y,z,v)), \
philpem@5 3936 (I[7] = (img)(_p1##x,_p8##y,z,v)), \
philpem@5 3937 (I[25] = (img)(_p1##x,_p7##y,z,v)), \
philpem@5 3938 (I[43] = (img)(_p1##x,_p6##y,z,v)), \
philpem@5 3939 (I[61] = (img)(_p1##x,_p5##y,z,v)), \
philpem@5 3940 (I[79] = (img)(_p1##x,_p4##y,z,v)), \
philpem@5 3941 (I[97] = (img)(_p1##x,_p3##y,z,v)), \
philpem@5 3942 (I[115] = (img)(_p1##x,_p2##y,z,v)), \
philpem@5 3943 (I[133] = (img)(_p1##x,_p1##y,z,v)), \
philpem@5 3944 (I[151] = (img)(_p1##x,y,z,v)), \
philpem@5 3945 (I[169] = (img)(_p1##x,_n1##y,z,v)), \
philpem@5 3946 (I[187] = (img)(_p1##x,_n2##y,z,v)), \
philpem@5 3947 (I[205] = (img)(_p1##x,_n3##y,z,v)), \
philpem@5 3948 (I[223] = (img)(_p1##x,_n4##y,z,v)), \
philpem@5 3949 (I[241] = (img)(_p1##x,_n5##y,z,v)), \
philpem@5 3950 (I[259] = (img)(_p1##x,_n6##y,z,v)), \
philpem@5 3951 (I[277] = (img)(_p1##x,_n7##y,z,v)), \
philpem@5 3952 (I[295] = (img)(_p1##x,_n8##y,z,v)), \
philpem@5 3953 (I[313] = (img)(_p1##x,_n9##y,z,v)), \
philpem@5 3954 (I[8] = (img)(x,_p8##y,z,v)), \
philpem@5 3955 (I[26] = (img)(x,_p7##y,z,v)), \
philpem@5 3956 (I[44] = (img)(x,_p6##y,z,v)), \
philpem@5 3957 (I[62] = (img)(x,_p5##y,z,v)), \
philpem@5 3958 (I[80] = (img)(x,_p4##y,z,v)), \
philpem@5 3959 (I[98] = (img)(x,_p3##y,z,v)), \
philpem@5 3960 (I[116] = (img)(x,_p2##y,z,v)), \
philpem@5 3961 (I[134] = (img)(x,_p1##y,z,v)), \
philpem@5 3962 (I[152] = (img)(x,y,z,v)), \
philpem@5 3963 (I[170] = (img)(x,_n1##y,z,v)), \
philpem@5 3964 (I[188] = (img)(x,_n2##y,z,v)), \
philpem@5 3965 (I[206] = (img)(x,_n3##y,z,v)), \
philpem@5 3966 (I[224] = (img)(x,_n4##y,z,v)), \
philpem@5 3967 (I[242] = (img)(x,_n5##y,z,v)), \
philpem@5 3968 (I[260] = (img)(x,_n6##y,z,v)), \
philpem@5 3969 (I[278] = (img)(x,_n7##y,z,v)), \
philpem@5 3970 (I[296] = (img)(x,_n8##y,z,v)), \
philpem@5 3971 (I[314] = (img)(x,_n9##y,z,v)), \
philpem@5 3972 (I[9] = (img)(_n1##x,_p8##y,z,v)), \
philpem@5 3973 (I[27] = (img)(_n1##x,_p7##y,z,v)), \
philpem@5 3974 (I[45] = (img)(_n1##x,_p6##y,z,v)), \
philpem@5 3975 (I[63] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 3976 (I[81] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 3977 (I[99] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 3978 (I[117] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 3979 (I[135] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 3980 (I[153] = (img)(_n1##x,y,z,v)), \
philpem@5 3981 (I[171] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 3982 (I[189] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 3983 (I[207] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 3984 (I[225] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 3985 (I[243] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 3986 (I[261] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 3987 (I[279] = (img)(_n1##x,_n7##y,z,v)), \
philpem@5 3988 (I[297] = (img)(_n1##x,_n8##y,z,v)), \
philpem@5 3989 (I[315] = (img)(_n1##x,_n9##y,z,v)), \
philpem@5 3990 (I[10] = (img)(_n2##x,_p8##y,z,v)), \
philpem@5 3991 (I[28] = (img)(_n2##x,_p7##y,z,v)), \
philpem@5 3992 (I[46] = (img)(_n2##x,_p6##y,z,v)), \
philpem@5 3993 (I[64] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 3994 (I[82] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 3995 (I[100] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 3996 (I[118] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 3997 (I[136] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 3998 (I[154] = (img)(_n2##x,y,z,v)), \
philpem@5 3999 (I[172] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 4000 (I[190] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 4001 (I[208] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 4002 (I[226] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 4003 (I[244] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 4004 (I[262] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 4005 (I[280] = (img)(_n2##x,_n7##y,z,v)), \
philpem@5 4006 (I[298] = (img)(_n2##x,_n8##y,z,v)), \
philpem@5 4007 (I[316] = (img)(_n2##x,_n9##y,z,v)), \
philpem@5 4008 (I[11] = (img)(_n3##x,_p8##y,z,v)), \
philpem@5 4009 (I[29] = (img)(_n3##x,_p7##y,z,v)), \
philpem@5 4010 (I[47] = (img)(_n3##x,_p6##y,z,v)), \
philpem@5 4011 (I[65] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 4012 (I[83] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 4013 (I[101] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 4014 (I[119] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 4015 (I[137] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 4016 (I[155] = (img)(_n3##x,y,z,v)), \
philpem@5 4017 (I[173] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 4018 (I[191] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 4019 (I[209] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 4020 (I[227] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 4021 (I[245] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 4022 (I[263] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 4023 (I[281] = (img)(_n3##x,_n7##y,z,v)), \
philpem@5 4024 (I[299] = (img)(_n3##x,_n8##y,z,v)), \
philpem@5 4025 (I[317] = (img)(_n3##x,_n9##y,z,v)), \
philpem@5 4026 (I[12] = (img)(_n4##x,_p8##y,z,v)), \
philpem@5 4027 (I[30] = (img)(_n4##x,_p7##y,z,v)), \
philpem@5 4028 (I[48] = (img)(_n4##x,_p6##y,z,v)), \
philpem@5 4029 (I[66] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 4030 (I[84] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 4031 (I[102] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 4032 (I[120] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 4033 (I[138] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 4034 (I[156] = (img)(_n4##x,y,z,v)), \
philpem@5 4035 (I[174] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 4036 (I[192] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 4037 (I[210] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 4038 (I[228] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 4039 (I[246] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 4040 (I[264] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 4041 (I[282] = (img)(_n4##x,_n7##y,z,v)), \
philpem@5 4042 (I[300] = (img)(_n4##x,_n8##y,z,v)), \
philpem@5 4043 (I[318] = (img)(_n4##x,_n9##y,z,v)), \
philpem@5 4044 (I[13] = (img)(_n5##x,_p8##y,z,v)), \
philpem@5 4045 (I[31] = (img)(_n5##x,_p7##y,z,v)), \
philpem@5 4046 (I[49] = (img)(_n5##x,_p6##y,z,v)), \
philpem@5 4047 (I[67] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 4048 (I[85] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 4049 (I[103] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 4050 (I[121] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 4051 (I[139] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 4052 (I[157] = (img)(_n5##x,y,z,v)), \
philpem@5 4053 (I[175] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 4054 (I[193] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 4055 (I[211] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 4056 (I[229] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 4057 (I[247] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 4058 (I[265] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 4059 (I[283] = (img)(_n5##x,_n7##y,z,v)), \
philpem@5 4060 (I[301] = (img)(_n5##x,_n8##y,z,v)), \
philpem@5 4061 (I[319] = (img)(_n5##x,_n9##y,z,v)), \
philpem@5 4062 (I[14] = (img)(_n6##x,_p8##y,z,v)), \
philpem@5 4063 (I[32] = (img)(_n6##x,_p7##y,z,v)), \
philpem@5 4064 (I[50] = (img)(_n6##x,_p6##y,z,v)), \
philpem@5 4065 (I[68] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 4066 (I[86] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 4067 (I[104] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 4068 (I[122] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 4069 (I[140] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 4070 (I[158] = (img)(_n6##x,y,z,v)), \
philpem@5 4071 (I[176] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 4072 (I[194] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 4073 (I[212] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 4074 (I[230] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 4075 (I[248] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 4076 (I[266] = (img)(_n6##x,_n6##y,z,v)), \
philpem@5 4077 (I[284] = (img)(_n6##x,_n7##y,z,v)), \
philpem@5 4078 (I[302] = (img)(_n6##x,_n8##y,z,v)), \
philpem@5 4079 (I[320] = (img)(_n6##x,_n9##y,z,v)), \
philpem@5 4080 (I[15] = (img)(_n7##x,_p8##y,z,v)), \
philpem@5 4081 (I[33] = (img)(_n7##x,_p7##y,z,v)), \
philpem@5 4082 (I[51] = (img)(_n7##x,_p6##y,z,v)), \
philpem@5 4083 (I[69] = (img)(_n7##x,_p5##y,z,v)), \
philpem@5 4084 (I[87] = (img)(_n7##x,_p4##y,z,v)), \
philpem@5 4085 (I[105] = (img)(_n7##x,_p3##y,z,v)), \
philpem@5 4086 (I[123] = (img)(_n7##x,_p2##y,z,v)), \
philpem@5 4087 (I[141] = (img)(_n7##x,_p1##y,z,v)), \
philpem@5 4088 (I[159] = (img)(_n7##x,y,z,v)), \
philpem@5 4089 (I[177] = (img)(_n7##x,_n1##y,z,v)), \
philpem@5 4090 (I[195] = (img)(_n7##x,_n2##y,z,v)), \
philpem@5 4091 (I[213] = (img)(_n7##x,_n3##y,z,v)), \
philpem@5 4092 (I[231] = (img)(_n7##x,_n4##y,z,v)), \
philpem@5 4093 (I[249] = (img)(_n7##x,_n5##y,z,v)), \
philpem@5 4094 (I[267] = (img)(_n7##x,_n6##y,z,v)), \
philpem@5 4095 (I[285] = (img)(_n7##x,_n7##y,z,v)), \
philpem@5 4096 (I[303] = (img)(_n7##x,_n8##y,z,v)), \
philpem@5 4097 (I[321] = (img)(_n7##x,_n9##y,z,v)), \
philpem@5 4098 (I[16] = (img)(_n8##x,_p8##y,z,v)), \
philpem@5 4099 (I[34] = (img)(_n8##x,_p7##y,z,v)), \
philpem@5 4100 (I[52] = (img)(_n8##x,_p6##y,z,v)), \
philpem@5 4101 (I[70] = (img)(_n8##x,_p5##y,z,v)), \
philpem@5 4102 (I[88] = (img)(_n8##x,_p4##y,z,v)), \
philpem@5 4103 (I[106] = (img)(_n8##x,_p3##y,z,v)), \
philpem@5 4104 (I[124] = (img)(_n8##x,_p2##y,z,v)), \
philpem@5 4105 (I[142] = (img)(_n8##x,_p1##y,z,v)), \
philpem@5 4106 (I[160] = (img)(_n8##x,y,z,v)), \
philpem@5 4107 (I[178] = (img)(_n8##x,_n1##y,z,v)), \
philpem@5 4108 (I[196] = (img)(_n8##x,_n2##y,z,v)), \
philpem@5 4109 (I[214] = (img)(_n8##x,_n3##y,z,v)), \
philpem@5 4110 (I[232] = (img)(_n8##x,_n4##y,z,v)), \
philpem@5 4111 (I[250] = (img)(_n8##x,_n5##y,z,v)), \
philpem@5 4112 (I[268] = (img)(_n8##x,_n6##y,z,v)), \
philpem@5 4113 (I[286] = (img)(_n8##x,_n7##y,z,v)), \
philpem@5 4114 (I[304] = (img)(_n8##x,_n8##y,z,v)), \
philpem@5 4115 (I[322] = (img)(_n8##x,_n9##y,z,v)), \
philpem@5 4116 x+9>=(int)((img).width)?(int)((img).width)-1:x+9); \
philpem@5 4117 x<=(int)(x1) && ((_n9##x<(int)((img).width) && ( \
philpem@5 4118 (I[17] = (img)(_n9##x,_p8##y,z,v)), \
philpem@5 4119 (I[35] = (img)(_n9##x,_p7##y,z,v)), \
philpem@5 4120 (I[53] = (img)(_n9##x,_p6##y,z,v)), \
philpem@5 4121 (I[71] = (img)(_n9##x,_p5##y,z,v)), \
philpem@5 4122 (I[89] = (img)(_n9##x,_p4##y,z,v)), \
philpem@5 4123 (I[107] = (img)(_n9##x,_p3##y,z,v)), \
philpem@5 4124 (I[125] = (img)(_n9##x,_p2##y,z,v)), \
philpem@5 4125 (I[143] = (img)(_n9##x,_p1##y,z,v)), \
philpem@5 4126 (I[161] = (img)(_n9##x,y,z,v)), \
philpem@5 4127 (I[179] = (img)(_n9##x,_n1##y,z,v)), \
philpem@5 4128 (I[197] = (img)(_n9##x,_n2##y,z,v)), \
philpem@5 4129 (I[215] = (img)(_n9##x,_n3##y,z,v)), \
philpem@5 4130 (I[233] = (img)(_n9##x,_n4##y,z,v)), \
philpem@5 4131 (I[251] = (img)(_n9##x,_n5##y,z,v)), \
philpem@5 4132 (I[269] = (img)(_n9##x,_n6##y,z,v)), \
philpem@5 4133 (I[287] = (img)(_n9##x,_n7##y,z,v)), \
philpem@5 4134 (I[305] = (img)(_n9##x,_n8##y,z,v)), \
philpem@5 4135 (I[323] = (img)(_n9##x,_n9##y,z,v)),1)) || \
philpem@5 4136 _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
philpem@5 4137 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], \
philpem@5 4138 I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \
philpem@5 4139 I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], \
philpem@5 4140 I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
philpem@5 4141 I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
philpem@5 4142 I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \
philpem@5 4143 I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
philpem@5 4144 I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
philpem@5 4145 I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], \
philpem@5 4146 I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
philpem@5 4147 I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], \
philpem@5 4148 I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
philpem@5 4149 I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], \
philpem@5 4150 I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \
philpem@5 4151 I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], \
philpem@5 4152 I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \
philpem@5 4153 I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], \
philpem@5 4154 I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], \
philpem@5 4155 _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x)
philpem@5 4156
philpem@5 4157 #define cimg_get18x18(img,x,y,z,v,I) \
philpem@5 4158 I[0] = (img)(_p8##x,_p8##y,z,v), I[1] = (img)(_p7##x,_p8##y,z,v), I[2] = (img)(_p6##x,_p8##y,z,v), I[3] = (img)(_p5##x,_p8##y,z,v), I[4] = (img)(_p4##x,_p8##y,z,v), I[5] = (img)(_p3##x,_p8##y,z,v), I[6] = (img)(_p2##x,_p8##y,z,v), I[7] = (img)(_p1##x,_p8##y,z,v), I[8] = (img)(x,_p8##y,z,v), I[9] = (img)(_n1##x,_p8##y,z,v), I[10] = (img)(_n2##x,_p8##y,z,v), I[11] = (img)(_n3##x,_p8##y,z,v), I[12] = (img)(_n4##x,_p8##y,z,v), I[13] = (img)(_n5##x,_p8##y,z,v), I[14] = (img)(_n6##x,_p8##y,z,v), I[15] = (img)(_n7##x,_p8##y,z,v), I[16] = (img)(_n8##x,_p8##y,z,v), I[17] = (img)(_n9##x,_p8##y,z,v), \
philpem@5 4159 I[18] = (img)(_p8##x,_p7##y,z,v), I[19] = (img)(_p7##x,_p7##y,z,v), I[20] = (img)(_p6##x,_p7##y,z,v), I[21] = (img)(_p5##x,_p7##y,z,v), I[22] = (img)(_p4##x,_p7##y,z,v), I[23] = (img)(_p3##x,_p7##y,z,v), I[24] = (img)(_p2##x,_p7##y,z,v), I[25] = (img)(_p1##x,_p7##y,z,v), I[26] = (img)(x,_p7##y,z,v), I[27] = (img)(_n1##x,_p7##y,z,v), I[28] = (img)(_n2##x,_p7##y,z,v), I[29] = (img)(_n3##x,_p7##y,z,v), I[30] = (img)(_n4##x,_p7##y,z,v), I[31] = (img)(_n5##x,_p7##y,z,v), I[32] = (img)(_n6##x,_p7##y,z,v), I[33] = (img)(_n7##x,_p7##y,z,v), I[34] = (img)(_n8##x,_p7##y,z,v), I[35] = (img)(_n9##x,_p7##y,z,v), \
philpem@5 4160 I[36] = (img)(_p8##x,_p6##y,z,v), I[37] = (img)(_p7##x,_p6##y,z,v), I[38] = (img)(_p6##x,_p6##y,z,v), I[39] = (img)(_p5##x,_p6##y,z,v), I[40] = (img)(_p4##x,_p6##y,z,v), I[41] = (img)(_p3##x,_p6##y,z,v), I[42] = (img)(_p2##x,_p6##y,z,v), I[43] = (img)(_p1##x,_p6##y,z,v), I[44] = (img)(x,_p6##y,z,v), I[45] = (img)(_n1##x,_p6##y,z,v), I[46] = (img)(_n2##x,_p6##y,z,v), I[47] = (img)(_n3##x,_p6##y,z,v), I[48] = (img)(_n4##x,_p6##y,z,v), I[49] = (img)(_n5##x,_p6##y,z,v), I[50] = (img)(_n6##x,_p6##y,z,v), I[51] = (img)(_n7##x,_p6##y,z,v), I[52] = (img)(_n8##x,_p6##y,z,v), I[53] = (img)(_n9##x,_p6##y,z,v), \
philpem@5 4161 I[54] = (img)(_p8##x,_p5##y,z,v), I[55] = (img)(_p7##x,_p5##y,z,v), I[56] = (img)(_p6##x,_p5##y,z,v), I[57] = (img)(_p5##x,_p5##y,z,v), I[58] = (img)(_p4##x,_p5##y,z,v), I[59] = (img)(_p3##x,_p5##y,z,v), I[60] = (img)(_p2##x,_p5##y,z,v), I[61] = (img)(_p1##x,_p5##y,z,v), I[62] = (img)(x,_p5##y,z,v), I[63] = (img)(_n1##x,_p5##y,z,v), I[64] = (img)(_n2##x,_p5##y,z,v), I[65] = (img)(_n3##x,_p5##y,z,v), I[66] = (img)(_n4##x,_p5##y,z,v), I[67] = (img)(_n5##x,_p5##y,z,v), I[68] = (img)(_n6##x,_p5##y,z,v), I[69] = (img)(_n7##x,_p5##y,z,v), I[70] = (img)(_n8##x,_p5##y,z,v), I[71] = (img)(_n9##x,_p5##y,z,v), \
philpem@5 4162 I[72] = (img)(_p8##x,_p4##y,z,v), I[73] = (img)(_p7##x,_p4##y,z,v), I[74] = (img)(_p6##x,_p4##y,z,v), I[75] = (img)(_p5##x,_p4##y,z,v), I[76] = (img)(_p4##x,_p4##y,z,v), I[77] = (img)(_p3##x,_p4##y,z,v), I[78] = (img)(_p2##x,_p4##y,z,v), I[79] = (img)(_p1##x,_p4##y,z,v), I[80] = (img)(x,_p4##y,z,v), I[81] = (img)(_n1##x,_p4##y,z,v), I[82] = (img)(_n2##x,_p4##y,z,v), I[83] = (img)(_n3##x,_p4##y,z,v), I[84] = (img)(_n4##x,_p4##y,z,v), I[85] = (img)(_n5##x,_p4##y,z,v), I[86] = (img)(_n6##x,_p4##y,z,v), I[87] = (img)(_n7##x,_p4##y,z,v), I[88] = (img)(_n8##x,_p4##y,z,v), I[89] = (img)(_n9##x,_p4##y,z,v), \
philpem@5 4163 I[90] = (img)(_p8##x,_p3##y,z,v), I[91] = (img)(_p7##x,_p3##y,z,v), I[92] = (img)(_p6##x,_p3##y,z,v), I[93] = (img)(_p5##x,_p3##y,z,v), I[94] = (img)(_p4##x,_p3##y,z,v), I[95] = (img)(_p3##x,_p3##y,z,v), I[96] = (img)(_p2##x,_p3##y,z,v), I[97] = (img)(_p1##x,_p3##y,z,v), I[98] = (img)(x,_p3##y,z,v), I[99] = (img)(_n1##x,_p3##y,z,v), I[100] = (img)(_n2##x,_p3##y,z,v), I[101] = (img)(_n3##x,_p3##y,z,v), I[102] = (img)(_n4##x,_p3##y,z,v), I[103] = (img)(_n5##x,_p3##y,z,v), I[104] = (img)(_n6##x,_p3##y,z,v), I[105] = (img)(_n7##x,_p3##y,z,v), I[106] = (img)(_n8##x,_p3##y,z,v), I[107] = (img)(_n9##x,_p3##y,z,v), \
philpem@5 4164 I[108] = (img)(_p8##x,_p2##y,z,v), I[109] = (img)(_p7##x,_p2##y,z,v), I[110] = (img)(_p6##x,_p2##y,z,v), I[111] = (img)(_p5##x,_p2##y,z,v), I[112] = (img)(_p4##x,_p2##y,z,v), I[113] = (img)(_p3##x,_p2##y,z,v), I[114] = (img)(_p2##x,_p2##y,z,v), I[115] = (img)(_p1##x,_p2##y,z,v), I[116] = (img)(x,_p2##y,z,v), I[117] = (img)(_n1##x,_p2##y,z,v), I[118] = (img)(_n2##x,_p2##y,z,v), I[119] = (img)(_n3##x,_p2##y,z,v), I[120] = (img)(_n4##x,_p2##y,z,v), I[121] = (img)(_n5##x,_p2##y,z,v), I[122] = (img)(_n6##x,_p2##y,z,v), I[123] = (img)(_n7##x,_p2##y,z,v), I[124] = (img)(_n8##x,_p2##y,z,v), I[125] = (img)(_n9##x,_p2##y,z,v), \
philpem@5 4165 I[126] = (img)(_p8##x,_p1##y,z,v), I[127] = (img)(_p7##x,_p1##y,z,v), I[128] = (img)(_p6##x,_p1##y,z,v), I[129] = (img)(_p5##x,_p1##y,z,v), I[130] = (img)(_p4##x,_p1##y,z,v), I[131] = (img)(_p3##x,_p1##y,z,v), I[132] = (img)(_p2##x,_p1##y,z,v), I[133] = (img)(_p1##x,_p1##y,z,v), I[134] = (img)(x,_p1##y,z,v), I[135] = (img)(_n1##x,_p1##y,z,v), I[136] = (img)(_n2##x,_p1##y,z,v), I[137] = (img)(_n3##x,_p1##y,z,v), I[138] = (img)(_n4##x,_p1##y,z,v), I[139] = (img)(_n5##x,_p1##y,z,v), I[140] = (img)(_n6##x,_p1##y,z,v), I[141] = (img)(_n7##x,_p1##y,z,v), I[142] = (img)(_n8##x,_p1##y,z,v), I[143] = (img)(_n9##x,_p1##y,z,v), \
philpem@5 4166 I[144] = (img)(_p8##x,y,z,v), I[145] = (img)(_p7##x,y,z,v), I[146] = (img)(_p6##x,y,z,v), I[147] = (img)(_p5##x,y,z,v), I[148] = (img)(_p4##x,y,z,v), I[149] = (img)(_p3##x,y,z,v), I[150] = (img)(_p2##x,y,z,v), I[151] = (img)(_p1##x,y,z,v), I[152] = (img)(x,y,z,v), I[153] = (img)(_n1##x,y,z,v), I[154] = (img)(_n2##x,y,z,v), I[155] = (img)(_n3##x,y,z,v), I[156] = (img)(_n4##x,y,z,v), I[157] = (img)(_n5##x,y,z,v), I[158] = (img)(_n6##x,y,z,v), I[159] = (img)(_n7##x,y,z,v), I[160] = (img)(_n8##x,y,z,v), I[161] = (img)(_n9##x,y,z,v), \
philpem@5 4167 I[162] = (img)(_p8##x,_n1##y,z,v), I[163] = (img)(_p7##x,_n1##y,z,v), I[164] = (img)(_p6##x,_n1##y,z,v), I[165] = (img)(_p5##x,_n1##y,z,v), I[166] = (img)(_p4##x,_n1##y,z,v), I[167] = (img)(_p3##x,_n1##y,z,v), I[168] = (img)(_p2##x,_n1##y,z,v), I[169] = (img)(_p1##x,_n1##y,z,v), I[170] = (img)(x,_n1##y,z,v), I[171] = (img)(_n1##x,_n1##y,z,v), I[172] = (img)(_n2##x,_n1##y,z,v), I[173] = (img)(_n3##x,_n1##y,z,v), I[174] = (img)(_n4##x,_n1##y,z,v), I[175] = (img)(_n5##x,_n1##y,z,v), I[176] = (img)(_n6##x,_n1##y,z,v), I[177] = (img)(_n7##x,_n1##y,z,v), I[178] = (img)(_n8##x,_n1##y,z,v), I[179] = (img)(_n9##x,_n1##y,z,v), \
philpem@5 4168 I[180] = (img)(_p8##x,_n2##y,z,v), I[181] = (img)(_p7##x,_n2##y,z,v), I[182] = (img)(_p6##x,_n2##y,z,v), I[183] = (img)(_p5##x,_n2##y,z,v), I[184] = (img)(_p4##x,_n2##y,z,v), I[185] = (img)(_p3##x,_n2##y,z,v), I[186] = (img)(_p2##x,_n2##y,z,v), I[187] = (img)(_p1##x,_n2##y,z,v), I[188] = (img)(x,_n2##y,z,v), I[189] = (img)(_n1##x,_n2##y,z,v), I[190] = (img)(_n2##x,_n2##y,z,v), I[191] = (img)(_n3##x,_n2##y,z,v), I[192] = (img)(_n4##x,_n2##y,z,v), I[193] = (img)(_n5##x,_n2##y,z,v), I[194] = (img)(_n6##x,_n2##y,z,v), I[195] = (img)(_n7##x,_n2##y,z,v), I[196] = (img)(_n8##x,_n2##y,z,v), I[197] = (img)(_n9##x,_n2##y,z,v), \
philpem@5 4169 I[198] = (img)(_p8##x,_n3##y,z,v), I[199] = (img)(_p7##x,_n3##y,z,v), I[200] = (img)(_p6##x,_n3##y,z,v), I[201] = (img)(_p5##x,_n3##y,z,v), I[202] = (img)(_p4##x,_n3##y,z,v), I[203] = (img)(_p3##x,_n3##y,z,v), I[204] = (img)(_p2##x,_n3##y,z,v), I[205] = (img)(_p1##x,_n3##y,z,v), I[206] = (img)(x,_n3##y,z,v), I[207] = (img)(_n1##x,_n3##y,z,v), I[208] = (img)(_n2##x,_n3##y,z,v), I[209] = (img)(_n3##x,_n3##y,z,v), I[210] = (img)(_n4##x,_n3##y,z,v), I[211] = (img)(_n5##x,_n3##y,z,v), I[212] = (img)(_n6##x,_n3##y,z,v), I[213] = (img)(_n7##x,_n3##y,z,v), I[214] = (img)(_n8##x,_n3##y,z,v), I[215] = (img)(_n9##x,_n3##y,z,v), \
philpem@5 4170 I[216] = (img)(_p8##x,_n4##y,z,v), I[217] = (img)(_p7##x,_n4##y,z,v), I[218] = (img)(_p6##x,_n4##y,z,v), I[219] = (img)(_p5##x,_n4##y,z,v), I[220] = (img)(_p4##x,_n4##y,z,v), I[221] = (img)(_p3##x,_n4##y,z,v), I[222] = (img)(_p2##x,_n4##y,z,v), I[223] = (img)(_p1##x,_n4##y,z,v), I[224] = (img)(x,_n4##y,z,v), I[225] = (img)(_n1##x,_n4##y,z,v), I[226] = (img)(_n2##x,_n4##y,z,v), I[227] = (img)(_n3##x,_n4##y,z,v), I[228] = (img)(_n4##x,_n4##y,z,v), I[229] = (img)(_n5##x,_n4##y,z,v), I[230] = (img)(_n6##x,_n4##y,z,v), I[231] = (img)(_n7##x,_n4##y,z,v), I[232] = (img)(_n8##x,_n4##y,z,v), I[233] = (img)(_n9##x,_n4##y,z,v), \
philpem@5 4171 I[234] = (img)(_p8##x,_n5##y,z,v), I[235] = (img)(_p7##x,_n5##y,z,v), I[236] = (img)(_p6##x,_n5##y,z,v), I[237] = (img)(_p5##x,_n5##y,z,v), I[238] = (img)(_p4##x,_n5##y,z,v), I[239] = (img)(_p3##x,_n5##y,z,v), I[240] = (img)(_p2##x,_n5##y,z,v), I[241] = (img)(_p1##x,_n5##y,z,v), I[242] = (img)(x,_n5##y,z,v), I[243] = (img)(_n1##x,_n5##y,z,v), I[244] = (img)(_n2##x,_n5##y,z,v), I[245] = (img)(_n3##x,_n5##y,z,v), I[246] = (img)(_n4##x,_n5##y,z,v), I[247] = (img)(_n5##x,_n5##y,z,v), I[248] = (img)(_n6##x,_n5##y,z,v), I[249] = (img)(_n7##x,_n5##y,z,v), I[250] = (img)(_n8##x,_n5##y,z,v), I[251] = (img)(_n9##x,_n5##y,z,v), \
philpem@5 4172 I[252] = (img)(_p8##x,_n6##y,z,v), I[253] = (img)(_p7##x,_n6##y,z,v), I[254] = (img)(_p6##x,_n6##y,z,v), I[255] = (img)(_p5##x,_n6##y,z,v), I[256] = (img)(_p4##x,_n6##y,z,v), I[257] = (img)(_p3##x,_n6##y,z,v), I[258] = (img)(_p2##x,_n6##y,z,v), I[259] = (img)(_p1##x,_n6##y,z,v), I[260] = (img)(x,_n6##y,z,v), I[261] = (img)(_n1##x,_n6##y,z,v), I[262] = (img)(_n2##x,_n6##y,z,v), I[263] = (img)(_n3##x,_n6##y,z,v), I[264] = (img)(_n4##x,_n6##y,z,v), I[265] = (img)(_n5##x,_n6##y,z,v), I[266] = (img)(_n6##x,_n6##y,z,v), I[267] = (img)(_n7##x,_n6##y,z,v), I[268] = (img)(_n8##x,_n6##y,z,v), I[269] = (img)(_n9##x,_n6##y,z,v), \
philpem@5 4173 I[270] = (img)(_p8##x,_n7##y,z,v), I[271] = (img)(_p7##x,_n7##y,z,v), I[272] = (img)(_p6##x,_n7##y,z,v), I[273] = (img)(_p5##x,_n7##y,z,v), I[274] = (img)(_p4##x,_n7##y,z,v), I[275] = (img)(_p3##x,_n7##y,z,v), I[276] = (img)(_p2##x,_n7##y,z,v), I[277] = (img)(_p1##x,_n7##y,z,v), I[278] = (img)(x,_n7##y,z,v), I[279] = (img)(_n1##x,_n7##y,z,v), I[280] = (img)(_n2##x,_n7##y,z,v), I[281] = (img)(_n3##x,_n7##y,z,v), I[282] = (img)(_n4##x,_n7##y,z,v), I[283] = (img)(_n5##x,_n7##y,z,v), I[284] = (img)(_n6##x,_n7##y,z,v), I[285] = (img)(_n7##x,_n7##y,z,v), I[286] = (img)(_n8##x,_n7##y,z,v), I[287] = (img)(_n9##x,_n7##y,z,v), \
philpem@5 4174 I[288] = (img)(_p8##x,_n8##y,z,v), I[289] = (img)(_p7##x,_n8##y,z,v), I[290] = (img)(_p6##x,_n8##y,z,v), I[291] = (img)(_p5##x,_n8##y,z,v), I[292] = (img)(_p4##x,_n8##y,z,v), I[293] = (img)(_p3##x,_n8##y,z,v), I[294] = (img)(_p2##x,_n8##y,z,v), I[295] = (img)(_p1##x,_n8##y,z,v), I[296] = (img)(x,_n8##y,z,v), I[297] = (img)(_n1##x,_n8##y,z,v), I[298] = (img)(_n2##x,_n8##y,z,v), I[299] = (img)(_n3##x,_n8##y,z,v), I[300] = (img)(_n4##x,_n8##y,z,v), I[301] = (img)(_n5##x,_n8##y,z,v), I[302] = (img)(_n6##x,_n8##y,z,v), I[303] = (img)(_n7##x,_n8##y,z,v), I[304] = (img)(_n8##x,_n8##y,z,v), I[305] = (img)(_n9##x,_n8##y,z,v), \
philpem@5 4175 I[306] = (img)(_p8##x,_n9##y,z,v), I[307] = (img)(_p7##x,_n9##y,z,v), I[308] = (img)(_p6##x,_n9##y,z,v), I[309] = (img)(_p5##x,_n9##y,z,v), I[310] = (img)(_p4##x,_n9##y,z,v), I[311] = (img)(_p3##x,_n9##y,z,v), I[312] = (img)(_p2##x,_n9##y,z,v), I[313] = (img)(_p1##x,_n9##y,z,v), I[314] = (img)(x,_n9##y,z,v), I[315] = (img)(_n1##x,_n9##y,z,v), I[316] = (img)(_n2##x,_n9##y,z,v), I[317] = (img)(_n3##x,_n9##y,z,v), I[318] = (img)(_n4##x,_n9##y,z,v), I[319] = (img)(_n5##x,_n9##y,z,v), I[320] = (img)(_n6##x,_n9##y,z,v), I[321] = (img)(_n7##x,_n9##y,z,v), I[322] = (img)(_n8##x,_n9##y,z,v), I[323] = (img)(_n9##x,_n9##y,z,v);
philpem@5 4176
philpem@5 4177 // Define 19x19 loop macros for CImg
philpem@5 4178 //----------------------------------
philpem@5 4179 #define cimg_for19(bound,i) for (int i = 0, \
philpem@5 4180 _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
philpem@5 4181 _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \
philpem@5 4182 _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \
philpem@5 4183 _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \
philpem@5 4184 _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \
philpem@5 4185 _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \
philpem@5 4186 _n6##i = 6>=(int)(bound)?(int)(bound)-1:6, \
philpem@5 4187 _n7##i = 7>=(int)(bound)?(int)(bound)-1:7, \
philpem@5 4188 _n8##i = 8>=(int)(bound)?(int)(bound)-1:8, \
philpem@5 4189 _n9##i = 9>=(int)(bound)?(int)(bound)-1:9; \
philpem@5 4190 _n9##i<(int)(bound) || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 4191 i==(_n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
philpem@5 4192 _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 4193 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i)
philpem@5 4194
philpem@5 4195 #define cimg_for19X(img,x) cimg_for19((img).width,x)
philpem@5 4196 #define cimg_for19Y(img,y) cimg_for19((img).height,y)
philpem@5 4197 #define cimg_for19Z(img,z) cimg_for19((img).depth,z)
philpem@5 4198 #define cimg_for19V(img,v) cimg_for19((img).dim,v)
philpem@5 4199 #define cimg_for19XY(img,x,y) cimg_for19Y(img,y) cimg_for19X(img,x)
philpem@5 4200 #define cimg_for19XZ(img,x,z) cimg_for19Z(img,z) cimg_for19X(img,x)
philpem@5 4201 #define cimg_for19XV(img,x,v) cimg_for19V(img,v) cimg_for19X(img,x)
philpem@5 4202 #define cimg_for19YZ(img,y,z) cimg_for19Z(img,z) cimg_for19Y(img,y)
philpem@5 4203 #define cimg_for19YV(img,y,v) cimg_for19V(img,v) cimg_for19Y(img,y)
philpem@5 4204 #define cimg_for19ZV(img,z,v) cimg_for19V(img,v) cimg_for19Z(img,z)
philpem@5 4205 #define cimg_for19XYZ(img,x,y,z) cimg_for19Z(img,z) cimg_for19XY(img,x,y)
philpem@5 4206 #define cimg_for19XZV(img,x,z,v) cimg_for19V(img,v) cimg_for19XZ(img,x,z)
philpem@5 4207 #define cimg_for19YZV(img,y,z,v) cimg_for19V(img,v) cimg_for19YZ(img,y,z)
philpem@5 4208 #define cimg_for19XYZV(img,x,y,z,v) cimg_for19V(img,v) cimg_for19XYZ(img,x,y,z)
philpem@5 4209
philpem@5 4210 #define cimg_for_in19(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
philpem@5 4211 _p9##i = i-9<0?0:i-9, \
philpem@5 4212 _p8##i = i-8<0?0:i-8, \
philpem@5 4213 _p7##i = i-7<0?0:i-7, \
philpem@5 4214 _p6##i = i-6<0?0:i-6, \
philpem@5 4215 _p5##i = i-5<0?0:i-5, \
philpem@5 4216 _p4##i = i-4<0?0:i-4, \
philpem@5 4217 _p3##i = i-3<0?0:i-3, \
philpem@5 4218 _p2##i = i-2<0?0:i-2, \
philpem@5 4219 _p1##i = i-1<0?0:i-1, \
philpem@5 4220 _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \
philpem@5 4221 _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \
philpem@5 4222 _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \
philpem@5 4223 _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \
philpem@5 4224 _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \
philpem@5 4225 _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6, \
philpem@5 4226 _n7##i = i+7>=(int)(bound)?(int)(bound)-1:i+7, \
philpem@5 4227 _n8##i = i+8>=(int)(bound)?(int)(bound)-1:i+8, \
philpem@5 4228 _n9##i = i+9>=(int)(bound)?(int)(bound)-1:i+9; \
philpem@5 4229 i<=(int)(i1) && (_n9##i<(int)(bound) || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 4230 i==(_n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
philpem@5 4231 _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 4232 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i)
philpem@5 4233
philpem@5 4234 #define cimg_for_in19X(img,x0,x1,x) cimg_for_in19((img).width,x0,x1,x)
philpem@5 4235 #define cimg_for_in19Y(img,y0,y1,y) cimg_for_in19((img).height,y0,y1,y)
philpem@5 4236 #define cimg_for_in19Z(img,z0,z1,z) cimg_for_in19((img).depth,z0,z1,z)
philpem@5 4237 #define cimg_for_in19V(img,v0,v1,v) cimg_for_in19((img).dim,v0,v1,v)
philpem@5 4238 #define cimg_for_in19XY(img,x0,y0,x1,y1,x,y) cimg_for_in19Y(img,y0,y1,y) cimg_for_in19X(img,x0,x1,x)
philpem@5 4239 #define cimg_for_in19XZ(img,x0,z0,x1,z1,x,z) cimg_for_in19Z(img,z0,z1,z) cimg_for_in19X(img,x0,x1,x)
philpem@5 4240 #define cimg_for_in19XV(img,x0,v0,x1,v1,x,v) cimg_for_in19V(img,v0,v1,v) cimg_for_in19X(img,x0,x1,x)
philpem@5 4241 #define cimg_for_in19YZ(img,y0,z0,y1,z1,y,z) cimg_for_in19Z(img,z0,z1,z) cimg_for_in19Y(img,y0,y1,y)
philpem@5 4242 #define cimg_for_in19YV(img,y0,v0,y1,v1,y,v) cimg_for_in19V(img,v0,v1,v) cimg_for_in19Y(img,y0,y1,y)
philpem@5 4243 #define cimg_for_in19ZV(img,z0,v0,z1,v1,z,v) cimg_for_in19V(img,v0,v1,v) cimg_for_in19Z(img,z0,z1,z)
philpem@5 4244 #define cimg_for_in19XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in19Z(img,z0,z1,z) cimg_for_in19XY(img,x0,y0,x1,y1,x,y)
philpem@5 4245 #define cimg_for_in19XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in19V(img,v0,v1,v) cimg_for_in19XZ(img,x0,y0,x1,y1,x,z)
philpem@5 4246 #define cimg_for_in19YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in19V(img,v0,v1,v) cimg_for_in19YZ(img,y0,z0,y1,z1,y,z)
philpem@5 4247 #define cimg_for_in19XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in19V(img,v0,v1,v) cimg_for_in19XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
philpem@5 4248
philpem@5 4249 #define cimg_for19x19(img,x,y,z,v,I) \
philpem@5 4250 cimg_for19((img).height,y) for (int x = 0, \
philpem@5 4251 _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
philpem@5 4252 _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \
philpem@5 4253 _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \
philpem@5 4254 _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \
philpem@5 4255 _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \
philpem@5 4256 _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \
philpem@5 4257 _n6##x = 6>=((img).width)?(int)((img).width)-1:6, \
philpem@5 4258 _n7##x = 7>=((img).width)?(int)((img).width)-1:7, \
philpem@5 4259 _n8##x = 8>=((img).width)?(int)((img).width)-1:8, \
philpem@5 4260 _n9##x = (int)( \
philpem@5 4261 (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = (img)(0,_p9##y,z,v)), \
philpem@5 4262 (I[19] = I[20] = I[21] = I[22] = I[23] = I[24] = I[25] = I[26] = I[27] = I[28] = (img)(0,_p8##y,z,v)), \
philpem@5 4263 (I[38] = I[39] = I[40] = I[41] = I[42] = I[43] = I[44] = I[45] = I[46] = I[47] = (img)(0,_p7##y,z,v)), \
philpem@5 4264 (I[57] = I[58] = I[59] = I[60] = I[61] = I[62] = I[63] = I[64] = I[65] = I[66] = (img)(0,_p6##y,z,v)), \
philpem@5 4265 (I[76] = I[77] = I[78] = I[79] = I[80] = I[81] = I[82] = I[83] = I[84] = I[85] = (img)(0,_p5##y,z,v)), \
philpem@5 4266 (I[95] = I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = I[104] = (img)(0,_p4##y,z,v)), \
philpem@5 4267 (I[114] = I[115] = I[116] = I[117] = I[118] = I[119] = I[120] = I[121] = I[122] = I[123] = (img)(0,_p3##y,z,v)), \
philpem@5 4268 (I[133] = I[134] = I[135] = I[136] = I[137] = I[138] = I[139] = I[140] = I[141] = I[142] = (img)(0,_p2##y,z,v)), \
philpem@5 4269 (I[152] = I[153] = I[154] = I[155] = I[156] = I[157] = I[158] = I[159] = I[160] = I[161] = (img)(0,_p1##y,z,v)), \
philpem@5 4270 (I[171] = I[172] = I[173] = I[174] = I[175] = I[176] = I[177] = I[178] = I[179] = I[180] = (img)(0,y,z,v)), \
philpem@5 4271 (I[190] = I[191] = I[192] = I[193] = I[194] = I[195] = I[196] = I[197] = I[198] = I[199] = (img)(0,_n1##y,z,v)), \
philpem@5 4272 (I[209] = I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = I[216] = I[217] = I[218] = (img)(0,_n2##y,z,v)), \
philpem@5 4273 (I[228] = I[229] = I[230] = I[231] = I[232] = I[233] = I[234] = I[235] = I[236] = I[237] = (img)(0,_n3##y,z,v)), \
philpem@5 4274 (I[247] = I[248] = I[249] = I[250] = I[251] = I[252] = I[253] = I[254] = I[255] = I[256] = (img)(0,_n4##y,z,v)), \
philpem@5 4275 (I[266] = I[267] = I[268] = I[269] = I[270] = I[271] = I[272] = I[273] = I[274] = I[275] = (img)(0,_n5##y,z,v)), \
philpem@5 4276 (I[285] = I[286] = I[287] = I[288] = I[289] = I[290] = I[291] = I[292] = I[293] = I[294] = (img)(0,_n6##y,z,v)), \
philpem@5 4277 (I[304] = I[305] = I[306] = I[307] = I[308] = I[309] = I[310] = I[311] = I[312] = I[313] = (img)(0,_n7##y,z,v)), \
philpem@5 4278 (I[323] = I[324] = I[325] = I[326] = I[327] = I[328] = I[329] = I[330] = I[331] = I[332] = (img)(0,_n8##y,z,v)), \
philpem@5 4279 (I[342] = I[343] = I[344] = I[345] = I[346] = I[347] = I[348] = I[349] = I[350] = I[351] = (img)(0,_n9##y,z,v)), \
philpem@5 4280 (I[10] = (img)(_n1##x,_p9##y,z,v)), \
philpem@5 4281 (I[29] = (img)(_n1##x,_p8##y,z,v)), \
philpem@5 4282 (I[48] = (img)(_n1##x,_p7##y,z,v)), \
philpem@5 4283 (I[67] = (img)(_n1##x,_p6##y,z,v)), \
philpem@5 4284 (I[86] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 4285 (I[105] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 4286 (I[124] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 4287 (I[143] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 4288 (I[162] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 4289 (I[181] = (img)(_n1##x,y,z,v)), \
philpem@5 4290 (I[200] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 4291 (I[219] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 4292 (I[238] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 4293 (I[257] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 4294 (I[276] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 4295 (I[295] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 4296 (I[314] = (img)(_n1##x,_n7##y,z,v)), \
philpem@5 4297 (I[333] = (img)(_n1##x,_n8##y,z,v)), \
philpem@5 4298 (I[352] = (img)(_n1##x,_n9##y,z,v)), \
philpem@5 4299 (I[11] = (img)(_n2##x,_p9##y,z,v)), \
philpem@5 4300 (I[30] = (img)(_n2##x,_p8##y,z,v)), \
philpem@5 4301 (I[49] = (img)(_n2##x,_p7##y,z,v)), \
philpem@5 4302 (I[68] = (img)(_n2##x,_p6##y,z,v)), \
philpem@5 4303 (I[87] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 4304 (I[106] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 4305 (I[125] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 4306 (I[144] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 4307 (I[163] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 4308 (I[182] = (img)(_n2##x,y,z,v)), \
philpem@5 4309 (I[201] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 4310 (I[220] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 4311 (I[239] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 4312 (I[258] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 4313 (I[277] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 4314 (I[296] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 4315 (I[315] = (img)(_n2##x,_n7##y,z,v)), \
philpem@5 4316 (I[334] = (img)(_n2##x,_n8##y,z,v)), \
philpem@5 4317 (I[353] = (img)(_n2##x,_n9##y,z,v)), \
philpem@5 4318 (I[12] = (img)(_n3##x,_p9##y,z,v)), \
philpem@5 4319 (I[31] = (img)(_n3##x,_p8##y,z,v)), \
philpem@5 4320 (I[50] = (img)(_n3##x,_p7##y,z,v)), \
philpem@5 4321 (I[69] = (img)(_n3##x,_p6##y,z,v)), \
philpem@5 4322 (I[88] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 4323 (I[107] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 4324 (I[126] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 4325 (I[145] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 4326 (I[164] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 4327 (I[183] = (img)(_n3##x,y,z,v)), \
philpem@5 4328 (I[202] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 4329 (I[221] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 4330 (I[240] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 4331 (I[259] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 4332 (I[278] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 4333 (I[297] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 4334 (I[316] = (img)(_n3##x,_n7##y,z,v)), \
philpem@5 4335 (I[335] = (img)(_n3##x,_n8##y,z,v)), \
philpem@5 4336 (I[354] = (img)(_n3##x,_n9##y,z,v)), \
philpem@5 4337 (I[13] = (img)(_n4##x,_p9##y,z,v)), \
philpem@5 4338 (I[32] = (img)(_n4##x,_p8##y,z,v)), \
philpem@5 4339 (I[51] = (img)(_n4##x,_p7##y,z,v)), \
philpem@5 4340 (I[70] = (img)(_n4##x,_p6##y,z,v)), \
philpem@5 4341 (I[89] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 4342 (I[108] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 4343 (I[127] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 4344 (I[146] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 4345 (I[165] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 4346 (I[184] = (img)(_n4##x,y,z,v)), \
philpem@5 4347 (I[203] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 4348 (I[222] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 4349 (I[241] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 4350 (I[260] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 4351 (I[279] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 4352 (I[298] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 4353 (I[317] = (img)(_n4##x,_n7##y,z,v)), \
philpem@5 4354 (I[336] = (img)(_n4##x,_n8##y,z,v)), \
philpem@5 4355 (I[355] = (img)(_n4##x,_n9##y,z,v)), \
philpem@5 4356 (I[14] = (img)(_n5##x,_p9##y,z,v)), \
philpem@5 4357 (I[33] = (img)(_n5##x,_p8##y,z,v)), \
philpem@5 4358 (I[52] = (img)(_n5##x,_p7##y,z,v)), \
philpem@5 4359 (I[71] = (img)(_n5##x,_p6##y,z,v)), \
philpem@5 4360 (I[90] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 4361 (I[109] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 4362 (I[128] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 4363 (I[147] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 4364 (I[166] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 4365 (I[185] = (img)(_n5##x,y,z,v)), \
philpem@5 4366 (I[204] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 4367 (I[223] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 4368 (I[242] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 4369 (I[261] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 4370 (I[280] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 4371 (I[299] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 4372 (I[318] = (img)(_n5##x,_n7##y,z,v)), \
philpem@5 4373 (I[337] = (img)(_n5##x,_n8##y,z,v)), \
philpem@5 4374 (I[356] = (img)(_n5##x,_n9##y,z,v)), \
philpem@5 4375 (I[15] = (img)(_n6##x,_p9##y,z,v)), \
philpem@5 4376 (I[34] = (img)(_n6##x,_p8##y,z,v)), \
philpem@5 4377 (I[53] = (img)(_n6##x,_p7##y,z,v)), \
philpem@5 4378 (I[72] = (img)(_n6##x,_p6##y,z,v)), \
philpem@5 4379 (I[91] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 4380 (I[110] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 4381 (I[129] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 4382 (I[148] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 4383 (I[167] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 4384 (I[186] = (img)(_n6##x,y,z,v)), \
philpem@5 4385 (I[205] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 4386 (I[224] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 4387 (I[243] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 4388 (I[262] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 4389 (I[281] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 4390 (I[300] = (img)(_n6##x,_n6##y,z,v)), \
philpem@5 4391 (I[319] = (img)(_n6##x,_n7##y,z,v)), \
philpem@5 4392 (I[338] = (img)(_n6##x,_n8##y,z,v)), \
philpem@5 4393 (I[357] = (img)(_n6##x,_n9##y,z,v)), \
philpem@5 4394 (I[16] = (img)(_n7##x,_p9##y,z,v)), \
philpem@5 4395 (I[35] = (img)(_n7##x,_p8##y,z,v)), \
philpem@5 4396 (I[54] = (img)(_n7##x,_p7##y,z,v)), \
philpem@5 4397 (I[73] = (img)(_n7##x,_p6##y,z,v)), \
philpem@5 4398 (I[92] = (img)(_n7##x,_p5##y,z,v)), \
philpem@5 4399 (I[111] = (img)(_n7##x,_p4##y,z,v)), \
philpem@5 4400 (I[130] = (img)(_n7##x,_p3##y,z,v)), \
philpem@5 4401 (I[149] = (img)(_n7##x,_p2##y,z,v)), \
philpem@5 4402 (I[168] = (img)(_n7##x,_p1##y,z,v)), \
philpem@5 4403 (I[187] = (img)(_n7##x,y,z,v)), \
philpem@5 4404 (I[206] = (img)(_n7##x,_n1##y,z,v)), \
philpem@5 4405 (I[225] = (img)(_n7##x,_n2##y,z,v)), \
philpem@5 4406 (I[244] = (img)(_n7##x,_n3##y,z,v)), \
philpem@5 4407 (I[263] = (img)(_n7##x,_n4##y,z,v)), \
philpem@5 4408 (I[282] = (img)(_n7##x,_n5##y,z,v)), \
philpem@5 4409 (I[301] = (img)(_n7##x,_n6##y,z,v)), \
philpem@5 4410 (I[320] = (img)(_n7##x,_n7##y,z,v)), \
philpem@5 4411 (I[339] = (img)(_n7##x,_n8##y,z,v)), \
philpem@5 4412 (I[358] = (img)(_n7##x,_n9##y,z,v)), \
philpem@5 4413 (I[17] = (img)(_n8##x,_p9##y,z,v)), \
philpem@5 4414 (I[36] = (img)(_n8##x,_p8##y,z,v)), \
philpem@5 4415 (I[55] = (img)(_n8##x,_p7##y,z,v)), \
philpem@5 4416 (I[74] = (img)(_n8##x,_p6##y,z,v)), \
philpem@5 4417 (I[93] = (img)(_n8##x,_p5##y,z,v)), \
philpem@5 4418 (I[112] = (img)(_n8##x,_p4##y,z,v)), \
philpem@5 4419 (I[131] = (img)(_n8##x,_p3##y,z,v)), \
philpem@5 4420 (I[150] = (img)(_n8##x,_p2##y,z,v)), \
philpem@5 4421 (I[169] = (img)(_n8##x,_p1##y,z,v)), \
philpem@5 4422 (I[188] = (img)(_n8##x,y,z,v)), \
philpem@5 4423 (I[207] = (img)(_n8##x,_n1##y,z,v)), \
philpem@5 4424 (I[226] = (img)(_n8##x,_n2##y,z,v)), \
philpem@5 4425 (I[245] = (img)(_n8##x,_n3##y,z,v)), \
philpem@5 4426 (I[264] = (img)(_n8##x,_n4##y,z,v)), \
philpem@5 4427 (I[283] = (img)(_n8##x,_n5##y,z,v)), \
philpem@5 4428 (I[302] = (img)(_n8##x,_n6##y,z,v)), \
philpem@5 4429 (I[321] = (img)(_n8##x,_n7##y,z,v)), \
philpem@5 4430 (I[340] = (img)(_n8##x,_n8##y,z,v)), \
philpem@5 4431 (I[359] = (img)(_n8##x,_n9##y,z,v)), \
philpem@5 4432 9>=((img).width)?(int)((img).width)-1:9); \
philpem@5 4433 (_n9##x<(int)((img).width) && ( \
philpem@5 4434 (I[18] = (img)(_n9##x,_p9##y,z,v)), \
philpem@5 4435 (I[37] = (img)(_n9##x,_p8##y,z,v)), \
philpem@5 4436 (I[56] = (img)(_n9##x,_p7##y,z,v)), \
philpem@5 4437 (I[75] = (img)(_n9##x,_p6##y,z,v)), \
philpem@5 4438 (I[94] = (img)(_n9##x,_p5##y,z,v)), \
philpem@5 4439 (I[113] = (img)(_n9##x,_p4##y,z,v)), \
philpem@5 4440 (I[132] = (img)(_n9##x,_p3##y,z,v)), \
philpem@5 4441 (I[151] = (img)(_n9##x,_p2##y,z,v)), \
philpem@5 4442 (I[170] = (img)(_n9##x,_p1##y,z,v)), \
philpem@5 4443 (I[189] = (img)(_n9##x,y,z,v)), \
philpem@5 4444 (I[208] = (img)(_n9##x,_n1##y,z,v)), \
philpem@5 4445 (I[227] = (img)(_n9##x,_n2##y,z,v)), \
philpem@5 4446 (I[246] = (img)(_n9##x,_n3##y,z,v)), \
philpem@5 4447 (I[265] = (img)(_n9##x,_n4##y,z,v)), \
philpem@5 4448 (I[284] = (img)(_n9##x,_n5##y,z,v)), \
philpem@5 4449 (I[303] = (img)(_n9##x,_n6##y,z,v)), \
philpem@5 4450 (I[322] = (img)(_n9##x,_n7##y,z,v)), \
philpem@5 4451 (I[341] = (img)(_n9##x,_n8##y,z,v)), \
philpem@5 4452 (I[360] = (img)(_n9##x,_n9##y,z,v)),1)) || \
philpem@5 4453 _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
philpem@5 4454 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], \
philpem@5 4455 I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], \
philpem@5 4456 I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], \
philpem@5 4457 I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], \
philpem@5 4458 I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], \
philpem@5 4459 I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], \
philpem@5 4460 I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], \
philpem@5 4461 I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], \
philpem@5 4462 I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], \
philpem@5 4463 I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], \
philpem@5 4464 I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], \
philpem@5 4465 I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], \
philpem@5 4466 I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], \
philpem@5 4467 I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], \
philpem@5 4468 I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], \
philpem@5 4469 I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], \
philpem@5 4470 I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], \
philpem@5 4471 I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], \
philpem@5 4472 I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], \
philpem@5 4473 _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x)
philpem@5 4474
philpem@5 4475 #define cimg_for_in19x19(img,x0,y0,x1,y1,x,y,z,v,I) \
philpem@5 4476 cimg_for_in19((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
philpem@5 4477 _p9##x = x-9<0?0:x-9, \
philpem@5 4478 _p8##x = x-8<0?0:x-8, \
philpem@5 4479 _p7##x = x-7<0?0:x-7, \
philpem@5 4480 _p6##x = x-6<0?0:x-6, \
philpem@5 4481 _p5##x = x-5<0?0:x-5, \
philpem@5 4482 _p4##x = x-4<0?0:x-4, \
philpem@5 4483 _p3##x = x-3<0?0:x-3, \
philpem@5 4484 _p2##x = x-2<0?0:x-2, \
philpem@5 4485 _p1##x = x-1<0?0:x-1, \
philpem@5 4486 _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \
philpem@5 4487 _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \
philpem@5 4488 _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \
philpem@5 4489 _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \
philpem@5 4490 _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \
philpem@5 4491 _n6##x = x+6>=(int)((img).width)?(int)((img).width)-1:x+6, \
philpem@5 4492 _n7##x = x+7>=(int)((img).width)?(int)((img).width)-1:x+7, \
philpem@5 4493 _n8##x = x+8>=(int)((img).width)?(int)((img).width)-1:x+8, \
philpem@5 4494 _n9##x = (int)( \
philpem@5 4495 (I[0] = (img)(_p9##x,_p9##y,z,v)), \
philpem@5 4496 (I[19] = (img)(_p9##x,_p8##y,z,v)), \
philpem@5 4497 (I[38] = (img)(_p9##x,_p7##y,z,v)), \
philpem@5 4498 (I[57] = (img)(_p9##x,_p6##y,z,v)), \
philpem@5 4499 (I[76] = (img)(_p9##x,_p5##y,z,v)), \
philpem@5 4500 (I[95] = (img)(_p9##x,_p4##y,z,v)), \
philpem@5 4501 (I[114] = (img)(_p9##x,_p3##y,z,v)), \
philpem@5 4502 (I[133] = (img)(_p9##x,_p2##y,z,v)), \
philpem@5 4503 (I[152] = (img)(_p9##x,_p1##y,z,v)), \
philpem@5 4504 (I[171] = (img)(_p9##x,y,z,v)), \
philpem@5 4505 (I[190] = (img)(_p9##x,_n1##y,z,v)), \
philpem@5 4506 (I[209] = (img)(_p9##x,_n2##y,z,v)), \
philpem@5 4507 (I[228] = (img)(_p9##x,_n3##y,z,v)), \
philpem@5 4508 (I[247] = (img)(_p9##x,_n4##y,z,v)), \
philpem@5 4509 (I[266] = (img)(_p9##x,_n5##y,z,v)), \
philpem@5 4510 (I[285] = (img)(_p9##x,_n6##y,z,v)), \
philpem@5 4511 (I[304] = (img)(_p9##x,_n7##y,z,v)), \
philpem@5 4512 (I[323] = (img)(_p9##x,_n8##y,z,v)), \
philpem@5 4513 (I[342] = (img)(_p9##x,_n9##y,z,v)), \
philpem@5 4514 (I[1] = (img)(_p8##x,_p9##y,z,v)), \
philpem@5 4515 (I[20] = (img)(_p8##x,_p8##y,z,v)), \
philpem@5 4516 (I[39] = (img)(_p8##x,_p7##y,z,v)), \
philpem@5 4517 (I[58] = (img)(_p8##x,_p6##y,z,v)), \
philpem@5 4518 (I[77] = (img)(_p8##x,_p5##y,z,v)), \
philpem@5 4519 (I[96] = (img)(_p8##x,_p4##y,z,v)), \
philpem@5 4520 (I[115] = (img)(_p8##x,_p3##y,z,v)), \
philpem@5 4521 (I[134] = (img)(_p8##x,_p2##y,z,v)), \
philpem@5 4522 (I[153] = (img)(_p8##x,_p1##y,z,v)), \
philpem@5 4523 (I[172] = (img)(_p8##x,y,z,v)), \
philpem@5 4524 (I[191] = (img)(_p8##x,_n1##y,z,v)), \
philpem@5 4525 (I[210] = (img)(_p8##x,_n2##y,z,v)), \
philpem@5 4526 (I[229] = (img)(_p8##x,_n3##y,z,v)), \
philpem@5 4527 (I[248] = (img)(_p8##x,_n4##y,z,v)), \
philpem@5 4528 (I[267] = (img)(_p8##x,_n5##y,z,v)), \
philpem@5 4529 (I[286] = (img)(_p8##x,_n6##y,z,v)), \
philpem@5 4530 (I[305] = (img)(_p8##x,_n7##y,z,v)), \
philpem@5 4531 (I[324] = (img)(_p8##x,_n8##y,z,v)), \
philpem@5 4532 (I[343] = (img)(_p8##x,_n9##y,z,v)), \
philpem@5 4533 (I[2] = (img)(_p7##x,_p9##y,z,v)), \
philpem@5 4534 (I[21] = (img)(_p7##x,_p8##y,z,v)), \
philpem@5 4535 (I[40] = (img)(_p7##x,_p7##y,z,v)), \
philpem@5 4536 (I[59] = (img)(_p7##x,_p6##y,z,v)), \
philpem@5 4537 (I[78] = (img)(_p7##x,_p5##y,z,v)), \
philpem@5 4538 (I[97] = (img)(_p7##x,_p4##y,z,v)), \
philpem@5 4539 (I[116] = (img)(_p7##x,_p3##y,z,v)), \
philpem@5 4540 (I[135] = (img)(_p7##x,_p2##y,z,v)), \
philpem@5 4541 (I[154] = (img)(_p7##x,_p1##y,z,v)), \
philpem@5 4542 (I[173] = (img)(_p7##x,y,z,v)), \
philpem@5 4543 (I[192] = (img)(_p7##x,_n1##y,z,v)), \
philpem@5 4544 (I[211] = (img)(_p7##x,_n2##y,z,v)), \
philpem@5 4545 (I[230] = (img)(_p7##x,_n3##y,z,v)), \
philpem@5 4546 (I[249] = (img)(_p7##x,_n4##y,z,v)), \
philpem@5 4547 (I[268] = (img)(_p7##x,_n5##y,z,v)), \
philpem@5 4548 (I[287] = (img)(_p7##x,_n6##y,z,v)), \
philpem@5 4549 (I[306] = (img)(_p7##x,_n7##y,z,v)), \
philpem@5 4550 (I[325] = (img)(_p7##x,_n8##y,z,v)), \
philpem@5 4551 (I[344] = (img)(_p7##x,_n9##y,z,v)), \
philpem@5 4552 (I[3] = (img)(_p6##x,_p9##y,z,v)), \
philpem@5 4553 (I[22] = (img)(_p6##x,_p8##y,z,v)), \
philpem@5 4554 (I[41] = (img)(_p6##x,_p7##y,z,v)), \
philpem@5 4555 (I[60] = (img)(_p6##x,_p6##y,z,v)), \
philpem@5 4556 (I[79] = (img)(_p6##x,_p5##y,z,v)), \
philpem@5 4557 (I[98] = (img)(_p6##x,_p4##y,z,v)), \
philpem@5 4558 (I[117] = (img)(_p6##x,_p3##y,z,v)), \
philpem@5 4559 (I[136] = (img)(_p6##x,_p2##y,z,v)), \
philpem@5 4560 (I[155] = (img)(_p6##x,_p1##y,z,v)), \
philpem@5 4561 (I[174] = (img)(_p6##x,y,z,v)), \
philpem@5 4562 (I[193] = (img)(_p6##x,_n1##y,z,v)), \
philpem@5 4563 (I[212] = (img)(_p6##x,_n2##y,z,v)), \
philpem@5 4564 (I[231] = (img)(_p6##x,_n3##y,z,v)), \
philpem@5 4565 (I[250] = (img)(_p6##x,_n4##y,z,v)), \
philpem@5 4566 (I[269] = (img)(_p6##x,_n5##y,z,v)), \
philpem@5 4567 (I[288] = (img)(_p6##x,_n6##y,z,v)), \
philpem@5 4568 (I[307] = (img)(_p6##x,_n7##y,z,v)), \
philpem@5 4569 (I[326] = (img)(_p6##x,_n8##y,z,v)), \
philpem@5 4570 (I[345] = (img)(_p6##x,_n9##y,z,v)), \
philpem@5 4571 (I[4] = (img)(_p5##x,_p9##y,z,v)), \
philpem@5 4572 (I[23] = (img)(_p5##x,_p8##y,z,v)), \
philpem@5 4573 (I[42] = (img)(_p5##x,_p7##y,z,v)), \
philpem@5 4574 (I[61] = (img)(_p5##x,_p6##y,z,v)), \
philpem@5 4575 (I[80] = (img)(_p5##x,_p5##y,z,v)), \
philpem@5 4576 (I[99] = (img)(_p5##x,_p4##y,z,v)), \
philpem@5 4577 (I[118] = (img)(_p5##x,_p3##y,z,v)), \
philpem@5 4578 (I[137] = (img)(_p5##x,_p2##y,z,v)), \
philpem@5 4579 (I[156] = (img)(_p5##x,_p1##y,z,v)), \
philpem@5 4580 (I[175] = (img)(_p5##x,y,z,v)), \
philpem@5 4581 (I[194] = (img)(_p5##x,_n1##y,z,v)), \
philpem@5 4582 (I[213] = (img)(_p5##x,_n2##y,z,v)), \
philpem@5 4583 (I[232] = (img)(_p5##x,_n3##y,z,v)), \
philpem@5 4584 (I[251] = (img)(_p5##x,_n4##y,z,v)), \
philpem@5 4585 (I[270] = (img)(_p5##x,_n5##y,z,v)), \
philpem@5 4586 (I[289] = (img)(_p5##x,_n6##y,z,v)), \
philpem@5 4587 (I[308] = (img)(_p5##x,_n7##y,z,v)), \
philpem@5 4588 (I[327] = (img)(_p5##x,_n8##y,z,v)), \
philpem@5 4589 (I[346] = (img)(_p5##x,_n9##y,z,v)), \
philpem@5 4590 (I[5] = (img)(_p4##x,_p9##y,z,v)), \
philpem@5 4591 (I[24] = (img)(_p4##x,_p8##y,z,v)), \
philpem@5 4592 (I[43] = (img)(_p4##x,_p7##y,z,v)), \
philpem@5 4593 (I[62] = (img)(_p4##x,_p6##y,z,v)), \
philpem@5 4594 (I[81] = (img)(_p4##x,_p5##y,z,v)), \
philpem@5 4595 (I[100] = (img)(_p4##x,_p4##y,z,v)), \
philpem@5 4596 (I[119] = (img)(_p4##x,_p3##y,z,v)), \
philpem@5 4597 (I[138] = (img)(_p4##x,_p2##y,z,v)), \
philpem@5 4598 (I[157] = (img)(_p4##x,_p1##y,z,v)), \
philpem@5 4599 (I[176] = (img)(_p4##x,y,z,v)), \
philpem@5 4600 (I[195] = (img)(_p4##x,_n1##y,z,v)), \
philpem@5 4601 (I[214] = (img)(_p4##x,_n2##y,z,v)), \
philpem@5 4602 (I[233] = (img)(_p4##x,_n3##y,z,v)), \
philpem@5 4603 (I[252] = (img)(_p4##x,_n4##y,z,v)), \
philpem@5 4604 (I[271] = (img)(_p4##x,_n5##y,z,v)), \
philpem@5 4605 (I[290] = (img)(_p4##x,_n6##y,z,v)), \
philpem@5 4606 (I[309] = (img)(_p4##x,_n7##y,z,v)), \
philpem@5 4607 (I[328] = (img)(_p4##x,_n8##y,z,v)), \
philpem@5 4608 (I[347] = (img)(_p4##x,_n9##y,z,v)), \
philpem@5 4609 (I[6] = (img)(_p3##x,_p9##y,z,v)), \
philpem@5 4610 (I[25] = (img)(_p3##x,_p8##y,z,v)), \
philpem@5 4611 (I[44] = (img)(_p3##x,_p7##y,z,v)), \
philpem@5 4612 (I[63] = (img)(_p3##x,_p6##y,z,v)), \
philpem@5 4613 (I[82] = (img)(_p3##x,_p5##y,z,v)), \
philpem@5 4614 (I[101] = (img)(_p3##x,_p4##y,z,v)), \
philpem@5 4615 (I[120] = (img)(_p3##x,_p3##y,z,v)), \
philpem@5 4616 (I[139] = (img)(_p3##x,_p2##y,z,v)), \
philpem@5 4617 (I[158] = (img)(_p3##x,_p1##y,z,v)), \
philpem@5 4618 (I[177] = (img)(_p3##x,y,z,v)), \
philpem@5 4619 (I[196] = (img)(_p3##x,_n1##y,z,v)), \
philpem@5 4620 (I[215] = (img)(_p3##x,_n2##y,z,v)), \
philpem@5 4621 (I[234] = (img)(_p3##x,_n3##y,z,v)), \
philpem@5 4622 (I[253] = (img)(_p3##x,_n4##y,z,v)), \
philpem@5 4623 (I[272] = (img)(_p3##x,_n5##y,z,v)), \
philpem@5 4624 (I[291] = (img)(_p3##x,_n6##y,z,v)), \
philpem@5 4625 (I[310] = (img)(_p3##x,_n7##y,z,v)), \
philpem@5 4626 (I[329] = (img)(_p3##x,_n8##y,z,v)), \
philpem@5 4627 (I[348] = (img)(_p3##x,_n9##y,z,v)), \
philpem@5 4628 (I[7] = (img)(_p2##x,_p9##y,z,v)), \
philpem@5 4629 (I[26] = (img)(_p2##x,_p8##y,z,v)), \
philpem@5 4630 (I[45] = (img)(_p2##x,_p7##y,z,v)), \
philpem@5 4631 (I[64] = (img)(_p2##x,_p6##y,z,v)), \
philpem@5 4632 (I[83] = (img)(_p2##x,_p5##y,z,v)), \
philpem@5 4633 (I[102] = (img)(_p2##x,_p4##y,z,v)), \
philpem@5 4634 (I[121] = (img)(_p2##x,_p3##y,z,v)), \
philpem@5 4635 (I[140] = (img)(_p2##x,_p2##y,z,v)), \
philpem@5 4636 (I[159] = (img)(_p2##x,_p1##y,z,v)), \
philpem@5 4637 (I[178] = (img)(_p2##x,y,z,v)), \
philpem@5 4638 (I[197] = (img)(_p2##x,_n1##y,z,v)), \
philpem@5 4639 (I[216] = (img)(_p2##x,_n2##y,z,v)), \
philpem@5 4640 (I[235] = (img)(_p2##x,_n3##y,z,v)), \
philpem@5 4641 (I[254] = (img)(_p2##x,_n4##y,z,v)), \
philpem@5 4642 (I[273] = (img)(_p2##x,_n5##y,z,v)), \
philpem@5 4643 (I[292] = (img)(_p2##x,_n6##y,z,v)), \
philpem@5 4644 (I[311] = (img)(_p2##x,_n7##y,z,v)), \
philpem@5 4645 (I[330] = (img)(_p2##x,_n8##y,z,v)), \
philpem@5 4646 (I[349] = (img)(_p2##x,_n9##y,z,v)), \
philpem@5 4647 (I[8] = (img)(_p1##x,_p9##y,z,v)), \
philpem@5 4648 (I[27] = (img)(_p1##x,_p8##y,z,v)), \
philpem@5 4649 (I[46] = (img)(_p1##x,_p7##y,z,v)), \
philpem@5 4650 (I[65] = (img)(_p1##x,_p6##y,z,v)), \
philpem@5 4651 (I[84] = (img)(_p1##x,_p5##y,z,v)), \
philpem@5 4652 (I[103] = (img)(_p1##x,_p4##y,z,v)), \
philpem@5 4653 (I[122] = (img)(_p1##x,_p3##y,z,v)), \
philpem@5 4654 (I[141] = (img)(_p1##x,_p2##y,z,v)), \
philpem@5 4655 (I[160] = (img)(_p1##x,_p1##y,z,v)), \
philpem@5 4656 (I[179] = (img)(_p1##x,y,z,v)), \
philpem@5 4657 (I[198] = (img)(_p1##x,_n1##y,z,v)), \
philpem@5 4658 (I[217] = (img)(_p1##x,_n2##y,z,v)), \
philpem@5 4659 (I[236] = (img)(_p1##x,_n3##y,z,v)), \
philpem@5 4660 (I[255] = (img)(_p1##x,_n4##y,z,v)), \
philpem@5 4661 (I[274] = (img)(_p1##x,_n5##y,z,v)), \
philpem@5 4662 (I[293] = (img)(_p1##x,_n6##y,z,v)), \
philpem@5 4663 (I[312] = (img)(_p1##x,_n7##y,z,v)), \
philpem@5 4664 (I[331] = (img)(_p1##x,_n8##y,z,v)), \
philpem@5 4665 (I[350] = (img)(_p1##x,_n9##y,z,v)), \
philpem@5 4666 (I[9] = (img)(x,_p9##y,z,v)), \
philpem@5 4667 (I[28] = (img)(x,_p8##y,z,v)), \
philpem@5 4668 (I[47] = (img)(x,_p7##y,z,v)), \
philpem@5 4669 (I[66] = (img)(x,_p6##y,z,v)), \
philpem@5 4670 (I[85] = (img)(x,_p5##y,z,v)), \
philpem@5 4671 (I[104] = (img)(x,_p4##y,z,v)), \
philpem@5 4672 (I[123] = (img)(x,_p3##y,z,v)), \
philpem@5 4673 (I[142] = (img)(x,_p2##y,z,v)), \
philpem@5 4674 (I[161] = (img)(x,_p1##y,z,v)), \
philpem@5 4675 (I[180] = (img)(x,y,z,v)), \
philpem@5 4676 (I[199] = (img)(x,_n1##y,z,v)), \
philpem@5 4677 (I[218] = (img)(x,_n2##y,z,v)), \
philpem@5 4678 (I[237] = (img)(x,_n3##y,z,v)), \
philpem@5 4679 (I[256] = (img)(x,_n4##y,z,v)), \
philpem@5 4680 (I[275] = (img)(x,_n5##y,z,v)), \
philpem@5 4681 (I[294] = (img)(x,_n6##y,z,v)), \
philpem@5 4682 (I[313] = (img)(x,_n7##y,z,v)), \
philpem@5 4683 (I[332] = (img)(x,_n8##y,z,v)), \
philpem@5 4684 (I[351] = (img)(x,_n9##y,z,v)), \
philpem@5 4685 (I[10] = (img)(_n1##x,_p9##y,z,v)), \
philpem@5 4686 (I[29] = (img)(_n1##x,_p8##y,z,v)), \
philpem@5 4687 (I[48] = (img)(_n1##x,_p7##y,z,v)), \
philpem@5 4688 (I[67] = (img)(_n1##x,_p6##y,z,v)), \
philpem@5 4689 (I[86] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 4690 (I[105] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 4691 (I[124] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 4692 (I[143] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 4693 (I[162] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 4694 (I[181] = (img)(_n1##x,y,z,v)), \
philpem@5 4695 (I[200] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 4696 (I[219] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 4697 (I[238] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 4698 (I[257] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 4699 (I[276] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 4700 (I[295] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 4701 (I[314] = (img)(_n1##x,_n7##y,z,v)), \
philpem@5 4702 (I[333] = (img)(_n1##x,_n8##y,z,v)), \
philpem@5 4703 (I[352] = (img)(_n1##x,_n9##y,z,v)), \
philpem@5 4704 (I[11] = (img)(_n2##x,_p9##y,z,v)), \
philpem@5 4705 (I[30] = (img)(_n2##x,_p8##y,z,v)), \
philpem@5 4706 (I[49] = (img)(_n2##x,_p7##y,z,v)), \
philpem@5 4707 (I[68] = (img)(_n2##x,_p6##y,z,v)), \
philpem@5 4708 (I[87] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 4709 (I[106] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 4710 (I[125] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 4711 (I[144] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 4712 (I[163] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 4713 (I[182] = (img)(_n2##x,y,z,v)), \
philpem@5 4714 (I[201] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 4715 (I[220] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 4716 (I[239] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 4717 (I[258] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 4718 (I[277] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 4719 (I[296] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 4720 (I[315] = (img)(_n2##x,_n7##y,z,v)), \
philpem@5 4721 (I[334] = (img)(_n2##x,_n8##y,z,v)), \
philpem@5 4722 (I[353] = (img)(_n2##x,_n9##y,z,v)), \
philpem@5 4723 (I[12] = (img)(_n3##x,_p9##y,z,v)), \
philpem@5 4724 (I[31] = (img)(_n3##x,_p8##y,z,v)), \
philpem@5 4725 (I[50] = (img)(_n3##x,_p7##y,z,v)), \
philpem@5 4726 (I[69] = (img)(_n3##x,_p6##y,z,v)), \
philpem@5 4727 (I[88] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 4728 (I[107] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 4729 (I[126] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 4730 (I[145] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 4731 (I[164] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 4732 (I[183] = (img)(_n3##x,y,z,v)), \
philpem@5 4733 (I[202] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 4734 (I[221] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 4735 (I[240] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 4736 (I[259] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 4737 (I[278] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 4738 (I[297] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 4739 (I[316] = (img)(_n3##x,_n7##y,z,v)), \
philpem@5 4740 (I[335] = (img)(_n3##x,_n8##y,z,v)), \
philpem@5 4741 (I[354] = (img)(_n3##x,_n9##y,z,v)), \
philpem@5 4742 (I[13] = (img)(_n4##x,_p9##y,z,v)), \
philpem@5 4743 (I[32] = (img)(_n4##x,_p8##y,z,v)), \
philpem@5 4744 (I[51] = (img)(_n4##x,_p7##y,z,v)), \
philpem@5 4745 (I[70] = (img)(_n4##x,_p6##y,z,v)), \
philpem@5 4746 (I[89] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 4747 (I[108] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 4748 (I[127] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 4749 (I[146] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 4750 (I[165] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 4751 (I[184] = (img)(_n4##x,y,z,v)), \
philpem@5 4752 (I[203] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 4753 (I[222] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 4754 (I[241] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 4755 (I[260] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 4756 (I[279] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 4757 (I[298] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 4758 (I[317] = (img)(_n4##x,_n7##y,z,v)), \
philpem@5 4759 (I[336] = (img)(_n4##x,_n8##y,z,v)), \
philpem@5 4760 (I[355] = (img)(_n4##x,_n9##y,z,v)), \
philpem@5 4761 (I[14] = (img)(_n5##x,_p9##y,z,v)), \
philpem@5 4762 (I[33] = (img)(_n5##x,_p8##y,z,v)), \
philpem@5 4763 (I[52] = (img)(_n5##x,_p7##y,z,v)), \
philpem@5 4764 (I[71] = (img)(_n5##x,_p6##y,z,v)), \
philpem@5 4765 (I[90] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 4766 (I[109] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 4767 (I[128] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 4768 (I[147] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 4769 (I[166] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 4770 (I[185] = (img)(_n5##x,y,z,v)), \
philpem@5 4771 (I[204] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 4772 (I[223] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 4773 (I[242] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 4774 (I[261] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 4775 (I[280] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 4776 (I[299] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 4777 (I[318] = (img)(_n5##x,_n7##y,z,v)), \
philpem@5 4778 (I[337] = (img)(_n5##x,_n8##y,z,v)), \
philpem@5 4779 (I[356] = (img)(_n5##x,_n9##y,z,v)), \
philpem@5 4780 (I[15] = (img)(_n6##x,_p9##y,z,v)), \
philpem@5 4781 (I[34] = (img)(_n6##x,_p8##y,z,v)), \
philpem@5 4782 (I[53] = (img)(_n6##x,_p7##y,z,v)), \
philpem@5 4783 (I[72] = (img)(_n6##x,_p6##y,z,v)), \
philpem@5 4784 (I[91] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 4785 (I[110] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 4786 (I[129] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 4787 (I[148] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 4788 (I[167] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 4789 (I[186] = (img)(_n6##x,y,z,v)), \
philpem@5 4790 (I[205] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 4791 (I[224] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 4792 (I[243] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 4793 (I[262] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 4794 (I[281] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 4795 (I[300] = (img)(_n6##x,_n6##y,z,v)), \
philpem@5 4796 (I[319] = (img)(_n6##x,_n7##y,z,v)), \
philpem@5 4797 (I[338] = (img)(_n6##x,_n8##y,z,v)), \
philpem@5 4798 (I[357] = (img)(_n6##x,_n9##y,z,v)), \
philpem@5 4799 (I[16] = (img)(_n7##x,_p9##y,z,v)), \
philpem@5 4800 (I[35] = (img)(_n7##x,_p8##y,z,v)), \
philpem@5 4801 (I[54] = (img)(_n7##x,_p7##y,z,v)), \
philpem@5 4802 (I[73] = (img)(_n7##x,_p6##y,z,v)), \
philpem@5 4803 (I[92] = (img)(_n7##x,_p5##y,z,v)), \
philpem@5 4804 (I[111] = (img)(_n7##x,_p4##y,z,v)), \
philpem@5 4805 (I[130] = (img)(_n7##x,_p3##y,z,v)), \
philpem@5 4806 (I[149] = (img)(_n7##x,_p2##y,z,v)), \
philpem@5 4807 (I[168] = (img)(_n7##x,_p1##y,z,v)), \
philpem@5 4808 (I[187] = (img)(_n7##x,y,z,v)), \
philpem@5 4809 (I[206] = (img)(_n7##x,_n1##y,z,v)), \
philpem@5 4810 (I[225] = (img)(_n7##x,_n2##y,z,v)), \
philpem@5 4811 (I[244] = (img)(_n7##x,_n3##y,z,v)), \
philpem@5 4812 (I[263] = (img)(_n7##x,_n4##y,z,v)), \
philpem@5 4813 (I[282] = (img)(_n7##x,_n5##y,z,v)), \
philpem@5 4814 (I[301] = (img)(_n7##x,_n6##y,z,v)), \
philpem@5 4815 (I[320] = (img)(_n7##x,_n7##y,z,v)), \
philpem@5 4816 (I[339] = (img)(_n7##x,_n8##y,z,v)), \
philpem@5 4817 (I[358] = (img)(_n7##x,_n9##y,z,v)), \
philpem@5 4818 (I[17] = (img)(_n8##x,_p9##y,z,v)), \
philpem@5 4819 (I[36] = (img)(_n8##x,_p8##y,z,v)), \
philpem@5 4820 (I[55] = (img)(_n8##x,_p7##y,z,v)), \
philpem@5 4821 (I[74] = (img)(_n8##x,_p6##y,z,v)), \
philpem@5 4822 (I[93] = (img)(_n8##x,_p5##y,z,v)), \
philpem@5 4823 (I[112] = (img)(_n8##x,_p4##y,z,v)), \
philpem@5 4824 (I[131] = (img)(_n8##x,_p3##y,z,v)), \
philpem@5 4825 (I[150] = (img)(_n8##x,_p2##y,z,v)), \
philpem@5 4826 (I[169] = (img)(_n8##x,_p1##y,z,v)), \
philpem@5 4827 (I[188] = (img)(_n8##x,y,z,v)), \
philpem@5 4828 (I[207] = (img)(_n8##x,_n1##y,z,v)), \
philpem@5 4829 (I[226] = (img)(_n8##x,_n2##y,z,v)), \
philpem@5 4830 (I[245] = (img)(_n8##x,_n3##y,z,v)), \
philpem@5 4831 (I[264] = (img)(_n8##x,_n4##y,z,v)), \
philpem@5 4832 (I[283] = (img)(_n8##x,_n5##y,z,v)), \
philpem@5 4833 (I[302] = (img)(_n8##x,_n6##y,z,v)), \
philpem@5 4834 (I[321] = (img)(_n8##x,_n7##y,z,v)), \
philpem@5 4835 (I[340] = (img)(_n8##x,_n8##y,z,v)), \
philpem@5 4836 (I[359] = (img)(_n8##x,_n9##y,z,v)), \
philpem@5 4837 x+9>=(int)((img).width)?(int)((img).width)-1:x+9); \
philpem@5 4838 x<=(int)(x1) && ((_n9##x<(int)((img).width) && ( \
philpem@5 4839 (I[18] = (img)(_n9##x,_p9##y,z,v)), \
philpem@5 4840 (I[37] = (img)(_n9##x,_p8##y,z,v)), \
philpem@5 4841 (I[56] = (img)(_n9##x,_p7##y,z,v)), \
philpem@5 4842 (I[75] = (img)(_n9##x,_p6##y,z,v)), \
philpem@5 4843 (I[94] = (img)(_n9##x,_p5##y,z,v)), \
philpem@5 4844 (I[113] = (img)(_n9##x,_p4##y,z,v)), \
philpem@5 4845 (I[132] = (img)(_n9##x,_p3##y,z,v)), \
philpem@5 4846 (I[151] = (img)(_n9##x,_p2##y,z,v)), \
philpem@5 4847 (I[170] = (img)(_n9##x,_p1##y,z,v)), \
philpem@5 4848 (I[189] = (img)(_n9##x,y,z,v)), \
philpem@5 4849 (I[208] = (img)(_n9##x,_n1##y,z,v)), \
philpem@5 4850 (I[227] = (img)(_n9##x,_n2##y,z,v)), \
philpem@5 4851 (I[246] = (img)(_n9##x,_n3##y,z,v)), \
philpem@5 4852 (I[265] = (img)(_n9##x,_n4##y,z,v)), \
philpem@5 4853 (I[284] = (img)(_n9##x,_n5##y,z,v)), \
philpem@5 4854 (I[303] = (img)(_n9##x,_n6##y,z,v)), \
philpem@5 4855 (I[322] = (img)(_n9##x,_n7##y,z,v)), \
philpem@5 4856 (I[341] = (img)(_n9##x,_n8##y,z,v)), \
philpem@5 4857 (I[360] = (img)(_n9##x,_n9##y,z,v)),1)) || \
philpem@5 4858 _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
philpem@5 4859 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], \
philpem@5 4860 I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], \
philpem@5 4861 I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], \
philpem@5 4862 I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], \
philpem@5 4863 I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], \
philpem@5 4864 I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], \
philpem@5 4865 I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], \
philpem@5 4866 I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], \
philpem@5 4867 I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], \
philpem@5 4868 I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], \
philpem@5 4869 I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], \
philpem@5 4870 I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], \
philpem@5 4871 I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], \
philpem@5 4872 I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], \
philpem@5 4873 I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], \
philpem@5 4874 I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], \
philpem@5 4875 I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], \
philpem@5 4876 I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], \
philpem@5 4877 I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], \
philpem@5 4878 _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x)
philpem@5 4879
philpem@5 4880 #define cimg_get19x19(img,x,y,z,v,I) \
philpem@5 4881 I[0] = (img)(_p9##x,_p9##y,z,v), I[1] = (img)(_p8##x,_p9##y,z,v), I[2] = (img)(_p7##x,_p9##y,z,v), I[3] = (img)(_p6##x,_p9##y,z,v), I[4] = (img)(_p5##x,_p9##y,z,v), I[5] = (img)(_p4##x,_p9##y,z,v), I[6] = (img)(_p3##x,_p9##y,z,v), I[7] = (img)(_p2##x,_p9##y,z,v), I[8] = (img)(_p1##x,_p9##y,z,v), I[9] = (img)(x,_p9##y,z,v), I[10] = (img)(_n1##x,_p9##y,z,v), I[11] = (img)(_n2##x,_p9##y,z,v), I[12] = (img)(_n3##x,_p9##y,z,v), I[13] = (img)(_n4##x,_p9##y,z,v), I[14] = (img)(_n5##x,_p9##y,z,v), I[15] = (img)(_n6##x,_p9##y,z,v), I[16] = (img)(_n7##x,_p9##y,z,v), I[17] = (img)(_n8##x,_p9##y,z,v), I[18] = (img)(_n9##x,_p9##y,z,v), \
philpem@5 4882 I[19] = (img)(_p9##x,_p8##y,z,v), I[20] = (img)(_p8##x,_p8##y,z,v), I[21] = (img)(_p7##x,_p8##y,z,v), I[22] = (img)(_p6##x,_p8##y,z,v), I[23] = (img)(_p5##x,_p8##y,z,v), I[24] = (img)(_p4##x,_p8##y,z,v), I[25] = (img)(_p3##x,_p8##y,z,v), I[26] = (img)(_p2##x,_p8##y,z,v), I[27] = (img)(_p1##x,_p8##y,z,v), I[28] = (img)(x,_p8##y,z,v), I[29] = (img)(_n1##x,_p8##y,z,v), I[30] = (img)(_n2##x,_p8##y,z,v), I[31] = (img)(_n3##x,_p8##y,z,v), I[32] = (img)(_n4##x,_p8##y,z,v), I[33] = (img)(_n5##x,_p8##y,z,v), I[34] = (img)(_n6##x,_p8##y,z,v), I[35] = (img)(_n7##x,_p8##y,z,v), I[36] = (img)(_n8##x,_p8##y,z,v), I[37] = (img)(_n9##x,_p8##y,z,v), \
philpem@5 4883 I[38] = (img)(_p9##x,_p7##y,z,v), I[39] = (img)(_p8##x,_p7##y,z,v), I[40] = (img)(_p7##x,_p7##y,z,v), I[41] = (img)(_p6##x,_p7##y,z,v), I[42] = (img)(_p5##x,_p7##y,z,v), I[43] = (img)(_p4##x,_p7##y,z,v), I[44] = (img)(_p3##x,_p7##y,z,v), I[45] = (img)(_p2##x,_p7##y,z,v), I[46] = (img)(_p1##x,_p7##y,z,v), I[47] = (img)(x,_p7##y,z,v), I[48] = (img)(_n1##x,_p7##y,z,v), I[49] = (img)(_n2##x,_p7##y,z,v), I[50] = (img)(_n3##x,_p7##y,z,v), I[51] = (img)(_n4##x,_p7##y,z,v), I[52] = (img)(_n5##x,_p7##y,z,v), I[53] = (img)(_n6##x,_p7##y,z,v), I[54] = (img)(_n7##x,_p7##y,z,v), I[55] = (img)(_n8##x,_p7##y,z,v), I[56] = (img)(_n9##x,_p7##y,z,v), \
philpem@5 4884 I[57] = (img)(_p9##x,_p6##y,z,v), I[58] = (img)(_p8##x,_p6##y,z,v), I[59] = (img)(_p7##x,_p6##y,z,v), I[60] = (img)(_p6##x,_p6##y,z,v), I[61] = (img)(_p5##x,_p6##y,z,v), I[62] = (img)(_p4##x,_p6##y,z,v), I[63] = (img)(_p3##x,_p6##y,z,v), I[64] = (img)(_p2##x,_p6##y,z,v), I[65] = (img)(_p1##x,_p6##y,z,v), I[66] = (img)(x,_p6##y,z,v), I[67] = (img)(_n1##x,_p6##y,z,v), I[68] = (img)(_n2##x,_p6##y,z,v), I[69] = (img)(_n3##x,_p6##y,z,v), I[70] = (img)(_n4##x,_p6##y,z,v), I[71] = (img)(_n5##x,_p6##y,z,v), I[72] = (img)(_n6##x,_p6##y,z,v), I[73] = (img)(_n7##x,_p6##y,z,v), I[74] = (img)(_n8##x,_p6##y,z,v), I[75] = (img)(_n9##x,_p6##y,z,v), \
philpem@5 4885 I[76] = (img)(_p9##x,_p5##y,z,v), I[77] = (img)(_p8##x,_p5##y,z,v), I[78] = (img)(_p7##x,_p5##y,z,v), I[79] = (img)(_p6##x,_p5##y,z,v), I[80] = (img)(_p5##x,_p5##y,z,v), I[81] = (img)(_p4##x,_p5##y,z,v), I[82] = (img)(_p3##x,_p5##y,z,v), I[83] = (img)(_p2##x,_p5##y,z,v), I[84] = (img)(_p1##x,_p5##y,z,v), I[85] = (img)(x,_p5##y,z,v), I[86] = (img)(_n1##x,_p5##y,z,v), I[87] = (img)(_n2##x,_p5##y,z,v), I[88] = (img)(_n3##x,_p5##y,z,v), I[89] = (img)(_n4##x,_p5##y,z,v), I[90] = (img)(_n5##x,_p5##y,z,v), I[91] = (img)(_n6##x,_p5##y,z,v), I[92] = (img)(_n7##x,_p5##y,z,v), I[93] = (img)(_n8##x,_p5##y,z,v), I[94] = (img)(_n9##x,_p5##y,z,v), \
philpem@5 4886 I[95] = (img)(_p9##x,_p4##y,z,v), I[96] = (img)(_p8##x,_p4##y,z,v), I[97] = (img)(_p7##x,_p4##y,z,v), I[98] = (img)(_p6##x,_p4##y,z,v), I[99] = (img)(_p5##x,_p4##y,z,v), I[100] = (img)(_p4##x,_p4##y,z,v), I[101] = (img)(_p3##x,_p4##y,z,v), I[102] = (img)(_p2##x,_p4##y,z,v), I[103] = (img)(_p1##x,_p4##y,z,v), I[104] = (img)(x,_p4##y,z,v), I[105] = (img)(_n1##x,_p4##y,z,v), I[106] = (img)(_n2##x,_p4##y,z,v), I[107] = (img)(_n3##x,_p4##y,z,v), I[108] = (img)(_n4##x,_p4##y,z,v), I[109] = (img)(_n5##x,_p4##y,z,v), I[110] = (img)(_n6##x,_p4##y,z,v), I[111] = (img)(_n7##x,_p4##y,z,v), I[112] = (img)(_n8##x,_p4##y,z,v), I[113] = (img)(_n9##x,_p4##y,z,v), \
philpem@5 4887 I[114] = (img)(_p9##x,_p3##y,z,v), I[115] = (img)(_p8##x,_p3##y,z,v), I[116] = (img)(_p7##x,_p3##y,z,v), I[117] = (img)(_p6##x,_p3##y,z,v), I[118] = (img)(_p5##x,_p3##y,z,v), I[119] = (img)(_p4##x,_p3##y,z,v), I[120] = (img)(_p3##x,_p3##y,z,v), I[121] = (img)(_p2##x,_p3##y,z,v), I[122] = (img)(_p1##x,_p3##y,z,v), I[123] = (img)(x,_p3##y,z,v), I[124] = (img)(_n1##x,_p3##y,z,v), I[125] = (img)(_n2##x,_p3##y,z,v), I[126] = (img)(_n3##x,_p3##y,z,v), I[127] = (img)(_n4##x,_p3##y,z,v), I[128] = (img)(_n5##x,_p3##y,z,v), I[129] = (img)(_n6##x,_p3##y,z,v), I[130] = (img)(_n7##x,_p3##y,z,v), I[131] = (img)(_n8##x,_p3##y,z,v), I[132] = (img)(_n9##x,_p3##y,z,v), \
philpem@5 4888 I[133] = (img)(_p9##x,_p2##y,z,v), I[134] = (img)(_p8##x,_p2##y,z,v), I[135] = (img)(_p7##x,_p2##y,z,v), I[136] = (img)(_p6##x,_p2##y,z,v), I[137] = (img)(_p5##x,_p2##y,z,v), I[138] = (img)(_p4##x,_p2##y,z,v), I[139] = (img)(_p3##x,_p2##y,z,v), I[140] = (img)(_p2##x,_p2##y,z,v), I[141] = (img)(_p1##x,_p2##y,z,v), I[142] = (img)(x,_p2##y,z,v), I[143] = (img)(_n1##x,_p2##y,z,v), I[144] = (img)(_n2##x,_p2##y,z,v), I[145] = (img)(_n3##x,_p2##y,z,v), I[146] = (img)(_n4##x,_p2##y,z,v), I[147] = (img)(_n5##x,_p2##y,z,v), I[148] = (img)(_n6##x,_p2##y,z,v), I[149] = (img)(_n7##x,_p2##y,z,v), I[150] = (img)(_n8##x,_p2##y,z,v), I[151] = (img)(_n9##x,_p2##y,z,v), \
philpem@5 4889 I[152] = (img)(_p9##x,_p1##y,z,v), I[153] = (img)(_p8##x,_p1##y,z,v), I[154] = (img)(_p7##x,_p1##y,z,v), I[155] = (img)(_p6##x,_p1##y,z,v), I[156] = (img)(_p5##x,_p1##y,z,v), I[157] = (img)(_p4##x,_p1##y,z,v), I[158] = (img)(_p3##x,_p1##y,z,v), I[159] = (img)(_p2##x,_p1##y,z,v), I[160] = (img)(_p1##x,_p1##y,z,v), I[161] = (img)(x,_p1##y,z,v), I[162] = (img)(_n1##x,_p1##y,z,v), I[163] = (img)(_n2##x,_p1##y,z,v), I[164] = (img)(_n3##x,_p1##y,z,v), I[165] = (img)(_n4##x,_p1##y,z,v), I[166] = (img)(_n5##x,_p1##y,z,v), I[167] = (img)(_n6##x,_p1##y,z,v), I[168] = (img)(_n7##x,_p1##y,z,v), I[169] = (img)(_n8##x,_p1##y,z,v), I[170] = (img)(_n9##x,_p1##y,z,v), \
philpem@5 4890 I[171] = (img)(_p9##x,y,z,v), I[172] = (img)(_p8##x,y,z,v), I[173] = (img)(_p7##x,y,z,v), I[174] = (img)(_p6##x,y,z,v), I[175] = (img)(_p5##x,y,z,v), I[176] = (img)(_p4##x,y,z,v), I[177] = (img)(_p3##x,y,z,v), I[178] = (img)(_p2##x,y,z,v), I[179] = (img)(_p1##x,y,z,v), I[180] = (img)(x,y,z,v), I[181] = (img)(_n1##x,y,z,v), I[182] = (img)(_n2##x,y,z,v), I[183] = (img)(_n3##x,y,z,v), I[184] = (img)(_n4##x,y,z,v), I[185] = (img)(_n5##x,y,z,v), I[186] = (img)(_n6##x,y,z,v), I[187] = (img)(_n7##x,y,z,v), I[188] = (img)(_n8##x,y,z,v), I[189] = (img)(_n9##x,y,z,v), \
philpem@5 4891 I[190] = (img)(_p9##x,_n1##y,z,v), I[191] = (img)(_p8##x,_n1##y,z,v), I[192] = (img)(_p7##x,_n1##y,z,v), I[193] = (img)(_p6##x,_n1##y,z,v), I[194] = (img)(_p5##x,_n1##y,z,v), I[195] = (img)(_p4##x,_n1##y,z,v), I[196] = (img)(_p3##x,_n1##y,z,v), I[197] = (img)(_p2##x,_n1##y,z,v), I[198] = (img)(_p1##x,_n1##y,z,v), I[199] = (img)(x,_n1##y,z,v), I[200] = (img)(_n1##x,_n1##y,z,v), I[201] = (img)(_n2##x,_n1##y,z,v), I[202] = (img)(_n3##x,_n1##y,z,v), I[203] = (img)(_n4##x,_n1##y,z,v), I[204] = (img)(_n5##x,_n1##y,z,v), I[205] = (img)(_n6##x,_n1##y,z,v), I[206] = (img)(_n7##x,_n1##y,z,v), I[207] = (img)(_n8##x,_n1##y,z,v), I[208] = (img)(_n9##x,_n1##y,z,v), \
philpem@5 4892 I[209] = (img)(_p9##x,_n2##y,z,v), I[210] = (img)(_p8##x,_n2##y,z,v), I[211] = (img)(_p7##x,_n2##y,z,v), I[212] = (img)(_p6##x,_n2##y,z,v), I[213] = (img)(_p5##x,_n2##y,z,v), I[214] = (img)(_p4##x,_n2##y,z,v), I[215] = (img)(_p3##x,_n2##y,z,v), I[216] = (img)(_p2##x,_n2##y,z,v), I[217] = (img)(_p1##x,_n2##y,z,v), I[218] = (img)(x,_n2##y,z,v), I[219] = (img)(_n1##x,_n2##y,z,v), I[220] = (img)(_n2##x,_n2##y,z,v), I[221] = (img)(_n3##x,_n2##y,z,v), I[222] = (img)(_n4##x,_n2##y,z,v), I[223] = (img)(_n5##x,_n2##y,z,v), I[224] = (img)(_n6##x,_n2##y,z,v), I[225] = (img)(_n7##x,_n2##y,z,v), I[226] = (img)(_n8##x,_n2##y,z,v), I[227] = (img)(_n9##x,_n2##y,z,v), \
philpem@5 4893 I[228] = (img)(_p9##x,_n3##y,z,v), I[229] = (img)(_p8##x,_n3##y,z,v), I[230] = (img)(_p7##x,_n3##y,z,v), I[231] = (img)(_p6##x,_n3##y,z,v), I[232] = (img)(_p5##x,_n3##y,z,v), I[233] = (img)(_p4##x,_n3##y,z,v), I[234] = (img)(_p3##x,_n3##y,z,v), I[235] = (img)(_p2##x,_n3##y,z,v), I[236] = (img)(_p1##x,_n3##y,z,v), I[237] = (img)(x,_n3##y,z,v), I[238] = (img)(_n1##x,_n3##y,z,v), I[239] = (img)(_n2##x,_n3##y,z,v), I[240] = (img)(_n3##x,_n3##y,z,v), I[241] = (img)(_n4##x,_n3##y,z,v), I[242] = (img)(_n5##x,_n3##y,z,v), I[243] = (img)(_n6##x,_n3##y,z,v), I[244] = (img)(_n7##x,_n3##y,z,v), I[245] = (img)(_n8##x,_n3##y,z,v), I[246] = (img)(_n9##x,_n3##y,z,v), \
philpem@5 4894 I[247] = (img)(_p9##x,_n4##y,z,v), I[248] = (img)(_p8##x,_n4##y,z,v), I[249] = (img)(_p7##x,_n4##y,z,v), I[250] = (img)(_p6##x,_n4##y,z,v), I[251] = (img)(_p5##x,_n4##y,z,v), I[252] = (img)(_p4##x,_n4##y,z,v), I[253] = (img)(_p3##x,_n4##y,z,v), I[254] = (img)(_p2##x,_n4##y,z,v), I[255] = (img)(_p1##x,_n4##y,z,v), I[256] = (img)(x,_n4##y,z,v), I[257] = (img)(_n1##x,_n4##y,z,v), I[258] = (img)(_n2##x,_n4##y,z,v), I[259] = (img)(_n3##x,_n4##y,z,v), I[260] = (img)(_n4##x,_n4##y,z,v), I[261] = (img)(_n5##x,_n4##y,z,v), I[262] = (img)(_n6##x,_n4##y,z,v), I[263] = (img)(_n7##x,_n4##y,z,v), I[264] = (img)(_n8##x,_n4##y,z,v), I[265] = (img)(_n9##x,_n4##y,z,v), \
philpem@5 4895 I[266] = (img)(_p9##x,_n5##y,z,v), I[267] = (img)(_p8##x,_n5##y,z,v), I[268] = (img)(_p7##x,_n5##y,z,v), I[269] = (img)(_p6##x,_n5##y,z,v), I[270] = (img)(_p5##x,_n5##y,z,v), I[271] = (img)(_p4##x,_n5##y,z,v), I[272] = (img)(_p3##x,_n5##y,z,v), I[273] = (img)(_p2##x,_n5##y,z,v), I[274] = (img)(_p1##x,_n5##y,z,v), I[275] = (img)(x,_n5##y,z,v), I[276] = (img)(_n1##x,_n5##y,z,v), I[277] = (img)(_n2##x,_n5##y,z,v), I[278] = (img)(_n3##x,_n5##y,z,v), I[279] = (img)(_n4##x,_n5##y,z,v), I[280] = (img)(_n5##x,_n5##y,z,v), I[281] = (img)(_n6##x,_n5##y,z,v), I[282] = (img)(_n7##x,_n5##y,z,v), I[283] = (img)(_n8##x,_n5##y,z,v), I[284] = (img)(_n9##x,_n5##y,z,v), \
philpem@5 4896 I[285] = (img)(_p9##x,_n6##y,z,v), I[286] = (img)(_p8##x,_n6##y,z,v), I[287] = (img)(_p7##x,_n6##y,z,v), I[288] = (img)(_p6##x,_n6##y,z,v), I[289] = (img)(_p5##x,_n6##y,z,v), I[290] = (img)(_p4##x,_n6##y,z,v), I[291] = (img)(_p3##x,_n6##y,z,v), I[292] = (img)(_p2##x,_n6##y,z,v), I[293] = (img)(_p1##x,_n6##y,z,v), I[294] = (img)(x,_n6##y,z,v), I[295] = (img)(_n1##x,_n6##y,z,v), I[296] = (img)(_n2##x,_n6##y,z,v), I[297] = (img)(_n3##x,_n6##y,z,v), I[298] = (img)(_n4##x,_n6##y,z,v), I[299] = (img)(_n5##x,_n6##y,z,v), I[300] = (img)(_n6##x,_n6##y,z,v), I[301] = (img)(_n7##x,_n6##y,z,v), I[302] = (img)(_n8##x,_n6##y,z,v), I[303] = (img)(_n9##x,_n6##y,z,v), \
philpem@5 4897 I[304] = (img)(_p9##x,_n7##y,z,v), I[305] = (img)(_p8##x,_n7##y,z,v), I[306] = (img)(_p7##x,_n7##y,z,v), I[307] = (img)(_p6##x,_n7##y,z,v), I[308] = (img)(_p5##x,_n7##y,z,v), I[309] = (img)(_p4##x,_n7##y,z,v), I[310] = (img)(_p3##x,_n7##y,z,v), I[311] = (img)(_p2##x,_n7##y,z,v), I[312] = (img)(_p1##x,_n7##y,z,v), I[313] = (img)(x,_n7##y,z,v), I[314] = (img)(_n1##x,_n7##y,z,v), I[315] = (img)(_n2##x,_n7##y,z,v), I[316] = (img)(_n3##x,_n7##y,z,v), I[317] = (img)(_n4##x,_n7##y,z,v), I[318] = (img)(_n5##x,_n7##y,z,v), I[319] = (img)(_n6##x,_n7##y,z,v), I[320] = (img)(_n7##x,_n7##y,z,v), I[321] = (img)(_n8##x,_n7##y,z,v), I[322] = (img)(_n9##x,_n7##y,z,v), \
philpem@5 4898 I[323] = (img)(_p9##x,_n8##y,z,v), I[324] = (img)(_p8##x,_n8##y,z,v), I[325] = (img)(_p7##x,_n8##y,z,v), I[326] = (img)(_p6##x,_n8##y,z,v), I[327] = (img)(_p5##x,_n8##y,z,v), I[328] = (img)(_p4##x,_n8##y,z,v), I[329] = (img)(_p3##x,_n8##y,z,v), I[330] = (img)(_p2##x,_n8##y,z,v), I[331] = (img)(_p1##x,_n8##y,z,v), I[332] = (img)(x,_n8##y,z,v), I[333] = (img)(_n1##x,_n8##y,z,v), I[334] = (img)(_n2##x,_n8##y,z,v), I[335] = (img)(_n3##x,_n8##y,z,v), I[336] = (img)(_n4##x,_n8##y,z,v), I[337] = (img)(_n5##x,_n8##y,z,v), I[338] = (img)(_n6##x,_n8##y,z,v), I[339] = (img)(_n7##x,_n8##y,z,v), I[340] = (img)(_n8##x,_n8##y,z,v), I[341] = (img)(_n9##x,_n8##y,z,v), \
philpem@5 4899 I[342] = (img)(_p9##x,_n9##y,z,v), I[343] = (img)(_p8##x,_n9##y,z,v), I[344] = (img)(_p7##x,_n9##y,z,v), I[345] = (img)(_p6##x,_n9##y,z,v), I[346] = (img)(_p5##x,_n9##y,z,v), I[347] = (img)(_p4##x,_n9##y,z,v), I[348] = (img)(_p3##x,_n9##y,z,v), I[349] = (img)(_p2##x,_n9##y,z,v), I[350] = (img)(_p1##x,_n9##y,z,v), I[351] = (img)(x,_n9##y,z,v), I[352] = (img)(_n1##x,_n9##y,z,v), I[353] = (img)(_n2##x,_n9##y,z,v), I[354] = (img)(_n3##x,_n9##y,z,v), I[355] = (img)(_n4##x,_n9##y,z,v), I[356] = (img)(_n5##x,_n9##y,z,v), I[357] = (img)(_n6##x,_n9##y,z,v), I[358] = (img)(_n7##x,_n9##y,z,v), I[359] = (img)(_n8##x,_n9##y,z,v), I[360] = (img)(_n9##x,_n9##y,z,v);
philpem@5 4900
philpem@5 4901 // Define 20x20 loop macros for CImg
philpem@5 4902 //----------------------------------
philpem@5 4903 #define cimg_for20(bound,i) for (int i = 0, \
philpem@5 4904 _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
philpem@5 4905 _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \
philpem@5 4906 _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \
philpem@5 4907 _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \
philpem@5 4908 _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \
philpem@5 4909 _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \
philpem@5 4910 _n6##i = 6>=(int)(bound)?(int)(bound)-1:6, \
philpem@5 4911 _n7##i = 7>=(int)(bound)?(int)(bound)-1:7, \
philpem@5 4912 _n8##i = 8>=(int)(bound)?(int)(bound)-1:8, \
philpem@5 4913 _n9##i = 9>=(int)(bound)?(int)(bound)-1:9, \
philpem@5 4914 _n10##i = 10>=(int)(bound)?(int)(bound)-1:10; \
philpem@5 4915 _n10##i<(int)(bound) || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 4916 i==(_n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
philpem@5 4917 _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 4918 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i)
philpem@5 4919
philpem@5 4920 #define cimg_for20X(img,x) cimg_for20((img).width,x)
philpem@5 4921 #define cimg_for20Y(img,y) cimg_for20((img).height,y)
philpem@5 4922 #define cimg_for20Z(img,z) cimg_for20((img).depth,z)
philpem@5 4923 #define cimg_for20V(img,v) cimg_for20((img).dim,v)
philpem@5 4924 #define cimg_for20XY(img,x,y) cimg_for20Y(img,y) cimg_for20X(img,x)
philpem@5 4925 #define cimg_for20XZ(img,x,z) cimg_for20Z(img,z) cimg_for20X(img,x)
philpem@5 4926 #define cimg_for20XV(img,x,v) cimg_for20V(img,v) cimg_for20X(img,x)
philpem@5 4927 #define cimg_for20YZ(img,y,z) cimg_for20Z(img,z) cimg_for20Y(img,y)
philpem@5 4928 #define cimg_for20YV(img,y,v) cimg_for20V(img,v) cimg_for20Y(img,y)
philpem@5 4929 #define cimg_for20ZV(img,z,v) cimg_for20V(img,v) cimg_for20Z(img,z)
philpem@5 4930 #define cimg_for20XYZ(img,x,y,z) cimg_for20Z(img,z) cimg_for20XY(img,x,y)
philpem@5 4931 #define cimg_for20XZV(img,x,z,v) cimg_for20V(img,v) cimg_for20XZ(img,x,z)
philpem@5 4932 #define cimg_for20YZV(img,y,z,v) cimg_for20V(img,v) cimg_for20YZ(img,y,z)
philpem@5 4933 #define cimg_for20XYZV(img,x,y,z,v) cimg_for20V(img,v) cimg_for20XYZ(img,x,y,z)
philpem@5 4934
philpem@5 4935 #define cimg_for_in20(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
philpem@5 4936 _p9##i = i-9<0?0:i-9, \
philpem@5 4937 _p8##i = i-8<0?0:i-8, \
philpem@5 4938 _p7##i = i-7<0?0:i-7, \
philpem@5 4939 _p6##i = i-6<0?0:i-6, \
philpem@5 4940 _p5##i = i-5<0?0:i-5, \
philpem@5 4941 _p4##i = i-4<0?0:i-4, \
philpem@5 4942 _p3##i = i-3<0?0:i-3, \
philpem@5 4943 _p2##i = i-2<0?0:i-2, \
philpem@5 4944 _p1##i = i-1<0?0:i-1, \
philpem@5 4945 _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \
philpem@5 4946 _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \
philpem@5 4947 _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \
philpem@5 4948 _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \
philpem@5 4949 _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \
philpem@5 4950 _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6, \
philpem@5 4951 _n7##i = i+7>=(int)(bound)?(int)(bound)-1:i+7, \
philpem@5 4952 _n8##i = i+8>=(int)(bound)?(int)(bound)-1:i+8, \
philpem@5 4953 _n9##i = i+9>=(int)(bound)?(int)(bound)-1:i+9, \
philpem@5 4954 _n10##i = i+10>=(int)(bound)?(int)(bound)-1:i+10; \
philpem@5 4955 i<=(int)(i1) && (_n10##i<(int)(bound) || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 4956 i==(_n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
philpem@5 4957 _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 4958 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i)
philpem@5 4959
philpem@5 4960 #define cimg_for_in20X(img,x0,x1,x) cimg_for_in20((img).width,x0,x1,x)
philpem@5 4961 #define cimg_for_in20Y(img,y0,y1,y) cimg_for_in20((img).height,y0,y1,y)
philpem@5 4962 #define cimg_for_in20Z(img,z0,z1,z) cimg_for_in20((img).depth,z0,z1,z)
philpem@5 4963 #define cimg_for_in20V(img,v0,v1,v) cimg_for_in20((img).dim,v0,v1,v)
philpem@5 4964 #define cimg_for_in20XY(img,x0,y0,x1,y1,x,y) cimg_for_in20Y(img,y0,y1,y) cimg_for_in20X(img,x0,x1,x)
philpem@5 4965 #define cimg_for_in20XZ(img,x0,z0,x1,z1,x,z) cimg_for_in20Z(img,z0,z1,z) cimg_for_in20X(img,x0,x1,x)
philpem@5 4966 #define cimg_for_in20XV(img,x0,v0,x1,v1,x,v) cimg_for_in20V(img,v0,v1,v) cimg_for_in20X(img,x0,x1,x)
philpem@5 4967 #define cimg_for_in20YZ(img,y0,z0,y1,z1,y,z) cimg_for_in20Z(img,z0,z1,z) cimg_for_in20Y(img,y0,y1,y)
philpem@5 4968 #define cimg_for_in20YV(img,y0,v0,y1,v1,y,v) cimg_for_in20V(img,v0,v1,v) cimg_for_in20Y(img,y0,y1,y)
philpem@5 4969 #define cimg_for_in20ZV(img,z0,v0,z1,v1,z,v) cimg_for_in20V(img,v0,v1,v) cimg_for_in20Z(img,z0,z1,z)
philpem@5 4970 #define cimg_for_in20XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in20Z(img,z0,z1,z) cimg_for_in20XY(img,x0,y0,x1,y1,x,y)
philpem@5 4971 #define cimg_for_in20XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in20V(img,v0,v1,v) cimg_for_in20XZ(img,x0,y0,x1,y1,x,z)
philpem@5 4972 #define cimg_for_in20YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in20V(img,v0,v1,v) cimg_for_in20YZ(img,y0,z0,y1,z1,y,z)
philpem@5 4973 #define cimg_for_in20XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in20V(img,v0,v1,v) cimg_for_in20XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
philpem@5 4974
philpem@5 4975 #define cimg_for20x20(img,x,y,z,v,I) \
philpem@5 4976 cimg_for20((img).height,y) for (int x = 0, \
philpem@5 4977 _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
philpem@5 4978 _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \
philpem@5 4979 _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \
philpem@5 4980 _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \
philpem@5 4981 _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \
philpem@5 4982 _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \
philpem@5 4983 _n6##x = 6>=((img).width)?(int)((img).width)-1:6, \
philpem@5 4984 _n7##x = 7>=((img).width)?(int)((img).width)-1:7, \
philpem@5 4985 _n8##x = 8>=((img).width)?(int)((img).width)-1:8, \
philpem@5 4986 _n9##x = 9>=((img).width)?(int)((img).width)-1:9, \
philpem@5 4987 _n10##x = (int)( \
philpem@5 4988 (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = (img)(0,_p9##y,z,v)), \
philpem@5 4989 (I[20] = I[21] = I[22] = I[23] = I[24] = I[25] = I[26] = I[27] = I[28] = I[29] = (img)(0,_p8##y,z,v)), \
philpem@5 4990 (I[40] = I[41] = I[42] = I[43] = I[44] = I[45] = I[46] = I[47] = I[48] = I[49] = (img)(0,_p7##y,z,v)), \
philpem@5 4991 (I[60] = I[61] = I[62] = I[63] = I[64] = I[65] = I[66] = I[67] = I[68] = I[69] = (img)(0,_p6##y,z,v)), \
philpem@5 4992 (I[80] = I[81] = I[82] = I[83] = I[84] = I[85] = I[86] = I[87] = I[88] = I[89] = (img)(0,_p5##y,z,v)), \
philpem@5 4993 (I[100] = I[101] = I[102] = I[103] = I[104] = I[105] = I[106] = I[107] = I[108] = I[109] = (img)(0,_p4##y,z,v)), \
philpem@5 4994 (I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = I[126] = I[127] = I[128] = I[129] = (img)(0,_p3##y,z,v)), \
philpem@5 4995 (I[140] = I[141] = I[142] = I[143] = I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = (img)(0,_p2##y,z,v)), \
philpem@5 4996 (I[160] = I[161] = I[162] = I[163] = I[164] = I[165] = I[166] = I[167] = I[168] = I[169] = (img)(0,_p1##y,z,v)), \
philpem@5 4997 (I[180] = I[181] = I[182] = I[183] = I[184] = I[185] = I[186] = I[187] = I[188] = I[189] = (img)(0,y,z,v)), \
philpem@5 4998 (I[200] = I[201] = I[202] = I[203] = I[204] = I[205] = I[206] = I[207] = I[208] = I[209] = (img)(0,_n1##y,z,v)), \
philpem@5 4999 (I[220] = I[221] = I[222] = I[223] = I[224] = I[225] = I[226] = I[227] = I[228] = I[229] = (img)(0,_n2##y,z,v)), \
philpem@5 5000 (I[240] = I[241] = I[242] = I[243] = I[244] = I[245] = I[246] = I[247] = I[248] = I[249] = (img)(0,_n3##y,z,v)), \
philpem@5 5001 (I[260] = I[261] = I[262] = I[263] = I[264] = I[265] = I[266] = I[267] = I[268] = I[269] = (img)(0,_n4##y,z,v)), \
philpem@5 5002 (I[280] = I[281] = I[282] = I[283] = I[284] = I[285] = I[286] = I[287] = I[288] = I[289] = (img)(0,_n5##y,z,v)), \
philpem@5 5003 (I[300] = I[301] = I[302] = I[303] = I[304] = I[305] = I[306] = I[307] = I[308] = I[309] = (img)(0,_n6##y,z,v)), \
philpem@5 5004 (I[320] = I[321] = I[322] = I[323] = I[324] = I[325] = I[326] = I[327] = I[328] = I[329] = (img)(0,_n7##y,z,v)), \
philpem@5 5005 (I[340] = I[341] = I[342] = I[343] = I[344] = I[345] = I[346] = I[347] = I[348] = I[349] = (img)(0,_n8##y,z,v)), \
philpem@5 5006 (I[360] = I[361] = I[362] = I[363] = I[364] = I[365] = I[366] = I[367] = I[368] = I[369] = (img)(0,_n9##y,z,v)), \
philpem@5 5007 (I[380] = I[381] = I[382] = I[383] = I[384] = I[385] = I[386] = I[387] = I[388] = I[389] = (img)(0,_n10##y,z,v)), \
philpem@5 5008 (I[10] = (img)(_n1##x,_p9##y,z,v)), \
philpem@5 5009 (I[30] = (img)(_n1##x,_p8##y,z,v)), \
philpem@5 5010 (I[50] = (img)(_n1##x,_p7##y,z,v)), \
philpem@5 5011 (I[70] = (img)(_n1##x,_p6##y,z,v)), \
philpem@5 5012 (I[90] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 5013 (I[110] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 5014 (I[130] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 5015 (I[150] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 5016 (I[170] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 5017 (I[190] = (img)(_n1##x,y,z,v)), \
philpem@5 5018 (I[210] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 5019 (I[230] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 5020 (I[250] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 5021 (I[270] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 5022 (I[290] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 5023 (I[310] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 5024 (I[330] = (img)(_n1##x,_n7##y,z,v)), \
philpem@5 5025 (I[350] = (img)(_n1##x,_n8##y,z,v)), \
philpem@5 5026 (I[370] = (img)(_n1##x,_n9##y,z,v)), \
philpem@5 5027 (I[390] = (img)(_n1##x,_n10##y,z,v)), \
philpem@5 5028 (I[11] = (img)(_n2##x,_p9##y,z,v)), \
philpem@5 5029 (I[31] = (img)(_n2##x,_p8##y,z,v)), \
philpem@5 5030 (I[51] = (img)(_n2##x,_p7##y,z,v)), \
philpem@5 5031 (I[71] = (img)(_n2##x,_p6##y,z,v)), \
philpem@5 5032 (I[91] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 5033 (I[111] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 5034 (I[131] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 5035 (I[151] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 5036 (I[171] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 5037 (I[191] = (img)(_n2##x,y,z,v)), \
philpem@5 5038 (I[211] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 5039 (I[231] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 5040 (I[251] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 5041 (I[271] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 5042 (I[291] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 5043 (I[311] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 5044 (I[331] = (img)(_n2##x,_n7##y,z,v)), \
philpem@5 5045 (I[351] = (img)(_n2##x,_n8##y,z,v)), \
philpem@5 5046 (I[371] = (img)(_n2##x,_n9##y,z,v)), \
philpem@5 5047 (I[391] = (img)(_n2##x,_n10##y,z,v)), \
philpem@5 5048 (I[12] = (img)(_n3##x,_p9##y,z,v)), \
philpem@5 5049 (I[32] = (img)(_n3##x,_p8##y,z,v)), \
philpem@5 5050 (I[52] = (img)(_n3##x,_p7##y,z,v)), \
philpem@5 5051 (I[72] = (img)(_n3##x,_p6##y,z,v)), \
philpem@5 5052 (I[92] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 5053 (I[112] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 5054 (I[132] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 5055 (I[152] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 5056 (I[172] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 5057 (I[192] = (img)(_n3##x,y,z,v)), \
philpem@5 5058 (I[212] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 5059 (I[232] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 5060 (I[252] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 5061 (I[272] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 5062 (I[292] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 5063 (I[312] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 5064 (I[332] = (img)(_n3##x,_n7##y,z,v)), \
philpem@5 5065 (I[352] = (img)(_n3##x,_n8##y,z,v)), \
philpem@5 5066 (I[372] = (img)(_n3##x,_n9##y,z,v)), \
philpem@5 5067 (I[392] = (img)(_n3##x,_n10##y,z,v)), \
philpem@5 5068 (I[13] = (img)(_n4##x,_p9##y,z,v)), \
philpem@5 5069 (I[33] = (img)(_n4##x,_p8##y,z,v)), \
philpem@5 5070 (I[53] = (img)(_n4##x,_p7##y,z,v)), \
philpem@5 5071 (I[73] = (img)(_n4##x,_p6##y,z,v)), \
philpem@5 5072 (I[93] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 5073 (I[113] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 5074 (I[133] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 5075 (I[153] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 5076 (I[173] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 5077 (I[193] = (img)(_n4##x,y,z,v)), \
philpem@5 5078 (I[213] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 5079 (I[233] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 5080 (I[253] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 5081 (I[273] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 5082 (I[293] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 5083 (I[313] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 5084 (I[333] = (img)(_n4##x,_n7##y,z,v)), \
philpem@5 5085 (I[353] = (img)(_n4##x,_n8##y,z,v)), \
philpem@5 5086 (I[373] = (img)(_n4##x,_n9##y,z,v)), \
philpem@5 5087 (I[393] = (img)(_n4##x,_n10##y,z,v)), \
philpem@5 5088 (I[14] = (img)(_n5##x,_p9##y,z,v)), \
philpem@5 5089 (I[34] = (img)(_n5##x,_p8##y,z,v)), \
philpem@5 5090 (I[54] = (img)(_n5##x,_p7##y,z,v)), \
philpem@5 5091 (I[74] = (img)(_n5##x,_p6##y,z,v)), \
philpem@5 5092 (I[94] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 5093 (I[114] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 5094 (I[134] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 5095 (I[154] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 5096 (I[174] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 5097 (I[194] = (img)(_n5##x,y,z,v)), \
philpem@5 5098 (I[214] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 5099 (I[234] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 5100 (I[254] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 5101 (I[274] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 5102 (I[294] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 5103 (I[314] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 5104 (I[334] = (img)(_n5##x,_n7##y,z,v)), \
philpem@5 5105 (I[354] = (img)(_n5##x,_n8##y,z,v)), \
philpem@5 5106 (I[374] = (img)(_n5##x,_n9##y,z,v)), \
philpem@5 5107 (I[394] = (img)(_n5##x,_n10##y,z,v)), \
philpem@5 5108 (I[15] = (img)(_n6##x,_p9##y,z,v)), \
philpem@5 5109 (I[35] = (img)(_n6##x,_p8##y,z,v)), \
philpem@5 5110 (I[55] = (img)(_n6##x,_p7##y,z,v)), \
philpem@5 5111 (I[75] = (img)(_n6##x,_p6##y,z,v)), \
philpem@5 5112 (I[95] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 5113 (I[115] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 5114 (I[135] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 5115 (I[155] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 5116 (I[175] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 5117 (I[195] = (img)(_n6##x,y,z,v)), \
philpem@5 5118 (I[215] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 5119 (I[235] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 5120 (I[255] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 5121 (I[275] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 5122 (I[295] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 5123 (I[315] = (img)(_n6##x,_n6##y,z,v)), \
philpem@5 5124 (I[335] = (img)(_n6##x,_n7##y,z,v)), \
philpem@5 5125 (I[355] = (img)(_n6##x,_n8##y,z,v)), \
philpem@5 5126 (I[375] = (img)(_n6##x,_n9##y,z,v)), \
philpem@5 5127 (I[395] = (img)(_n6##x,_n10##y,z,v)), \
philpem@5 5128 (I[16] = (img)(_n7##x,_p9##y,z,v)), \
philpem@5 5129 (I[36] = (img)(_n7##x,_p8##y,z,v)), \
philpem@5 5130 (I[56] = (img)(_n7##x,_p7##y,z,v)), \
philpem@5 5131 (I[76] = (img)(_n7##x,_p6##y,z,v)), \
philpem@5 5132 (I[96] = (img)(_n7##x,_p5##y,z,v)), \
philpem@5 5133 (I[116] = (img)(_n7##x,_p4##y,z,v)), \
philpem@5 5134 (I[136] = (img)(_n7##x,_p3##y,z,v)), \
philpem@5 5135 (I[156] = (img)(_n7##x,_p2##y,z,v)), \
philpem@5 5136 (I[176] = (img)(_n7##x,_p1##y,z,v)), \
philpem@5 5137 (I[196] = (img)(_n7##x,y,z,v)), \
philpem@5 5138 (I[216] = (img)(_n7##x,_n1##y,z,v)), \
philpem@5 5139 (I[236] = (img)(_n7##x,_n2##y,z,v)), \
philpem@5 5140 (I[256] = (img)(_n7##x,_n3##y,z,v)), \
philpem@5 5141 (I[276] = (img)(_n7##x,_n4##y,z,v)), \
philpem@5 5142 (I[296] = (img)(_n7##x,_n5##y,z,v)), \
philpem@5 5143 (I[316] = (img)(_n7##x,_n6##y,z,v)), \
philpem@5 5144 (I[336] = (img)(_n7##x,_n7##y,z,v)), \
philpem@5 5145 (I[356] = (img)(_n7##x,_n8##y,z,v)), \
philpem@5 5146 (I[376] = (img)(_n7##x,_n9##y,z,v)), \
philpem@5 5147 (I[396] = (img)(_n7##x,_n10##y,z,v)), \
philpem@5 5148 (I[17] = (img)(_n8##x,_p9##y,z,v)), \
philpem@5 5149 (I[37] = (img)(_n8##x,_p8##y,z,v)), \
philpem@5 5150 (I[57] = (img)(_n8##x,_p7##y,z,v)), \
philpem@5 5151 (I[77] = (img)(_n8##x,_p6##y,z,v)), \
philpem@5 5152 (I[97] = (img)(_n8##x,_p5##y,z,v)), \
philpem@5 5153 (I[117] = (img)(_n8##x,_p4##y,z,v)), \
philpem@5 5154 (I[137] = (img)(_n8##x,_p3##y,z,v)), \
philpem@5 5155 (I[157] = (img)(_n8##x,_p2##y,z,v)), \
philpem@5 5156 (I[177] = (img)(_n8##x,_p1##y,z,v)), \
philpem@5 5157 (I[197] = (img)(_n8##x,y,z,v)), \
philpem@5 5158 (I[217] = (img)(_n8##x,_n1##y,z,v)), \
philpem@5 5159 (I[237] = (img)(_n8##x,_n2##y,z,v)), \
philpem@5 5160 (I[257] = (img)(_n8##x,_n3##y,z,v)), \
philpem@5 5161 (I[277] = (img)(_n8##x,_n4##y,z,v)), \
philpem@5 5162 (I[297] = (img)(_n8##x,_n5##y,z,v)), \
philpem@5 5163 (I[317] = (img)(_n8##x,_n6##y,z,v)), \
philpem@5 5164 (I[337] = (img)(_n8##x,_n7##y,z,v)), \
philpem@5 5165 (I[357] = (img)(_n8##x,_n8##y,z,v)), \
philpem@5 5166 (I[377] = (img)(_n8##x,_n9##y,z,v)), \
philpem@5 5167 (I[397] = (img)(_n8##x,_n10##y,z,v)), \
philpem@5 5168 (I[18] = (img)(_n9##x,_p9##y,z,v)), \
philpem@5 5169 (I[38] = (img)(_n9##x,_p8##y,z,v)), \
philpem@5 5170 (I[58] = (img)(_n9##x,_p7##y,z,v)), \
philpem@5 5171 (I[78] = (img)(_n9##x,_p6##y,z,v)), \
philpem@5 5172 (I[98] = (img)(_n9##x,_p5##y,z,v)), \
philpem@5 5173 (I[118] = (img)(_n9##x,_p4##y,z,v)), \
philpem@5 5174 (I[138] = (img)(_n9##x,_p3##y,z,v)), \
philpem@5 5175 (I[158] = (img)(_n9##x,_p2##y,z,v)), \
philpem@5 5176 (I[178] = (img)(_n9##x,_p1##y,z,v)), \
philpem@5 5177 (I[198] = (img)(_n9##x,y,z,v)), \
philpem@5 5178 (I[218] = (img)(_n9##x,_n1##y,z,v)), \
philpem@5 5179 (I[238] = (img)(_n9##x,_n2##y,z,v)), \
philpem@5 5180 (I[258] = (img)(_n9##x,_n3##y,z,v)), \
philpem@5 5181 (I[278] = (img)(_n9##x,_n4##y,z,v)), \
philpem@5 5182 (I[298] = (img)(_n9##x,_n5##y,z,v)), \
philpem@5 5183 (I[318] = (img)(_n9##x,_n6##y,z,v)), \
philpem@5 5184 (I[338] = (img)(_n9##x,_n7##y,z,v)), \
philpem@5 5185 (I[358] = (img)(_n9##x,_n8##y,z,v)), \
philpem@5 5186 (I[378] = (img)(_n9##x,_n9##y,z,v)), \
philpem@5 5187 (I[398] = (img)(_n9##x,_n10##y,z,v)), \
philpem@5 5188 10>=((img).width)?(int)((img).width)-1:10); \
philpem@5 5189 (_n10##x<(int)((img).width) && ( \
philpem@5 5190 (I[19] = (img)(_n10##x,_p9##y,z,v)), \
philpem@5 5191 (I[39] = (img)(_n10##x,_p8##y,z,v)), \
philpem@5 5192 (I[59] = (img)(_n10##x,_p7##y,z,v)), \
philpem@5 5193 (I[79] = (img)(_n10##x,_p6##y,z,v)), \
philpem@5 5194 (I[99] = (img)(_n10##x,_p5##y,z,v)), \
philpem@5 5195 (I[119] = (img)(_n10##x,_p4##y,z,v)), \
philpem@5 5196 (I[139] = (img)(_n10##x,_p3##y,z,v)), \
philpem@5 5197 (I[159] = (img)(_n10##x,_p2##y,z,v)), \
philpem@5 5198 (I[179] = (img)(_n10##x,_p1##y,z,v)), \
philpem@5 5199 (I[199] = (img)(_n10##x,y,z,v)), \
philpem@5 5200 (I[219] = (img)(_n10##x,_n1##y,z,v)), \
philpem@5 5201 (I[239] = (img)(_n10##x,_n2##y,z,v)), \
philpem@5 5202 (I[259] = (img)(_n10##x,_n3##y,z,v)), \
philpem@5 5203 (I[279] = (img)(_n10##x,_n4##y,z,v)), \
philpem@5 5204 (I[299] = (img)(_n10##x,_n5##y,z,v)), \
philpem@5 5205 (I[319] = (img)(_n10##x,_n6##y,z,v)), \
philpem@5 5206 (I[339] = (img)(_n10##x,_n7##y,z,v)), \
philpem@5 5207 (I[359] = (img)(_n10##x,_n8##y,z,v)), \
philpem@5 5208 (I[379] = (img)(_n10##x,_n9##y,z,v)), \
philpem@5 5209 (I[399] = (img)(_n10##x,_n10##y,z,v)),1)) || \
philpem@5 5210 _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
philpem@5 5211 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \
philpem@5 5212 I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
philpem@5 5213 I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
philpem@5 5214 I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
philpem@5 5215 I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \
philpem@5 5216 I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
philpem@5 5217 I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \
philpem@5 5218 I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \
philpem@5 5219 I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
philpem@5 5220 I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], \
philpem@5 5221 I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], \
philpem@5 5222 I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
philpem@5 5223 I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], \
philpem@5 5224 I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \
philpem@5 5225 I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], \
philpem@5 5226 I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], \
philpem@5 5227 I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], \
philpem@5 5228 I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \
philpem@5 5229 I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], \
philpem@5 5230 I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], \
philpem@5 5231 _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x)
philpem@5 5232
philpem@5 5233 #define cimg_for_in20x20(img,x0,y0,x1,y1,x,y,z,v,I) \
philpem@5 5234 cimg_for_in20((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
philpem@5 5235 _p9##x = x-9<0?0:x-9, \
philpem@5 5236 _p8##x = x-8<0?0:x-8, \
philpem@5 5237 _p7##x = x-7<0?0:x-7, \
philpem@5 5238 _p6##x = x-6<0?0:x-6, \
philpem@5 5239 _p5##x = x-5<0?0:x-5, \
philpem@5 5240 _p4##x = x-4<0?0:x-4, \
philpem@5 5241 _p3##x = x-3<0?0:x-3, \
philpem@5 5242 _p2##x = x-2<0?0:x-2, \
philpem@5 5243 _p1##x = x-1<0?0:x-1, \
philpem@5 5244 _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \
philpem@5 5245 _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \
philpem@5 5246 _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \
philpem@5 5247 _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \
philpem@5 5248 _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \
philpem@5 5249 _n6##x = x+6>=(int)((img).width)?(int)((img).width)-1:x+6, \
philpem@5 5250 _n7##x = x+7>=(int)((img).width)?(int)((img).width)-1:x+7, \
philpem@5 5251 _n8##x = x+8>=(int)((img).width)?(int)((img).width)-1:x+8, \
philpem@5 5252 _n9##x = x+9>=(int)((img).width)?(int)((img).width)-1:x+9, \
philpem@5 5253 _n10##x = (int)( \
philpem@5 5254 (I[0] = (img)(_p9##x,_p9##y,z,v)), \
philpem@5 5255 (I[20] = (img)(_p9##x,_p8##y,z,v)), \
philpem@5 5256 (I[40] = (img)(_p9##x,_p7##y,z,v)), \
philpem@5 5257 (I[60] = (img)(_p9##x,_p6##y,z,v)), \
philpem@5 5258 (I[80] = (img)(_p9##x,_p5##y,z,v)), \
philpem@5 5259 (I[100] = (img)(_p9##x,_p4##y,z,v)), \
philpem@5 5260 (I[120] = (img)(_p9##x,_p3##y,z,v)), \
philpem@5 5261 (I[140] = (img)(_p9##x,_p2##y,z,v)), \
philpem@5 5262 (I[160] = (img)(_p9##x,_p1##y,z,v)), \
philpem@5 5263 (I[180] = (img)(_p9##x,y,z,v)), \
philpem@5 5264 (I[200] = (img)(_p9##x,_n1##y,z,v)), \
philpem@5 5265 (I[220] = (img)(_p9##x,_n2##y,z,v)), \
philpem@5 5266 (I[240] = (img)(_p9##x,_n3##y,z,v)), \
philpem@5 5267 (I[260] = (img)(_p9##x,_n4##y,z,v)), \
philpem@5 5268 (I[280] = (img)(_p9##x,_n5##y,z,v)), \
philpem@5 5269 (I[300] = (img)(_p9##x,_n6##y,z,v)), \
philpem@5 5270 (I[320] = (img)(_p9##x,_n7##y,z,v)), \
philpem@5 5271 (I[340] = (img)(_p9##x,_n8##y,z,v)), \
philpem@5 5272 (I[360] = (img)(_p9##x,_n9##y,z,v)), \
philpem@5 5273 (I[380] = (img)(_p9##x,_n10##y,z,v)), \
philpem@5 5274 (I[1] = (img)(_p8##x,_p9##y,z,v)), \
philpem@5 5275 (I[21] = (img)(_p8##x,_p8##y,z,v)), \
philpem@5 5276 (I[41] = (img)(_p8##x,_p7##y,z,v)), \
philpem@5 5277 (I[61] = (img)(_p8##x,_p6##y,z,v)), \
philpem@5 5278 (I[81] = (img)(_p8##x,_p5##y,z,v)), \
philpem@5 5279 (I[101] = (img)(_p8##x,_p4##y,z,v)), \
philpem@5 5280 (I[121] = (img)(_p8##x,_p3##y,z,v)), \
philpem@5 5281 (I[141] = (img)(_p8##x,_p2##y,z,v)), \
philpem@5 5282 (I[161] = (img)(_p8##x,_p1##y,z,v)), \
philpem@5 5283 (I[181] = (img)(_p8##x,y,z,v)), \
philpem@5 5284 (I[201] = (img)(_p8##x,_n1##y,z,v)), \
philpem@5 5285 (I[221] = (img)(_p8##x,_n2##y,z,v)), \
philpem@5 5286 (I[241] = (img)(_p8##x,_n3##y,z,v)), \
philpem@5 5287 (I[261] = (img)(_p8##x,_n4##y,z,v)), \
philpem@5 5288 (I[281] = (img)(_p8##x,_n5##y,z,v)), \
philpem@5 5289 (I[301] = (img)(_p8##x,_n6##y,z,v)), \
philpem@5 5290 (I[321] = (img)(_p8##x,_n7##y,z,v)), \
philpem@5 5291 (I[341] = (img)(_p8##x,_n8##y,z,v)), \
philpem@5 5292 (I[361] = (img)(_p8##x,_n9##y,z,v)), \
philpem@5 5293 (I[381] = (img)(_p8##x,_n10##y,z,v)), \
philpem@5 5294 (I[2] = (img)(_p7##x,_p9##y,z,v)), \
philpem@5 5295 (I[22] = (img)(_p7##x,_p8##y,z,v)), \
philpem@5 5296 (I[42] = (img)(_p7##x,_p7##y,z,v)), \
philpem@5 5297 (I[62] = (img)(_p7##x,_p6##y,z,v)), \
philpem@5 5298 (I[82] = (img)(_p7##x,_p5##y,z,v)), \
philpem@5 5299 (I[102] = (img)(_p7##x,_p4##y,z,v)), \
philpem@5 5300 (I[122] = (img)(_p7##x,_p3##y,z,v)), \
philpem@5 5301 (I[142] = (img)(_p7##x,_p2##y,z,v)), \
philpem@5 5302 (I[162] = (img)(_p7##x,_p1##y,z,v)), \
philpem@5 5303 (I[182] = (img)(_p7##x,y,z,v)), \
philpem@5 5304 (I[202] = (img)(_p7##x,_n1##y,z,v)), \
philpem@5 5305 (I[222] = (img)(_p7##x,_n2##y,z,v)), \
philpem@5 5306 (I[242] = (img)(_p7##x,_n3##y,z,v)), \
philpem@5 5307 (I[262] = (img)(_p7##x,_n4##y,z,v)), \
philpem@5 5308 (I[282] = (img)(_p7##x,_n5##y,z,v)), \
philpem@5 5309 (I[302] = (img)(_p7##x,_n6##y,z,v)), \
philpem@5 5310 (I[322] = (img)(_p7##x,_n7##y,z,v)), \
philpem@5 5311 (I[342] = (img)(_p7##x,_n8##y,z,v)), \
philpem@5 5312 (I[362] = (img)(_p7##x,_n9##y,z,v)), \
philpem@5 5313 (I[382] = (img)(_p7##x,_n10##y,z,v)), \
philpem@5 5314 (I[3] = (img)(_p6##x,_p9##y,z,v)), \
philpem@5 5315 (I[23] = (img)(_p6##x,_p8##y,z,v)), \
philpem@5 5316 (I[43] = (img)(_p6##x,_p7##y,z,v)), \
philpem@5 5317 (I[63] = (img)(_p6##x,_p6##y,z,v)), \
philpem@5 5318 (I[83] = (img)(_p6##x,_p5##y,z,v)), \
philpem@5 5319 (I[103] = (img)(_p6##x,_p4##y,z,v)), \
philpem@5 5320 (I[123] = (img)(_p6##x,_p3##y,z,v)), \
philpem@5 5321 (I[143] = (img)(_p6##x,_p2##y,z,v)), \
philpem@5 5322 (I[163] = (img)(_p6##x,_p1##y,z,v)), \
philpem@5 5323 (I[183] = (img)(_p6##x,y,z,v)), \
philpem@5 5324 (I[203] = (img)(_p6##x,_n1##y,z,v)), \
philpem@5 5325 (I[223] = (img)(_p6##x,_n2##y,z,v)), \
philpem@5 5326 (I[243] = (img)(_p6##x,_n3##y,z,v)), \
philpem@5 5327 (I[263] = (img)(_p6##x,_n4##y,z,v)), \
philpem@5 5328 (I[283] = (img)(_p6##x,_n5##y,z,v)), \
philpem@5 5329 (I[303] = (img)(_p6##x,_n6##y,z,v)), \
philpem@5 5330 (I[323] = (img)(_p6##x,_n7##y,z,v)), \
philpem@5 5331 (I[343] = (img)(_p6##x,_n8##y,z,v)), \
philpem@5 5332 (I[363] = (img)(_p6##x,_n9##y,z,v)), \
philpem@5 5333 (I[383] = (img)(_p6##x,_n10##y,z,v)), \
philpem@5 5334 (I[4] = (img)(_p5##x,_p9##y,z,v)), \
philpem@5 5335 (I[24] = (img)(_p5##x,_p8##y,z,v)), \
philpem@5 5336 (I[44] = (img)(_p5##x,_p7##y,z,v)), \
philpem@5 5337 (I[64] = (img)(_p5##x,_p6##y,z,v)), \
philpem@5 5338 (I[84] = (img)(_p5##x,_p5##y,z,v)), \
philpem@5 5339 (I[104] = (img)(_p5##x,_p4##y,z,v)), \
philpem@5 5340 (I[124] = (img)(_p5##x,_p3##y,z,v)), \
philpem@5 5341 (I[144] = (img)(_p5##x,_p2##y,z,v)), \
philpem@5 5342 (I[164] = (img)(_p5##x,_p1##y,z,v)), \
philpem@5 5343 (I[184] = (img)(_p5##x,y,z,v)), \
philpem@5 5344 (I[204] = (img)(_p5##x,_n1##y,z,v)), \
philpem@5 5345 (I[224] = (img)(_p5##x,_n2##y,z,v)), \
philpem@5 5346 (I[244] = (img)(_p5##x,_n3##y,z,v)), \
philpem@5 5347 (I[264] = (img)(_p5##x,_n4##y,z,v)), \
philpem@5 5348 (I[284] = (img)(_p5##x,_n5##y,z,v)), \
philpem@5 5349 (I[304] = (img)(_p5##x,_n6##y,z,v)), \
philpem@5 5350 (I[324] = (img)(_p5##x,_n7##y,z,v)), \
philpem@5 5351 (I[344] = (img)(_p5##x,_n8##y,z,v)), \
philpem@5 5352 (I[364] = (img)(_p5##x,_n9##y,z,v)), \
philpem@5 5353 (I[384] = (img)(_p5##x,_n10##y,z,v)), \
philpem@5 5354 (I[5] = (img)(_p4##x,_p9##y,z,v)), \
philpem@5 5355 (I[25] = (img)(_p4##x,_p8##y,z,v)), \
philpem@5 5356 (I[45] = (img)(_p4##x,_p7##y,z,v)), \
philpem@5 5357 (I[65] = (img)(_p4##x,_p6##y,z,v)), \
philpem@5 5358 (I[85] = (img)(_p4##x,_p5##y,z,v)), \
philpem@5 5359 (I[105] = (img)(_p4##x,_p4##y,z,v)), \
philpem@5 5360 (I[125] = (img)(_p4##x,_p3##y,z,v)), \
philpem@5 5361 (I[145] = (img)(_p4##x,_p2##y,z,v)), \
philpem@5 5362 (I[165] = (img)(_p4##x,_p1##y,z,v)), \
philpem@5 5363 (I[185] = (img)(_p4##x,y,z,v)), \
philpem@5 5364 (I[205] = (img)(_p4##x,_n1##y,z,v)), \
philpem@5 5365 (I[225] = (img)(_p4##x,_n2##y,z,v)), \
philpem@5 5366 (I[245] = (img)(_p4##x,_n3##y,z,v)), \
philpem@5 5367 (I[265] = (img)(_p4##x,_n4##y,z,v)), \
philpem@5 5368 (I[285] = (img)(_p4##x,_n5##y,z,v)), \
philpem@5 5369 (I[305] = (img)(_p4##x,_n6##y,z,v)), \
philpem@5 5370 (I[325] = (img)(_p4##x,_n7##y,z,v)), \
philpem@5 5371 (I[345] = (img)(_p4##x,_n8##y,z,v)), \
philpem@5 5372 (I[365] = (img)(_p4##x,_n9##y,z,v)), \
philpem@5 5373 (I[385] = (img)(_p4##x,_n10##y,z,v)), \
philpem@5 5374 (I[6] = (img)(_p3##x,_p9##y,z,v)), \
philpem@5 5375 (I[26] = (img)(_p3##x,_p8##y,z,v)), \
philpem@5 5376 (I[46] = (img)(_p3##x,_p7##y,z,v)), \
philpem@5 5377 (I[66] = (img)(_p3##x,_p6##y,z,v)), \
philpem@5 5378 (I[86] = (img)(_p3##x,_p5##y,z,v)), \
philpem@5 5379 (I[106] = (img)(_p3##x,_p4##y,z,v)), \
philpem@5 5380 (I[126] = (img)(_p3##x,_p3##y,z,v)), \
philpem@5 5381 (I[146] = (img)(_p3##x,_p2##y,z,v)), \
philpem@5 5382 (I[166] = (img)(_p3##x,_p1##y,z,v)), \
philpem@5 5383 (I[186] = (img)(_p3##x,y,z,v)), \
philpem@5 5384 (I[206] = (img)(_p3##x,_n1##y,z,v)), \
philpem@5 5385 (I[226] = (img)(_p3##x,_n2##y,z,v)), \
philpem@5 5386 (I[246] = (img)(_p3##x,_n3##y,z,v)), \
philpem@5 5387 (I[266] = (img)(_p3##x,_n4##y,z,v)), \
philpem@5 5388 (I[286] = (img)(_p3##x,_n5##y,z,v)), \
philpem@5 5389 (I[306] = (img)(_p3##x,_n6##y,z,v)), \
philpem@5 5390 (I[326] = (img)(_p3##x,_n7##y,z,v)), \
philpem@5 5391 (I[346] = (img)(_p3##x,_n8##y,z,v)), \
philpem@5 5392 (I[366] = (img)(_p3##x,_n9##y,z,v)), \
philpem@5 5393 (I[386] = (img)(_p3##x,_n10##y,z,v)), \
philpem@5 5394 (I[7] = (img)(_p2##x,_p9##y,z,v)), \
philpem@5 5395 (I[27] = (img)(_p2##x,_p8##y,z,v)), \
philpem@5 5396 (I[47] = (img)(_p2##x,_p7##y,z,v)), \
philpem@5 5397 (I[67] = (img)(_p2##x,_p6##y,z,v)), \
philpem@5 5398 (I[87] = (img)(_p2##x,_p5##y,z,v)), \
philpem@5 5399 (I[107] = (img)(_p2##x,_p4##y,z,v)), \
philpem@5 5400 (I[127] = (img)(_p2##x,_p3##y,z,v)), \
philpem@5 5401 (I[147] = (img)(_p2##x,_p2##y,z,v)), \
philpem@5 5402 (I[167] = (img)(_p2##x,_p1##y,z,v)), \
philpem@5 5403 (I[187] = (img)(_p2##x,y,z,v)), \
philpem@5 5404 (I[207] = (img)(_p2##x,_n1##y,z,v)), \
philpem@5 5405 (I[227] = (img)(_p2##x,_n2##y,z,v)), \
philpem@5 5406 (I[247] = (img)(_p2##x,_n3##y,z,v)), \
philpem@5 5407 (I[267] = (img)(_p2##x,_n4##y,z,v)), \
philpem@5 5408 (I[287] = (img)(_p2##x,_n5##y,z,v)), \
philpem@5 5409 (I[307] = (img)(_p2##x,_n6##y,z,v)), \
philpem@5 5410 (I[327] = (img)(_p2##x,_n7##y,z,v)), \
philpem@5 5411 (I[347] = (img)(_p2##x,_n8##y,z,v)), \
philpem@5 5412 (I[367] = (img)(_p2##x,_n9##y,z,v)), \
philpem@5 5413 (I[387] = (img)(_p2##x,_n10##y,z,v)), \
philpem@5 5414 (I[8] = (img)(_p1##x,_p9##y,z,v)), \
philpem@5 5415 (I[28] = (img)(_p1##x,_p8##y,z,v)), \
philpem@5 5416 (I[48] = (img)(_p1##x,_p7##y,z,v)), \
philpem@5 5417 (I[68] = (img)(_p1##x,_p6##y,z,v)), \
philpem@5 5418 (I[88] = (img)(_p1##x,_p5##y,z,v)), \
philpem@5 5419 (I[108] = (img)(_p1##x,_p4##y,z,v)), \
philpem@5 5420 (I[128] = (img)(_p1##x,_p3##y,z,v)), \
philpem@5 5421 (I[148] = (img)(_p1##x,_p2##y,z,v)), \
philpem@5 5422 (I[168] = (img)(_p1##x,_p1##y,z,v)), \
philpem@5 5423 (I[188] = (img)(_p1##x,y,z,v)), \
philpem@5 5424 (I[208] = (img)(_p1##x,_n1##y,z,v)), \
philpem@5 5425 (I[228] = (img)(_p1##x,_n2##y,z,v)), \
philpem@5 5426 (I[248] = (img)(_p1##x,_n3##y,z,v)), \
philpem@5 5427 (I[268] = (img)(_p1##x,_n4##y,z,v)), \
philpem@5 5428 (I[288] = (img)(_p1##x,_n5##y,z,v)), \
philpem@5 5429 (I[308] = (img)(_p1##x,_n6##y,z,v)), \
philpem@5 5430 (I[328] = (img)(_p1##x,_n7##y,z,v)), \
philpem@5 5431 (I[348] = (img)(_p1##x,_n8##y,z,v)), \
philpem@5 5432 (I[368] = (img)(_p1##x,_n9##y,z,v)), \
philpem@5 5433 (I[388] = (img)(_p1##x,_n10##y,z,v)), \
philpem@5 5434 (I[9] = (img)(x,_p9##y,z,v)), \
philpem@5 5435 (I[29] = (img)(x,_p8##y,z,v)), \
philpem@5 5436 (I[49] = (img)(x,_p7##y,z,v)), \
philpem@5 5437 (I[69] = (img)(x,_p6##y,z,v)), \
philpem@5 5438 (I[89] = (img)(x,_p5##y,z,v)), \
philpem@5 5439 (I[109] = (img)(x,_p4##y,z,v)), \
philpem@5 5440 (I[129] = (img)(x,_p3##y,z,v)), \
philpem@5 5441 (I[149] = (img)(x,_p2##y,z,v)), \
philpem@5 5442 (I[169] = (img)(x,_p1##y,z,v)), \
philpem@5 5443 (I[189] = (img)(x,y,z,v)), \
philpem@5 5444 (I[209] = (img)(x,_n1##y,z,v)), \
philpem@5 5445 (I[229] = (img)(x,_n2##y,z,v)), \
philpem@5 5446 (I[249] = (img)(x,_n3##y,z,v)), \
philpem@5 5447 (I[269] = (img)(x,_n4##y,z,v)), \
philpem@5 5448 (I[289] = (img)(x,_n5##y,z,v)), \
philpem@5 5449 (I[309] = (img)(x,_n6##y,z,v)), \
philpem@5 5450 (I[329] = (img)(x,_n7##y,z,v)), \
philpem@5 5451 (I[349] = (img)(x,_n8##y,z,v)), \
philpem@5 5452 (I[369] = (img)(x,_n9##y,z,v)), \
philpem@5 5453 (I[389] = (img)(x,_n10##y,z,v)), \
philpem@5 5454 (I[10] = (img)(_n1##x,_p9##y,z,v)), \
philpem@5 5455 (I[30] = (img)(_n1##x,_p8##y,z,v)), \
philpem@5 5456 (I[50] = (img)(_n1##x,_p7##y,z,v)), \
philpem@5 5457 (I[70] = (img)(_n1##x,_p6##y,z,v)), \
philpem@5 5458 (I[90] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 5459 (I[110] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 5460 (I[130] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 5461 (I[150] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 5462 (I[170] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 5463 (I[190] = (img)(_n1##x,y,z,v)), \
philpem@5 5464 (I[210] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 5465 (I[230] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 5466 (I[250] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 5467 (I[270] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 5468 (I[290] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 5469 (I[310] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 5470 (I[330] = (img)(_n1##x,_n7##y,z,v)), \
philpem@5 5471 (I[350] = (img)(_n1##x,_n8##y,z,v)), \
philpem@5 5472 (I[370] = (img)(_n1##x,_n9##y,z,v)), \
philpem@5 5473 (I[390] = (img)(_n1##x,_n10##y,z,v)), \
philpem@5 5474 (I[11] = (img)(_n2##x,_p9##y,z,v)), \
philpem@5 5475 (I[31] = (img)(_n2##x,_p8##y,z,v)), \
philpem@5 5476 (I[51] = (img)(_n2##x,_p7##y,z,v)), \
philpem@5 5477 (I[71] = (img)(_n2##x,_p6##y,z,v)), \
philpem@5 5478 (I[91] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 5479 (I[111] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 5480 (I[131] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 5481 (I[151] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 5482 (I[171] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 5483 (I[191] = (img)(_n2##x,y,z,v)), \
philpem@5 5484 (I[211] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 5485 (I[231] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 5486 (I[251] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 5487 (I[271] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 5488 (I[291] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 5489 (I[311] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 5490 (I[331] = (img)(_n2##x,_n7##y,z,v)), \
philpem@5 5491 (I[351] = (img)(_n2##x,_n8##y,z,v)), \
philpem@5 5492 (I[371] = (img)(_n2##x,_n9##y,z,v)), \
philpem@5 5493 (I[391] = (img)(_n2##x,_n10##y,z,v)), \
philpem@5 5494 (I[12] = (img)(_n3##x,_p9##y,z,v)), \
philpem@5 5495 (I[32] = (img)(_n3##x,_p8##y,z,v)), \
philpem@5 5496 (I[52] = (img)(_n3##x,_p7##y,z,v)), \
philpem@5 5497 (I[72] = (img)(_n3##x,_p6##y,z,v)), \
philpem@5 5498 (I[92] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 5499 (I[112] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 5500 (I[132] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 5501 (I[152] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 5502 (I[172] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 5503 (I[192] = (img)(_n3##x,y,z,v)), \
philpem@5 5504 (I[212] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 5505 (I[232] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 5506 (I[252] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 5507 (I[272] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 5508 (I[292] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 5509 (I[312] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 5510 (I[332] = (img)(_n3##x,_n7##y,z,v)), \
philpem@5 5511 (I[352] = (img)(_n3##x,_n8##y,z,v)), \
philpem@5 5512 (I[372] = (img)(_n3##x,_n9##y,z,v)), \
philpem@5 5513 (I[392] = (img)(_n3##x,_n10##y,z,v)), \
philpem@5 5514 (I[13] = (img)(_n4##x,_p9##y,z,v)), \
philpem@5 5515 (I[33] = (img)(_n4##x,_p8##y,z,v)), \
philpem@5 5516 (I[53] = (img)(_n4##x,_p7##y,z,v)), \
philpem@5 5517 (I[73] = (img)(_n4##x,_p6##y,z,v)), \
philpem@5 5518 (I[93] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 5519 (I[113] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 5520 (I[133] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 5521 (I[153] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 5522 (I[173] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 5523 (I[193] = (img)(_n4##x,y,z,v)), \
philpem@5 5524 (I[213] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 5525 (I[233] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 5526 (I[253] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 5527 (I[273] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 5528 (I[293] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 5529 (I[313] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 5530 (I[333] = (img)(_n4##x,_n7##y,z,v)), \
philpem@5 5531 (I[353] = (img)(_n4##x,_n8##y,z,v)), \
philpem@5 5532 (I[373] = (img)(_n4##x,_n9##y,z,v)), \
philpem@5 5533 (I[393] = (img)(_n4##x,_n10##y,z,v)), \
philpem@5 5534 (I[14] = (img)(_n5##x,_p9##y,z,v)), \
philpem@5 5535 (I[34] = (img)(_n5##x,_p8##y,z,v)), \
philpem@5 5536 (I[54] = (img)(_n5##x,_p7##y,z,v)), \
philpem@5 5537 (I[74] = (img)(_n5##x,_p6##y,z,v)), \
philpem@5 5538 (I[94] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 5539 (I[114] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 5540 (I[134] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 5541 (I[154] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 5542 (I[174] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 5543 (I[194] = (img)(_n5##x,y,z,v)), \
philpem@5 5544 (I[214] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 5545 (I[234] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 5546 (I[254] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 5547 (I[274] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 5548 (I[294] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 5549 (I[314] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 5550 (I[334] = (img)(_n5##x,_n7##y,z,v)), \
philpem@5 5551 (I[354] = (img)(_n5##x,_n8##y,z,v)), \
philpem@5 5552 (I[374] = (img)(_n5##x,_n9##y,z,v)), \
philpem@5 5553 (I[394] = (img)(_n5##x,_n10##y,z,v)), \
philpem@5 5554 (I[15] = (img)(_n6##x,_p9##y,z,v)), \
philpem@5 5555 (I[35] = (img)(_n6##x,_p8##y,z,v)), \
philpem@5 5556 (I[55] = (img)(_n6##x,_p7##y,z,v)), \
philpem@5 5557 (I[75] = (img)(_n6##x,_p6##y,z,v)), \
philpem@5 5558 (I[95] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 5559 (I[115] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 5560 (I[135] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 5561 (I[155] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 5562 (I[175] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 5563 (I[195] = (img)(_n6##x,y,z,v)), \
philpem@5 5564 (I[215] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 5565 (I[235] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 5566 (I[255] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 5567 (I[275] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 5568 (I[295] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 5569 (I[315] = (img)(_n6##x,_n6##y,z,v)), \
philpem@5 5570 (I[335] = (img)(_n6##x,_n7##y,z,v)), \
philpem@5 5571 (I[355] = (img)(_n6##x,_n8##y,z,v)), \
philpem@5 5572 (I[375] = (img)(_n6##x,_n9##y,z,v)), \
philpem@5 5573 (I[395] = (img)(_n6##x,_n10##y,z,v)), \
philpem@5 5574 (I[16] = (img)(_n7##x,_p9##y,z,v)), \
philpem@5 5575 (I[36] = (img)(_n7##x,_p8##y,z,v)), \
philpem@5 5576 (I[56] = (img)(_n7##x,_p7##y,z,v)), \
philpem@5 5577 (I[76] = (img)(_n7##x,_p6##y,z,v)), \
philpem@5 5578 (I[96] = (img)(_n7##x,_p5##y,z,v)), \
philpem@5 5579 (I[116] = (img)(_n7##x,_p4##y,z,v)), \
philpem@5 5580 (I[136] = (img)(_n7##x,_p3##y,z,v)), \
philpem@5 5581 (I[156] = (img)(_n7##x,_p2##y,z,v)), \
philpem@5 5582 (I[176] = (img)(_n7##x,_p1##y,z,v)), \
philpem@5 5583 (I[196] = (img)(_n7##x,y,z,v)), \
philpem@5 5584 (I[216] = (img)(_n7##x,_n1##y,z,v)), \
philpem@5 5585 (I[236] = (img)(_n7##x,_n2##y,z,v)), \
philpem@5 5586 (I[256] = (img)(_n7##x,_n3##y,z,v)), \
philpem@5 5587 (I[276] = (img)(_n7##x,_n4##y,z,v)), \
philpem@5 5588 (I[296] = (img)(_n7##x,_n5##y,z,v)), \
philpem@5 5589 (I[316] = (img)(_n7##x,_n6##y,z,v)), \
philpem@5 5590 (I[336] = (img)(_n7##x,_n7##y,z,v)), \
philpem@5 5591 (I[356] = (img)(_n7##x,_n8##y,z,v)), \
philpem@5 5592 (I[376] = (img)(_n7##x,_n9##y,z,v)), \
philpem@5 5593 (I[396] = (img)(_n7##x,_n10##y,z,v)), \
philpem@5 5594 (I[17] = (img)(_n8##x,_p9##y,z,v)), \
philpem@5 5595 (I[37] = (img)(_n8##x,_p8##y,z,v)), \
philpem@5 5596 (I[57] = (img)(_n8##x,_p7##y,z,v)), \
philpem@5 5597 (I[77] = (img)(_n8##x,_p6##y,z,v)), \
philpem@5 5598 (I[97] = (img)(_n8##x,_p5##y,z,v)), \
philpem@5 5599 (I[117] = (img)(_n8##x,_p4##y,z,v)), \
philpem@5 5600 (I[137] = (img)(_n8##x,_p3##y,z,v)), \
philpem@5 5601 (I[157] = (img)(_n8##x,_p2##y,z,v)), \
philpem@5 5602 (I[177] = (img)(_n8##x,_p1##y,z,v)), \
philpem@5 5603 (I[197] = (img)(_n8##x,y,z,v)), \
philpem@5 5604 (I[217] = (img)(_n8##x,_n1##y,z,v)), \
philpem@5 5605 (I[237] = (img)(_n8##x,_n2##y,z,v)), \
philpem@5 5606 (I[257] = (img)(_n8##x,_n3##y,z,v)), \
philpem@5 5607 (I[277] = (img)(_n8##x,_n4##y,z,v)), \
philpem@5 5608 (I[297] = (img)(_n8##x,_n5##y,z,v)), \
philpem@5 5609 (I[317] = (img)(_n8##x,_n6##y,z,v)), \
philpem@5 5610 (I[337] = (img)(_n8##x,_n7##y,z,v)), \
philpem@5 5611 (I[357] = (img)(_n8##x,_n8##y,z,v)), \
philpem@5 5612 (I[377] = (img)(_n8##x,_n9##y,z,v)), \
philpem@5 5613 (I[397] = (img)(_n8##x,_n10##y,z,v)), \
philpem@5 5614 (I[18] = (img)(_n9##x,_p9##y,z,v)), \
philpem@5 5615 (I[38] = (img)(_n9##x,_p8##y,z,v)), \
philpem@5 5616 (I[58] = (img)(_n9##x,_p7##y,z,v)), \
philpem@5 5617 (I[78] = (img)(_n9##x,_p6##y,z,v)), \
philpem@5 5618 (I[98] = (img)(_n9##x,_p5##y,z,v)), \
philpem@5 5619 (I[118] = (img)(_n9##x,_p4##y,z,v)), \
philpem@5 5620 (I[138] = (img)(_n9##x,_p3##y,z,v)), \
philpem@5 5621 (I[158] = (img)(_n9##x,_p2##y,z,v)), \
philpem@5 5622 (I[178] = (img)(_n9##x,_p1##y,z,v)), \
philpem@5 5623 (I[198] = (img)(_n9##x,y,z,v)), \
philpem@5 5624 (I[218] = (img)(_n9##x,_n1##y,z,v)), \
philpem@5 5625 (I[238] = (img)(_n9##x,_n2##y,z,v)), \
philpem@5 5626 (I[258] = (img)(_n9##x,_n3##y,z,v)), \
philpem@5 5627 (I[278] = (img)(_n9##x,_n4##y,z,v)), \
philpem@5 5628 (I[298] = (img)(_n9##x,_n5##y,z,v)), \
philpem@5 5629 (I[318] = (img)(_n9##x,_n6##y,z,v)), \
philpem@5 5630 (I[338] = (img)(_n9##x,_n7##y,z,v)), \
philpem@5 5631 (I[358] = (img)(_n9##x,_n8##y,z,v)), \
philpem@5 5632 (I[378] = (img)(_n9##x,_n9##y,z,v)), \
philpem@5 5633 (I[398] = (img)(_n9##x,_n10##y,z,v)), \
philpem@5 5634 x+10>=(int)((img).width)?(int)((img).width)-1:x+10); \
philpem@5 5635 x<=(int)(x1) && ((_n10##x<(int)((img).width) && ( \
philpem@5 5636 (I[19] = (img)(_n10##x,_p9##y,z,v)), \
philpem@5 5637 (I[39] = (img)(_n10##x,_p8##y,z,v)), \
philpem@5 5638 (I[59] = (img)(_n10##x,_p7##y,z,v)), \
philpem@5 5639 (I[79] = (img)(_n10##x,_p6##y,z,v)), \
philpem@5 5640 (I[99] = (img)(_n10##x,_p5##y,z,v)), \
philpem@5 5641 (I[119] = (img)(_n10##x,_p4##y,z,v)), \
philpem@5 5642 (I[139] = (img)(_n10##x,_p3##y,z,v)), \
philpem@5 5643 (I[159] = (img)(_n10##x,_p2##y,z,v)), \
philpem@5 5644 (I[179] = (img)(_n10##x,_p1##y,z,v)), \
philpem@5 5645 (I[199] = (img)(_n10##x,y,z,v)), \
philpem@5 5646 (I[219] = (img)(_n10##x,_n1##y,z,v)), \
philpem@5 5647 (I[239] = (img)(_n10##x,_n2##y,z,v)), \
philpem@5 5648 (I[259] = (img)(_n10##x,_n3##y,z,v)), \
philpem@5 5649 (I[279] = (img)(_n10##x,_n4##y,z,v)), \
philpem@5 5650 (I[299] = (img)(_n10##x,_n5##y,z,v)), \
philpem@5 5651 (I[319] = (img)(_n10##x,_n6##y,z,v)), \
philpem@5 5652 (I[339] = (img)(_n10##x,_n7##y,z,v)), \
philpem@5 5653 (I[359] = (img)(_n10##x,_n8##y,z,v)), \
philpem@5 5654 (I[379] = (img)(_n10##x,_n9##y,z,v)), \
philpem@5 5655 (I[399] = (img)(_n10##x,_n10##y,z,v)),1)) || \
philpem@5 5656 _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
philpem@5 5657 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \
philpem@5 5658 I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
philpem@5 5659 I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
philpem@5 5660 I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
philpem@5 5661 I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \
philpem@5 5662 I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
philpem@5 5663 I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \
philpem@5 5664 I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \
philpem@5 5665 I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
philpem@5 5666 I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], \
philpem@5 5667 I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], \
philpem@5 5668 I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
philpem@5 5669 I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], \
philpem@5 5670 I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \
philpem@5 5671 I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], \
philpem@5 5672 I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], \
philpem@5 5673 I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], \
philpem@5 5674 I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \
philpem@5 5675 I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], \
philpem@5 5676 I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], \
philpem@5 5677 _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x)
philpem@5 5678
philpem@5 5679 #define cimg_get20x20(img,x,y,z,v,I) \
philpem@5 5680 I[0] = (img)(_p9##x,_p9##y,z,v), I[1] = (img)(_p8##x,_p9##y,z,v), I[2] = (img)(_p7##x,_p9##y,z,v), I[3] = (img)(_p6##x,_p9##y,z,v), I[4] = (img)(_p5##x,_p9##y,z,v), I[5] = (img)(_p4##x,_p9##y,z,v), I[6] = (img)(_p3##x,_p9##y,z,v), I[7] = (img)(_p2##x,_p9##y,z,v), I[8] = (img)(_p1##x,_p9##y,z,v), I[9] = (img)(x,_p9##y,z,v), I[10] = (img)(_n1##x,_p9##y,z,v), I[11] = (img)(_n2##x,_p9##y,z,v), I[12] = (img)(_n3##x,_p9##y,z,v), I[13] = (img)(_n4##x,_p9##y,z,v), I[14] = (img)(_n5##x,_p9##y,z,v), I[15] = (img)(_n6##x,_p9##y,z,v), I[16] = (img)(_n7##x,_p9##y,z,v), I[17] = (img)(_n8##x,_p9##y,z,v), I[18] = (img)(_n9##x,_p9##y,z,v), I[19] = (img)(_n10##x,_p9##y,z,v), \
philpem@5 5681 I[20] = (img)(_p9##x,_p8##y,z,v), I[21] = (img)(_p8##x,_p8##y,z,v), I[22] = (img)(_p7##x,_p8##y,z,v), I[23] = (img)(_p6##x,_p8##y,z,v), I[24] = (img)(_p5##x,_p8##y,z,v), I[25] = (img)(_p4##x,_p8##y,z,v), I[26] = (img)(_p3##x,_p8##y,z,v), I[27] = (img)(_p2##x,_p8##y,z,v), I[28] = (img)(_p1##x,_p8##y,z,v), I[29] = (img)(x,_p8##y,z,v), I[30] = (img)(_n1##x,_p8##y,z,v), I[31] = (img)(_n2##x,_p8##y,z,v), I[32] = (img)(_n3##x,_p8##y,z,v), I[33] = (img)(_n4##x,_p8##y,z,v), I[34] = (img)(_n5##x,_p8##y,z,v), I[35] = (img)(_n6##x,_p8##y,z,v), I[36] = (img)(_n7##x,_p8##y,z,v), I[37] = (img)(_n8##x,_p8##y,z,v), I[38] = (img)(_n9##x,_p8##y,z,v), I[39] = (img)(_n10##x,_p8##y,z,v), \
philpem@5 5682 I[40] = (img)(_p9##x,_p7##y,z,v), I[41] = (img)(_p8##x,_p7##y,z,v), I[42] = (img)(_p7##x,_p7##y,z,v), I[43] = (img)(_p6##x,_p7##y,z,v), I[44] = (img)(_p5##x,_p7##y,z,v), I[45] = (img)(_p4##x,_p7##y,z,v), I[46] = (img)(_p3##x,_p7##y,z,v), I[47] = (img)(_p2##x,_p7##y,z,v), I[48] = (img)(_p1##x,_p7##y,z,v), I[49] = (img)(x,_p7##y,z,v), I[50] = (img)(_n1##x,_p7##y,z,v), I[51] = (img)(_n2##x,_p7##y,z,v), I[52] = (img)(_n3##x,_p7##y,z,v), I[53] = (img)(_n4##x,_p7##y,z,v), I[54] = (img)(_n5##x,_p7##y,z,v), I[55] = (img)(_n6##x,_p7##y,z,v), I[56] = (img)(_n7##x,_p7##y,z,v), I[57] = (img)(_n8##x,_p7##y,z,v), I[58] = (img)(_n9##x,_p7##y,z,v), I[59] = (img)(_n10##x,_p7##y,z,v), \
philpem@5 5683 I[60] = (img)(_p9##x,_p6##y,z,v), I[61] = (img)(_p8##x,_p6##y,z,v), I[62] = (img)(_p7##x,_p6##y,z,v), I[63] = (img)(_p6##x,_p6##y,z,v), I[64] = (img)(_p5##x,_p6##y,z,v), I[65] = (img)(_p4##x,_p6##y,z,v), I[66] = (img)(_p3##x,_p6##y,z,v), I[67] = (img)(_p2##x,_p6##y,z,v), I[68] = (img)(_p1##x,_p6##y,z,v), I[69] = (img)(x,_p6##y,z,v), I[70] = (img)(_n1##x,_p6##y,z,v), I[71] = (img)(_n2##x,_p6##y,z,v), I[72] = (img)(_n3##x,_p6##y,z,v), I[73] = (img)(_n4##x,_p6##y,z,v), I[74] = (img)(_n5##x,_p6##y,z,v), I[75] = (img)(_n6##x,_p6##y,z,v), I[76] = (img)(_n7##x,_p6##y,z,v), I[77] = (img)(_n8##x,_p6##y,z,v), I[78] = (img)(_n9##x,_p6##y,z,v), I[79] = (img)(_n10##x,_p6##y,z,v), \
philpem@5 5684 I[80] = (img)(_p9##x,_p5##y,z,v), I[81] = (img)(_p8##x,_p5##y,z,v), I[82] = (img)(_p7##x,_p5##y,z,v), I[83] = (img)(_p6##x,_p5##y,z,v), I[84] = (img)(_p5##x,_p5##y,z,v), I[85] = (img)(_p4##x,_p5##y,z,v), I[86] = (img)(_p3##x,_p5##y,z,v), I[87] = (img)(_p2##x,_p5##y,z,v), I[88] = (img)(_p1##x,_p5##y,z,v), I[89] = (img)(x,_p5##y,z,v), I[90] = (img)(_n1##x,_p5##y,z,v), I[91] = (img)(_n2##x,_p5##y,z,v), I[92] = (img)(_n3##x,_p5##y,z,v), I[93] = (img)(_n4##x,_p5##y,z,v), I[94] = (img)(_n5##x,_p5##y,z,v), I[95] = (img)(_n6##x,_p5##y,z,v), I[96] = (img)(_n7##x,_p5##y,z,v), I[97] = (img)(_n8##x,_p5##y,z,v), I[98] = (img)(_n9##x,_p5##y,z,v), I[99] = (img)(_n10##x,_p5##y,z,v), \
philpem@5 5685 I[100] = (img)(_p9##x,_p4##y,z,v), I[101] = (img)(_p8##x,_p4##y,z,v), I[102] = (img)(_p7##x,_p4##y,z,v), I[103] = (img)(_p6##x,_p4##y,z,v), I[104] = (img)(_p5##x,_p4##y,z,v), I[105] = (img)(_p4##x,_p4##y,z,v), I[106] = (img)(_p3##x,_p4##y,z,v), I[107] = (img)(_p2##x,_p4##y,z,v), I[108] = (img)(_p1##x,_p4##y,z,v), I[109] = (img)(x,_p4##y,z,v), I[110] = (img)(_n1##x,_p4##y,z,v), I[111] = (img)(_n2##x,_p4##y,z,v), I[112] = (img)(_n3##x,_p4##y,z,v), I[113] = (img)(_n4##x,_p4##y,z,v), I[114] = (img)(_n5##x,_p4##y,z,v), I[115] = (img)(_n6##x,_p4##y,z,v), I[116] = (img)(_n7##x,_p4##y,z,v), I[117] = (img)(_n8##x,_p4##y,z,v), I[118] = (img)(_n9##x,_p4##y,z,v), I[119] = (img)(_n10##x,_p4##y,z,v), \
philpem@5 5686 I[120] = (img)(_p9##x,_p3##y,z,v), I[121] = (img)(_p8##x,_p3##y,z,v), I[122] = (img)(_p7##x,_p3##y,z,v), I[123] = (img)(_p6##x,_p3##y,z,v), I[124] = (img)(_p5##x,_p3##y,z,v), I[125] = (img)(_p4##x,_p3##y,z,v), I[126] = (img)(_p3##x,_p3##y,z,v), I[127] = (img)(_p2##x,_p3##y,z,v), I[128] = (img)(_p1##x,_p3##y,z,v), I[129] = (img)(x,_p3##y,z,v), I[130] = (img)(_n1##x,_p3##y,z,v), I[131] = (img)(_n2##x,_p3##y,z,v), I[132] = (img)(_n3##x,_p3##y,z,v), I[133] = (img)(_n4##x,_p3##y,z,v), I[134] = (img)(_n5##x,_p3##y,z,v), I[135] = (img)(_n6##x,_p3##y,z,v), I[136] = (img)(_n7##x,_p3##y,z,v), I[137] = (img)(_n8##x,_p3##y,z,v), I[138] = (img)(_n9##x,_p3##y,z,v), I[139] = (img)(_n10##x,_p3##y,z,v), \
philpem@5 5687 I[140] = (img)(_p9##x,_p2##y,z,v), I[141] = (img)(_p8##x,_p2##y,z,v), I[142] = (img)(_p7##x,_p2##y,z,v), I[143] = (img)(_p6##x,_p2##y,z,v), I[144] = (img)(_p5##x,_p2##y,z,v), I[145] = (img)(_p4##x,_p2##y,z,v), I[146] = (img)(_p3##x,_p2##y,z,v), I[147] = (img)(_p2##x,_p2##y,z,v), I[148] = (img)(_p1##x,_p2##y,z,v), I[149] = (img)(x,_p2##y,z,v), I[150] = (img)(_n1##x,_p2##y,z,v), I[151] = (img)(_n2##x,_p2##y,z,v), I[152] = (img)(_n3##x,_p2##y,z,v), I[153] = (img)(_n4##x,_p2##y,z,v), I[154] = (img)(_n5##x,_p2##y,z,v), I[155] = (img)(_n6##x,_p2##y,z,v), I[156] = (img)(_n7##x,_p2##y,z,v), I[157] = (img)(_n8##x,_p2##y,z,v), I[158] = (img)(_n9##x,_p2##y,z,v), I[159] = (img)(_n10##x,_p2##y,z,v), \
philpem@5 5688 I[160] = (img)(_p9##x,_p1##y,z,v), I[161] = (img)(_p8##x,_p1##y,z,v), I[162] = (img)(_p7##x,_p1##y,z,v), I[163] = (img)(_p6##x,_p1##y,z,v), I[164] = (img)(_p5##x,_p1##y,z,v), I[165] = (img)(_p4##x,_p1##y,z,v), I[166] = (img)(_p3##x,_p1##y,z,v), I[167] = (img)(_p2##x,_p1##y,z,v), I[168] = (img)(_p1##x,_p1##y,z,v), I[169] = (img)(x,_p1##y,z,v), I[170] = (img)(_n1##x,_p1##y,z,v), I[171] = (img)(_n2##x,_p1##y,z,v), I[172] = (img)(_n3##x,_p1##y,z,v), I[173] = (img)(_n4##x,_p1##y,z,v), I[174] = (img)(_n5##x,_p1##y,z,v), I[175] = (img)(_n6##x,_p1##y,z,v), I[176] = (img)(_n7##x,_p1##y,z,v), I[177] = (img)(_n8##x,_p1##y,z,v), I[178] = (img)(_n9##x,_p1##y,z,v), I[179] = (img)(_n10##x,_p1##y,z,v), \
philpem@5 5689 I[180] = (img)(_p9##x,y,z,v), I[181] = (img)(_p8##x,y,z,v), I[182] = (img)(_p7##x,y,z,v), I[183] = (img)(_p6##x,y,z,v), I[184] = (img)(_p5##x,y,z,v), I[185] = (img)(_p4##x,y,z,v), I[186] = (img)(_p3##x,y,z,v), I[187] = (img)(_p2##x,y,z,v), I[188] = (img)(_p1##x,y,z,v), I[189] = (img)(x,y,z,v), I[190] = (img)(_n1##x,y,z,v), I[191] = (img)(_n2##x,y,z,v), I[192] = (img)(_n3##x,y,z,v), I[193] = (img)(_n4##x,y,z,v), I[194] = (img)(_n5##x,y,z,v), I[195] = (img)(_n6##x,y,z,v), I[196] = (img)(_n7##x,y,z,v), I[197] = (img)(_n8##x,y,z,v), I[198] = (img)(_n9##x,y,z,v), I[199] = (img)(_n10##x,y,z,v), \
philpem@5 5690 I[200] = (img)(_p9##x,_n1##y,z,v), I[201] = (img)(_p8##x,_n1##y,z,v), I[202] = (img)(_p7##x,_n1##y,z,v), I[203] = (img)(_p6##x,_n1##y,z,v), I[204] = (img)(_p5##x,_n1##y,z,v), I[205] = (img)(_p4##x,_n1##y,z,v), I[206] = (img)(_p3##x,_n1##y,z,v), I[207] = (img)(_p2##x,_n1##y,z,v), I[208] = (img)(_p1##x,_n1##y,z,v), I[209] = (img)(x,_n1##y,z,v), I[210] = (img)(_n1##x,_n1##y,z,v), I[211] = (img)(_n2##x,_n1##y,z,v), I[212] = (img)(_n3##x,_n1##y,z,v), I[213] = (img)(_n4##x,_n1##y,z,v), I[214] = (img)(_n5##x,_n1##y,z,v), I[215] = (img)(_n6##x,_n1##y,z,v), I[216] = (img)(_n7##x,_n1##y,z,v), I[217] = (img)(_n8##x,_n1##y,z,v), I[218] = (img)(_n9##x,_n1##y,z,v), I[219] = (img)(_n10##x,_n1##y,z,v), \
philpem@5 5691 I[220] = (img)(_p9##x,_n2##y,z,v), I[221] = (img)(_p8##x,_n2##y,z,v), I[222] = (img)(_p7##x,_n2##y,z,v), I[223] = (img)(_p6##x,_n2##y,z,v), I[224] = (img)(_p5##x,_n2##y,z,v), I[225] = (img)(_p4##x,_n2##y,z,v), I[226] = (img)(_p3##x,_n2##y,z,v), I[227] = (img)(_p2##x,_n2##y,z,v), I[228] = (img)(_p1##x,_n2##y,z,v), I[229] = (img)(x,_n2##y,z,v), I[230] = (img)(_n1##x,_n2##y,z,v), I[231] = (img)(_n2##x,_n2##y,z,v), I[232] = (img)(_n3##x,_n2##y,z,v), I[233] = (img)(_n4##x,_n2##y,z,v), I[234] = (img)(_n5##x,_n2##y,z,v), I[235] = (img)(_n6##x,_n2##y,z,v), I[236] = (img)(_n7##x,_n2##y,z,v), I[237] = (img)(_n8##x,_n2##y,z,v), I[238] = (img)(_n9##x,_n2##y,z,v), I[239] = (img)(_n10##x,_n2##y,z,v), \
philpem@5 5692 I[240] = (img)(_p9##x,_n3##y,z,v), I[241] = (img)(_p8##x,_n3##y,z,v), I[242] = (img)(_p7##x,_n3##y,z,v), I[243] = (img)(_p6##x,_n3##y,z,v), I[244] = (img)(_p5##x,_n3##y,z,v), I[245] = (img)(_p4##x,_n3##y,z,v), I[246] = (img)(_p3##x,_n3##y,z,v), I[247] = (img)(_p2##x,_n3##y,z,v), I[248] = (img)(_p1##x,_n3##y,z,v), I[249] = (img)(x,_n3##y,z,v), I[250] = (img)(_n1##x,_n3##y,z,v), I[251] = (img)(_n2##x,_n3##y,z,v), I[252] = (img)(_n3##x,_n3##y,z,v), I[253] = (img)(_n4##x,_n3##y,z,v), I[254] = (img)(_n5##x,_n3##y,z,v), I[255] = (img)(_n6##x,_n3##y,z,v), I[256] = (img)(_n7##x,_n3##y,z,v), I[257] = (img)(_n8##x,_n3##y,z,v), I[258] = (img)(_n9##x,_n3##y,z,v), I[259] = (img)(_n10##x,_n3##y,z,v), \
philpem@5 5693 I[260] = (img)(_p9##x,_n4##y,z,v), I[261] = (img)(_p8##x,_n4##y,z,v), I[262] = (img)(_p7##x,_n4##y,z,v), I[263] = (img)(_p6##x,_n4##y,z,v), I[264] = (img)(_p5##x,_n4##y,z,v), I[265] = (img)(_p4##x,_n4##y,z,v), I[266] = (img)(_p3##x,_n4##y,z,v), I[267] = (img)(_p2##x,_n4##y,z,v), I[268] = (img)(_p1##x,_n4##y,z,v), I[269] = (img)(x,_n4##y,z,v), I[270] = (img)(_n1##x,_n4##y,z,v), I[271] = (img)(_n2##x,_n4##y,z,v), I[272] = (img)(_n3##x,_n4##y,z,v), I[273] = (img)(_n4##x,_n4##y,z,v), I[274] = (img)(_n5##x,_n4##y,z,v), I[275] = (img)(_n6##x,_n4##y,z,v), I[276] = (img)(_n7##x,_n4##y,z,v), I[277] = (img)(_n8##x,_n4##y,z,v), I[278] = (img)(_n9##x,_n4##y,z,v), I[279] = (img)(_n10##x,_n4##y,z,v), \
philpem@5 5694 I[280] = (img)(_p9##x,_n5##y,z,v), I[281] = (img)(_p8##x,_n5##y,z,v), I[282] = (img)(_p7##x,_n5##y,z,v), I[283] = (img)(_p6##x,_n5##y,z,v), I[284] = (img)(_p5##x,_n5##y,z,v), I[285] = (img)(_p4##x,_n5##y,z,v), I[286] = (img)(_p3##x,_n5##y,z,v), I[287] = (img)(_p2##x,_n5##y,z,v), I[288] = (img)(_p1##x,_n5##y,z,v), I[289] = (img)(x,_n5##y,z,v), I[290] = (img)(_n1##x,_n5##y,z,v), I[291] = (img)(_n2##x,_n5##y,z,v), I[292] = (img)(_n3##x,_n5##y,z,v), I[293] = (img)(_n4##x,_n5##y,z,v), I[294] = (img)(_n5##x,_n5##y,z,v), I[295] = (img)(_n6##x,_n5##y,z,v), I[296] = (img)(_n7##x,_n5##y,z,v), I[297] = (img)(_n8##x,_n5##y,z,v), I[298] = (img)(_n9##x,_n5##y,z,v), I[299] = (img)(_n10##x,_n5##y,z,v), \
philpem@5 5695 I[300] = (img)(_p9##x,_n6##y,z,v), I[301] = (img)(_p8##x,_n6##y,z,v), I[302] = (img)(_p7##x,_n6##y,z,v), I[303] = (img)(_p6##x,_n6##y,z,v), I[304] = (img)(_p5##x,_n6##y,z,v), I[305] = (img)(_p4##x,_n6##y,z,v), I[306] = (img)(_p3##x,_n6##y,z,v), I[307] = (img)(_p2##x,_n6##y,z,v), I[308] = (img)(_p1##x,_n6##y,z,v), I[309] = (img)(x,_n6##y,z,v), I[310] = (img)(_n1##x,_n6##y,z,v), I[311] = (img)(_n2##x,_n6##y,z,v), I[312] = (img)(_n3##x,_n6##y,z,v), I[313] = (img)(_n4##x,_n6##y,z,v), I[314] = (img)(_n5##x,_n6##y,z,v), I[315] = (img)(_n6##x,_n6##y,z,v), I[316] = (img)(_n7##x,_n6##y,z,v), I[317] = (img)(_n8##x,_n6##y,z,v), I[318] = (img)(_n9##x,_n6##y,z,v), I[319] = (img)(_n10##x,_n6##y,z,v), \
philpem@5 5696 I[320] = (img)(_p9##x,_n7##y,z,v), I[321] = (img)(_p8##x,_n7##y,z,v), I[322] = (img)(_p7##x,_n7##y,z,v), I[323] = (img)(_p6##x,_n7##y,z,v), I[324] = (img)(_p5##x,_n7##y,z,v), I[325] = (img)(_p4##x,_n7##y,z,v), I[326] = (img)(_p3##x,_n7##y,z,v), I[327] = (img)(_p2##x,_n7##y,z,v), I[328] = (img)(_p1##x,_n7##y,z,v), I[329] = (img)(x,_n7##y,z,v), I[330] = (img)(_n1##x,_n7##y,z,v), I[331] = (img)(_n2##x,_n7##y,z,v), I[332] = (img)(_n3##x,_n7##y,z,v), I[333] = (img)(_n4##x,_n7##y,z,v), I[334] = (img)(_n5##x,_n7##y,z,v), I[335] = (img)(_n6##x,_n7##y,z,v), I[336] = (img)(_n7##x,_n7##y,z,v), I[337] = (img)(_n8##x,_n7##y,z,v), I[338] = (img)(_n9##x,_n7##y,z,v), I[339] = (img)(_n10##x,_n7##y,z,v), \
philpem@5 5697 I[340] = (img)(_p9##x,_n8##y,z,v), I[341] = (img)(_p8##x,_n8##y,z,v), I[342] = (img)(_p7##x,_n8##y,z,v), I[343] = (img)(_p6##x,_n8##y,z,v), I[344] = (img)(_p5##x,_n8##y,z,v), I[345] = (img)(_p4##x,_n8##y,z,v), I[346] = (img)(_p3##x,_n8##y,z,v), I[347] = (img)(_p2##x,_n8##y,z,v), I[348] = (img)(_p1##x,_n8##y,z,v), I[349] = (img)(x,_n8##y,z,v), I[350] = (img)(_n1##x,_n8##y,z,v), I[351] = (img)(_n2##x,_n8##y,z,v), I[352] = (img)(_n3##x,_n8##y,z,v), I[353] = (img)(_n4##x,_n8##y,z,v), I[354] = (img)(_n5##x,_n8##y,z,v), I[355] = (img)(_n6##x,_n8##y,z,v), I[356] = (img)(_n7##x,_n8##y,z,v), I[357] = (img)(_n8##x,_n8##y,z,v), I[358] = (img)(_n9##x,_n8##y,z,v), I[359] = (img)(_n10##x,_n8##y,z,v), \
philpem@5 5698 I[360] = (img)(_p9##x,_n9##y,z,v), I[361] = (img)(_p8##x,_n9##y,z,v), I[362] = (img)(_p7##x,_n9##y,z,v), I[363] = (img)(_p6##x,_n9##y,z,v), I[364] = (img)(_p5##x,_n9##y,z,v), I[365] = (img)(_p4##x,_n9##y,z,v), I[366] = (img)(_p3##x,_n9##y,z,v), I[367] = (img)(_p2##x,_n9##y,z,v), I[368] = (img)(_p1##x,_n9##y,z,v), I[369] = (img)(x,_n9##y,z,v), I[370] = (img)(_n1##x,_n9##y,z,v), I[371] = (img)(_n2##x,_n9##y,z,v), I[372] = (img)(_n3##x,_n9##y,z,v), I[373] = (img)(_n4##x,_n9##y,z,v), I[374] = (img)(_n5##x,_n9##y,z,v), I[375] = (img)(_n6##x,_n9##y,z,v), I[376] = (img)(_n7##x,_n9##y,z,v), I[377] = (img)(_n8##x,_n9##y,z,v), I[378] = (img)(_n9##x,_n9##y,z,v), I[379] = (img)(_n10##x,_n9##y,z,v), \
philpem@5 5699 I[380] = (img)(_p9##x,_n10##y,z,v), I[381] = (img)(_p8##x,_n10##y,z,v), I[382] = (img)(_p7##x,_n10##y,z,v), I[383] = (img)(_p6##x,_n10##y,z,v), I[384] = (img)(_p5##x,_n10##y,z,v), I[385] = (img)(_p4##x,_n10##y,z,v), I[386] = (img)(_p3##x,_n10##y,z,v), I[387] = (img)(_p2##x,_n10##y,z,v), I[388] = (img)(_p1##x,_n10##y,z,v), I[389] = (img)(x,_n10##y,z,v), I[390] = (img)(_n1##x,_n10##y,z,v), I[391] = (img)(_n2##x,_n10##y,z,v), I[392] = (img)(_n3##x,_n10##y,z,v), I[393] = (img)(_n4##x,_n10##y,z,v), I[394] = (img)(_n5##x,_n10##y,z,v), I[395] = (img)(_n6##x,_n10##y,z,v), I[396] = (img)(_n7##x,_n10##y,z,v), I[397] = (img)(_n8##x,_n10##y,z,v), I[398] = (img)(_n9##x,_n10##y,z,v), I[399] = (img)(_n10##x,_n10##y,z,v);
philpem@5 5700
philpem@5 5701 // Define 21x21 loop macros for CImg
philpem@5 5702 //----------------------------------
philpem@5 5703 #define cimg_for21(bound,i) for (int i = 0, \
philpem@5 5704 _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
philpem@5 5705 _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \
philpem@5 5706 _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \
philpem@5 5707 _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \
philpem@5 5708 _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \
philpem@5 5709 _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \
philpem@5 5710 _n6##i = 6>=(int)(bound)?(int)(bound)-1:6, \
philpem@5 5711 _n7##i = 7>=(int)(bound)?(int)(bound)-1:7, \
philpem@5 5712 _n8##i = 8>=(int)(bound)?(int)(bound)-1:8, \
philpem@5 5713 _n9##i = 9>=(int)(bound)?(int)(bound)-1:9, \
philpem@5 5714 _n10##i = 10>=(int)(bound)?(int)(bound)-1:10; \
philpem@5 5715 _n10##i<(int)(bound) || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 5716 i==(_n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
philpem@5 5717 _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 5718 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i)
philpem@5 5719
philpem@5 5720 #define cimg_for21X(img,x) cimg_for21((img).width,x)
philpem@5 5721 #define cimg_for21Y(img,y) cimg_for21((img).height,y)
philpem@5 5722 #define cimg_for21Z(img,z) cimg_for21((img).depth,z)
philpem@5 5723 #define cimg_for21V(img,v) cimg_for21((img).dim,v)
philpem@5 5724 #define cimg_for21XY(img,x,y) cimg_for21Y(img,y) cimg_for21X(img,x)
philpem@5 5725 #define cimg_for21XZ(img,x,z) cimg_for21Z(img,z) cimg_for21X(img,x)
philpem@5 5726 #define cimg_for21XV(img,x,v) cimg_for21V(img,v) cimg_for21X(img,x)
philpem@5 5727 #define cimg_for21YZ(img,y,z) cimg_for21Z(img,z) cimg_for21Y(img,y)
philpem@5 5728 #define cimg_for21YV(img,y,v) cimg_for21V(img,v) cimg_for21Y(img,y)
philpem@5 5729 #define cimg_for21ZV(img,z,v) cimg_for21V(img,v) cimg_for21Z(img,z)
philpem@5 5730 #define cimg_for21XYZ(img,x,y,z) cimg_for21Z(img,z) cimg_for21XY(img,x,y)
philpem@5 5731 #define cimg_for21XZV(img,x,z,v) cimg_for21V(img,v) cimg_for21XZ(img,x,z)
philpem@5 5732 #define cimg_for21YZV(img,y,z,v) cimg_for21V(img,v) cimg_for21YZ(img,y,z)
philpem@5 5733 #define cimg_for21XYZV(img,x,y,z,v) cimg_for21V(img,v) cimg_for21XYZ(img,x,y,z)
philpem@5 5734
philpem@5 5735 #define cimg_for_in21(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
philpem@5 5736 _p10##i = i-10<0?0:i-10, \
philpem@5 5737 _p9##i = i-9<0?0:i-9, \
philpem@5 5738 _p8##i = i-8<0?0:i-8, \
philpem@5 5739 _p7##i = i-7<0?0:i-7, \
philpem@5 5740 _p6##i = i-6<0?0:i-6, \
philpem@5 5741 _p5##i = i-5<0?0:i-5, \
philpem@5 5742 _p4##i = i-4<0?0:i-4, \
philpem@5 5743 _p3##i = i-3<0?0:i-3, \
philpem@5 5744 _p2##i = i-2<0?0:i-2, \
philpem@5 5745 _p1##i = i-1<0?0:i-1, \
philpem@5 5746 _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \
philpem@5 5747 _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \
philpem@5 5748 _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \
philpem@5 5749 _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \
philpem@5 5750 _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \
philpem@5 5751 _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6, \
philpem@5 5752 _n7##i = i+7>=(int)(bound)?(int)(bound)-1:i+7, \
philpem@5 5753 _n8##i = i+8>=(int)(bound)?(int)(bound)-1:i+8, \
philpem@5 5754 _n9##i = i+9>=(int)(bound)?(int)(bound)-1:i+9, \
philpem@5 5755 _n10##i = i+10>=(int)(bound)?(int)(bound)-1:i+10; \
philpem@5 5756 i<=(int)(i1) && (_n10##i<(int)(bound) || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 5757 i==(_n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
philpem@5 5758 _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 5759 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i)
philpem@5 5760
philpem@5 5761 #define cimg_for_in21X(img,x0,x1,x) cimg_for_in21((img).width,x0,x1,x)
philpem@5 5762 #define cimg_for_in21Y(img,y0,y1,y) cimg_for_in21((img).height,y0,y1,y)
philpem@5 5763 #define cimg_for_in21Z(img,z0,z1,z) cimg_for_in21((img).depth,z0,z1,z)
philpem@5 5764 #define cimg_for_in21V(img,v0,v1,v) cimg_for_in21((img).dim,v0,v1,v)
philpem@5 5765 #define cimg_for_in21XY(img,x0,y0,x1,y1,x,y) cimg_for_in21Y(img,y0,y1,y) cimg_for_in21X(img,x0,x1,x)
philpem@5 5766 #define cimg_for_in21XZ(img,x0,z0,x1,z1,x,z) cimg_for_in21Z(img,z0,z1,z) cimg_for_in21X(img,x0,x1,x)
philpem@5 5767 #define cimg_for_in21XV(img,x0,v0,x1,v1,x,v) cimg_for_in21V(img,v0,v1,v) cimg_for_in21X(img,x0,x1,x)
philpem@5 5768 #define cimg_for_in21YZ(img,y0,z0,y1,z1,y,z) cimg_for_in21Z(img,z0,z1,z) cimg_for_in21Y(img,y0,y1,y)
philpem@5 5769 #define cimg_for_in21YV(img,y0,v0,y1,v1,y,v) cimg_for_in21V(img,v0,v1,v) cimg_for_in21Y(img,y0,y1,y)
philpem@5 5770 #define cimg_for_in21ZV(img,z0,v0,z1,v1,z,v) cimg_for_in21V(img,v0,v1,v) cimg_for_in21Z(img,z0,z1,z)
philpem@5 5771 #define cimg_for_in21XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in21Z(img,z0,z1,z) cimg_for_in21XY(img,x0,y0,x1,y1,x,y)
philpem@5 5772 #define cimg_for_in21XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in21V(img,v0,v1,v) cimg_for_in21XZ(img,x0,y0,x1,y1,x,z)
philpem@5 5773 #define cimg_for_in21YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in21V(img,v0,v1,v) cimg_for_in21YZ(img,y0,z0,y1,z1,y,z)
philpem@5 5774 #define cimg_for_in21XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in21V(img,v0,v1,v) cimg_for_in21XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
philpem@5 5775
philpem@5 5776 #define cimg_for21x21(img,x,y,z,v,I) \
philpem@5 5777 cimg_for21((img).height,y) for (int x = 0, \
philpem@5 5778 _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
philpem@5 5779 _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \
philpem@5 5780 _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \
philpem@5 5781 _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \
philpem@5 5782 _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \
philpem@5 5783 _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \
philpem@5 5784 _n6##x = 6>=((img).width)?(int)((img).width)-1:6, \
philpem@5 5785 _n7##x = 7>=((img).width)?(int)((img).width)-1:7, \
philpem@5 5786 _n8##x = 8>=((img).width)?(int)((img).width)-1:8, \
philpem@5 5787 _n9##x = 9>=((img).width)?(int)((img).width)-1:9, \
philpem@5 5788 _n10##x = (int)( \
philpem@5 5789 (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = (img)(0,_p10##y,z,v)), \
philpem@5 5790 (I[21] = I[22] = I[23] = I[24] = I[25] = I[26] = I[27] = I[28] = I[29] = I[30] = I[31] = (img)(0,_p9##y,z,v)), \
philpem@5 5791 (I[42] = I[43] = I[44] = I[45] = I[46] = I[47] = I[48] = I[49] = I[50] = I[51] = I[52] = (img)(0,_p8##y,z,v)), \
philpem@5 5792 (I[63] = I[64] = I[65] = I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = I[72] = I[73] = (img)(0,_p7##y,z,v)), \
philpem@5 5793 (I[84] = I[85] = I[86] = I[87] = I[88] = I[89] = I[90] = I[91] = I[92] = I[93] = I[94] = (img)(0,_p6##y,z,v)), \
philpem@5 5794 (I[105] = I[106] = I[107] = I[108] = I[109] = I[110] = I[111] = I[112] = I[113] = I[114] = I[115] = (img)(0,_p5##y,z,v)), \
philpem@5 5795 (I[126] = I[127] = I[128] = I[129] = I[130] = I[131] = I[132] = I[133] = I[134] = I[135] = I[136] = (img)(0,_p4##y,z,v)), \
philpem@5 5796 (I[147] = I[148] = I[149] = I[150] = I[151] = I[152] = I[153] = I[154] = I[155] = I[156] = I[157] = (img)(0,_p3##y,z,v)), \
philpem@5 5797 (I[168] = I[169] = I[170] = I[171] = I[172] = I[173] = I[174] = I[175] = I[176] = I[177] = I[178] = (img)(0,_p2##y,z,v)), \
philpem@5 5798 (I[189] = I[190] = I[191] = I[192] = I[193] = I[194] = I[195] = I[196] = I[197] = I[198] = I[199] = (img)(0,_p1##y,z,v)), \
philpem@5 5799 (I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = I[216] = I[217] = I[218] = I[219] = I[220] = (img)(0,y,z,v)), \
philpem@5 5800 (I[231] = I[232] = I[233] = I[234] = I[235] = I[236] = I[237] = I[238] = I[239] = I[240] = I[241] = (img)(0,_n1##y,z,v)), \
philpem@5 5801 (I[252] = I[253] = I[254] = I[255] = I[256] = I[257] = I[258] = I[259] = I[260] = I[261] = I[262] = (img)(0,_n2##y,z,v)), \
philpem@5 5802 (I[273] = I[274] = I[275] = I[276] = I[277] = I[278] = I[279] = I[280] = I[281] = I[282] = I[283] = (img)(0,_n3##y,z,v)), \
philpem@5 5803 (I[294] = I[295] = I[296] = I[297] = I[298] = I[299] = I[300] = I[301] = I[302] = I[303] = I[304] = (img)(0,_n4##y,z,v)), \
philpem@5 5804 (I[315] = I[316] = I[317] = I[318] = I[319] = I[320] = I[321] = I[322] = I[323] = I[324] = I[325] = (img)(0,_n5##y,z,v)), \
philpem@5 5805 (I[336] = I[337] = I[338] = I[339] = I[340] = I[341] = I[342] = I[343] = I[344] = I[345] = I[346] = (img)(0,_n6##y,z,v)), \
philpem@5 5806 (I[357] = I[358] = I[359] = I[360] = I[361] = I[362] = I[363] = I[364] = I[365] = I[366] = I[367] = (img)(0,_n7##y,z,v)), \
philpem@5 5807 (I[378] = I[379] = I[380] = I[381] = I[382] = I[383] = I[384] = I[385] = I[386] = I[387] = I[388] = (img)(0,_n8##y,z,v)), \
philpem@5 5808 (I[399] = I[400] = I[401] = I[402] = I[403] = I[404] = I[405] = I[406] = I[407] = I[408] = I[409] = (img)(0,_n9##y,z,v)), \
philpem@5 5809 (I[420] = I[421] = I[422] = I[423] = I[424] = I[425] = I[426] = I[427] = I[428] = I[429] = I[430] = (img)(0,_n10##y,z,v)), \
philpem@5 5810 (I[11] = (img)(_n1##x,_p10##y,z,v)), \
philpem@5 5811 (I[32] = (img)(_n1##x,_p9##y,z,v)), \
philpem@5 5812 (I[53] = (img)(_n1##x,_p8##y,z,v)), \
philpem@5 5813 (I[74] = (img)(_n1##x,_p7##y,z,v)), \
philpem@5 5814 (I[95] = (img)(_n1##x,_p6##y,z,v)), \
philpem@5 5815 (I[116] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 5816 (I[137] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 5817 (I[158] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 5818 (I[179] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 5819 (I[200] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 5820 (I[221] = (img)(_n1##x,y,z,v)), \
philpem@5 5821 (I[242] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 5822 (I[263] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 5823 (I[284] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 5824 (I[305] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 5825 (I[326] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 5826 (I[347] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 5827 (I[368] = (img)(_n1##x,_n7##y,z,v)), \
philpem@5 5828 (I[389] = (img)(_n1##x,_n8##y,z,v)), \
philpem@5 5829 (I[410] = (img)(_n1##x,_n9##y,z,v)), \
philpem@5 5830 (I[431] = (img)(_n1##x,_n10##y,z,v)), \
philpem@5 5831 (I[12] = (img)(_n2##x,_p10##y,z,v)), \
philpem@5 5832 (I[33] = (img)(_n2##x,_p9##y,z,v)), \
philpem@5 5833 (I[54] = (img)(_n2##x,_p8##y,z,v)), \
philpem@5 5834 (I[75] = (img)(_n2##x,_p7##y,z,v)), \
philpem@5 5835 (I[96] = (img)(_n2##x,_p6##y,z,v)), \
philpem@5 5836 (I[117] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 5837 (I[138] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 5838 (I[159] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 5839 (I[180] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 5840 (I[201] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 5841 (I[222] = (img)(_n2##x,y,z,v)), \
philpem@5 5842 (I[243] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 5843 (I[264] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 5844 (I[285] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 5845 (I[306] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 5846 (I[327] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 5847 (I[348] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 5848 (I[369] = (img)(_n2##x,_n7##y,z,v)), \
philpem@5 5849 (I[390] = (img)(_n2##x,_n8##y,z,v)), \
philpem@5 5850 (I[411] = (img)(_n2##x,_n9##y,z,v)), \
philpem@5 5851 (I[432] = (img)(_n2##x,_n10##y,z,v)), \
philpem@5 5852 (I[13] = (img)(_n3##x,_p10##y,z,v)), \
philpem@5 5853 (I[34] = (img)(_n3##x,_p9##y,z,v)), \
philpem@5 5854 (I[55] = (img)(_n3##x,_p8##y,z,v)), \
philpem@5 5855 (I[76] = (img)(_n3##x,_p7##y,z,v)), \
philpem@5 5856 (I[97] = (img)(_n3##x,_p6##y,z,v)), \
philpem@5 5857 (I[118] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 5858 (I[139] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 5859 (I[160] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 5860 (I[181] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 5861 (I[202] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 5862 (I[223] = (img)(_n3##x,y,z,v)), \
philpem@5 5863 (I[244] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 5864 (I[265] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 5865 (I[286] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 5866 (I[307] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 5867 (I[328] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 5868 (I[349] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 5869 (I[370] = (img)(_n3##x,_n7##y,z,v)), \
philpem@5 5870 (I[391] = (img)(_n3##x,_n8##y,z,v)), \
philpem@5 5871 (I[412] = (img)(_n3##x,_n9##y,z,v)), \
philpem@5 5872 (I[433] = (img)(_n3##x,_n10##y,z,v)), \
philpem@5 5873 (I[14] = (img)(_n4##x,_p10##y,z,v)), \
philpem@5 5874 (I[35] = (img)(_n4##x,_p9##y,z,v)), \
philpem@5 5875 (I[56] = (img)(_n4##x,_p8##y,z,v)), \
philpem@5 5876 (I[77] = (img)(_n4##x,_p7##y,z,v)), \
philpem@5 5877 (I[98] = (img)(_n4##x,_p6##y,z,v)), \
philpem@5 5878 (I[119] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 5879 (I[140] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 5880 (I[161] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 5881 (I[182] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 5882 (I[203] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 5883 (I[224] = (img)(_n4##x,y,z,v)), \
philpem@5 5884 (I[245] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 5885 (I[266] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 5886 (I[287] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 5887 (I[308] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 5888 (I[329] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 5889 (I[350] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 5890 (I[371] = (img)(_n4##x,_n7##y,z,v)), \
philpem@5 5891 (I[392] = (img)(_n4##x,_n8##y,z,v)), \
philpem@5 5892 (I[413] = (img)(_n4##x,_n9##y,z,v)), \
philpem@5 5893 (I[434] = (img)(_n4##x,_n10##y,z,v)), \
philpem@5 5894 (I[15] = (img)(_n5##x,_p10##y,z,v)), \
philpem@5 5895 (I[36] = (img)(_n5##x,_p9##y,z,v)), \
philpem@5 5896 (I[57] = (img)(_n5##x,_p8##y,z,v)), \
philpem@5 5897 (I[78] = (img)(_n5##x,_p7##y,z,v)), \
philpem@5 5898 (I[99] = (img)(_n5##x,_p6##y,z,v)), \
philpem@5 5899 (I[120] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 5900 (I[141] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 5901 (I[162] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 5902 (I[183] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 5903 (I[204] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 5904 (I[225] = (img)(_n5##x,y,z,v)), \
philpem@5 5905 (I[246] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 5906 (I[267] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 5907 (I[288] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 5908 (I[309] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 5909 (I[330] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 5910 (I[351] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 5911 (I[372] = (img)(_n5##x,_n7##y,z,v)), \
philpem@5 5912 (I[393] = (img)(_n5##x,_n8##y,z,v)), \
philpem@5 5913 (I[414] = (img)(_n5##x,_n9##y,z,v)), \
philpem@5 5914 (I[435] = (img)(_n5##x,_n10##y,z,v)), \
philpem@5 5915 (I[16] = (img)(_n6##x,_p10##y,z,v)), \
philpem@5 5916 (I[37] = (img)(_n6##x,_p9##y,z,v)), \
philpem@5 5917 (I[58] = (img)(_n6##x,_p8##y,z,v)), \
philpem@5 5918 (I[79] = (img)(_n6##x,_p7##y,z,v)), \
philpem@5 5919 (I[100] = (img)(_n6##x,_p6##y,z,v)), \
philpem@5 5920 (I[121] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 5921 (I[142] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 5922 (I[163] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 5923 (I[184] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 5924 (I[205] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 5925 (I[226] = (img)(_n6##x,y,z,v)), \
philpem@5 5926 (I[247] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 5927 (I[268] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 5928 (I[289] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 5929 (I[310] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 5930 (I[331] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 5931 (I[352] = (img)(_n6##x,_n6##y,z,v)), \
philpem@5 5932 (I[373] = (img)(_n6##x,_n7##y,z,v)), \
philpem@5 5933 (I[394] = (img)(_n6##x,_n8##y,z,v)), \
philpem@5 5934 (I[415] = (img)(_n6##x,_n9##y,z,v)), \
philpem@5 5935 (I[436] = (img)(_n6##x,_n10##y,z,v)), \
philpem@5 5936 (I[17] = (img)(_n7##x,_p10##y,z,v)), \
philpem@5 5937 (I[38] = (img)(_n7##x,_p9##y,z,v)), \
philpem@5 5938 (I[59] = (img)(_n7##x,_p8##y,z,v)), \
philpem@5 5939 (I[80] = (img)(_n7##x,_p7##y,z,v)), \
philpem@5 5940 (I[101] = (img)(_n7##x,_p6##y,z,v)), \
philpem@5 5941 (I[122] = (img)(_n7##x,_p5##y,z,v)), \
philpem@5 5942 (I[143] = (img)(_n7##x,_p4##y,z,v)), \
philpem@5 5943 (I[164] = (img)(_n7##x,_p3##y,z,v)), \
philpem@5 5944 (I[185] = (img)(_n7##x,_p2##y,z,v)), \
philpem@5 5945 (I[206] = (img)(_n7##x,_p1##y,z,v)), \
philpem@5 5946 (I[227] = (img)(_n7##x,y,z,v)), \
philpem@5 5947 (I[248] = (img)(_n7##x,_n1##y,z,v)), \
philpem@5 5948 (I[269] = (img)(_n7##x,_n2##y,z,v)), \
philpem@5 5949 (I[290] = (img)(_n7##x,_n3##y,z,v)), \
philpem@5 5950 (I[311] = (img)(_n7##x,_n4##y,z,v)), \
philpem@5 5951 (I[332] = (img)(_n7##x,_n5##y,z,v)), \
philpem@5 5952 (I[353] = (img)(_n7##x,_n6##y,z,v)), \
philpem@5 5953 (I[374] = (img)(_n7##x,_n7##y,z,v)), \
philpem@5 5954 (I[395] = (img)(_n7##x,_n8##y,z,v)), \
philpem@5 5955 (I[416] = (img)(_n7##x,_n9##y,z,v)), \
philpem@5 5956 (I[437] = (img)(_n7##x,_n10##y,z,v)), \
philpem@5 5957 (I[18] = (img)(_n8##x,_p10##y,z,v)), \
philpem@5 5958 (I[39] = (img)(_n8##x,_p9##y,z,v)), \
philpem@5 5959 (I[60] = (img)(_n8##x,_p8##y,z,v)), \
philpem@5 5960 (I[81] = (img)(_n8##x,_p7##y,z,v)), \
philpem@5 5961 (I[102] = (img)(_n8##x,_p6##y,z,v)), \
philpem@5 5962 (I[123] = (img)(_n8##x,_p5##y,z,v)), \
philpem@5 5963 (I[144] = (img)(_n8##x,_p4##y,z,v)), \
philpem@5 5964 (I[165] = (img)(_n8##x,_p3##y,z,v)), \
philpem@5 5965 (I[186] = (img)(_n8##x,_p2##y,z,v)), \
philpem@5 5966 (I[207] = (img)(_n8##x,_p1##y,z,v)), \
philpem@5 5967 (I[228] = (img)(_n8##x,y,z,v)), \
philpem@5 5968 (I[249] = (img)(_n8##x,_n1##y,z,v)), \
philpem@5 5969 (I[270] = (img)(_n8##x,_n2##y,z,v)), \
philpem@5 5970 (I[291] = (img)(_n8##x,_n3##y,z,v)), \
philpem@5 5971 (I[312] = (img)(_n8##x,_n4##y,z,v)), \
philpem@5 5972 (I[333] = (img)(_n8##x,_n5##y,z,v)), \
philpem@5 5973 (I[354] = (img)(_n8##x,_n6##y,z,v)), \
philpem@5 5974 (I[375] = (img)(_n8##x,_n7##y,z,v)), \
philpem@5 5975 (I[396] = (img)(_n8##x,_n8##y,z,v)), \
philpem@5 5976 (I[417] = (img)(_n8##x,_n9##y,z,v)), \
philpem@5 5977 (I[438] = (img)(_n8##x,_n10##y,z,v)), \
philpem@5 5978 (I[19] = (img)(_n9##x,_p10##y,z,v)), \
philpem@5 5979 (I[40] = (img)(_n9##x,_p9##y,z,v)), \
philpem@5 5980 (I[61] = (img)(_n9##x,_p8##y,z,v)), \
philpem@5 5981 (I[82] = (img)(_n9##x,_p7##y,z,v)), \
philpem@5 5982 (I[103] = (img)(_n9##x,_p6##y,z,v)), \
philpem@5 5983 (I[124] = (img)(_n9##x,_p5##y,z,v)), \
philpem@5 5984 (I[145] = (img)(_n9##x,_p4##y,z,v)), \
philpem@5 5985 (I[166] = (img)(_n9##x,_p3##y,z,v)), \
philpem@5 5986 (I[187] = (img)(_n9##x,_p2##y,z,v)), \
philpem@5 5987 (I[208] = (img)(_n9##x,_p1##y,z,v)), \
philpem@5 5988 (I[229] = (img)(_n9##x,y,z,v)), \
philpem@5 5989 (I[250] = (img)(_n9##x,_n1##y,z,v)), \
philpem@5 5990 (I[271] = (img)(_n9##x,_n2##y,z,v)), \
philpem@5 5991 (I[292] = (img)(_n9##x,_n3##y,z,v)), \
philpem@5 5992 (I[313] = (img)(_n9##x,_n4##y,z,v)), \
philpem@5 5993 (I[334] = (img)(_n9##x,_n5##y,z,v)), \
philpem@5 5994 (I[355] = (img)(_n9##x,_n6##y,z,v)), \
philpem@5 5995 (I[376] = (img)(_n9##x,_n7##y,z,v)), \
philpem@5 5996 (I[397] = (img)(_n9##x,_n8##y,z,v)), \
philpem@5 5997 (I[418] = (img)(_n9##x,_n9##y,z,v)), \
philpem@5 5998 (I[439] = (img)(_n9##x,_n10##y,z,v)), \
philpem@5 5999 10>=((img).width)?(int)((img).width)-1:10); \
philpem@5 6000 (_n10##x<(int)((img).width) && ( \
philpem@5 6001 (I[20] = (img)(_n10##x,_p10##y,z,v)), \
philpem@5 6002 (I[41] = (img)(_n10##x,_p9##y,z,v)), \
philpem@5 6003 (I[62] = (img)(_n10##x,_p8##y,z,v)), \
philpem@5 6004 (I[83] = (img)(_n10##x,_p7##y,z,v)), \
philpem@5 6005 (I[104] = (img)(_n10##x,_p6##y,z,v)), \
philpem@5 6006 (I[125] = (img)(_n10##x,_p5##y,z,v)), \
philpem@5 6007 (I[146] = (img)(_n10##x,_p4##y,z,v)), \
philpem@5 6008 (I[167] = (img)(_n10##x,_p3##y,z,v)), \
philpem@5 6009 (I[188] = (img)(_n10##x,_p2##y,z,v)), \
philpem@5 6010 (I[209] = (img)(_n10##x,_p1##y,z,v)), \
philpem@5 6011 (I[230] = (img)(_n10##x,y,z,v)), \
philpem@5 6012 (I[251] = (img)(_n10##x,_n1##y,z,v)), \
philpem@5 6013 (I[272] = (img)(_n10##x,_n2##y,z,v)), \
philpem@5 6014 (I[293] = (img)(_n10##x,_n3##y,z,v)), \
philpem@5 6015 (I[314] = (img)(_n10##x,_n4##y,z,v)), \
philpem@5 6016 (I[335] = (img)(_n10##x,_n5##y,z,v)), \
philpem@5 6017 (I[356] = (img)(_n10##x,_n6##y,z,v)), \
philpem@5 6018 (I[377] = (img)(_n10##x,_n7##y,z,v)), \
philpem@5 6019 (I[398] = (img)(_n10##x,_n8##y,z,v)), \
philpem@5 6020 (I[419] = (img)(_n10##x,_n9##y,z,v)), \
philpem@5 6021 (I[440] = (img)(_n10##x,_n10##y,z,v)),1)) || \
philpem@5 6022 _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
philpem@5 6023 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], \
philpem@5 6024 I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
philpem@5 6025 I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], \
philpem@5 6026 I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
philpem@5 6027 I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \
philpem@5 6028 I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
philpem@5 6029 I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], \
philpem@5 6030 I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
philpem@5 6031 I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], \
philpem@5 6032 I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
philpem@5 6033 I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], \
philpem@5 6034 I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \
philpem@5 6035 I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], \
philpem@5 6036 I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], \
philpem@5 6037 I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], \
philpem@5 6038 I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
philpem@5 6039 I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], \
philpem@5 6040 I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], \
philpem@5 6041 I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], \
philpem@5 6042 I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], \
philpem@5 6043 I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], \
philpem@5 6044 _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x)
philpem@5 6045
philpem@5 6046 #define cimg_for_in21x21(img,x0,y0,x1,y1,x,y,z,v,I) \
philpem@5 6047 cimg_for_in21((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
philpem@5 6048 _p10##x = x-10<0?0:x-10, \
philpem@5 6049 _p9##x = x-9<0?0:x-9, \
philpem@5 6050 _p8##x = x-8<0?0:x-8, \
philpem@5 6051 _p7##x = x-7<0?0:x-7, \
philpem@5 6052 _p6##x = x-6<0?0:x-6, \
philpem@5 6053 _p5##x = x-5<0?0:x-5, \
philpem@5 6054 _p4##x = x-4<0?0:x-4, \
philpem@5 6055 _p3##x = x-3<0?0:x-3, \
philpem@5 6056 _p2##x = x-2<0?0:x-2, \
philpem@5 6057 _p1##x = x-1<0?0:x-1, \
philpem@5 6058 _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \
philpem@5 6059 _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \
philpem@5 6060 _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \
philpem@5 6061 _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \
philpem@5 6062 _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \
philpem@5 6063 _n6##x = x+6>=(int)((img).width)?(int)((img).width)-1:x+6, \
philpem@5 6064 _n7##x = x+7>=(int)((img).width)?(int)((img).width)-1:x+7, \
philpem@5 6065 _n8##x = x+8>=(int)((img).width)?(int)((img).width)-1:x+8, \
philpem@5 6066 _n9##x = x+9>=(int)((img).width)?(int)((img).width)-1:x+9, \
philpem@5 6067 _n10##x = (int)( \
philpem@5 6068 (I[0] = (img)(_p10##x,_p10##y,z,v)), \
philpem@5 6069 (I[21] = (img)(_p10##x,_p9##y,z,v)), \
philpem@5 6070 (I[42] = (img)(_p10##x,_p8##y,z,v)), \
philpem@5 6071 (I[63] = (img)(_p10##x,_p7##y,z,v)), \
philpem@5 6072 (I[84] = (img)(_p10##x,_p6##y,z,v)), \
philpem@5 6073 (I[105] = (img)(_p10##x,_p5##y,z,v)), \
philpem@5 6074 (I[126] = (img)(_p10##x,_p4##y,z,v)), \
philpem@5 6075 (I[147] = (img)(_p10##x,_p3##y,z,v)), \
philpem@5 6076 (I[168] = (img)(_p10##x,_p2##y,z,v)), \
philpem@5 6077 (I[189] = (img)(_p10##x,_p1##y,z,v)), \
philpem@5 6078 (I[210] = (img)(_p10##x,y,z,v)), \
philpem@5 6079 (I[231] = (img)(_p10##x,_n1##y,z,v)), \
philpem@5 6080 (I[252] = (img)(_p10##x,_n2##y,z,v)), \
philpem@5 6081 (I[273] = (img)(_p10##x,_n3##y,z,v)), \
philpem@5 6082 (I[294] = (img)(_p10##x,_n4##y,z,v)), \
philpem@5 6083 (I[315] = (img)(_p10##x,_n5##y,z,v)), \
philpem@5 6084 (I[336] = (img)(_p10##x,_n6##y,z,v)), \
philpem@5 6085 (I[357] = (img)(_p10##x,_n7##y,z,v)), \
philpem@5 6086 (I[378] = (img)(_p10##x,_n8##y,z,v)), \
philpem@5 6087 (I[399] = (img)(_p10##x,_n9##y,z,v)), \
philpem@5 6088 (I[420] = (img)(_p10##x,_n10##y,z,v)), \
philpem@5 6089 (I[1] = (img)(_p9##x,_p10##y,z,v)), \
philpem@5 6090 (I[22] = (img)(_p9##x,_p9##y,z,v)), \
philpem@5 6091 (I[43] = (img)(_p9##x,_p8##y,z,v)), \
philpem@5 6092 (I[64] = (img)(_p9##x,_p7##y,z,v)), \
philpem@5 6093 (I[85] = (img)(_p9##x,_p6##y,z,v)), \
philpem@5 6094 (I[106] = (img)(_p9##x,_p5##y,z,v)), \
philpem@5 6095 (I[127] = (img)(_p9##x,_p4##y,z,v)), \
philpem@5 6096 (I[148] = (img)(_p9##x,_p3##y,z,v)), \
philpem@5 6097 (I[169] = (img)(_p9##x,_p2##y,z,v)), \
philpem@5 6098 (I[190] = (img)(_p9##x,_p1##y,z,v)), \
philpem@5 6099 (I[211] = (img)(_p9##x,y,z,v)), \
philpem@5 6100 (I[232] = (img)(_p9##x,_n1##y,z,v)), \
philpem@5 6101 (I[253] = (img)(_p9##x,_n2##y,z,v)), \
philpem@5 6102 (I[274] = (img)(_p9##x,_n3##y,z,v)), \
philpem@5 6103 (I[295] = (img)(_p9##x,_n4##y,z,v)), \
philpem@5 6104 (I[316] = (img)(_p9##x,_n5##y,z,v)), \
philpem@5 6105 (I[337] = (img)(_p9##x,_n6##y,z,v)), \
philpem@5 6106 (I[358] = (img)(_p9##x,_n7##y,z,v)), \
philpem@5 6107 (I[379] = (img)(_p9##x,_n8##y,z,v)), \
philpem@5 6108 (I[400] = (img)(_p9##x,_n9##y,z,v)), \
philpem@5 6109 (I[421] = (img)(_p9##x,_n10##y,z,v)), \
philpem@5 6110 (I[2] = (img)(_p8##x,_p10##y,z,v)), \
philpem@5 6111 (I[23] = (img)(_p8##x,_p9##y,z,v)), \
philpem@5 6112 (I[44] = (img)(_p8##x,_p8##y,z,v)), \
philpem@5 6113 (I[65] = (img)(_p8##x,_p7##y,z,v)), \
philpem@5 6114 (I[86] = (img)(_p8##x,_p6##y,z,v)), \
philpem@5 6115 (I[107] = (img)(_p8##x,_p5##y,z,v)), \
philpem@5 6116 (I[128] = (img)(_p8##x,_p4##y,z,v)), \
philpem@5 6117 (I[149] = (img)(_p8##x,_p3##y,z,v)), \
philpem@5 6118 (I[170] = (img)(_p8##x,_p2##y,z,v)), \
philpem@5 6119 (I[191] = (img)(_p8##x,_p1##y,z,v)), \
philpem@5 6120 (I[212] = (img)(_p8##x,y,z,v)), \
philpem@5 6121 (I[233] = (img)(_p8##x,_n1##y,z,v)), \
philpem@5 6122 (I[254] = (img)(_p8##x,_n2##y,z,v)), \
philpem@5 6123 (I[275] = (img)(_p8##x,_n3##y,z,v)), \
philpem@5 6124 (I[296] = (img)(_p8##x,_n4##y,z,v)), \
philpem@5 6125 (I[317] = (img)(_p8##x,_n5##y,z,v)), \
philpem@5 6126 (I[338] = (img)(_p8##x,_n6##y,z,v)), \
philpem@5 6127 (I[359] = (img)(_p8##x,_n7##y,z,v)), \
philpem@5 6128 (I[380] = (img)(_p8##x,_n8##y,z,v)), \
philpem@5 6129 (I[401] = (img)(_p8##x,_n9##y,z,v)), \
philpem@5 6130 (I[422] = (img)(_p8##x,_n10##y,z,v)), \
philpem@5 6131 (I[3] = (img)(_p7##x,_p10##y,z,v)), \
philpem@5 6132 (I[24] = (img)(_p7##x,_p9##y,z,v)), \
philpem@5 6133 (I[45] = (img)(_p7##x,_p8##y,z,v)), \
philpem@5 6134 (I[66] = (img)(_p7##x,_p7##y,z,v)), \
philpem@5 6135 (I[87] = (img)(_p7##x,_p6##y,z,v)), \
philpem@5 6136 (I[108] = (img)(_p7##x,_p5##y,z,v)), \
philpem@5 6137 (I[129] = (img)(_p7##x,_p4##y,z,v)), \
philpem@5 6138 (I[150] = (img)(_p7##x,_p3##y,z,v)), \
philpem@5 6139 (I[171] = (img)(_p7##x,_p2##y,z,v)), \
philpem@5 6140 (I[192] = (img)(_p7##x,_p1##y,z,v)), \
philpem@5 6141 (I[213] = (img)(_p7##x,y,z,v)), \
philpem@5 6142 (I[234] = (img)(_p7##x,_n1##y,z,v)), \
philpem@5 6143 (I[255] = (img)(_p7##x,_n2##y,z,v)), \
philpem@5 6144 (I[276] = (img)(_p7##x,_n3##y,z,v)), \
philpem@5 6145 (I[297] = (img)(_p7##x,_n4##y,z,v)), \
philpem@5 6146 (I[318] = (img)(_p7##x,_n5##y,z,v)), \
philpem@5 6147 (I[339] = (img)(_p7##x,_n6##y,z,v)), \
philpem@5 6148 (I[360] = (img)(_p7##x,_n7##y,z,v)), \
philpem@5 6149 (I[381] = (img)(_p7##x,_n8##y,z,v)), \
philpem@5 6150 (I[402] = (img)(_p7##x,_n9##y,z,v)), \
philpem@5 6151 (I[423] = (img)(_p7##x,_n10##y,z,v)), \
philpem@5 6152 (I[4] = (img)(_p6##x,_p10##y,z,v)), \
philpem@5 6153 (I[25] = (img)(_p6##x,_p9##y,z,v)), \
philpem@5 6154 (I[46] = (img)(_p6##x,_p8##y,z,v)), \
philpem@5 6155 (I[67] = (img)(_p6##x,_p7##y,z,v)), \
philpem@5 6156 (I[88] = (img)(_p6##x,_p6##y,z,v)), \
philpem@5 6157 (I[109] = (img)(_p6##x,_p5##y,z,v)), \
philpem@5 6158 (I[130] = (img)(_p6##x,_p4##y,z,v)), \
philpem@5 6159 (I[151] = (img)(_p6##x,_p3##y,z,v)), \
philpem@5 6160 (I[172] = (img)(_p6##x,_p2##y,z,v)), \
philpem@5 6161 (I[193] = (img)(_p6##x,_p1##y,z,v)), \
philpem@5 6162 (I[214] = (img)(_p6##x,y,z,v)), \
philpem@5 6163 (I[235] = (img)(_p6##x,_n1##y,z,v)), \
philpem@5 6164 (I[256] = (img)(_p6##x,_n2##y,z,v)), \
philpem@5 6165 (I[277] = (img)(_p6##x,_n3##y,z,v)), \
philpem@5 6166 (I[298] = (img)(_p6##x,_n4##y,z,v)), \
philpem@5 6167 (I[319] = (img)(_p6##x,_n5##y,z,v)), \
philpem@5 6168 (I[340] = (img)(_p6##x,_n6##y,z,v)), \
philpem@5 6169 (I[361] = (img)(_p6##x,_n7##y,z,v)), \
philpem@5 6170 (I[382] = (img)(_p6##x,_n8##y,z,v)), \
philpem@5 6171 (I[403] = (img)(_p6##x,_n9##y,z,v)), \
philpem@5 6172 (I[424] = (img)(_p6##x,_n10##y,z,v)), \
philpem@5 6173 (I[5] = (img)(_p5##x,_p10##y,z,v)), \
philpem@5 6174 (I[26] = (img)(_p5##x,_p9##y,z,v)), \
philpem@5 6175 (I[47] = (img)(_p5##x,_p8##y,z,v)), \
philpem@5 6176 (I[68] = (img)(_p5##x,_p7##y,z,v)), \
philpem@5 6177 (I[89] = (img)(_p5##x,_p6##y,z,v)), \
philpem@5 6178 (I[110] = (img)(_p5##x,_p5##y,z,v)), \
philpem@5 6179 (I[131] = (img)(_p5##x,_p4##y,z,v)), \
philpem@5 6180 (I[152] = (img)(_p5##x,_p3##y,z,v)), \
philpem@5 6181 (I[173] = (img)(_p5##x,_p2##y,z,v)), \
philpem@5 6182 (I[194] = (img)(_p5##x,_p1##y,z,v)), \
philpem@5 6183 (I[215] = (img)(_p5##x,y,z,v)), \
philpem@5 6184 (I[236] = (img)(_p5##x,_n1##y,z,v)), \
philpem@5 6185 (I[257] = (img)(_p5##x,_n2##y,z,v)), \
philpem@5 6186 (I[278] = (img)(_p5##x,_n3##y,z,v)), \
philpem@5 6187 (I[299] = (img)(_p5##x,_n4##y,z,v)), \
philpem@5 6188 (I[320] = (img)(_p5##x,_n5##y,z,v)), \
philpem@5 6189 (I[341] = (img)(_p5##x,_n6##y,z,v)), \
philpem@5 6190 (I[362] = (img)(_p5##x,_n7##y,z,v)), \
philpem@5 6191 (I[383] = (img)(_p5##x,_n8##y,z,v)), \
philpem@5 6192 (I[404] = (img)(_p5##x,_n9##y,z,v)), \
philpem@5 6193 (I[425] = (img)(_p5##x,_n10##y,z,v)), \
philpem@5 6194 (I[6] = (img)(_p4##x,_p10##y,z,v)), \
philpem@5 6195 (I[27] = (img)(_p4##x,_p9##y,z,v)), \
philpem@5 6196 (I[48] = (img)(_p4##x,_p8##y,z,v)), \
philpem@5 6197 (I[69] = (img)(_p4##x,_p7##y,z,v)), \
philpem@5 6198 (I[90] = (img)(_p4##x,_p6##y,z,v)), \
philpem@5 6199 (I[111] = (img)(_p4##x,_p5##y,z,v)), \
philpem@5 6200 (I[132] = (img)(_p4##x,_p4##y,z,v)), \
philpem@5 6201 (I[153] = (img)(_p4##x,_p3##y,z,v)), \
philpem@5 6202 (I[174] = (img)(_p4##x,_p2##y,z,v)), \
philpem@5 6203 (I[195] = (img)(_p4##x,_p1##y,z,v)), \
philpem@5 6204 (I[216] = (img)(_p4##x,y,z,v)), \
philpem@5 6205 (I[237] = (img)(_p4##x,_n1##y,z,v)), \
philpem@5 6206 (I[258] = (img)(_p4##x,_n2##y,z,v)), \
philpem@5 6207 (I[279] = (img)(_p4##x,_n3##y,z,v)), \
philpem@5 6208 (I[300] = (img)(_p4##x,_n4##y,z,v)), \
philpem@5 6209 (I[321] = (img)(_p4##x,_n5##y,z,v)), \
philpem@5 6210 (I[342] = (img)(_p4##x,_n6##y,z,v)), \
philpem@5 6211 (I[363] = (img)(_p4##x,_n7##y,z,v)), \
philpem@5 6212 (I[384] = (img)(_p4##x,_n8##y,z,v)), \
philpem@5 6213 (I[405] = (img)(_p4##x,_n9##y,z,v)), \
philpem@5 6214 (I[426] = (img)(_p4##x,_n10##y,z,v)), \
philpem@5 6215 (I[7] = (img)(_p3##x,_p10##y,z,v)), \
philpem@5 6216 (I[28] = (img)(_p3##x,_p9##y,z,v)), \
philpem@5 6217 (I[49] = (img)(_p3##x,_p8##y,z,v)), \
philpem@5 6218 (I[70] = (img)(_p3##x,_p7##y,z,v)), \
philpem@5 6219 (I[91] = (img)(_p3##x,_p6##y,z,v)), \
philpem@5 6220 (I[112] = (img)(_p3##x,_p5##y,z,v)), \
philpem@5 6221 (I[133] = (img)(_p3##x,_p4##y,z,v)), \
philpem@5 6222 (I[154] = (img)(_p3##x,_p3##y,z,v)), \
philpem@5 6223 (I[175] = (img)(_p3##x,_p2##y,z,v)), \
philpem@5 6224 (I[196] = (img)(_p3##x,_p1##y,z,v)), \
philpem@5 6225 (I[217] = (img)(_p3##x,y,z,v)), \
philpem@5 6226 (I[238] = (img)(_p3##x,_n1##y,z,v)), \
philpem@5 6227 (I[259] = (img)(_p3##x,_n2##y,z,v)), \
philpem@5 6228 (I[280] = (img)(_p3##x,_n3##y,z,v)), \
philpem@5 6229 (I[301] = (img)(_p3##x,_n4##y,z,v)), \
philpem@5 6230 (I[322] = (img)(_p3##x,_n5##y,z,v)), \
philpem@5 6231 (I[343] = (img)(_p3##x,_n6##y,z,v)), \
philpem@5 6232 (I[364] = (img)(_p3##x,_n7##y,z,v)), \
philpem@5 6233 (I[385] = (img)(_p3##x,_n8##y,z,v)), \
philpem@5 6234 (I[406] = (img)(_p3##x,_n9##y,z,v)), \
philpem@5 6235 (I[427] = (img)(_p3##x,_n10##y,z,v)), \
philpem@5 6236 (I[8] = (img)(_p2##x,_p10##y,z,v)), \
philpem@5 6237 (I[29] = (img)(_p2##x,_p9##y,z,v)), \
philpem@5 6238 (I[50] = (img)(_p2##x,_p8##y,z,v)), \
philpem@5 6239 (I[71] = (img)(_p2##x,_p7##y,z,v)), \
philpem@5 6240 (I[92] = (img)(_p2##x,_p6##y,z,v)), \
philpem@5 6241 (I[113] = (img)(_p2##x,_p5##y,z,v)), \
philpem@5 6242 (I[134] = (img)(_p2##x,_p4##y,z,v)), \
philpem@5 6243 (I[155] = (img)(_p2##x,_p3##y,z,v)), \
philpem@5 6244 (I[176] = (img)(_p2##x,_p2##y,z,v)), \
philpem@5 6245 (I[197] = (img)(_p2##x,_p1##y,z,v)), \
philpem@5 6246 (I[218] = (img)(_p2##x,y,z,v)), \
philpem@5 6247 (I[239] = (img)(_p2##x,_n1##y,z,v)), \
philpem@5 6248 (I[260] = (img)(_p2##x,_n2##y,z,v)), \
philpem@5 6249 (I[281] = (img)(_p2##x,_n3##y,z,v)), \
philpem@5 6250 (I[302] = (img)(_p2##x,_n4##y,z,v)), \
philpem@5 6251 (I[323] = (img)(_p2##x,_n5##y,z,v)), \
philpem@5 6252 (I[344] = (img)(_p2##x,_n6##y,z,v)), \
philpem@5 6253 (I[365] = (img)(_p2##x,_n7##y,z,v)), \
philpem@5 6254 (I[386] = (img)(_p2##x,_n8##y,z,v)), \
philpem@5 6255 (I[407] = (img)(_p2##x,_n9##y,z,v)), \
philpem@5 6256 (I[428] = (img)(_p2##x,_n10##y,z,v)), \
philpem@5 6257 (I[9] = (img)(_p1##x,_p10##y,z,v)), \
philpem@5 6258 (I[30] = (img)(_p1##x,_p9##y,z,v)), \
philpem@5 6259 (I[51] = (img)(_p1##x,_p8##y,z,v)), \
philpem@5 6260 (I[72] = (img)(_p1##x,_p7##y,z,v)), \
philpem@5 6261 (I[93] = (img)(_p1##x,_p6##y,z,v)), \
philpem@5 6262 (I[114] = (img)(_p1##x,_p5##y,z,v)), \
philpem@5 6263 (I[135] = (img)(_p1##x,_p4##y,z,v)), \
philpem@5 6264 (I[156] = (img)(_p1##x,_p3##y,z,v)), \
philpem@5 6265 (I[177] = (img)(_p1##x,_p2##y,z,v)), \
philpem@5 6266 (I[198] = (img)(_p1##x,_p1##y,z,v)), \
philpem@5 6267 (I[219] = (img)(_p1##x,y,z,v)), \
philpem@5 6268 (I[240] = (img)(_p1##x,_n1##y,z,v)), \
philpem@5 6269 (I[261] = (img)(_p1##x,_n2##y,z,v)), \
philpem@5 6270 (I[282] = (img)(_p1##x,_n3##y,z,v)), \
philpem@5 6271 (I[303] = (img)(_p1##x,_n4##y,z,v)), \
philpem@5 6272 (I[324] = (img)(_p1##x,_n5##y,z,v)), \
philpem@5 6273 (I[345] = (img)(_p1##x,_n6##y,z,v)), \
philpem@5 6274 (I[366] = (img)(_p1##x,_n7##y,z,v)), \
philpem@5 6275 (I[387] = (img)(_p1##x,_n8##y,z,v)), \
philpem@5 6276 (I[408] = (img)(_p1##x,_n9##y,z,v)), \
philpem@5 6277 (I[429] = (img)(_p1##x,_n10##y,z,v)), \
philpem@5 6278 (I[10] = (img)(x,_p10##y,z,v)), \
philpem@5 6279 (I[31] = (img)(x,_p9##y,z,v)), \
philpem@5 6280 (I[52] = (img)(x,_p8##y,z,v)), \
philpem@5 6281 (I[73] = (img)(x,_p7##y,z,v)), \
philpem@5 6282 (I[94] = (img)(x,_p6##y,z,v)), \
philpem@5 6283 (I[115] = (img)(x,_p5##y,z,v)), \
philpem@5 6284 (I[136] = (img)(x,_p4##y,z,v)), \
philpem@5 6285 (I[157] = (img)(x,_p3##y,z,v)), \
philpem@5 6286 (I[178] = (img)(x,_p2##y,z,v)), \
philpem@5 6287 (I[199] = (img)(x,_p1##y,z,v)), \
philpem@5 6288 (I[220] = (img)(x,y,z,v)), \
philpem@5 6289 (I[241] = (img)(x,_n1##y,z,v)), \
philpem@5 6290 (I[262] = (img)(x,_n2##y,z,v)), \
philpem@5 6291 (I[283] = (img)(x,_n3##y,z,v)), \
philpem@5 6292 (I[304] = (img)(x,_n4##y,z,v)), \
philpem@5 6293 (I[325] = (img)(x,_n5##y,z,v)), \
philpem@5 6294 (I[346] = (img)(x,_n6##y,z,v)), \
philpem@5 6295 (I[367] = (img)(x,_n7##y,z,v)), \
philpem@5 6296 (I[388] = (img)(x,_n8##y,z,v)), \
philpem@5 6297 (I[409] = (img)(x,_n9##y,z,v)), \
philpem@5 6298 (I[430] = (img)(x,_n10##y,z,v)), \
philpem@5 6299 (I[11] = (img)(_n1##x,_p10##y,z,v)), \
philpem@5 6300 (I[32] = (img)(_n1##x,_p9##y,z,v)), \
philpem@5 6301 (I[53] = (img)(_n1##x,_p8##y,z,v)), \
philpem@5 6302 (I[74] = (img)(_n1##x,_p7##y,z,v)), \
philpem@5 6303 (I[95] = (img)(_n1##x,_p6##y,z,v)), \
philpem@5 6304 (I[116] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 6305 (I[137] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 6306 (I[158] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 6307 (I[179] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 6308 (I[200] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 6309 (I[221] = (img)(_n1##x,y,z,v)), \
philpem@5 6310 (I[242] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 6311 (I[263] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 6312 (I[284] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 6313 (I[305] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 6314 (I[326] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 6315 (I[347] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 6316 (I[368] = (img)(_n1##x,_n7##y,z,v)), \
philpem@5 6317 (I[389] = (img)(_n1##x,_n8##y,z,v)), \
philpem@5 6318 (I[410] = (img)(_n1##x,_n9##y,z,v)), \
philpem@5 6319 (I[431] = (img)(_n1##x,_n10##y,z,v)), \
philpem@5 6320 (I[12] = (img)(_n2##x,_p10##y,z,v)), \
philpem@5 6321 (I[33] = (img)(_n2##x,_p9##y,z,v)), \
philpem@5 6322 (I[54] = (img)(_n2##x,_p8##y,z,v)), \
philpem@5 6323 (I[75] = (img)(_n2##x,_p7##y,z,v)), \
philpem@5 6324 (I[96] = (img)(_n2##x,_p6##y,z,v)), \
philpem@5 6325 (I[117] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 6326 (I[138] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 6327 (I[159] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 6328 (I[180] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 6329 (I[201] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 6330 (I[222] = (img)(_n2##x,y,z,v)), \
philpem@5 6331 (I[243] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 6332 (I[264] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 6333 (I[285] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 6334 (I[306] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 6335 (I[327] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 6336 (I[348] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 6337 (I[369] = (img)(_n2##x,_n7##y,z,v)), \
philpem@5 6338 (I[390] = (img)(_n2##x,_n8##y,z,v)), \
philpem@5 6339 (I[411] = (img)(_n2##x,_n9##y,z,v)), \
philpem@5 6340 (I[432] = (img)(_n2##x,_n10##y,z,v)), \
philpem@5 6341 (I[13] = (img)(_n3##x,_p10##y,z,v)), \
philpem@5 6342 (I[34] = (img)(_n3##x,_p9##y,z,v)), \
philpem@5 6343 (I[55] = (img)(_n3##x,_p8##y,z,v)), \
philpem@5 6344 (I[76] = (img)(_n3##x,_p7##y,z,v)), \
philpem@5 6345 (I[97] = (img)(_n3##x,_p6##y,z,v)), \
philpem@5 6346 (I[118] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 6347 (I[139] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 6348 (I[160] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 6349 (I[181] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 6350 (I[202] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 6351 (I[223] = (img)(_n3##x,y,z,v)), \
philpem@5 6352 (I[244] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 6353 (I[265] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 6354 (I[286] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 6355 (I[307] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 6356 (I[328] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 6357 (I[349] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 6358 (I[370] = (img)(_n3##x,_n7##y,z,v)), \
philpem@5 6359 (I[391] = (img)(_n3##x,_n8##y,z,v)), \
philpem@5 6360 (I[412] = (img)(_n3##x,_n9##y,z,v)), \
philpem@5 6361 (I[433] = (img)(_n3##x,_n10##y,z,v)), \
philpem@5 6362 (I[14] = (img)(_n4##x,_p10##y,z,v)), \
philpem@5 6363 (I[35] = (img)(_n4##x,_p9##y,z,v)), \
philpem@5 6364 (I[56] = (img)(_n4##x,_p8##y,z,v)), \
philpem@5 6365 (I[77] = (img)(_n4##x,_p7##y,z,v)), \
philpem@5 6366 (I[98] = (img)(_n4##x,_p6##y,z,v)), \
philpem@5 6367 (I[119] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 6368 (I[140] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 6369 (I[161] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 6370 (I[182] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 6371 (I[203] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 6372 (I[224] = (img)(_n4##x,y,z,v)), \
philpem@5 6373 (I[245] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 6374 (I[266] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 6375 (I[287] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 6376 (I[308] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 6377 (I[329] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 6378 (I[350] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 6379 (I[371] = (img)(_n4##x,_n7##y,z,v)), \
philpem@5 6380 (I[392] = (img)(_n4##x,_n8##y,z,v)), \
philpem@5 6381 (I[413] = (img)(_n4##x,_n9##y,z,v)), \
philpem@5 6382 (I[434] = (img)(_n4##x,_n10##y,z,v)), \
philpem@5 6383 (I[15] = (img)(_n5##x,_p10##y,z,v)), \
philpem@5 6384 (I[36] = (img)(_n5##x,_p9##y,z,v)), \
philpem@5 6385 (I[57] = (img)(_n5##x,_p8##y,z,v)), \
philpem@5 6386 (I[78] = (img)(_n5##x,_p7##y,z,v)), \
philpem@5 6387 (I[99] = (img)(_n5##x,_p6##y,z,v)), \
philpem@5 6388 (I[120] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 6389 (I[141] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 6390 (I[162] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 6391 (I[183] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 6392 (I[204] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 6393 (I[225] = (img)(_n5##x,y,z,v)), \
philpem@5 6394 (I[246] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 6395 (I[267] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 6396 (I[288] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 6397 (I[309] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 6398 (I[330] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 6399 (I[351] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 6400 (I[372] = (img)(_n5##x,_n7##y,z,v)), \
philpem@5 6401 (I[393] = (img)(_n5##x,_n8##y,z,v)), \
philpem@5 6402 (I[414] = (img)(_n5##x,_n9##y,z,v)), \
philpem@5 6403 (I[435] = (img)(_n5##x,_n10##y,z,v)), \
philpem@5 6404 (I[16] = (img)(_n6##x,_p10##y,z,v)), \
philpem@5 6405 (I[37] = (img)(_n6##x,_p9##y,z,v)), \
philpem@5 6406 (I[58] = (img)(_n6##x,_p8##y,z,v)), \
philpem@5 6407 (I[79] = (img)(_n6##x,_p7##y,z,v)), \
philpem@5 6408 (I[100] = (img)(_n6##x,_p6##y,z,v)), \
philpem@5 6409 (I[121] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 6410 (I[142] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 6411 (I[163] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 6412 (I[184] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 6413 (I[205] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 6414 (I[226] = (img)(_n6##x,y,z,v)), \
philpem@5 6415 (I[247] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 6416 (I[268] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 6417 (I[289] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 6418 (I[310] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 6419 (I[331] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 6420 (I[352] = (img)(_n6##x,_n6##y,z,v)), \
philpem@5 6421 (I[373] = (img)(_n6##x,_n7##y,z,v)), \
philpem@5 6422 (I[394] = (img)(_n6##x,_n8##y,z,v)), \
philpem@5 6423 (I[415] = (img)(_n6##x,_n9##y,z,v)), \
philpem@5 6424 (I[436] = (img)(_n6##x,_n10##y,z,v)), \
philpem@5 6425 (I[17] = (img)(_n7##x,_p10##y,z,v)), \
philpem@5 6426 (I[38] = (img)(_n7##x,_p9##y,z,v)), \
philpem@5 6427 (I[59] = (img)(_n7##x,_p8##y,z,v)), \
philpem@5 6428 (I[80] = (img)(_n7##x,_p7##y,z,v)), \
philpem@5 6429 (I[101] = (img)(_n7##x,_p6##y,z,v)), \
philpem@5 6430 (I[122] = (img)(_n7##x,_p5##y,z,v)), \
philpem@5 6431 (I[143] = (img)(_n7##x,_p4##y,z,v)), \
philpem@5 6432 (I[164] = (img)(_n7##x,_p3##y,z,v)), \
philpem@5 6433 (I[185] = (img)(_n7##x,_p2##y,z,v)), \
philpem@5 6434 (I[206] = (img)(_n7##x,_p1##y,z,v)), \
philpem@5 6435 (I[227] = (img)(_n7##x,y,z,v)), \
philpem@5 6436 (I[248] = (img)(_n7##x,_n1##y,z,v)), \
philpem@5 6437 (I[269] = (img)(_n7##x,_n2##y,z,v)), \
philpem@5 6438 (I[290] = (img)(_n7##x,_n3##y,z,v)), \
philpem@5 6439 (I[311] = (img)(_n7##x,_n4##y,z,v)), \
philpem@5 6440 (I[332] = (img)(_n7##x,_n5##y,z,v)), \
philpem@5 6441 (I[353] = (img)(_n7##x,_n6##y,z,v)), \
philpem@5 6442 (I[374] = (img)(_n7##x,_n7##y,z,v)), \
philpem@5 6443 (I[395] = (img)(_n7##x,_n8##y,z,v)), \
philpem@5 6444 (I[416] = (img)(_n7##x,_n9##y,z,v)), \
philpem@5 6445 (I[437] = (img)(_n7##x,_n10##y,z,v)), \
philpem@5 6446 (I[18] = (img)(_n8##x,_p10##y,z,v)), \
philpem@5 6447 (I[39] = (img)(_n8##x,_p9##y,z,v)), \
philpem@5 6448 (I[60] = (img)(_n8##x,_p8##y,z,v)), \
philpem@5 6449 (I[81] = (img)(_n8##x,_p7##y,z,v)), \
philpem@5 6450 (I[102] = (img)(_n8##x,_p6##y,z,v)), \
philpem@5 6451 (I[123] = (img)(_n8##x,_p5##y,z,v)), \
philpem@5 6452 (I[144] = (img)(_n8##x,_p4##y,z,v)), \
philpem@5 6453 (I[165] = (img)(_n8##x,_p3##y,z,v)), \
philpem@5 6454 (I[186] = (img)(_n8##x,_p2##y,z,v)), \
philpem@5 6455 (I[207] = (img)(_n8##x,_p1##y,z,v)), \
philpem@5 6456 (I[228] = (img)(_n8##x,y,z,v)), \
philpem@5 6457 (I[249] = (img)(_n8##x,_n1##y,z,v)), \
philpem@5 6458 (I[270] = (img)(_n8##x,_n2##y,z,v)), \
philpem@5 6459 (I[291] = (img)(_n8##x,_n3##y,z,v)), \
philpem@5 6460 (I[312] = (img)(_n8##x,_n4##y,z,v)), \
philpem@5 6461 (I[333] = (img)(_n8##x,_n5##y,z,v)), \
philpem@5 6462 (I[354] = (img)(_n8##x,_n6##y,z,v)), \
philpem@5 6463 (I[375] = (img)(_n8##x,_n7##y,z,v)), \
philpem@5 6464 (I[396] = (img)(_n8##x,_n8##y,z,v)), \
philpem@5 6465 (I[417] = (img)(_n8##x,_n9##y,z,v)), \
philpem@5 6466 (I[438] = (img)(_n8##x,_n10##y,z,v)), \
philpem@5 6467 (I[19] = (img)(_n9##x,_p10##y,z,v)), \
philpem@5 6468 (I[40] = (img)(_n9##x,_p9##y,z,v)), \
philpem@5 6469 (I[61] = (img)(_n9##x,_p8##y,z,v)), \
philpem@5 6470 (I[82] = (img)(_n9##x,_p7##y,z,v)), \
philpem@5 6471 (I[103] = (img)(_n9##x,_p6##y,z,v)), \
philpem@5 6472 (I[124] = (img)(_n9##x,_p5##y,z,v)), \
philpem@5 6473 (I[145] = (img)(_n9##x,_p4##y,z,v)), \
philpem@5 6474 (I[166] = (img)(_n9##x,_p3##y,z,v)), \
philpem@5 6475 (I[187] = (img)(_n9##x,_p2##y,z,v)), \
philpem@5 6476 (I[208] = (img)(_n9##x,_p1##y,z,v)), \
philpem@5 6477 (I[229] = (img)(_n9##x,y,z,v)), \
philpem@5 6478 (I[250] = (img)(_n9##x,_n1##y,z,v)), \
philpem@5 6479 (I[271] = (img)(_n9##x,_n2##y,z,v)), \
philpem@5 6480 (I[292] = (img)(_n9##x,_n3##y,z,v)), \
philpem@5 6481 (I[313] = (img)(_n9##x,_n4##y,z,v)), \
philpem@5 6482 (I[334] = (img)(_n9##x,_n5##y,z,v)), \
philpem@5 6483 (I[355] = (img)(_n9##x,_n6##y,z,v)), \
philpem@5 6484 (I[376] = (img)(_n9##x,_n7##y,z,v)), \
philpem@5 6485 (I[397] = (img)(_n9##x,_n8##y,z,v)), \
philpem@5 6486 (I[418] = (img)(_n9##x,_n9##y,z,v)), \
philpem@5 6487 (I[439] = (img)(_n9##x,_n10##y,z,v)), \
philpem@5 6488 x+10>=(int)((img).width)?(int)((img).width)-1:x+10); \
philpem@5 6489 x<=(int)(x1) && ((_n10##x<(int)((img).width) && ( \
philpem@5 6490 (I[20] = (img)(_n10##x,_p10##y,z,v)), \
philpem@5 6491 (I[41] = (img)(_n10##x,_p9##y,z,v)), \
philpem@5 6492 (I[62] = (img)(_n10##x,_p8##y,z,v)), \
philpem@5 6493 (I[83] = (img)(_n10##x,_p7##y,z,v)), \
philpem@5 6494 (I[104] = (img)(_n10##x,_p6##y,z,v)), \
philpem@5 6495 (I[125] = (img)(_n10##x,_p5##y,z,v)), \
philpem@5 6496 (I[146] = (img)(_n10##x,_p4##y,z,v)), \
philpem@5 6497 (I[167] = (img)(_n10##x,_p3##y,z,v)), \
philpem@5 6498 (I[188] = (img)(_n10##x,_p2##y,z,v)), \
philpem@5 6499 (I[209] = (img)(_n10##x,_p1##y,z,v)), \
philpem@5 6500 (I[230] = (img)(_n10##x,y,z,v)), \
philpem@5 6501 (I[251] = (img)(_n10##x,_n1##y,z,v)), \
philpem@5 6502 (I[272] = (img)(_n10##x,_n2##y,z,v)), \
philpem@5 6503 (I[293] = (img)(_n10##x,_n3##y,z,v)), \
philpem@5 6504 (I[314] = (img)(_n10##x,_n4##y,z,v)), \
philpem@5 6505 (I[335] = (img)(_n10##x,_n5##y,z,v)), \
philpem@5 6506 (I[356] = (img)(_n10##x,_n6##y,z,v)), \
philpem@5 6507 (I[377] = (img)(_n10##x,_n7##y,z,v)), \
philpem@5 6508 (I[398] = (img)(_n10##x,_n8##y,z,v)), \
philpem@5 6509 (I[419] = (img)(_n10##x,_n9##y,z,v)), \
philpem@5 6510 (I[440] = (img)(_n10##x,_n10##y,z,v)),1)) || \
philpem@5 6511 _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
philpem@5 6512 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], \
philpem@5 6513 I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
philpem@5 6514 I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], \
philpem@5 6515 I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
philpem@5 6516 I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \
philpem@5 6517 I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
philpem@5 6518 I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], \
philpem@5 6519 I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
philpem@5 6520 I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], \
philpem@5 6521 I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
philpem@5 6522 I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], \
philpem@5 6523 I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \
philpem@5 6524 I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], \
philpem@5 6525 I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], \
philpem@5 6526 I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], \
philpem@5 6527 I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
philpem@5 6528 I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], \
philpem@5 6529 I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], \
philpem@5 6530 I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], \
philpem@5 6531 I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], \
philpem@5 6532 I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], \
philpem@5 6533 _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x)
philpem@5 6534
philpem@5 6535 #define cimg_get21x21(img,x,y,z,v,I) \
philpem@5 6536 I[0] = (img)(_p10##x,_p10##y,z,v), I[1] = (img)(_p9##x,_p10##y,z,v), I[2] = (img)(_p8##x,_p10##y,z,v), I[3] = (img)(_p7##x,_p10##y,z,v), I[4] = (img)(_p6##x,_p10##y,z,v), I[5] = (img)(_p5##x,_p10##y,z,v), I[6] = (img)(_p4##x,_p10##y,z,v), I[7] = (img)(_p3##x,_p10##y,z,v), I[8] = (img)(_p2##x,_p10##y,z,v), I[9] = (img)(_p1##x,_p10##y,z,v), I[10] = (img)(x,_p10##y,z,v), I[11] = (img)(_n1##x,_p10##y,z,v), I[12] = (img)(_n2##x,_p10##y,z,v), I[13] = (img)(_n3##x,_p10##y,z,v), I[14] = (img)(_n4##x,_p10##y,z,v), I[15] = (img)(_n5##x,_p10##y,z,v), I[16] = (img)(_n6##x,_p10##y,z,v), I[17] = (img)(_n7##x,_p10##y,z,v), I[18] = (img)(_n8##x,_p10##y,z,v), I[19] = (img)(_n9##x,_p10##y,z,v), I[20] = (img)(_n10##x,_p10##y,z,v), \
philpem@5 6537 I[21] = (img)(_p10##x,_p9##y,z,v), I[22] = (img)(_p9##x,_p9##y,z,v), I[23] = (img)(_p8##x,_p9##y,z,v), I[24] = (img)(_p7##x,_p9##y,z,v), I[25] = (img)(_p6##x,_p9##y,z,v), I[26] = (img)(_p5##x,_p9##y,z,v), I[27] = (img)(_p4##x,_p9##y,z,v), I[28] = (img)(_p3##x,_p9##y,z,v), I[29] = (img)(_p2##x,_p9##y,z,v), I[30] = (img)(_p1##x,_p9##y,z,v), I[31] = (img)(x,_p9##y,z,v), I[32] = (img)(_n1##x,_p9##y,z,v), I[33] = (img)(_n2##x,_p9##y,z,v), I[34] = (img)(_n3##x,_p9##y,z,v), I[35] = (img)(_n4##x,_p9##y,z,v), I[36] = (img)(_n5##x,_p9##y,z,v), I[37] = (img)(_n6##x,_p9##y,z,v), I[38] = (img)(_n7##x,_p9##y,z,v), I[39] = (img)(_n8##x,_p9##y,z,v), I[40] = (img)(_n9##x,_p9##y,z,v), I[41] = (img)(_n10##x,_p9##y,z,v), \
philpem@5 6538 I[42] = (img)(_p10##x,_p8##y,z,v), I[43] = (img)(_p9##x,_p8##y,z,v), I[44] = (img)(_p8##x,_p8##y,z,v), I[45] = (img)(_p7##x,_p8##y,z,v), I[46] = (img)(_p6##x,_p8##y,z,v), I[47] = (img)(_p5##x,_p8##y,z,v), I[48] = (img)(_p4##x,_p8##y,z,v), I[49] = (img)(_p3##x,_p8##y,z,v), I[50] = (img)(_p2##x,_p8##y,z,v), I[51] = (img)(_p1##x,_p8##y,z,v), I[52] = (img)(x,_p8##y,z,v), I[53] = (img)(_n1##x,_p8##y,z,v), I[54] = (img)(_n2##x,_p8##y,z,v), I[55] = (img)(_n3##x,_p8##y,z,v), I[56] = (img)(_n4##x,_p8##y,z,v), I[57] = (img)(_n5##x,_p8##y,z,v), I[58] = (img)(_n6##x,_p8##y,z,v), I[59] = (img)(_n7##x,_p8##y,z,v), I[60] = (img)(_n8##x,_p8##y,z,v), I[61] = (img)(_n9##x,_p8##y,z,v), I[62] = (img)(_n10##x,_p8##y,z,v), \
philpem@5 6539 I[63] = (img)(_p10##x,_p7##y,z,v), I[64] = (img)(_p9##x,_p7##y,z,v), I[65] = (img)(_p8##x,_p7##y,z,v), I[66] = (img)(_p7##x,_p7##y,z,v), I[67] = (img)(_p6##x,_p7##y,z,v), I[68] = (img)(_p5##x,_p7##y,z,v), I[69] = (img)(_p4##x,_p7##y,z,v), I[70] = (img)(_p3##x,_p7##y,z,v), I[71] = (img)(_p2##x,_p7##y,z,v), I[72] = (img)(_p1##x,_p7##y,z,v), I[73] = (img)(x,_p7##y,z,v), I[74] = (img)(_n1##x,_p7##y,z,v), I[75] = (img)(_n2##x,_p7##y,z,v), I[76] = (img)(_n3##x,_p7##y,z,v), I[77] = (img)(_n4##x,_p7##y,z,v), I[78] = (img)(_n5##x,_p7##y,z,v), I[79] = (img)(_n6##x,_p7##y,z,v), I[80] = (img)(_n7##x,_p7##y,z,v), I[81] = (img)(_n8##x,_p7##y,z,v), I[82] = (img)(_n9##x,_p7##y,z,v), I[83] = (img)(_n10##x,_p7##y,z,v), \
philpem@5 6540 I[84] = (img)(_p10##x,_p6##y,z,v), I[85] = (img)(_p9##x,_p6##y,z,v), I[86] = (img)(_p8##x,_p6##y,z,v), I[87] = (img)(_p7##x,_p6##y,z,v), I[88] = (img)(_p6##x,_p6##y,z,v), I[89] = (img)(_p5##x,_p6##y,z,v), I[90] = (img)(_p4##x,_p6##y,z,v), I[91] = (img)(_p3##x,_p6##y,z,v), I[92] = (img)(_p2##x,_p6##y,z,v), I[93] = (img)(_p1##x,_p6##y,z,v), I[94] = (img)(x,_p6##y,z,v), I[95] = (img)(_n1##x,_p6##y,z,v), I[96] = (img)(_n2##x,_p6##y,z,v), I[97] = (img)(_n3##x,_p6##y,z,v), I[98] = (img)(_n4##x,_p6##y,z,v), I[99] = (img)(_n5##x,_p6##y,z,v), I[100] = (img)(_n6##x,_p6##y,z,v), I[101] = (img)(_n7##x,_p6##y,z,v), I[102] = (img)(_n8##x,_p6##y,z,v), I[103] = (img)(_n9##x,_p6##y,z,v), I[104] = (img)(_n10##x,_p6##y,z,v), \
philpem@5 6541 I[105] = (img)(_p10##x,_p5##y,z,v), I[106] = (img)(_p9##x,_p5##y,z,v), I[107] = (img)(_p8##x,_p5##y,z,v), I[108] = (img)(_p7##x,_p5##y,z,v), I[109] = (img)(_p6##x,_p5##y,z,v), I[110] = (img)(_p5##x,_p5##y,z,v), I[111] = (img)(_p4##x,_p5##y,z,v), I[112] = (img)(_p3##x,_p5##y,z,v), I[113] = (img)(_p2##x,_p5##y,z,v), I[114] = (img)(_p1##x,_p5##y,z,v), I[115] = (img)(x,_p5##y,z,v), I[116] = (img)(_n1##x,_p5##y,z,v), I[117] = (img)(_n2##x,_p5##y,z,v), I[118] = (img)(_n3##x,_p5##y,z,v), I[119] = (img)(_n4##x,_p5##y,z,v), I[120] = (img)(_n5##x,_p5##y,z,v), I[121] = (img)(_n6##x,_p5##y,z,v), I[122] = (img)(_n7##x,_p5##y,z,v), I[123] = (img)(_n8##x,_p5##y,z,v), I[124] = (img)(_n9##x,_p5##y,z,v), I[125] = (img)(_n10##x,_p5##y,z,v), \
philpem@5 6542 I[126] = (img)(_p10##x,_p4##y,z,v), I[127] = (img)(_p9##x,_p4##y,z,v), I[128] = (img)(_p8##x,_p4##y,z,v), I[129] = (img)(_p7##x,_p4##y,z,v), I[130] = (img)(_p6##x,_p4##y,z,v), I[131] = (img)(_p5##x,_p4##y,z,v), I[132] = (img)(_p4##x,_p4##y,z,v), I[133] = (img)(_p3##x,_p4##y,z,v), I[134] = (img)(_p2##x,_p4##y,z,v), I[135] = (img)(_p1##x,_p4##y,z,v), I[136] = (img)(x,_p4##y,z,v), I[137] = (img)(_n1##x,_p4##y,z,v), I[138] = (img)(_n2##x,_p4##y,z,v), I[139] = (img)(_n3##x,_p4##y,z,v), I[140] = (img)(_n4##x,_p4##y,z,v), I[141] = (img)(_n5##x,_p4##y,z,v), I[142] = (img)(_n6##x,_p4##y,z,v), I[143] = (img)(_n7##x,_p4##y,z,v), I[144] = (img)(_n8##x,_p4##y,z,v), I[145] = (img)(_n9##x,_p4##y,z,v), I[146] = (img)(_n10##x,_p4##y,z,v), \
philpem@5 6543 I[147] = (img)(_p10##x,_p3##y,z,v), I[148] = (img)(_p9##x,_p3##y,z,v), I[149] = (img)(_p8##x,_p3##y,z,v), I[150] = (img)(_p7##x,_p3##y,z,v), I[151] = (img)(_p6##x,_p3##y,z,v), I[152] = (img)(_p5##x,_p3##y,z,v), I[153] = (img)(_p4##x,_p3##y,z,v), I[154] = (img)(_p3##x,_p3##y,z,v), I[155] = (img)(_p2##x,_p3##y,z,v), I[156] = (img)(_p1##x,_p3##y,z,v), I[157] = (img)(x,_p3##y,z,v), I[158] = (img)(_n1##x,_p3##y,z,v), I[159] = (img)(_n2##x,_p3##y,z,v), I[160] = (img)(_n3##x,_p3##y,z,v), I[161] = (img)(_n4##x,_p3##y,z,v), I[162] = (img)(_n5##x,_p3##y,z,v), I[163] = (img)(_n6##x,_p3##y,z,v), I[164] = (img)(_n7##x,_p3##y,z,v), I[165] = (img)(_n8##x,_p3##y,z,v), I[166] = (img)(_n9##x,_p3##y,z,v), I[167] = (img)(_n10##x,_p3##y,z,v), \
philpem@5 6544 I[168] = (img)(_p10##x,_p2##y,z,v), I[169] = (img)(_p9##x,_p2##y,z,v), I[170] = (img)(_p8##x,_p2##y,z,v), I[171] = (img)(_p7##x,_p2##y,z,v), I[172] = (img)(_p6##x,_p2##y,z,v), I[173] = (img)(_p5##x,_p2##y,z,v), I[174] = (img)(_p4##x,_p2##y,z,v), I[175] = (img)(_p3##x,_p2##y,z,v), I[176] = (img)(_p2##x,_p2##y,z,v), I[177] = (img)(_p1##x,_p2##y,z,v), I[178] = (img)(x,_p2##y,z,v), I[179] = (img)(_n1##x,_p2##y,z,v), I[180] = (img)(_n2##x,_p2##y,z,v), I[181] = (img)(_n3##x,_p2##y,z,v), I[182] = (img)(_n4##x,_p2##y,z,v), I[183] = (img)(_n5##x,_p2##y,z,v), I[184] = (img)(_n6##x,_p2##y,z,v), I[185] = (img)(_n7##x,_p2##y,z,v), I[186] = (img)(_n8##x,_p2##y,z,v), I[187] = (img)(_n9##x,_p2##y,z,v), I[188] = (img)(_n10##x,_p2##y,z,v), \
philpem@5 6545 I[189] = (img)(_p10##x,_p1##y,z,v), I[190] = (img)(_p9##x,_p1##y,z,v), I[191] = (img)(_p8##x,_p1##y,z,v), I[192] = (img)(_p7##x,_p1##y,z,v), I[193] = (img)(_p6##x,_p1##y,z,v), I[194] = (img)(_p5##x,_p1##y,z,v), I[195] = (img)(_p4##x,_p1##y,z,v), I[196] = (img)(_p3##x,_p1##y,z,v), I[197] = (img)(_p2##x,_p1##y,z,v), I[198] = (img)(_p1##x,_p1##y,z,v), I[199] = (img)(x,_p1##y,z,v), I[200] = (img)(_n1##x,_p1##y,z,v), I[201] = (img)(_n2##x,_p1##y,z,v), I[202] = (img)(_n3##x,_p1##y,z,v), I[203] = (img)(_n4##x,_p1##y,z,v), I[204] = (img)(_n5##x,_p1##y,z,v), I[205] = (img)(_n6##x,_p1##y,z,v), I[206] = (img)(_n7##x,_p1##y,z,v), I[207] = (img)(_n8##x,_p1##y,z,v), I[208] = (img)(_n9##x,_p1##y,z,v), I[209] = (img)(_n10##x,_p1##y,z,v), \
philpem@5 6546 I[210] = (img)(_p10##x,y,z,v), I[211] = (img)(_p9##x,y,z,v), I[212] = (img)(_p8##x,y,z,v), I[213] = (img)(_p7##x,y,z,v), I[214] = (img)(_p6##x,y,z,v), I[215] = (img)(_p5##x,y,z,v), I[216] = (img)(_p4##x,y,z,v), I[217] = (img)(_p3##x,y,z,v), I[218] = (img)(_p2##x,y,z,v), I[219] = (img)(_p1##x,y,z,v), I[220] = (img)(x,y,z,v), I[221] = (img)(_n1##x,y,z,v), I[222] = (img)(_n2##x,y,z,v), I[223] = (img)(_n3##x,y,z,v), I[224] = (img)(_n4##x,y,z,v), I[225] = (img)(_n5##x,y,z,v), I[226] = (img)(_n6##x,y,z,v), I[227] = (img)(_n7##x,y,z,v), I[228] = (img)(_n8##x,y,z,v), I[229] = (img)(_n9##x,y,z,v), I[230] = (img)(_n10##x,y,z,v), \
philpem@5 6547 I[231] = (img)(_p10##x,_n1##y,z,v), I[232] = (img)(_p9##x,_n1##y,z,v), I[233] = (img)(_p8##x,_n1##y,z,v), I[234] = (img)(_p7##x,_n1##y,z,v), I[235] = (img)(_p6##x,_n1##y,z,v), I[236] = (img)(_p5##x,_n1##y,z,v), I[237] = (img)(_p4##x,_n1##y,z,v), I[238] = (img)(_p3##x,_n1##y,z,v), I[239] = (img)(_p2##x,_n1##y,z,v), I[240] = (img)(_p1##x,_n1##y,z,v), I[241] = (img)(x,_n1##y,z,v), I[242] = (img)(_n1##x,_n1##y,z,v), I[243] = (img)(_n2##x,_n1##y,z,v), I[244] = (img)(_n3##x,_n1##y,z,v), I[245] = (img)(_n4##x,_n1##y,z,v), I[246] = (img)(_n5##x,_n1##y,z,v), I[247] = (img)(_n6##x,_n1##y,z,v), I[248] = (img)(_n7##x,_n1##y,z,v), I[249] = (img)(_n8##x,_n1##y,z,v), I[250] = (img)(_n9##x,_n1##y,z,v), I[251] = (img)(_n10##x,_n1##y,z,v), \
philpem@5 6548 I[252] = (img)(_p10##x,_n2##y,z,v), I[253] = (img)(_p9##x,_n2##y,z,v), I[254] = (img)(_p8##x,_n2##y,z,v), I[255] = (img)(_p7##x,_n2##y,z,v), I[256] = (img)(_p6##x,_n2##y,z,v), I[257] = (img)(_p5##x,_n2##y,z,v), I[258] = (img)(_p4##x,_n2##y,z,v), I[259] = (img)(_p3##x,_n2##y,z,v), I[260] = (img)(_p2##x,_n2##y,z,v), I[261] = (img)(_p1##x,_n2##y,z,v), I[262] = (img)(x,_n2##y,z,v), I[263] = (img)(_n1##x,_n2##y,z,v), I[264] = (img)(_n2##x,_n2##y,z,v), I[265] = (img)(_n3##x,_n2##y,z,v), I[266] = (img)(_n4##x,_n2##y,z,v), I[267] = (img)(_n5##x,_n2##y,z,v), I[268] = (img)(_n6##x,_n2##y,z,v), I[269] = (img)(_n7##x,_n2##y,z,v), I[270] = (img)(_n8##x,_n2##y,z,v), I[271] = (img)(_n9##x,_n2##y,z,v), I[272] = (img)(_n10##x,_n2##y,z,v), \
philpem@5 6549 I[273] = (img)(_p10##x,_n3##y,z,v), I[274] = (img)(_p9##x,_n3##y,z,v), I[275] = (img)(_p8##x,_n3##y,z,v), I[276] = (img)(_p7##x,_n3##y,z,v), I[277] = (img)(_p6##x,_n3##y,z,v), I[278] = (img)(_p5##x,_n3##y,z,v), I[279] = (img)(_p4##x,_n3##y,z,v), I[280] = (img)(_p3##x,_n3##y,z,v), I[281] = (img)(_p2##x,_n3##y,z,v), I[282] = (img)(_p1##x,_n3##y,z,v), I[283] = (img)(x,_n3##y,z,v), I[284] = (img)(_n1##x,_n3##y,z,v), I[285] = (img)(_n2##x,_n3##y,z,v), I[286] = (img)(_n3##x,_n3##y,z,v), I[287] = (img)(_n4##x,_n3##y,z,v), I[288] = (img)(_n5##x,_n3##y,z,v), I[289] = (img)(_n6##x,_n3##y,z,v), I[290] = (img)(_n7##x,_n3##y,z,v), I[291] = (img)(_n8##x,_n3##y,z,v), I[292] = (img)(_n9##x,_n3##y,z,v), I[293] = (img)(_n10##x,_n3##y,z,v), \
philpem@5 6550 I[294] = (img)(_p10##x,_n4##y,z,v), I[295] = (img)(_p9##x,_n4##y,z,v), I[296] = (img)(_p8##x,_n4##y,z,v), I[297] = (img)(_p7##x,_n4##y,z,v), I[298] = (img)(_p6##x,_n4##y,z,v), I[299] = (img)(_p5##x,_n4##y,z,v), I[300] = (img)(_p4##x,_n4##y,z,v), I[301] = (img)(_p3##x,_n4##y,z,v), I[302] = (img)(_p2##x,_n4##y,z,v), I[303] = (img)(_p1##x,_n4##y,z,v), I[304] = (img)(x,_n4##y,z,v), I[305] = (img)(_n1##x,_n4##y,z,v), I[306] = (img)(_n2##x,_n4##y,z,v), I[307] = (img)(_n3##x,_n4##y,z,v), I[308] = (img)(_n4##x,_n4##y,z,v), I[309] = (img)(_n5##x,_n4##y,z,v), I[310] = (img)(_n6##x,_n4##y,z,v), I[311] = (img)(_n7##x,_n4##y,z,v), I[312] = (img)(_n8##x,_n4##y,z,v), I[313] = (img)(_n9##x,_n4##y,z,v), I[314] = (img)(_n10##x,_n4##y,z,v), \
philpem@5 6551 I[315] = (img)(_p10##x,_n5##y,z,v), I[316] = (img)(_p9##x,_n5##y,z,v), I[317] = (img)(_p8##x,_n5##y,z,v), I[318] = (img)(_p7##x,_n5##y,z,v), I[319] = (img)(_p6##x,_n5##y,z,v), I[320] = (img)(_p5##x,_n5##y,z,v), I[321] = (img)(_p4##x,_n5##y,z,v), I[322] = (img)(_p3##x,_n5##y,z,v), I[323] = (img)(_p2##x,_n5##y,z,v), I[324] = (img)(_p1##x,_n5##y,z,v), I[325] = (img)(x,_n5##y,z,v), I[326] = (img)(_n1##x,_n5##y,z,v), I[327] = (img)(_n2##x,_n5##y,z,v), I[328] = (img)(_n3##x,_n5##y,z,v), I[329] = (img)(_n4##x,_n5##y,z,v), I[330] = (img)(_n5##x,_n5##y,z,v), I[331] = (img)(_n6##x,_n5##y,z,v), I[332] = (img)(_n7##x,_n5##y,z,v), I[333] = (img)(_n8##x,_n5##y,z,v), I[334] = (img)(_n9##x,_n5##y,z,v), I[335] = (img)(_n10##x,_n5##y,z,v), \
philpem@5 6552 I[336] = (img)(_p10##x,_n6##y,z,v), I[337] = (img)(_p9##x,_n6##y,z,v), I[338] = (img)(_p8##x,_n6##y,z,v), I[339] = (img)(_p7##x,_n6##y,z,v), I[340] = (img)(_p6##x,_n6##y,z,v), I[341] = (img)(_p5##x,_n6##y,z,v), I[342] = (img)(_p4##x,_n6##y,z,v), I[343] = (img)(_p3##x,_n6##y,z,v), I[344] = (img)(_p2##x,_n6##y,z,v), I[345] = (img)(_p1##x,_n6##y,z,v), I[346] = (img)(x,_n6##y,z,v), I[347] = (img)(_n1##x,_n6##y,z,v), I[348] = (img)(_n2##x,_n6##y,z,v), I[349] = (img)(_n3##x,_n6##y,z,v), I[350] = (img)(_n4##x,_n6##y,z,v), I[351] = (img)(_n5##x,_n6##y,z,v), I[352] = (img)(_n6##x,_n6##y,z,v), I[353] = (img)(_n7##x,_n6##y,z,v), I[354] = (img)(_n8##x,_n6##y,z,v), I[355] = (img)(_n9##x,_n6##y,z,v), I[356] = (img)(_n10##x,_n6##y,z,v), \
philpem@5 6553 I[357] = (img)(_p10##x,_n7##y,z,v), I[358] = (img)(_p9##x,_n7##y,z,v), I[359] = (img)(_p8##x,_n7##y,z,v), I[360] = (img)(_p7##x,_n7##y,z,v), I[361] = (img)(_p6##x,_n7##y,z,v), I[362] = (img)(_p5##x,_n7##y,z,v), I[363] = (img)(_p4##x,_n7##y,z,v), I[364] = (img)(_p3##x,_n7##y,z,v), I[365] = (img)(_p2##x,_n7##y,z,v), I[366] = (img)(_p1##x,_n7##y,z,v), I[367] = (img)(x,_n7##y,z,v), I[368] = (img)(_n1##x,_n7##y,z,v), I[369] = (img)(_n2##x,_n7##y,z,v), I[370] = (img)(_n3##x,_n7##y,z,v), I[371] = (img)(_n4##x,_n7##y,z,v), I[372] = (img)(_n5##x,_n7##y,z,v), I[373] = (img)(_n6##x,_n7##y,z,v), I[374] = (img)(_n7##x,_n7##y,z,v), I[375] = (img)(_n8##x,_n7##y,z,v), I[376] = (img)(_n9##x,_n7##y,z,v), I[377] = (img)(_n10##x,_n7##y,z,v), \
philpem@5 6554 I[378] = (img)(_p10##x,_n8##y,z,v), I[379] = (img)(_p9##x,_n8##y,z,v), I[380] = (img)(_p8##x,_n8##y,z,v), I[381] = (img)(_p7##x,_n8##y,z,v), I[382] = (img)(_p6##x,_n8##y,z,v), I[383] = (img)(_p5##x,_n8##y,z,v), I[384] = (img)(_p4##x,_n8##y,z,v), I[385] = (img)(_p3##x,_n8##y,z,v), I[386] = (img)(_p2##x,_n8##y,z,v), I[387] = (img)(_p1##x,_n8##y,z,v), I[388] = (img)(x,_n8##y,z,v), I[389] = (img)(_n1##x,_n8##y,z,v), I[390] = (img)(_n2##x,_n8##y,z,v), I[391] = (img)(_n3##x,_n8##y,z,v), I[392] = (img)(_n4##x,_n8##y,z,v), I[393] = (img)(_n5##x,_n8##y,z,v), I[394] = (img)(_n6##x,_n8##y,z,v), I[395] = (img)(_n7##x,_n8##y,z,v), I[396] = (img)(_n8##x,_n8##y,z,v), I[397] = (img)(_n9##x,_n8##y,z,v), I[398] = (img)(_n10##x,_n8##y,z,v), \
philpem@5 6555 I[399] = (img)(_p10##x,_n9##y,z,v), I[400] = (img)(_p9##x,_n9##y,z,v), I[401] = (img)(_p8##x,_n9##y,z,v), I[402] = (img)(_p7##x,_n9##y,z,v), I[403] = (img)(_p6##x,_n9##y,z,v), I[404] = (img)(_p5##x,_n9##y,z,v), I[405] = (img)(_p4##x,_n9##y,z,v), I[406] = (img)(_p3##x,_n9##y,z,v), I[407] = (img)(_p2##x,_n9##y,z,v), I[408] = (img)(_p1##x,_n9##y,z,v), I[409] = (img)(x,_n9##y,z,v), I[410] = (img)(_n1##x,_n9##y,z,v), I[411] = (img)(_n2##x,_n9##y,z,v), I[412] = (img)(_n3##x,_n9##y,z,v), I[413] = (img)(_n4##x,_n9##y,z,v), I[414] = (img)(_n5##x,_n9##y,z,v), I[415] = (img)(_n6##x,_n9##y,z,v), I[416] = (img)(_n7##x,_n9##y,z,v), I[417] = (img)(_n8##x,_n9##y,z,v), I[418] = (img)(_n9##x,_n9##y,z,v), I[419] = (img)(_n10##x,_n9##y,z,v), \
philpem@5 6556 I[420] = (img)(_p10##x,_n10##y,z,v), I[421] = (img)(_p9##x,_n10##y,z,v), I[422] = (img)(_p8##x,_n10##y,z,v), I[423] = (img)(_p7##x,_n10##y,z,v), I[424] = (img)(_p6##x,_n10##y,z,v), I[425] = (img)(_p5##x,_n10##y,z,v), I[426] = (img)(_p4##x,_n10##y,z,v), I[427] = (img)(_p3##x,_n10##y,z,v), I[428] = (img)(_p2##x,_n10##y,z,v), I[429] = (img)(_p1##x,_n10##y,z,v), I[430] = (img)(x,_n10##y,z,v), I[431] = (img)(_n1##x,_n10##y,z,v), I[432] = (img)(_n2##x,_n10##y,z,v), I[433] = (img)(_n3##x,_n10##y,z,v), I[434] = (img)(_n4##x,_n10##y,z,v), I[435] = (img)(_n5##x,_n10##y,z,v), I[436] = (img)(_n6##x,_n10##y,z,v), I[437] = (img)(_n7##x,_n10##y,z,v), I[438] = (img)(_n8##x,_n10##y,z,v), I[439] = (img)(_n9##x,_n10##y,z,v), I[440] = (img)(_n10##x,_n10##y,z,v);
philpem@5 6557
philpem@5 6558 // Define 22x22 loop macros for CImg
philpem@5 6559 //----------------------------------
philpem@5 6560 #define cimg_for22(bound,i) for (int i = 0, \
philpem@5 6561 _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
philpem@5 6562 _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \
philpem@5 6563 _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \
philpem@5 6564 _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \
philpem@5 6565 _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \
philpem@5 6566 _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \
philpem@5 6567 _n6##i = 6>=(int)(bound)?(int)(bound)-1:6, \
philpem@5 6568 _n7##i = 7>=(int)(bound)?(int)(bound)-1:7, \
philpem@5 6569 _n8##i = 8>=(int)(bound)?(int)(bound)-1:8, \
philpem@5 6570 _n9##i = 9>=(int)(bound)?(int)(bound)-1:9, \
philpem@5 6571 _n10##i = 10>=(int)(bound)?(int)(bound)-1:10, \
philpem@5 6572 _n11##i = 11>=(int)(bound)?(int)(bound)-1:11; \
philpem@5 6573 _n11##i<(int)(bound) || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 6574 i==(_n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
philpem@5 6575 _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 6576 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i)
philpem@5 6577
philpem@5 6578 #define cimg_for22X(img,x) cimg_for22((img).width,x)
philpem@5 6579 #define cimg_for22Y(img,y) cimg_for22((img).height,y)
philpem@5 6580 #define cimg_for22Z(img,z) cimg_for22((img).depth,z)
philpem@5 6581 #define cimg_for22V(img,v) cimg_for22((img).dim,v)
philpem@5 6582 #define cimg_for22XY(img,x,y) cimg_for22Y(img,y) cimg_for22X(img,x)
philpem@5 6583 #define cimg_for22XZ(img,x,z) cimg_for22Z(img,z) cimg_for22X(img,x)
philpem@5 6584 #define cimg_for22XV(img,x,v) cimg_for22V(img,v) cimg_for22X(img,x)
philpem@5 6585 #define cimg_for22YZ(img,y,z) cimg_for22Z(img,z) cimg_for22Y(img,y)
philpem@5 6586 #define cimg_for22YV(img,y,v) cimg_for22V(img,v) cimg_for22Y(img,y)
philpem@5 6587 #define cimg_for22ZV(img,z,v) cimg_for22V(img,v) cimg_for22Z(img,z)
philpem@5 6588 #define cimg_for22XYZ(img,x,y,z) cimg_for22Z(img,z) cimg_for22XY(img,x,y)
philpem@5 6589 #define cimg_for22XZV(img,x,z,v) cimg_for22V(img,v) cimg_for22XZ(img,x,z)
philpem@5 6590 #define cimg_for22YZV(img,y,z,v) cimg_for22V(img,v) cimg_for22YZ(img,y,z)
philpem@5 6591 #define cimg_for22XYZV(img,x,y,z,v) cimg_for22V(img,v) cimg_for22XYZ(img,x,y,z)
philpem@5 6592
philpem@5 6593 #define cimg_for_in22(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
philpem@5 6594 _p10##i = i-10<0?0:i-10, \
philpem@5 6595 _p9##i = i-9<0?0:i-9, \
philpem@5 6596 _p8##i = i-8<0?0:i-8, \
philpem@5 6597 _p7##i = i-7<0?0:i-7, \
philpem@5 6598 _p6##i = i-6<0?0:i-6, \
philpem@5 6599 _p5##i = i-5<0?0:i-5, \
philpem@5 6600 _p4##i = i-4<0?0:i-4, \
philpem@5 6601 _p3##i = i-3<0?0:i-3, \
philpem@5 6602 _p2##i = i-2<0?0:i-2, \
philpem@5 6603 _p1##i = i-1<0?0:i-1, \
philpem@5 6604 _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \
philpem@5 6605 _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \
philpem@5 6606 _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \
philpem@5 6607 _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \
philpem@5 6608 _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \
philpem@5 6609 _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6, \
philpem@5 6610 _n7##i = i+7>=(int)(bound)?(int)(bound)-1:i+7, \
philpem@5 6611 _n8##i = i+8>=(int)(bound)?(int)(bound)-1:i+8, \
philpem@5 6612 _n9##i = i+9>=(int)(bound)?(int)(bound)-1:i+9, \
philpem@5 6613 _n10##i = i+10>=(int)(bound)?(int)(bound)-1:i+10, \
philpem@5 6614 _n11##i = i+11>=(int)(bound)?(int)(bound)-1:i+11; \
philpem@5 6615 i<=(int)(i1) && (_n11##i<(int)(bound) || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 6616 i==(_n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
philpem@5 6617 _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 6618 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i)
philpem@5 6619
philpem@5 6620 #define cimg_for_in22X(img,x0,x1,x) cimg_for_in22((img).width,x0,x1,x)
philpem@5 6621 #define cimg_for_in22Y(img,y0,y1,y) cimg_for_in22((img).height,y0,y1,y)
philpem@5 6622 #define cimg_for_in22Z(img,z0,z1,z) cimg_for_in22((img).depth,z0,z1,z)
philpem@5 6623 #define cimg_for_in22V(img,v0,v1,v) cimg_for_in22((img).dim,v0,v1,v)
philpem@5 6624 #define cimg_for_in22XY(img,x0,y0,x1,y1,x,y) cimg_for_in22Y(img,y0,y1,y) cimg_for_in22X(img,x0,x1,x)
philpem@5 6625 #define cimg_for_in22XZ(img,x0,z0,x1,z1,x,z) cimg_for_in22Z(img,z0,z1,z) cimg_for_in22X(img,x0,x1,x)
philpem@5 6626 #define cimg_for_in22XV(img,x0,v0,x1,v1,x,v) cimg_for_in22V(img,v0,v1,v) cimg_for_in22X(img,x0,x1,x)
philpem@5 6627 #define cimg_for_in22YZ(img,y0,z0,y1,z1,y,z) cimg_for_in22Z(img,z0,z1,z) cimg_for_in22Y(img,y0,y1,y)
philpem@5 6628 #define cimg_for_in22YV(img,y0,v0,y1,v1,y,v) cimg_for_in22V(img,v0,v1,v) cimg_for_in22Y(img,y0,y1,y)
philpem@5 6629 #define cimg_for_in22ZV(img,z0,v0,z1,v1,z,v) cimg_for_in22V(img,v0,v1,v) cimg_for_in22Z(img,z0,z1,z)
philpem@5 6630 #define cimg_for_in22XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in22Z(img,z0,z1,z) cimg_for_in22XY(img,x0,y0,x1,y1,x,y)
philpem@5 6631 #define cimg_for_in22XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in22V(img,v0,v1,v) cimg_for_in22XZ(img,x0,y0,x1,y1,x,z)
philpem@5 6632 #define cimg_for_in22YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in22V(img,v0,v1,v) cimg_for_in22YZ(img,y0,z0,y1,z1,y,z)
philpem@5 6633 #define cimg_for_in22XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in22V(img,v0,v1,v) cimg_for_in22XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
philpem@5 6634
philpem@5 6635 #define cimg_for22x22(img,x,y,z,v,I) \
philpem@5 6636 cimg_for22((img).height,y) for (int x = 0, \
philpem@5 6637 _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
philpem@5 6638 _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \
philpem@5 6639 _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \
philpem@5 6640 _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \
philpem@5 6641 _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \
philpem@5 6642 _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \
philpem@5 6643 _n6##x = 6>=((img).width)?(int)((img).width)-1:6, \
philpem@5 6644 _n7##x = 7>=((img).width)?(int)((img).width)-1:7, \
philpem@5 6645 _n8##x = 8>=((img).width)?(int)((img).width)-1:8, \
philpem@5 6646 _n9##x = 9>=((img).width)?(int)((img).width)-1:9, \
philpem@5 6647 _n10##x = 10>=((img).width)?(int)((img).width)-1:10, \
philpem@5 6648 _n11##x = (int)( \
philpem@5 6649 (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = (img)(0,_p10##y,z,v)), \
philpem@5 6650 (I[22] = I[23] = I[24] = I[25] = I[26] = I[27] = I[28] = I[29] = I[30] = I[31] = I[32] = (img)(0,_p9##y,z,v)), \
philpem@5 6651 (I[44] = I[45] = I[46] = I[47] = I[48] = I[49] = I[50] = I[51] = I[52] = I[53] = I[54] = (img)(0,_p8##y,z,v)), \
philpem@5 6652 (I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = I[72] = I[73] = I[74] = I[75] = I[76] = (img)(0,_p7##y,z,v)), \
philpem@5 6653 (I[88] = I[89] = I[90] = I[91] = I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = I[98] = (img)(0,_p6##y,z,v)), \
philpem@5 6654 (I[110] = I[111] = I[112] = I[113] = I[114] = I[115] = I[116] = I[117] = I[118] = I[119] = I[120] = (img)(0,_p5##y,z,v)), \
philpem@5 6655 (I[132] = I[133] = I[134] = I[135] = I[136] = I[137] = I[138] = I[139] = I[140] = I[141] = I[142] = (img)(0,_p4##y,z,v)), \
philpem@5 6656 (I[154] = I[155] = I[156] = I[157] = I[158] = I[159] = I[160] = I[161] = I[162] = I[163] = I[164] = (img)(0,_p3##y,z,v)), \
philpem@5 6657 (I[176] = I[177] = I[178] = I[179] = I[180] = I[181] = I[182] = I[183] = I[184] = I[185] = I[186] = (img)(0,_p2##y,z,v)), \
philpem@5 6658 (I[198] = I[199] = I[200] = I[201] = I[202] = I[203] = I[204] = I[205] = I[206] = I[207] = I[208] = (img)(0,_p1##y,z,v)), \
philpem@5 6659 (I[220] = I[221] = I[222] = I[223] = I[224] = I[225] = I[226] = I[227] = I[228] = I[229] = I[230] = (img)(0,y,z,v)), \
philpem@5 6660 (I[242] = I[243] = I[244] = I[245] = I[246] = I[247] = I[248] = I[249] = I[250] = I[251] = I[252] = (img)(0,_n1##y,z,v)), \
philpem@5 6661 (I[264] = I[265] = I[266] = I[267] = I[268] = I[269] = I[270] = I[271] = I[272] = I[273] = I[274] = (img)(0,_n2##y,z,v)), \
philpem@5 6662 (I[286] = I[287] = I[288] = I[289] = I[290] = I[291] = I[292] = I[293] = I[294] = I[295] = I[296] = (img)(0,_n3##y,z,v)), \
philpem@5 6663 (I[308] = I[309] = I[310] = I[311] = I[312] = I[313] = I[314] = I[315] = I[316] = I[317] = I[318] = (img)(0,_n4##y,z,v)), \
philpem@5 6664 (I[330] = I[331] = I[332] = I[333] = I[334] = I[335] = I[336] = I[337] = I[338] = I[339] = I[340] = (img)(0,_n5##y,z,v)), \
philpem@5 6665 (I[352] = I[353] = I[354] = I[355] = I[356] = I[357] = I[358] = I[359] = I[360] = I[361] = I[362] = (img)(0,_n6##y,z,v)), \
philpem@5 6666 (I[374] = I[375] = I[376] = I[377] = I[378] = I[379] = I[380] = I[381] = I[382] = I[383] = I[384] = (img)(0,_n7##y,z,v)), \
philpem@5 6667 (I[396] = I[397] = I[398] = I[399] = I[400] = I[401] = I[402] = I[403] = I[404] = I[405] = I[406] = (img)(0,_n8##y,z,v)), \
philpem@5 6668 (I[418] = I[419] = I[420] = I[421] = I[422] = I[423] = I[424] = I[425] = I[426] = I[427] = I[428] = (img)(0,_n9##y,z,v)), \
philpem@5 6669 (I[440] = I[441] = I[442] = I[443] = I[444] = I[445] = I[446] = I[447] = I[448] = I[449] = I[450] = (img)(0,_n10##y,z,v)), \
philpem@5 6670 (I[462] = I[463] = I[464] = I[465] = I[466] = I[467] = I[468] = I[469] = I[470] = I[471] = I[472] = (img)(0,_n11##y,z,v)), \
philpem@5 6671 (I[11] = (img)(_n1##x,_p10##y,z,v)), \
philpem@5 6672 (I[33] = (img)(_n1##x,_p9##y,z,v)), \
philpem@5 6673 (I[55] = (img)(_n1##x,_p8##y,z,v)), \
philpem@5 6674 (I[77] = (img)(_n1##x,_p7##y,z,v)), \
philpem@5 6675 (I[99] = (img)(_n1##x,_p6##y,z,v)), \
philpem@5 6676 (I[121] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 6677 (I[143] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 6678 (I[165] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 6679 (I[187] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 6680 (I[209] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 6681 (I[231] = (img)(_n1##x,y,z,v)), \
philpem@5 6682 (I[253] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 6683 (I[275] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 6684 (I[297] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 6685 (I[319] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 6686 (I[341] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 6687 (I[363] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 6688 (I[385] = (img)(_n1##x,_n7##y,z,v)), \
philpem@5 6689 (I[407] = (img)(_n1##x,_n8##y,z,v)), \
philpem@5 6690 (I[429] = (img)(_n1##x,_n9##y,z,v)), \
philpem@5 6691 (I[451] = (img)(_n1##x,_n10##y,z,v)), \
philpem@5 6692 (I[473] = (img)(_n1##x,_n11##y,z,v)), \
philpem@5 6693 (I[12] = (img)(_n2##x,_p10##y,z,v)), \
philpem@5 6694 (I[34] = (img)(_n2##x,_p9##y,z,v)), \
philpem@5 6695 (I[56] = (img)(_n2##x,_p8##y,z,v)), \
philpem@5 6696 (I[78] = (img)(_n2##x,_p7##y,z,v)), \
philpem@5 6697 (I[100] = (img)(_n2##x,_p6##y,z,v)), \
philpem@5 6698 (I[122] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 6699 (I[144] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 6700 (I[166] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 6701 (I[188] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 6702 (I[210] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 6703 (I[232] = (img)(_n2##x,y,z,v)), \
philpem@5 6704 (I[254] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 6705 (I[276] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 6706 (I[298] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 6707 (I[320] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 6708 (I[342] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 6709 (I[364] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 6710 (I[386] = (img)(_n2##x,_n7##y,z,v)), \
philpem@5 6711 (I[408] = (img)(_n2##x,_n8##y,z,v)), \
philpem@5 6712 (I[430] = (img)(_n2##x,_n9##y,z,v)), \
philpem@5 6713 (I[452] = (img)(_n2##x,_n10##y,z,v)), \
philpem@5 6714 (I[474] = (img)(_n2##x,_n11##y,z,v)), \
philpem@5 6715 (I[13] = (img)(_n3##x,_p10##y,z,v)), \
philpem@5 6716 (I[35] = (img)(_n3##x,_p9##y,z,v)), \
philpem@5 6717 (I[57] = (img)(_n3##x,_p8##y,z,v)), \
philpem@5 6718 (I[79] = (img)(_n3##x,_p7##y,z,v)), \
philpem@5 6719 (I[101] = (img)(_n3##x,_p6##y,z,v)), \
philpem@5 6720 (I[123] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 6721 (I[145] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 6722 (I[167] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 6723 (I[189] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 6724 (I[211] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 6725 (I[233] = (img)(_n3##x,y,z,v)), \
philpem@5 6726 (I[255] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 6727 (I[277] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 6728 (I[299] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 6729 (I[321] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 6730 (I[343] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 6731 (I[365] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 6732 (I[387] = (img)(_n3##x,_n7##y,z,v)), \
philpem@5 6733 (I[409] = (img)(_n3##x,_n8##y,z,v)), \
philpem@5 6734 (I[431] = (img)(_n3##x,_n9##y,z,v)), \
philpem@5 6735 (I[453] = (img)(_n3##x,_n10##y,z,v)), \
philpem@5 6736 (I[475] = (img)(_n3##x,_n11##y,z,v)), \
philpem@5 6737 (I[14] = (img)(_n4##x,_p10##y,z,v)), \
philpem@5 6738 (I[36] = (img)(_n4##x,_p9##y,z,v)), \
philpem@5 6739 (I[58] = (img)(_n4##x,_p8##y,z,v)), \
philpem@5 6740 (I[80] = (img)(_n4##x,_p7##y,z,v)), \
philpem@5 6741 (I[102] = (img)(_n4##x,_p6##y,z,v)), \
philpem@5 6742 (I[124] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 6743 (I[146] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 6744 (I[168] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 6745 (I[190] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 6746 (I[212] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 6747 (I[234] = (img)(_n4##x,y,z,v)), \
philpem@5 6748 (I[256] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 6749 (I[278] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 6750 (I[300] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 6751 (I[322] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 6752 (I[344] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 6753 (I[366] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 6754 (I[388] = (img)(_n4##x,_n7##y,z,v)), \
philpem@5 6755 (I[410] = (img)(_n4##x,_n8##y,z,v)), \
philpem@5 6756 (I[432] = (img)(_n4##x,_n9##y,z,v)), \
philpem@5 6757 (I[454] = (img)(_n4##x,_n10##y,z,v)), \
philpem@5 6758 (I[476] = (img)(_n4##x,_n11##y,z,v)), \
philpem@5 6759 (I[15] = (img)(_n5##x,_p10##y,z,v)), \
philpem@5 6760 (I[37] = (img)(_n5##x,_p9##y,z,v)), \
philpem@5 6761 (I[59] = (img)(_n5##x,_p8##y,z,v)), \
philpem@5 6762 (I[81] = (img)(_n5##x,_p7##y,z,v)), \
philpem@5 6763 (I[103] = (img)(_n5##x,_p6##y,z,v)), \
philpem@5 6764 (I[125] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 6765 (I[147] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 6766 (I[169] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 6767 (I[191] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 6768 (I[213] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 6769 (I[235] = (img)(_n5##x,y,z,v)), \
philpem@5 6770 (I[257] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 6771 (I[279] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 6772 (I[301] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 6773 (I[323] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 6774 (I[345] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 6775 (I[367] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 6776 (I[389] = (img)(_n5##x,_n7##y,z,v)), \
philpem@5 6777 (I[411] = (img)(_n5##x,_n8##y,z,v)), \
philpem@5 6778 (I[433] = (img)(_n5##x,_n9##y,z,v)), \
philpem@5 6779 (I[455] = (img)(_n5##x,_n10##y,z,v)), \
philpem@5 6780 (I[477] = (img)(_n5##x,_n11##y,z,v)), \
philpem@5 6781 (I[16] = (img)(_n6##x,_p10##y,z,v)), \
philpem@5 6782 (I[38] = (img)(_n6##x,_p9##y,z,v)), \
philpem@5 6783 (I[60] = (img)(_n6##x,_p8##y,z,v)), \
philpem@5 6784 (I[82] = (img)(_n6##x,_p7##y,z,v)), \
philpem@5 6785 (I[104] = (img)(_n6##x,_p6##y,z,v)), \
philpem@5 6786 (I[126] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 6787 (I[148] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 6788 (I[170] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 6789 (I[192] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 6790 (I[214] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 6791 (I[236] = (img)(_n6##x,y,z,v)), \
philpem@5 6792 (I[258] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 6793 (I[280] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 6794 (I[302] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 6795 (I[324] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 6796 (I[346] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 6797 (I[368] = (img)(_n6##x,_n6##y,z,v)), \
philpem@5 6798 (I[390] = (img)(_n6##x,_n7##y,z,v)), \
philpem@5 6799 (I[412] = (img)(_n6##x,_n8##y,z,v)), \
philpem@5 6800 (I[434] = (img)(_n6##x,_n9##y,z,v)), \
philpem@5 6801 (I[456] = (img)(_n6##x,_n10##y,z,v)), \
philpem@5 6802 (I[478] = (img)(_n6##x,_n11##y,z,v)), \
philpem@5 6803 (I[17] = (img)(_n7##x,_p10##y,z,v)), \
philpem@5 6804 (I[39] = (img)(_n7##x,_p9##y,z,v)), \
philpem@5 6805 (I[61] = (img)(_n7##x,_p8##y,z,v)), \
philpem@5 6806 (I[83] = (img)(_n7##x,_p7##y,z,v)), \
philpem@5 6807 (I[105] = (img)(_n7##x,_p6##y,z,v)), \
philpem@5 6808 (I[127] = (img)(_n7##x,_p5##y,z,v)), \
philpem@5 6809 (I[149] = (img)(_n7##x,_p4##y,z,v)), \
philpem@5 6810 (I[171] = (img)(_n7##x,_p3##y,z,v)), \
philpem@5 6811 (I[193] = (img)(_n7##x,_p2##y,z,v)), \
philpem@5 6812 (I[215] = (img)(_n7##x,_p1##y,z,v)), \
philpem@5 6813 (I[237] = (img)(_n7##x,y,z,v)), \
philpem@5 6814 (I[259] = (img)(_n7##x,_n1##y,z,v)), \
philpem@5 6815 (I[281] = (img)(_n7##x,_n2##y,z,v)), \
philpem@5 6816 (I[303] = (img)(_n7##x,_n3##y,z,v)), \
philpem@5 6817 (I[325] = (img)(_n7##x,_n4##y,z,v)), \
philpem@5 6818 (I[347] = (img)(_n7##x,_n5##y,z,v)), \
philpem@5 6819 (I[369] = (img)(_n7##x,_n6##y,z,v)), \
philpem@5 6820 (I[391] = (img)(_n7##x,_n7##y,z,v)), \
philpem@5 6821 (I[413] = (img)(_n7##x,_n8##y,z,v)), \
philpem@5 6822 (I[435] = (img)(_n7##x,_n9##y,z,v)), \
philpem@5 6823 (I[457] = (img)(_n7##x,_n10##y,z,v)), \
philpem@5 6824 (I[479] = (img)(_n7##x,_n11##y,z,v)), \
philpem@5 6825 (I[18] = (img)(_n8##x,_p10##y,z,v)), \
philpem@5 6826 (I[40] = (img)(_n8##x,_p9##y,z,v)), \
philpem@5 6827 (I[62] = (img)(_n8##x,_p8##y,z,v)), \
philpem@5 6828 (I[84] = (img)(_n8##x,_p7##y,z,v)), \
philpem@5 6829 (I[106] = (img)(_n8##x,_p6##y,z,v)), \
philpem@5 6830 (I[128] = (img)(_n8##x,_p5##y,z,v)), \
philpem@5 6831 (I[150] = (img)(_n8##x,_p4##y,z,v)), \
philpem@5 6832 (I[172] = (img)(_n8##x,_p3##y,z,v)), \
philpem@5 6833 (I[194] = (img)(_n8##x,_p2##y,z,v)), \
philpem@5 6834 (I[216] = (img)(_n8##x,_p1##y,z,v)), \
philpem@5 6835 (I[238] = (img)(_n8##x,y,z,v)), \
philpem@5 6836 (I[260] = (img)(_n8##x,_n1##y,z,v)), \
philpem@5 6837 (I[282] = (img)(_n8##x,_n2##y,z,v)), \
philpem@5 6838 (I[304] = (img)(_n8##x,_n3##y,z,v)), \
philpem@5 6839 (I[326] = (img)(_n8##x,_n4##y,z,v)), \
philpem@5 6840 (I[348] = (img)(_n8##x,_n5##y,z,v)), \
philpem@5 6841 (I[370] = (img)(_n8##x,_n6##y,z,v)), \
philpem@5 6842 (I[392] = (img)(_n8##x,_n7##y,z,v)), \
philpem@5 6843 (I[414] = (img)(_n8##x,_n8##y,z,v)), \
philpem@5 6844 (I[436] = (img)(_n8##x,_n9##y,z,v)), \
philpem@5 6845 (I[458] = (img)(_n8##x,_n10##y,z,v)), \
philpem@5 6846 (I[480] = (img)(_n8##x,_n11##y,z,v)), \
philpem@5 6847 (I[19] = (img)(_n9##x,_p10##y,z,v)), \
philpem@5 6848 (I[41] = (img)(_n9##x,_p9##y,z,v)), \
philpem@5 6849 (I[63] = (img)(_n9##x,_p8##y,z,v)), \
philpem@5 6850 (I[85] = (img)(_n9##x,_p7##y,z,v)), \
philpem@5 6851 (I[107] = (img)(_n9##x,_p6##y,z,v)), \
philpem@5 6852 (I[129] = (img)(_n9##x,_p5##y,z,v)), \
philpem@5 6853 (I[151] = (img)(_n9##x,_p4##y,z,v)), \
philpem@5 6854 (I[173] = (img)(_n9##x,_p3##y,z,v)), \
philpem@5 6855 (I[195] = (img)(_n9##x,_p2##y,z,v)), \
philpem@5 6856 (I[217] = (img)(_n9##x,_p1##y,z,v)), \
philpem@5 6857 (I[239] = (img)(_n9##x,y,z,v)), \
philpem@5 6858 (I[261] = (img)(_n9##x,_n1##y,z,v)), \
philpem@5 6859 (I[283] = (img)(_n9##x,_n2##y,z,v)), \
philpem@5 6860 (I[305] = (img)(_n9##x,_n3##y,z,v)), \
philpem@5 6861 (I[327] = (img)(_n9##x,_n4##y,z,v)), \
philpem@5 6862 (I[349] = (img)(_n9##x,_n5##y,z,v)), \
philpem@5 6863 (I[371] = (img)(_n9##x,_n6##y,z,v)), \
philpem@5 6864 (I[393] = (img)(_n9##x,_n7##y,z,v)), \
philpem@5 6865 (I[415] = (img)(_n9##x,_n8##y,z,v)), \
philpem@5 6866 (I[437] = (img)(_n9##x,_n9##y,z,v)), \
philpem@5 6867 (I[459] = (img)(_n9##x,_n10##y,z,v)), \
philpem@5 6868 (I[481] = (img)(_n9##x,_n11##y,z,v)), \
philpem@5 6869 (I[20] = (img)(_n10##x,_p10##y,z,v)), \
philpem@5 6870 (I[42] = (img)(_n10##x,_p9##y,z,v)), \
philpem@5 6871 (I[64] = (img)(_n10##x,_p8##y,z,v)), \
philpem@5 6872 (I[86] = (img)(_n10##x,_p7##y,z,v)), \
philpem@5 6873 (I[108] = (img)(_n10##x,_p6##y,z,v)), \
philpem@5 6874 (I[130] = (img)(_n10##x,_p5##y,z,v)), \
philpem@5 6875 (I[152] = (img)(_n10##x,_p4##y,z,v)), \
philpem@5 6876 (I[174] = (img)(_n10##x,_p3##y,z,v)), \
philpem@5 6877 (I[196] = (img)(_n10##x,_p2##y,z,v)), \
philpem@5 6878 (I[218] = (img)(_n10##x,_p1##y,z,v)), \
philpem@5 6879 (I[240] = (img)(_n10##x,y,z,v)), \
philpem@5 6880 (I[262] = (img)(_n10##x,_n1##y,z,v)), \
philpem@5 6881 (I[284] = (img)(_n10##x,_n2##y,z,v)), \
philpem@5 6882 (I[306] = (img)(_n10##x,_n3##y,z,v)), \
philpem@5 6883 (I[328] = (img)(_n10##x,_n4##y,z,v)), \
philpem@5 6884 (I[350] = (img)(_n10##x,_n5##y,z,v)), \
philpem@5 6885 (I[372] = (img)(_n10##x,_n6##y,z,v)), \
philpem@5 6886 (I[394] = (img)(_n10##x,_n7##y,z,v)), \
philpem@5 6887 (I[416] = (img)(_n10##x,_n8##y,z,v)), \
philpem@5 6888 (I[438] = (img)(_n10##x,_n9##y,z,v)), \
philpem@5 6889 (I[460] = (img)(_n10##x,_n10##y,z,v)), \
philpem@5 6890 (I[482] = (img)(_n10##x,_n11##y,z,v)), \
philpem@5 6891 11>=((img).width)?(int)((img).width)-1:11); \
philpem@5 6892 (_n11##x<(int)((img).width) && ( \
philpem@5 6893 (I[21] = (img)(_n11##x,_p10##y,z,v)), \
philpem@5 6894 (I[43] = (img)(_n11##x,_p9##y,z,v)), \
philpem@5 6895 (I[65] = (img)(_n11##x,_p8##y,z,v)), \
philpem@5 6896 (I[87] = (img)(_n11##x,_p7##y,z,v)), \
philpem@5 6897 (I[109] = (img)(_n11##x,_p6##y,z,v)), \
philpem@5 6898 (I[131] = (img)(_n11##x,_p5##y,z,v)), \
philpem@5 6899 (I[153] = (img)(_n11##x,_p4##y,z,v)), \
philpem@5 6900 (I[175] = (img)(_n11##x,_p3##y,z,v)), \
philpem@5 6901 (I[197] = (img)(_n11##x,_p2##y,z,v)), \
philpem@5 6902 (I[219] = (img)(_n11##x,_p1##y,z,v)), \
philpem@5 6903 (I[241] = (img)(_n11##x,y,z,v)), \
philpem@5 6904 (I[263] = (img)(_n11##x,_n1##y,z,v)), \
philpem@5 6905 (I[285] = (img)(_n11##x,_n2##y,z,v)), \
philpem@5 6906 (I[307] = (img)(_n11##x,_n3##y,z,v)), \
philpem@5 6907 (I[329] = (img)(_n11##x,_n4##y,z,v)), \
philpem@5 6908 (I[351] = (img)(_n11##x,_n5##y,z,v)), \
philpem@5 6909 (I[373] = (img)(_n11##x,_n6##y,z,v)), \
philpem@5 6910 (I[395] = (img)(_n11##x,_n7##y,z,v)), \
philpem@5 6911 (I[417] = (img)(_n11##x,_n8##y,z,v)), \
philpem@5 6912 (I[439] = (img)(_n11##x,_n9##y,z,v)), \
philpem@5 6913 (I[461] = (img)(_n11##x,_n10##y,z,v)), \
philpem@5 6914 (I[483] = (img)(_n11##x,_n11##y,z,v)),1)) || \
philpem@5 6915 _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
philpem@5 6916 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], \
philpem@5 6917 I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], \
philpem@5 6918 I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], \
philpem@5 6919 I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], \
philpem@5 6920 I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], \
philpem@5 6921 I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], \
philpem@5 6922 I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], \
philpem@5 6923 I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], \
philpem@5 6924 I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], \
philpem@5 6925 I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], \
philpem@5 6926 I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], \
philpem@5 6927 I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], \
philpem@5 6928 I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], \
philpem@5 6929 I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], \
philpem@5 6930 I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], \
philpem@5 6931 I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], \
philpem@5 6932 I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], \
philpem@5 6933 I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], \
philpem@5 6934 I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], \
philpem@5 6935 I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], \
philpem@5 6936 I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], \
philpem@5 6937 I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], \
philpem@5 6938 _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x)
philpem@5 6939
philpem@5 6940 #define cimg_for_in22x22(img,x0,y0,x1,y1,x,y,z,v,I) \
philpem@5 6941 cimg_for_in22((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
philpem@5 6942 _p10##x = x-10<0?0:x-10, \
philpem@5 6943 _p9##x = x-9<0?0:x-9, \
philpem@5 6944 _p8##x = x-8<0?0:x-8, \
philpem@5 6945 _p7##x = x-7<0?0:x-7, \
philpem@5 6946 _p6##x = x-6<0?0:x-6, \
philpem@5 6947 _p5##x = x-5<0?0:x-5, \
philpem@5 6948 _p4##x = x-4<0?0:x-4, \
philpem@5 6949 _p3##x = x-3<0?0:x-3, \
philpem@5 6950 _p2##x = x-2<0?0:x-2, \
philpem@5 6951 _p1##x = x-1<0?0:x-1, \
philpem@5 6952 _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \
philpem@5 6953 _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \
philpem@5 6954 _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \
philpem@5 6955 _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \
philpem@5 6956 _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \
philpem@5 6957 _n6##x = x+6>=(int)((img).width)?(int)((img).width)-1:x+6, \
philpem@5 6958 _n7##x = x+7>=(int)((img).width)?(int)((img).width)-1:x+7, \
philpem@5 6959 _n8##x = x+8>=(int)((img).width)?(int)((img).width)-1:x+8, \
philpem@5 6960 _n9##x = x+9>=(int)((img).width)?(int)((img).width)-1:x+9, \
philpem@5 6961 _n10##x = x+10>=(int)((img).width)?(int)((img).width)-1:x+10, \
philpem@5 6962 _n11##x = (int)( \
philpem@5 6963 (I[0] = (img)(_p10##x,_p10##y,z,v)), \
philpem@5 6964 (I[22] = (img)(_p10##x,_p9##y,z,v)), \
philpem@5 6965 (I[44] = (img)(_p10##x,_p8##y,z,v)), \
philpem@5 6966 (I[66] = (img)(_p10##x,_p7##y,z,v)), \
philpem@5 6967 (I[88] = (img)(_p10##x,_p6##y,z,v)), \
philpem@5 6968 (I[110] = (img)(_p10##x,_p5##y,z,v)), \
philpem@5 6969 (I[132] = (img)(_p10##x,_p4##y,z,v)), \
philpem@5 6970 (I[154] = (img)(_p10##x,_p3##y,z,v)), \
philpem@5 6971 (I[176] = (img)(_p10##x,_p2##y,z,v)), \
philpem@5 6972 (I[198] = (img)(_p10##x,_p1##y,z,v)), \
philpem@5 6973 (I[220] = (img)(_p10##x,y,z,v)), \
philpem@5 6974 (I[242] = (img)(_p10##x,_n1##y,z,v)), \
philpem@5 6975 (I[264] = (img)(_p10##x,_n2##y,z,v)), \
philpem@5 6976 (I[286] = (img)(_p10##x,_n3##y,z,v)), \
philpem@5 6977 (I[308] = (img)(_p10##x,_n4##y,z,v)), \
philpem@5 6978 (I[330] = (img)(_p10##x,_n5##y,z,v)), \
philpem@5 6979 (I[352] = (img)(_p10##x,_n6##y,z,v)), \
philpem@5 6980 (I[374] = (img)(_p10##x,_n7##y,z,v)), \
philpem@5 6981 (I[396] = (img)(_p10##x,_n8##y,z,v)), \
philpem@5 6982 (I[418] = (img)(_p10##x,_n9##y,z,v)), \
philpem@5 6983 (I[440] = (img)(_p10##x,_n10##y,z,v)), \
philpem@5 6984 (I[462] = (img)(_p10##x,_n11##y,z,v)), \
philpem@5 6985 (I[1] = (img)(_p9##x,_p10##y,z,v)), \
philpem@5 6986 (I[23] = (img)(_p9##x,_p9##y,z,v)), \
philpem@5 6987 (I[45] = (img)(_p9##x,_p8##y,z,v)), \
philpem@5 6988 (I[67] = (img)(_p9##x,_p7##y,z,v)), \
philpem@5 6989 (I[89] = (img)(_p9##x,_p6##y,z,v)), \
philpem@5 6990 (I[111] = (img)(_p9##x,_p5##y,z,v)), \
philpem@5 6991 (I[133] = (img)(_p9##x,_p4##y,z,v)), \
philpem@5 6992 (I[155] = (img)(_p9##x,_p3##y,z,v)), \
philpem@5 6993 (I[177] = (img)(_p9##x,_p2##y,z,v)), \
philpem@5 6994 (I[199] = (img)(_p9##x,_p1##y,z,v)), \
philpem@5 6995 (I[221] = (img)(_p9##x,y,z,v)), \
philpem@5 6996 (I[243] = (img)(_p9##x,_n1##y,z,v)), \
philpem@5 6997 (I[265] = (img)(_p9##x,_n2##y,z,v)), \
philpem@5 6998 (I[287] = (img)(_p9##x,_n3##y,z,v)), \
philpem@5 6999 (I[309] = (img)(_p9##x,_n4##y,z,v)), \
philpem@5 7000 (I[331] = (img)(_p9##x,_n5##y,z,v)), \
philpem@5 7001 (I[353] = (img)(_p9##x,_n6##y,z,v)), \
philpem@5 7002 (I[375] = (img)(_p9##x,_n7##y,z,v)), \
philpem@5 7003 (I[397] = (img)(_p9##x,_n8##y,z,v)), \
philpem@5 7004 (I[419] = (img)(_p9##x,_n9##y,z,v)), \
philpem@5 7005 (I[441] = (img)(_p9##x,_n10##y,z,v)), \
philpem@5 7006 (I[463] = (img)(_p9##x,_n11##y,z,v)), \
philpem@5 7007 (I[2] = (img)(_p8##x,_p10##y,z,v)), \
philpem@5 7008 (I[24] = (img)(_p8##x,_p9##y,z,v)), \
philpem@5 7009 (I[46] = (img)(_p8##x,_p8##y,z,v)), \
philpem@5 7010 (I[68] = (img)(_p8##x,_p7##y,z,v)), \
philpem@5 7011 (I[90] = (img)(_p8##x,_p6##y,z,v)), \
philpem@5 7012 (I[112] = (img)(_p8##x,_p5##y,z,v)), \
philpem@5 7013 (I[134] = (img)(_p8##x,_p4##y,z,v)), \
philpem@5 7014 (I[156] = (img)(_p8##x,_p3##y,z,v)), \
philpem@5 7015 (I[178] = (img)(_p8##x,_p2##y,z,v)), \
philpem@5 7016 (I[200] = (img)(_p8##x,_p1##y,z,v)), \
philpem@5 7017 (I[222] = (img)(_p8##x,y,z,v)), \
philpem@5 7018 (I[244] = (img)(_p8##x,_n1##y,z,v)), \
philpem@5 7019 (I[266] = (img)(_p8##x,_n2##y,z,v)), \
philpem@5 7020 (I[288] = (img)(_p8##x,_n3##y,z,v)), \
philpem@5 7021 (I[310] = (img)(_p8##x,_n4##y,z,v)), \
philpem@5 7022 (I[332] = (img)(_p8##x,_n5##y,z,v)), \
philpem@5 7023 (I[354] = (img)(_p8##x,_n6##y,z,v)), \
philpem@5 7024 (I[376] = (img)(_p8##x,_n7##y,z,v)), \
philpem@5 7025 (I[398] = (img)(_p8##x,_n8##y,z,v)), \
philpem@5 7026 (I[420] = (img)(_p8##x,_n9##y,z,v)), \
philpem@5 7027 (I[442] = (img)(_p8##x,_n10##y,z,v)), \
philpem@5 7028 (I[464] = (img)(_p8##x,_n11##y,z,v)), \
philpem@5 7029 (I[3] = (img)(_p7##x,_p10##y,z,v)), \
philpem@5 7030 (I[25] = (img)(_p7##x,_p9##y,z,v)), \
philpem@5 7031 (I[47] = (img)(_p7##x,_p8##y,z,v)), \
philpem@5 7032 (I[69] = (img)(_p7##x,_p7##y,z,v)), \
philpem@5 7033 (I[91] = (img)(_p7##x,_p6##y,z,v)), \
philpem@5 7034 (I[113] = (img)(_p7##x,_p5##y,z,v)), \
philpem@5 7035 (I[135] = (img)(_p7##x,_p4##y,z,v)), \
philpem@5 7036 (I[157] = (img)(_p7##x,_p3##y,z,v)), \
philpem@5 7037 (I[179] = (img)(_p7##x,_p2##y,z,v)), \
philpem@5 7038 (I[201] = (img)(_p7##x,_p1##y,z,v)), \
philpem@5 7039 (I[223] = (img)(_p7##x,y,z,v)), \
philpem@5 7040 (I[245] = (img)(_p7##x,_n1##y,z,v)), \
philpem@5 7041 (I[267] = (img)(_p7##x,_n2##y,z,v)), \
philpem@5 7042 (I[289] = (img)(_p7##x,_n3##y,z,v)), \
philpem@5 7043 (I[311] = (img)(_p7##x,_n4##y,z,v)), \
philpem@5 7044 (I[333] = (img)(_p7##x,_n5##y,z,v)), \
philpem@5 7045 (I[355] = (img)(_p7##x,_n6##y,z,v)), \
philpem@5 7046 (I[377] = (img)(_p7##x,_n7##y,z,v)), \
philpem@5 7047 (I[399] = (img)(_p7##x,_n8##y,z,v)), \
philpem@5 7048 (I[421] = (img)(_p7##x,_n9##y,z,v)), \
philpem@5 7049 (I[443] = (img)(_p7##x,_n10##y,z,v)), \
philpem@5 7050 (I[465] = (img)(_p7##x,_n11##y,z,v)), \
philpem@5 7051 (I[4] = (img)(_p6##x,_p10##y,z,v)), \
philpem@5 7052 (I[26] = (img)(_p6##x,_p9##y,z,v)), \
philpem@5 7053 (I[48] = (img)(_p6##x,_p8##y,z,v)), \
philpem@5 7054 (I[70] = (img)(_p6##x,_p7##y,z,v)), \
philpem@5 7055 (I[92] = (img)(_p6##x,_p6##y,z,v)), \
philpem@5 7056 (I[114] = (img)(_p6##x,_p5##y,z,v)), \
philpem@5 7057 (I[136] = (img)(_p6##x,_p4##y,z,v)), \
philpem@5 7058 (I[158] = (img)(_p6##x,_p3##y,z,v)), \
philpem@5 7059 (I[180] = (img)(_p6##x,_p2##y,z,v)), \
philpem@5 7060 (I[202] = (img)(_p6##x,_p1##y,z,v)), \
philpem@5 7061 (I[224] = (img)(_p6##x,y,z,v)), \
philpem@5 7062 (I[246] = (img)(_p6##x,_n1##y,z,v)), \
philpem@5 7063 (I[268] = (img)(_p6##x,_n2##y,z,v)), \
philpem@5 7064 (I[290] = (img)(_p6##x,_n3##y,z,v)), \
philpem@5 7065 (I[312] = (img)(_p6##x,_n4##y,z,v)), \
philpem@5 7066 (I[334] = (img)(_p6##x,_n5##y,z,v)), \
philpem@5 7067 (I[356] = (img)(_p6##x,_n6##y,z,v)), \
philpem@5 7068 (I[378] = (img)(_p6##x,_n7##y,z,v)), \
philpem@5 7069 (I[400] = (img)(_p6##x,_n8##y,z,v)), \
philpem@5 7070 (I[422] = (img)(_p6##x,_n9##y,z,v)), \
philpem@5 7071 (I[444] = (img)(_p6##x,_n10##y,z,v)), \
philpem@5 7072 (I[466] = (img)(_p6##x,_n11##y,z,v)), \
philpem@5 7073 (I[5] = (img)(_p5##x,_p10##y,z,v)), \
philpem@5 7074 (I[27] = (img)(_p5##x,_p9##y,z,v)), \
philpem@5 7075 (I[49] = (img)(_p5##x,_p8##y,z,v)), \
philpem@5 7076 (I[71] = (img)(_p5##x,_p7##y,z,v)), \
philpem@5 7077 (I[93] = (img)(_p5##x,_p6##y,z,v)), \
philpem@5 7078 (I[115] = (img)(_p5##x,_p5##y,z,v)), \
philpem@5 7079 (I[137] = (img)(_p5##x,_p4##y,z,v)), \
philpem@5 7080 (I[159] = (img)(_p5##x,_p3##y,z,v)), \
philpem@5 7081 (I[181] = (img)(_p5##x,_p2##y,z,v)), \
philpem@5 7082 (I[203] = (img)(_p5##x,_p1##y,z,v)), \
philpem@5 7083 (I[225] = (img)(_p5##x,y,z,v)), \
philpem@5 7084 (I[247] = (img)(_p5##x,_n1##y,z,v)), \
philpem@5 7085 (I[269] = (img)(_p5##x,_n2##y,z,v)), \
philpem@5 7086 (I[291] = (img)(_p5##x,_n3##y,z,v)), \
philpem@5 7087 (I[313] = (img)(_p5##x,_n4##y,z,v)), \
philpem@5 7088 (I[335] = (img)(_p5##x,_n5##y,z,v)), \
philpem@5 7089 (I[357] = (img)(_p5##x,_n6##y,z,v)), \
philpem@5 7090 (I[379] = (img)(_p5##x,_n7##y,z,v)), \
philpem@5 7091 (I[401] = (img)(_p5##x,_n8##y,z,v)), \
philpem@5 7092 (I[423] = (img)(_p5##x,_n9##y,z,v)), \
philpem@5 7093 (I[445] = (img)(_p5##x,_n10##y,z,v)), \
philpem@5 7094 (I[467] = (img)(_p5##x,_n11##y,z,v)), \
philpem@5 7095 (I[6] = (img)(_p4##x,_p10##y,z,v)), \
philpem@5 7096 (I[28] = (img)(_p4##x,_p9##y,z,v)), \
philpem@5 7097 (I[50] = (img)(_p4##x,_p8##y,z,v)), \
philpem@5 7098 (I[72] = (img)(_p4##x,_p7##y,z,v)), \
philpem@5 7099 (I[94] = (img)(_p4##x,_p6##y,z,v)), \
philpem@5 7100 (I[116] = (img)(_p4##x,_p5##y,z,v)), \
philpem@5 7101 (I[138] = (img)(_p4##x,_p4##y,z,v)), \
philpem@5 7102 (I[160] = (img)(_p4##x,_p3##y,z,v)), \
philpem@5 7103 (I[182] = (img)(_p4##x,_p2##y,z,v)), \
philpem@5 7104 (I[204] = (img)(_p4##x,_p1##y,z,v)), \
philpem@5 7105 (I[226] = (img)(_p4##x,y,z,v)), \
philpem@5 7106 (I[248] = (img)(_p4##x,_n1##y,z,v)), \
philpem@5 7107 (I[270] = (img)(_p4##x,_n2##y,z,v)), \
philpem@5 7108 (I[292] = (img)(_p4##x,_n3##y,z,v)), \
philpem@5 7109 (I[314] = (img)(_p4##x,_n4##y,z,v)), \
philpem@5 7110 (I[336] = (img)(_p4##x,_n5##y,z,v)), \
philpem@5 7111 (I[358] = (img)(_p4##x,_n6##y,z,v)), \
philpem@5 7112 (I[380] = (img)(_p4##x,_n7##y,z,v)), \
philpem@5 7113 (I[402] = (img)(_p4##x,_n8##y,z,v)), \
philpem@5 7114 (I[424] = (img)(_p4##x,_n9##y,z,v)), \
philpem@5 7115 (I[446] = (img)(_p4##x,_n10##y,z,v)), \
philpem@5 7116 (I[468] = (img)(_p4##x,_n11##y,z,v)), \
philpem@5 7117 (I[7] = (img)(_p3##x,_p10##y,z,v)), \
philpem@5 7118 (I[29] = (img)(_p3##x,_p9##y,z,v)), \
philpem@5 7119 (I[51] = (img)(_p3##x,_p8##y,z,v)), \
philpem@5 7120 (I[73] = (img)(_p3##x,_p7##y,z,v)), \
philpem@5 7121 (I[95] = (img)(_p3##x,_p6##y,z,v)), \
philpem@5 7122 (I[117] = (img)(_p3##x,_p5##y,z,v)), \
philpem@5 7123 (I[139] = (img)(_p3##x,_p4##y,z,v)), \
philpem@5 7124 (I[161] = (img)(_p3##x,_p3##y,z,v)), \
philpem@5 7125 (I[183] = (img)(_p3##x,_p2##y,z,v)), \
philpem@5 7126 (I[205] = (img)(_p3##x,_p1##y,z,v)), \
philpem@5 7127 (I[227] = (img)(_p3##x,y,z,v)), \
philpem@5 7128 (I[249] = (img)(_p3##x,_n1##y,z,v)), \
philpem@5 7129 (I[271] = (img)(_p3##x,_n2##y,z,v)), \
philpem@5 7130 (I[293] = (img)(_p3##x,_n3##y,z,v)), \
philpem@5 7131 (I[315] = (img)(_p3##x,_n4##y,z,v)), \
philpem@5 7132 (I[337] = (img)(_p3##x,_n5##y,z,v)), \
philpem@5 7133 (I[359] = (img)(_p3##x,_n6##y,z,v)), \
philpem@5 7134 (I[381] = (img)(_p3##x,_n7##y,z,v)), \
philpem@5 7135 (I[403] = (img)(_p3##x,_n8##y,z,v)), \
philpem@5 7136 (I[425] = (img)(_p3##x,_n9##y,z,v)), \
philpem@5 7137 (I[447] = (img)(_p3##x,_n10##y,z,v)), \
philpem@5 7138 (I[469] = (img)(_p3##x,_n11##y,z,v)), \
philpem@5 7139 (I[8] = (img)(_p2##x,_p10##y,z,v)), \
philpem@5 7140 (I[30] = (img)(_p2##x,_p9##y,z,v)), \
philpem@5 7141 (I[52] = (img)(_p2##x,_p8##y,z,v)), \
philpem@5 7142 (I[74] = (img)(_p2##x,_p7##y,z,v)), \
philpem@5 7143 (I[96] = (img)(_p2##x,_p6##y,z,v)), \
philpem@5 7144 (I[118] = (img)(_p2##x,_p5##y,z,v)), \
philpem@5 7145 (I[140] = (img)(_p2##x,_p4##y,z,v)), \
philpem@5 7146 (I[162] = (img)(_p2##x,_p3##y,z,v)), \
philpem@5 7147 (I[184] = (img)(_p2##x,_p2##y,z,v)), \
philpem@5 7148 (I[206] = (img)(_p2##x,_p1##y,z,v)), \
philpem@5 7149 (I[228] = (img)(_p2##x,y,z,v)), \
philpem@5 7150 (I[250] = (img)(_p2##x,_n1##y,z,v)), \
philpem@5 7151 (I[272] = (img)(_p2##x,_n2##y,z,v)), \
philpem@5 7152 (I[294] = (img)(_p2##x,_n3##y,z,v)), \
philpem@5 7153 (I[316] = (img)(_p2##x,_n4##y,z,v)), \
philpem@5 7154 (I[338] = (img)(_p2##x,_n5##y,z,v)), \
philpem@5 7155 (I[360] = (img)(_p2##x,_n6##y,z,v)), \
philpem@5 7156 (I[382] = (img)(_p2##x,_n7##y,z,v)), \
philpem@5 7157 (I[404] = (img)(_p2##x,_n8##y,z,v)), \
philpem@5 7158 (I[426] = (img)(_p2##x,_n9##y,z,v)), \
philpem@5 7159 (I[448] = (img)(_p2##x,_n10##y,z,v)), \
philpem@5 7160 (I[470] = (img)(_p2##x,_n11##y,z,v)), \
philpem@5 7161 (I[9] = (img)(_p1##x,_p10##y,z,v)), \
philpem@5 7162 (I[31] = (img)(_p1##x,_p9##y,z,v)), \
philpem@5 7163 (I[53] = (img)(_p1##x,_p8##y,z,v)), \
philpem@5 7164 (I[75] = (img)(_p1##x,_p7##y,z,v)), \
philpem@5 7165 (I[97] = (img)(_p1##x,_p6##y,z,v)), \
philpem@5 7166 (I[119] = (img)(_p1##x,_p5##y,z,v)), \
philpem@5 7167 (I[141] = (img)(_p1##x,_p4##y,z,v)), \
philpem@5 7168 (I[163] = (img)(_p1##x,_p3##y,z,v)), \
philpem@5 7169 (I[185] = (img)(_p1##x,_p2##y,z,v)), \
philpem@5 7170 (I[207] = (img)(_p1##x,_p1##y,z,v)), \
philpem@5 7171 (I[229] = (img)(_p1##x,y,z,v)), \
philpem@5 7172 (I[251] = (img)(_p1##x,_n1##y,z,v)), \
philpem@5 7173 (I[273] = (img)(_p1##x,_n2##y,z,v)), \
philpem@5 7174 (I[295] = (img)(_p1##x,_n3##y,z,v)), \
philpem@5 7175 (I[317] = (img)(_p1##x,_n4##y,z,v)), \
philpem@5 7176 (I[339] = (img)(_p1##x,_n5##y,z,v)), \
philpem@5 7177 (I[361] = (img)(_p1##x,_n6##y,z,v)), \
philpem@5 7178 (I[383] = (img)(_p1##x,_n7##y,z,v)), \
philpem@5 7179 (I[405] = (img)(_p1##x,_n8##y,z,v)), \
philpem@5 7180 (I[427] = (img)(_p1##x,_n9##y,z,v)), \
philpem@5 7181 (I[449] = (img)(_p1##x,_n10##y,z,v)), \
philpem@5 7182 (I[471] = (img)(_p1##x,_n11##y,z,v)), \
philpem@5 7183 (I[10] = (img)(x,_p10##y,z,v)), \
philpem@5 7184 (I[32] = (img)(x,_p9##y,z,v)), \
philpem@5 7185 (I[54] = (img)(x,_p8##y,z,v)), \
philpem@5 7186 (I[76] = (img)(x,_p7##y,z,v)), \
philpem@5 7187 (I[98] = (img)(x,_p6##y,z,v)), \
philpem@5 7188 (I[120] = (img)(x,_p5##y,z,v)), \
philpem@5 7189 (I[142] = (img)(x,_p4##y,z,v)), \
philpem@5 7190 (I[164] = (img)(x,_p3##y,z,v)), \
philpem@5 7191 (I[186] = (img)(x,_p2##y,z,v)), \
philpem@5 7192 (I[208] = (img)(x,_p1##y,z,v)), \
philpem@5 7193 (I[230] = (img)(x,y,z,v)), \
philpem@5 7194 (I[252] = (img)(x,_n1##y,z,v)), \
philpem@5 7195 (I[274] = (img)(x,_n2##y,z,v)), \
philpem@5 7196 (I[296] = (img)(x,_n3##y,z,v)), \
philpem@5 7197 (I[318] = (img)(x,_n4##y,z,v)), \
philpem@5 7198 (I[340] = (img)(x,_n5##y,z,v)), \
philpem@5 7199 (I[362] = (img)(x,_n6##y,z,v)), \
philpem@5 7200 (I[384] = (img)(x,_n7##y,z,v)), \
philpem@5 7201 (I[406] = (img)(x,_n8##y,z,v)), \
philpem@5 7202 (I[428] = (img)(x,_n9##y,z,v)), \
philpem@5 7203 (I[450] = (img)(x,_n10##y,z,v)), \
philpem@5 7204 (I[472] = (img)(x,_n11##y,z,v)), \
philpem@5 7205 (I[11] = (img)(_n1##x,_p10##y,z,v)), \
philpem@5 7206 (I[33] = (img)(_n1##x,_p9##y,z,v)), \
philpem@5 7207 (I[55] = (img)(_n1##x,_p8##y,z,v)), \
philpem@5 7208 (I[77] = (img)(_n1##x,_p7##y,z,v)), \
philpem@5 7209 (I[99] = (img)(_n1##x,_p6##y,z,v)), \
philpem@5 7210 (I[121] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 7211 (I[143] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 7212 (I[165] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 7213 (I[187] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 7214 (I[209] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 7215 (I[231] = (img)(_n1##x,y,z,v)), \
philpem@5 7216 (I[253] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 7217 (I[275] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 7218 (I[297] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 7219 (I[319] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 7220 (I[341] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 7221 (I[363] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 7222 (I[385] = (img)(_n1##x,_n7##y,z,v)), \
philpem@5 7223 (I[407] = (img)(_n1##x,_n8##y,z,v)), \
philpem@5 7224 (I[429] = (img)(_n1##x,_n9##y,z,v)), \
philpem@5 7225 (I[451] = (img)(_n1##x,_n10##y,z,v)), \
philpem@5 7226 (I[473] = (img)(_n1##x,_n11##y,z,v)), \
philpem@5 7227 (I[12] = (img)(_n2##x,_p10##y,z,v)), \
philpem@5 7228 (I[34] = (img)(_n2##x,_p9##y,z,v)), \
philpem@5 7229 (I[56] = (img)(_n2##x,_p8##y,z,v)), \
philpem@5 7230 (I[78] = (img)(_n2##x,_p7##y,z,v)), \
philpem@5 7231 (I[100] = (img)(_n2##x,_p6##y,z,v)), \
philpem@5 7232 (I[122] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 7233 (I[144] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 7234 (I[166] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 7235 (I[188] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 7236 (I[210] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 7237 (I[232] = (img)(_n2##x,y,z,v)), \
philpem@5 7238 (I[254] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 7239 (I[276] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 7240 (I[298] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 7241 (I[320] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 7242 (I[342] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 7243 (I[364] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 7244 (I[386] = (img)(_n2##x,_n7##y,z,v)), \
philpem@5 7245 (I[408] = (img)(_n2##x,_n8##y,z,v)), \
philpem@5 7246 (I[430] = (img)(_n2##x,_n9##y,z,v)), \
philpem@5 7247 (I[452] = (img)(_n2##x,_n10##y,z,v)), \
philpem@5 7248 (I[474] = (img)(_n2##x,_n11##y,z,v)), \
philpem@5 7249 (I[13] = (img)(_n3##x,_p10##y,z,v)), \
philpem@5 7250 (I[35] = (img)(_n3##x,_p9##y,z,v)), \
philpem@5 7251 (I[57] = (img)(_n3##x,_p8##y,z,v)), \
philpem@5 7252 (I[79] = (img)(_n3##x,_p7##y,z,v)), \
philpem@5 7253 (I[101] = (img)(_n3##x,_p6##y,z,v)), \
philpem@5 7254 (I[123] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 7255 (I[145] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 7256 (I[167] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 7257 (I[189] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 7258 (I[211] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 7259 (I[233] = (img)(_n3##x,y,z,v)), \
philpem@5 7260 (I[255] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 7261 (I[277] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 7262 (I[299] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 7263 (I[321] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 7264 (I[343] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 7265 (I[365] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 7266 (I[387] = (img)(_n3##x,_n7##y,z,v)), \
philpem@5 7267 (I[409] = (img)(_n3##x,_n8##y,z,v)), \
philpem@5 7268 (I[431] = (img)(_n3##x,_n9##y,z,v)), \
philpem@5 7269 (I[453] = (img)(_n3##x,_n10##y,z,v)), \
philpem@5 7270 (I[475] = (img)(_n3##x,_n11##y,z,v)), \
philpem@5 7271 (I[14] = (img)(_n4##x,_p10##y,z,v)), \
philpem@5 7272 (I[36] = (img)(_n4##x,_p9##y,z,v)), \
philpem@5 7273 (I[58] = (img)(_n4##x,_p8##y,z,v)), \
philpem@5 7274 (I[80] = (img)(_n4##x,_p7##y,z,v)), \
philpem@5 7275 (I[102] = (img)(_n4##x,_p6##y,z,v)), \
philpem@5 7276 (I[124] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 7277 (I[146] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 7278 (I[168] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 7279 (I[190] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 7280 (I[212] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 7281 (I[234] = (img)(_n4##x,y,z,v)), \
philpem@5 7282 (I[256] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 7283 (I[278] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 7284 (I[300] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 7285 (I[322] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 7286 (I[344] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 7287 (I[366] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 7288 (I[388] = (img)(_n4##x,_n7##y,z,v)), \
philpem@5 7289 (I[410] = (img)(_n4##x,_n8##y,z,v)), \
philpem@5 7290 (I[432] = (img)(_n4##x,_n9##y,z,v)), \
philpem@5 7291 (I[454] = (img)(_n4##x,_n10##y,z,v)), \
philpem@5 7292 (I[476] = (img)(_n4##x,_n11##y,z,v)), \
philpem@5 7293 (I[15] = (img)(_n5##x,_p10##y,z,v)), \
philpem@5 7294 (I[37] = (img)(_n5##x,_p9##y,z,v)), \
philpem@5 7295 (I[59] = (img)(_n5##x,_p8##y,z,v)), \
philpem@5 7296 (I[81] = (img)(_n5##x,_p7##y,z,v)), \
philpem@5 7297 (I[103] = (img)(_n5##x,_p6##y,z,v)), \
philpem@5 7298 (I[125] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 7299 (I[147] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 7300 (I[169] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 7301 (I[191] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 7302 (I[213] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 7303 (I[235] = (img)(_n5##x,y,z,v)), \
philpem@5 7304 (I[257] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 7305 (I[279] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 7306 (I[301] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 7307 (I[323] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 7308 (I[345] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 7309 (I[367] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 7310 (I[389] = (img)(_n5##x,_n7##y,z,v)), \
philpem@5 7311 (I[411] = (img)(_n5##x,_n8##y,z,v)), \
philpem@5 7312 (I[433] = (img)(_n5##x,_n9##y,z,v)), \
philpem@5 7313 (I[455] = (img)(_n5##x,_n10##y,z,v)), \
philpem@5 7314 (I[477] = (img)(_n5##x,_n11##y,z,v)), \
philpem@5 7315 (I[16] = (img)(_n6##x,_p10##y,z,v)), \
philpem@5 7316 (I[38] = (img)(_n6##x,_p9##y,z,v)), \
philpem@5 7317 (I[60] = (img)(_n6##x,_p8##y,z,v)), \
philpem@5 7318 (I[82] = (img)(_n6##x,_p7##y,z,v)), \
philpem@5 7319 (I[104] = (img)(_n6##x,_p6##y,z,v)), \
philpem@5 7320 (I[126] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 7321 (I[148] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 7322 (I[170] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 7323 (I[192] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 7324 (I[214] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 7325 (I[236] = (img)(_n6##x,y,z,v)), \
philpem@5 7326 (I[258] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 7327 (I[280] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 7328 (I[302] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 7329 (I[324] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 7330 (I[346] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 7331 (I[368] = (img)(_n6##x,_n6##y,z,v)), \
philpem@5 7332 (I[390] = (img)(_n6##x,_n7##y,z,v)), \
philpem@5 7333 (I[412] = (img)(_n6##x,_n8##y,z,v)), \
philpem@5 7334 (I[434] = (img)(_n6##x,_n9##y,z,v)), \
philpem@5 7335 (I[456] = (img)(_n6##x,_n10##y,z,v)), \
philpem@5 7336 (I[478] = (img)(_n6##x,_n11##y,z,v)), \
philpem@5 7337 (I[17] = (img)(_n7##x,_p10##y,z,v)), \
philpem@5 7338 (I[39] = (img)(_n7##x,_p9##y,z,v)), \
philpem@5 7339 (I[61] = (img)(_n7##x,_p8##y,z,v)), \
philpem@5 7340 (I[83] = (img)(_n7##x,_p7##y,z,v)), \
philpem@5 7341 (I[105] = (img)(_n7##x,_p6##y,z,v)), \
philpem@5 7342 (I[127] = (img)(_n7##x,_p5##y,z,v)), \
philpem@5 7343 (I[149] = (img)(_n7##x,_p4##y,z,v)), \
philpem@5 7344 (I[171] = (img)(_n7##x,_p3##y,z,v)), \
philpem@5 7345 (I[193] = (img)(_n7##x,_p2##y,z,v)), \
philpem@5 7346 (I[215] = (img)(_n7##x,_p1##y,z,v)), \
philpem@5 7347 (I[237] = (img)(_n7##x,y,z,v)), \
philpem@5 7348 (I[259] = (img)(_n7##x,_n1##y,z,v)), \
philpem@5 7349 (I[281] = (img)(_n7##x,_n2##y,z,v)), \
philpem@5 7350 (I[303] = (img)(_n7##x,_n3##y,z,v)), \
philpem@5 7351 (I[325] = (img)(_n7##x,_n4##y,z,v)), \
philpem@5 7352 (I[347] = (img)(_n7##x,_n5##y,z,v)), \
philpem@5 7353 (I[369] = (img)(_n7##x,_n6##y,z,v)), \
philpem@5 7354 (I[391] = (img)(_n7##x,_n7##y,z,v)), \
philpem@5 7355 (I[413] = (img)(_n7##x,_n8##y,z,v)), \
philpem@5 7356 (I[435] = (img)(_n7##x,_n9##y,z,v)), \
philpem@5 7357 (I[457] = (img)(_n7##x,_n10##y,z,v)), \
philpem@5 7358 (I[479] = (img)(_n7##x,_n11##y,z,v)), \
philpem@5 7359 (I[18] = (img)(_n8##x,_p10##y,z,v)), \
philpem@5 7360 (I[40] = (img)(_n8##x,_p9##y,z,v)), \
philpem@5 7361 (I[62] = (img)(_n8##x,_p8##y,z,v)), \
philpem@5 7362 (I[84] = (img)(_n8##x,_p7##y,z,v)), \
philpem@5 7363 (I[106] = (img)(_n8##x,_p6##y,z,v)), \
philpem@5 7364 (I[128] = (img)(_n8##x,_p5##y,z,v)), \
philpem@5 7365 (I[150] = (img)(_n8##x,_p4##y,z,v)), \
philpem@5 7366 (I[172] = (img)(_n8##x,_p3##y,z,v)), \
philpem@5 7367 (I[194] = (img)(_n8##x,_p2##y,z,v)), \
philpem@5 7368 (I[216] = (img)(_n8##x,_p1##y,z,v)), \
philpem@5 7369 (I[238] = (img)(_n8##x,y,z,v)), \
philpem@5 7370 (I[260] = (img)(_n8##x,_n1##y,z,v)), \
philpem@5 7371 (I[282] = (img)(_n8##x,_n2##y,z,v)), \
philpem@5 7372 (I[304] = (img)(_n8##x,_n3##y,z,v)), \
philpem@5 7373 (I[326] = (img)(_n8##x,_n4##y,z,v)), \
philpem@5 7374 (I[348] = (img)(_n8##x,_n5##y,z,v)), \
philpem@5 7375 (I[370] = (img)(_n8##x,_n6##y,z,v)), \
philpem@5 7376 (I[392] = (img)(_n8##x,_n7##y,z,v)), \
philpem@5 7377 (I[414] = (img)(_n8##x,_n8##y,z,v)), \
philpem@5 7378 (I[436] = (img)(_n8##x,_n9##y,z,v)), \
philpem@5 7379 (I[458] = (img)(_n8##x,_n10##y,z,v)), \
philpem@5 7380 (I[480] = (img)(_n8##x,_n11##y,z,v)), \
philpem@5 7381 (I[19] = (img)(_n9##x,_p10##y,z,v)), \
philpem@5 7382 (I[41] = (img)(_n9##x,_p9##y,z,v)), \
philpem@5 7383 (I[63] = (img)(_n9##x,_p8##y,z,v)), \
philpem@5 7384 (I[85] = (img)(_n9##x,_p7##y,z,v)), \
philpem@5 7385 (I[107] = (img)(_n9##x,_p6##y,z,v)), \
philpem@5 7386 (I[129] = (img)(_n9##x,_p5##y,z,v)), \
philpem@5 7387 (I[151] = (img)(_n9##x,_p4##y,z,v)), \
philpem@5 7388 (I[173] = (img)(_n9##x,_p3##y,z,v)), \
philpem@5 7389 (I[195] = (img)(_n9##x,_p2##y,z,v)), \
philpem@5 7390 (I[217] = (img)(_n9##x,_p1##y,z,v)), \
philpem@5 7391 (I[239] = (img)(_n9##x,y,z,v)), \
philpem@5 7392 (I[261] = (img)(_n9##x,_n1##y,z,v)), \
philpem@5 7393 (I[283] = (img)(_n9##x,_n2##y,z,v)), \
philpem@5 7394 (I[305] = (img)(_n9##x,_n3##y,z,v)), \
philpem@5 7395 (I[327] = (img)(_n9##x,_n4##y,z,v)), \
philpem@5 7396 (I[349] = (img)(_n9##x,_n5##y,z,v)), \
philpem@5 7397 (I[371] = (img)(_n9##x,_n6##y,z,v)), \
philpem@5 7398 (I[393] = (img)(_n9##x,_n7##y,z,v)), \
philpem@5 7399 (I[415] = (img)(_n9##x,_n8##y,z,v)), \
philpem@5 7400 (I[437] = (img)(_n9##x,_n9##y,z,v)), \
philpem@5 7401 (I[459] = (img)(_n9##x,_n10##y,z,v)), \
philpem@5 7402 (I[481] = (img)(_n9##x,_n11##y,z,v)), \
philpem@5 7403 (I[20] = (img)(_n10##x,_p10##y,z,v)), \
philpem@5 7404 (I[42] = (img)(_n10##x,_p9##y,z,v)), \
philpem@5 7405 (I[64] = (img)(_n10##x,_p8##y,z,v)), \
philpem@5 7406 (I[86] = (img)(_n10##x,_p7##y,z,v)), \
philpem@5 7407 (I[108] = (img)(_n10##x,_p6##y,z,v)), \
philpem@5 7408 (I[130] = (img)(_n10##x,_p5##y,z,v)), \
philpem@5 7409 (I[152] = (img)(_n10##x,_p4##y,z,v)), \
philpem@5 7410 (I[174] = (img)(_n10##x,_p3##y,z,v)), \
philpem@5 7411 (I[196] = (img)(_n10##x,_p2##y,z,v)), \
philpem@5 7412 (I[218] = (img)(_n10##x,_p1##y,z,v)), \
philpem@5 7413 (I[240] = (img)(_n10##x,y,z,v)), \
philpem@5 7414 (I[262] = (img)(_n10##x,_n1##y,z,v)), \
philpem@5 7415 (I[284] = (img)(_n10##x,_n2##y,z,v)), \
philpem@5 7416 (I[306] = (img)(_n10##x,_n3##y,z,v)), \
philpem@5 7417 (I[328] = (img)(_n10##x,_n4##y,z,v)), \
philpem@5 7418 (I[350] = (img)(_n10##x,_n5##y,z,v)), \
philpem@5 7419 (I[372] = (img)(_n10##x,_n6##y,z,v)), \
philpem@5 7420 (I[394] = (img)(_n10##x,_n7##y,z,v)), \
philpem@5 7421 (I[416] = (img)(_n10##x,_n8##y,z,v)), \
philpem@5 7422 (I[438] = (img)(_n10##x,_n9##y,z,v)), \
philpem@5 7423 (I[460] = (img)(_n10##x,_n10##y,z,v)), \
philpem@5 7424 (I[482] = (img)(_n10##x,_n11##y,z,v)), \
philpem@5 7425 x+11>=(int)((img).width)?(int)((img).width)-1:x+11); \
philpem@5 7426 x<=(int)(x1) && ((_n11##x<(int)((img).width) && ( \
philpem@5 7427 (I[21] = (img)(_n11##x,_p10##y,z,v)), \
philpem@5 7428 (I[43] = (img)(_n11##x,_p9##y,z,v)), \
philpem@5 7429 (I[65] = (img)(_n11##x,_p8##y,z,v)), \
philpem@5 7430 (I[87] = (img)(_n11##x,_p7##y,z,v)), \
philpem@5 7431 (I[109] = (img)(_n11##x,_p6##y,z,v)), \
philpem@5 7432 (I[131] = (img)(_n11##x,_p5##y,z,v)), \
philpem@5 7433 (I[153] = (img)(_n11##x,_p4##y,z,v)), \
philpem@5 7434 (I[175] = (img)(_n11##x,_p3##y,z,v)), \
philpem@5 7435 (I[197] = (img)(_n11##x,_p2##y,z,v)), \
philpem@5 7436 (I[219] = (img)(_n11##x,_p1##y,z,v)), \
philpem@5 7437 (I[241] = (img)(_n11##x,y,z,v)), \
philpem@5 7438 (I[263] = (img)(_n11##x,_n1##y,z,v)), \
philpem@5 7439 (I[285] = (img)(_n11##x,_n2##y,z,v)), \
philpem@5 7440 (I[307] = (img)(_n11##x,_n3##y,z,v)), \
philpem@5 7441 (I[329] = (img)(_n11##x,_n4##y,z,v)), \
philpem@5 7442 (I[351] = (img)(_n11##x,_n5##y,z,v)), \
philpem@5 7443 (I[373] = (img)(_n11##x,_n6##y,z,v)), \
philpem@5 7444 (I[395] = (img)(_n11##x,_n7##y,z,v)), \
philpem@5 7445 (I[417] = (img)(_n11##x,_n8##y,z,v)), \
philpem@5 7446 (I[439] = (img)(_n11##x,_n9##y,z,v)), \
philpem@5 7447 (I[461] = (img)(_n11##x,_n10##y,z,v)), \
philpem@5 7448 (I[483] = (img)(_n11##x,_n11##y,z,v)),1)) || \
philpem@5 7449 _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
philpem@5 7450 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], \
philpem@5 7451 I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], \
philpem@5 7452 I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], \
philpem@5 7453 I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], \
philpem@5 7454 I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], \
philpem@5 7455 I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], \
philpem@5 7456 I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], \
philpem@5 7457 I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], \
philpem@5 7458 I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], \
philpem@5 7459 I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], \
philpem@5 7460 I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], \
philpem@5 7461 I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], \
philpem@5 7462 I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], \
philpem@5 7463 I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], \
philpem@5 7464 I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], \
philpem@5 7465 I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], \
philpem@5 7466 I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], \
philpem@5 7467 I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], \
philpem@5 7468 I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], \
philpem@5 7469 I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], \
philpem@5 7470 I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], \
philpem@5 7471 I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], \
philpem@5 7472 _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x)
philpem@5 7473
philpem@5 7474 #define cimg_get22x22(img,x,y,z,v,I) \
philpem@5 7475 I[0] = (img)(_p10##x,_p10##y,z,v), I[1] = (img)(_p9##x,_p10##y,z,v), I[2] = (img)(_p8##x,_p10##y,z,v), I[3] = (img)(_p7##x,_p10##y,z,v), I[4] = (img)(_p6##x,_p10##y,z,v), I[5] = (img)(_p5##x,_p10##y,z,v), I[6] = (img)(_p4##x,_p10##y,z,v), I[7] = (img)(_p3##x,_p10##y,z,v), I[8] = (img)(_p2##x,_p10##y,z,v), I[9] = (img)(_p1##x,_p10##y,z,v), I[10] = (img)(x,_p10##y,z,v), I[11] = (img)(_n1##x,_p10##y,z,v), I[12] = (img)(_n2##x,_p10##y,z,v), I[13] = (img)(_n3##x,_p10##y,z,v), I[14] = (img)(_n4##x,_p10##y,z,v), I[15] = (img)(_n5##x,_p10##y,z,v), I[16] = (img)(_n6##x,_p10##y,z,v), I[17] = (img)(_n7##x,_p10##y,z,v), I[18] = (img)(_n8##x,_p10##y,z,v), I[19] = (img)(_n9##x,_p10##y,z,v), I[20] = (img)(_n10##x,_p10##y,z,v), I[21] = (img)(_n11##x,_p10##y,z,v), \
philpem@5 7476 I[22] = (img)(_p10##x,_p9##y,z,v), I[23] = (img)(_p9##x,_p9##y,z,v), I[24] = (img)(_p8##x,_p9##y,z,v), I[25] = (img)(_p7##x,_p9##y,z,v), I[26] = (img)(_p6##x,_p9##y,z,v), I[27] = (img)(_p5##x,_p9##y,z,v), I[28] = (img)(_p4##x,_p9##y,z,v), I[29] = (img)(_p3##x,_p9##y,z,v), I[30] = (img)(_p2##x,_p9##y,z,v), I[31] = (img)(_p1##x,_p9##y,z,v), I[32] = (img)(x,_p9##y,z,v), I[33] = (img)(_n1##x,_p9##y,z,v), I[34] = (img)(_n2##x,_p9##y,z,v), I[35] = (img)(_n3##x,_p9##y,z,v), I[36] = (img)(_n4##x,_p9##y,z,v), I[37] = (img)(_n5##x,_p9##y,z,v), I[38] = (img)(_n6##x,_p9##y,z,v), I[39] = (img)(_n7##x,_p9##y,z,v), I[40] = (img)(_n8##x,_p9##y,z,v), I[41] = (img)(_n9##x,_p9##y,z,v), I[42] = (img)(_n10##x,_p9##y,z,v), I[43] = (img)(_n11##x,_p9##y,z,v), \
philpem@5 7477 I[44] = (img)(_p10##x,_p8##y,z,v), I[45] = (img)(_p9##x,_p8##y,z,v), I[46] = (img)(_p8##x,_p8##y,z,v), I[47] = (img)(_p7##x,_p8##y,z,v), I[48] = (img)(_p6##x,_p8##y,z,v), I[49] = (img)(_p5##x,_p8##y,z,v), I[50] = (img)(_p4##x,_p8##y,z,v), I[51] = (img)(_p3##x,_p8##y,z,v), I[52] = (img)(_p2##x,_p8##y,z,v), I[53] = (img)(_p1##x,_p8##y,z,v), I[54] = (img)(x,_p8##y,z,v), I[55] = (img)(_n1##x,_p8##y,z,v), I[56] = (img)(_n2##x,_p8##y,z,v), I[57] = (img)(_n3##x,_p8##y,z,v), I[58] = (img)(_n4##x,_p8##y,z,v), I[59] = (img)(_n5##x,_p8##y,z,v), I[60] = (img)(_n6##x,_p8##y,z,v), I[61] = (img)(_n7##x,_p8##y,z,v), I[62] = (img)(_n8##x,_p8##y,z,v), I[63] = (img)(_n9##x,_p8##y,z,v), I[64] = (img)(_n10##x,_p8##y,z,v), I[65] = (img)(_n11##x,_p8##y,z,v), \
philpem@5 7478 I[66] = (img)(_p10##x,_p7##y,z,v), I[67] = (img)(_p9##x,_p7##y,z,v), I[68] = (img)(_p8##x,_p7##y,z,v), I[69] = (img)(_p7##x,_p7##y,z,v), I[70] = (img)(_p6##x,_p7##y,z,v), I[71] = (img)(_p5##x,_p7##y,z,v), I[72] = (img)(_p4##x,_p7##y,z,v), I[73] = (img)(_p3##x,_p7##y,z,v), I[74] = (img)(_p2##x,_p7##y,z,v), I[75] = (img)(_p1##x,_p7##y,z,v), I[76] = (img)(x,_p7##y,z,v), I[77] = (img)(_n1##x,_p7##y,z,v), I[78] = (img)(_n2##x,_p7##y,z,v), I[79] = (img)(_n3##x,_p7##y,z,v), I[80] = (img)(_n4##x,_p7##y,z,v), I[81] = (img)(_n5##x,_p7##y,z,v), I[82] = (img)(_n6##x,_p7##y,z,v), I[83] = (img)(_n7##x,_p7##y,z,v), I[84] = (img)(_n8##x,_p7##y,z,v), I[85] = (img)(_n9##x,_p7##y,z,v), I[86] = (img)(_n10##x,_p7##y,z,v), I[87] = (img)(_n11##x,_p7##y,z,v), \
philpem@5 7479 I[88] = (img)(_p10##x,_p6##y,z,v), I[89] = (img)(_p9##x,_p6##y,z,v), I[90] = (img)(_p8##x,_p6##y,z,v), I[91] = (img)(_p7##x,_p6##y,z,v), I[92] = (img)(_p6##x,_p6##y,z,v), I[93] = (img)(_p5##x,_p6##y,z,v), I[94] = (img)(_p4##x,_p6##y,z,v), I[95] = (img)(_p3##x,_p6##y,z,v), I[96] = (img)(_p2##x,_p6##y,z,v), I[97] = (img)(_p1##x,_p6##y,z,v), I[98] = (img)(x,_p6##y,z,v), I[99] = (img)(_n1##x,_p6##y,z,v), I[100] = (img)(_n2##x,_p6##y,z,v), I[101] = (img)(_n3##x,_p6##y,z,v), I[102] = (img)(_n4##x,_p6##y,z,v), I[103] = (img)(_n5##x,_p6##y,z,v), I[104] = (img)(_n6##x,_p6##y,z,v), I[105] = (img)(_n7##x,_p6##y,z,v), I[106] = (img)(_n8##x,_p6##y,z,v), I[107] = (img)(_n9##x,_p6##y,z,v), I[108] = (img)(_n10##x,_p6##y,z,v), I[109] = (img)(_n11##x,_p6##y,z,v), \
philpem@5 7480 I[110] = (img)(_p10##x,_p5##y,z,v), I[111] = (img)(_p9##x,_p5##y,z,v), I[112] = (img)(_p8##x,_p5##y,z,v), I[113] = (img)(_p7##x,_p5##y,z,v), I[114] = (img)(_p6##x,_p5##y,z,v), I[115] = (img)(_p5##x,_p5##y,z,v), I[116] = (img)(_p4##x,_p5##y,z,v), I[117] = (img)(_p3##x,_p5##y,z,v), I[118] = (img)(_p2##x,_p5##y,z,v), I[119] = (img)(_p1##x,_p5##y,z,v), I[120] = (img)(x,_p5##y,z,v), I[121] = (img)(_n1##x,_p5##y,z,v), I[122] = (img)(_n2##x,_p5##y,z,v), I[123] = (img)(_n3##x,_p5##y,z,v), I[124] = (img)(_n4##x,_p5##y,z,v), I[125] = (img)(_n5##x,_p5##y,z,v), I[126] = (img)(_n6##x,_p5##y,z,v), I[127] = (img)(_n7##x,_p5##y,z,v), I[128] = (img)(_n8##x,_p5##y,z,v), I[129] = (img)(_n9##x,_p5##y,z,v), I[130] = (img)(_n10##x,_p5##y,z,v), I[131] = (img)(_n11##x,_p5##y,z,v), \
philpem@5 7481 I[132] = (img)(_p10##x,_p4##y,z,v), I[133] = (img)(_p9##x,_p4##y,z,v), I[134] = (img)(_p8##x,_p4##y,z,v), I[135] = (img)(_p7##x,_p4##y,z,v), I[136] = (img)(_p6##x,_p4##y,z,v), I[137] = (img)(_p5##x,_p4##y,z,v), I[138] = (img)(_p4##x,_p4##y,z,v), I[139] = (img)(_p3##x,_p4##y,z,v), I[140] = (img)(_p2##x,_p4##y,z,v), I[141] = (img)(_p1##x,_p4##y,z,v), I[142] = (img)(x,_p4##y,z,v), I[143] = (img)(_n1##x,_p4##y,z,v), I[144] = (img)(_n2##x,_p4##y,z,v), I[145] = (img)(_n3##x,_p4##y,z,v), I[146] = (img)(_n4##x,_p4##y,z,v), I[147] = (img)(_n5##x,_p4##y,z,v), I[148] = (img)(_n6##x,_p4##y,z,v), I[149] = (img)(_n7##x,_p4##y,z,v), I[150] = (img)(_n8##x,_p4##y,z,v), I[151] = (img)(_n9##x,_p4##y,z,v), I[152] = (img)(_n10##x,_p4##y,z,v), I[153] = (img)(_n11##x,_p4##y,z,v), \
philpem@5 7482 I[154] = (img)(_p10##x,_p3##y,z,v), I[155] = (img)(_p9##x,_p3##y,z,v), I[156] = (img)(_p8##x,_p3##y,z,v), I[157] = (img)(_p7##x,_p3##y,z,v), I[158] = (img)(_p6##x,_p3##y,z,v), I[159] = (img)(_p5##x,_p3##y,z,v), I[160] = (img)(_p4##x,_p3##y,z,v), I[161] = (img)(_p3##x,_p3##y,z,v), I[162] = (img)(_p2##x,_p3##y,z,v), I[163] = (img)(_p1##x,_p3##y,z,v), I[164] = (img)(x,_p3##y,z,v), I[165] = (img)(_n1##x,_p3##y,z,v), I[166] = (img)(_n2##x,_p3##y,z,v), I[167] = (img)(_n3##x,_p3##y,z,v), I[168] = (img)(_n4##x,_p3##y,z,v), I[169] = (img)(_n5##x,_p3##y,z,v), I[170] = (img)(_n6##x,_p3##y,z,v), I[171] = (img)(_n7##x,_p3##y,z,v), I[172] = (img)(_n8##x,_p3##y,z,v), I[173] = (img)(_n9##x,_p3##y,z,v), I[174] = (img)(_n10##x,_p3##y,z,v), I[175] = (img)(_n11##x,_p3##y,z,v), \
philpem@5 7483 I[176] = (img)(_p10##x,_p2##y,z,v), I[177] = (img)(_p9##x,_p2##y,z,v), I[178] = (img)(_p8##x,_p2##y,z,v), I[179] = (img)(_p7##x,_p2##y,z,v), I[180] = (img)(_p6##x,_p2##y,z,v), I[181] = (img)(_p5##x,_p2##y,z,v), I[182] = (img)(_p4##x,_p2##y,z,v), I[183] = (img)(_p3##x,_p2##y,z,v), I[184] = (img)(_p2##x,_p2##y,z,v), I[185] = (img)(_p1##x,_p2##y,z,v), I[186] = (img)(x,_p2##y,z,v), I[187] = (img)(_n1##x,_p2##y,z,v), I[188] = (img)(_n2##x,_p2##y,z,v), I[189] = (img)(_n3##x,_p2##y,z,v), I[190] = (img)(_n4##x,_p2##y,z,v), I[191] = (img)(_n5##x,_p2##y,z,v), I[192] = (img)(_n6##x,_p2##y,z,v), I[193] = (img)(_n7##x,_p2##y,z,v), I[194] = (img)(_n8##x,_p2##y,z,v), I[195] = (img)(_n9##x,_p2##y,z,v), I[196] = (img)(_n10##x,_p2##y,z,v), I[197] = (img)(_n11##x,_p2##y,z,v), \
philpem@5 7484 I[198] = (img)(_p10##x,_p1##y,z,v), I[199] = (img)(_p9##x,_p1##y,z,v), I[200] = (img)(_p8##x,_p1##y,z,v), I[201] = (img)(_p7##x,_p1##y,z,v), I[202] = (img)(_p6##x,_p1##y,z,v), I[203] = (img)(_p5##x,_p1##y,z,v), I[204] = (img)(_p4##x,_p1##y,z,v), I[205] = (img)(_p3##x,_p1##y,z,v), I[206] = (img)(_p2##x,_p1##y,z,v), I[207] = (img)(_p1##x,_p1##y,z,v), I[208] = (img)(x,_p1##y,z,v), I[209] = (img)(_n1##x,_p1##y,z,v), I[210] = (img)(_n2##x,_p1##y,z,v), I[211] = (img)(_n3##x,_p1##y,z,v), I[212] = (img)(_n4##x,_p1##y,z,v), I[213] = (img)(_n5##x,_p1##y,z,v), I[214] = (img)(_n6##x,_p1##y,z,v), I[215] = (img)(_n7##x,_p1##y,z,v), I[216] = (img)(_n8##x,_p1##y,z,v), I[217] = (img)(_n9##x,_p1##y,z,v), I[218] = (img)(_n10##x,_p1##y,z,v), I[219] = (img)(_n11##x,_p1##y,z,v), \
philpem@5 7485 I[220] = (img)(_p10##x,y,z,v), I[221] = (img)(_p9##x,y,z,v), I[222] = (img)(_p8##x,y,z,v), I[223] = (img)(_p7##x,y,z,v), I[224] = (img)(_p6##x,y,z,v), I[225] = (img)(_p5##x,y,z,v), I[226] = (img)(_p4##x,y,z,v), I[227] = (img)(_p3##x,y,z,v), I[228] = (img)(_p2##x,y,z,v), I[229] = (img)(_p1##x,y,z,v), I[230] = (img)(x,y,z,v), I[231] = (img)(_n1##x,y,z,v), I[232] = (img)(_n2##x,y,z,v), I[233] = (img)(_n3##x,y,z,v), I[234] = (img)(_n4##x,y,z,v), I[235] = (img)(_n5##x,y,z,v), I[236] = (img)(_n6##x,y,z,v), I[237] = (img)(_n7##x,y,z,v), I[238] = (img)(_n8##x,y,z,v), I[239] = (img)(_n9##x,y,z,v), I[240] = (img)(_n10##x,y,z,v), I[241] = (img)(_n11##x,y,z,v), \
philpem@5 7486 I[242] = (img)(_p10##x,_n1##y,z,v), I[243] = (img)(_p9##x,_n1##y,z,v), I[244] = (img)(_p8##x,_n1##y,z,v), I[245] = (img)(_p7##x,_n1##y,z,v), I[246] = (img)(_p6##x,_n1##y,z,v), I[247] = (img)(_p5##x,_n1##y,z,v), I[248] = (img)(_p4##x,_n1##y,z,v), I[249] = (img)(_p3##x,_n1##y,z,v), I[250] = (img)(_p2##x,_n1##y,z,v), I[251] = (img)(_p1##x,_n1##y,z,v), I[252] = (img)(x,_n1##y,z,v), I[253] = (img)(_n1##x,_n1##y,z,v), I[254] = (img)(_n2##x,_n1##y,z,v), I[255] = (img)(_n3##x,_n1##y,z,v), I[256] = (img)(_n4##x,_n1##y,z,v), I[257] = (img)(_n5##x,_n1##y,z,v), I[258] = (img)(_n6##x,_n1##y,z,v), I[259] = (img)(_n7##x,_n1##y,z,v), I[260] = (img)(_n8##x,_n1##y,z,v), I[261] = (img)(_n9##x,_n1##y,z,v), I[262] = (img)(_n10##x,_n1##y,z,v), I[263] = (img)(_n11##x,_n1##y,z,v), \
philpem@5 7487 I[264] = (img)(_p10##x,_n2##y,z,v), I[265] = (img)(_p9##x,_n2##y,z,v), I[266] = (img)(_p8##x,_n2##y,z,v), I[267] = (img)(_p7##x,_n2##y,z,v), I[268] = (img)(_p6##x,_n2##y,z,v), I[269] = (img)(_p5##x,_n2##y,z,v), I[270] = (img)(_p4##x,_n2##y,z,v), I[271] = (img)(_p3##x,_n2##y,z,v), I[272] = (img)(_p2##x,_n2##y,z,v), I[273] = (img)(_p1##x,_n2##y,z,v), I[274] = (img)(x,_n2##y,z,v), I[275] = (img)(_n1##x,_n2##y,z,v), I[276] = (img)(_n2##x,_n2##y,z,v), I[277] = (img)(_n3##x,_n2##y,z,v), I[278] = (img)(_n4##x,_n2##y,z,v), I[279] = (img)(_n5##x,_n2##y,z,v), I[280] = (img)(_n6##x,_n2##y,z,v), I[281] = (img)(_n7##x,_n2##y,z,v), I[282] = (img)(_n8##x,_n2##y,z,v), I[283] = (img)(_n9##x,_n2##y,z,v), I[284] = (img)(_n10##x,_n2##y,z,v), I[285] = (img)(_n11##x,_n2##y,z,v), \
philpem@5 7488 I[286] = (img)(_p10##x,_n3##y,z,v), I[287] = (img)(_p9##x,_n3##y,z,v), I[288] = (img)(_p8##x,_n3##y,z,v), I[289] = (img)(_p7##x,_n3##y,z,v), I[290] = (img)(_p6##x,_n3##y,z,v), I[291] = (img)(_p5##x,_n3##y,z,v), I[292] = (img)(_p4##x,_n3##y,z,v), I[293] = (img)(_p3##x,_n3##y,z,v), I[294] = (img)(_p2##x,_n3##y,z,v), I[295] = (img)(_p1##x,_n3##y,z,v), I[296] = (img)(x,_n3##y,z,v), I[297] = (img)(_n1##x,_n3##y,z,v), I[298] = (img)(_n2##x,_n3##y,z,v), I[299] = (img)(_n3##x,_n3##y,z,v), I[300] = (img)(_n4##x,_n3##y,z,v), I[301] = (img)(_n5##x,_n3##y,z,v), I[302] = (img)(_n6##x,_n3##y,z,v), I[303] = (img)(_n7##x,_n3##y,z,v), I[304] = (img)(_n8##x,_n3##y,z,v), I[305] = (img)(_n9##x,_n3##y,z,v), I[306] = (img)(_n10##x,_n3##y,z,v), I[307] = (img)(_n11##x,_n3##y,z,v), \
philpem@5 7489 I[308] = (img)(_p10##x,_n4##y,z,v), I[309] = (img)(_p9##x,_n4##y,z,v), I[310] = (img)(_p8##x,_n4##y,z,v), I[311] = (img)(_p7##x,_n4##y,z,v), I[312] = (img)(_p6##x,_n4##y,z,v), I[313] = (img)(_p5##x,_n4##y,z,v), I[314] = (img)(_p4##x,_n4##y,z,v), I[315] = (img)(_p3##x,_n4##y,z,v), I[316] = (img)(_p2##x,_n4##y,z,v), I[317] = (img)(_p1##x,_n4##y,z,v), I[318] = (img)(x,_n4##y,z,v), I[319] = (img)(_n1##x,_n4##y,z,v), I[320] = (img)(_n2##x,_n4##y,z,v), I[321] = (img)(_n3##x,_n4##y,z,v), I[322] = (img)(_n4##x,_n4##y,z,v), I[323] = (img)(_n5##x,_n4##y,z,v), I[324] = (img)(_n6##x,_n4##y,z,v), I[325] = (img)(_n7##x,_n4##y,z,v), I[326] = (img)(_n8##x,_n4##y,z,v), I[327] = (img)(_n9##x,_n4##y,z,v), I[328] = (img)(_n10##x,_n4##y,z,v), I[329] = (img)(_n11##x,_n4##y,z,v), \
philpem@5 7490 I[330] = (img)(_p10##x,_n5##y,z,v), I[331] = (img)(_p9##x,_n5##y,z,v), I[332] = (img)(_p8##x,_n5##y,z,v), I[333] = (img)(_p7##x,_n5##y,z,v), I[334] = (img)(_p6##x,_n5##y,z,v), I[335] = (img)(_p5##x,_n5##y,z,v), I[336] = (img)(_p4##x,_n5##y,z,v), I[337] = (img)(_p3##x,_n5##y,z,v), I[338] = (img)(_p2##x,_n5##y,z,v), I[339] = (img)(_p1##x,_n5##y,z,v), I[340] = (img)(x,_n5##y,z,v), I[341] = (img)(_n1##x,_n5##y,z,v), I[342] = (img)(_n2##x,_n5##y,z,v), I[343] = (img)(_n3##x,_n5##y,z,v), I[344] = (img)(_n4##x,_n5##y,z,v), I[345] = (img)(_n5##x,_n5##y,z,v), I[346] = (img)(_n6##x,_n5##y,z,v), I[347] = (img)(_n7##x,_n5##y,z,v), I[348] = (img)(_n8##x,_n5##y,z,v), I[349] = (img)(_n9##x,_n5##y,z,v), I[350] = (img)(_n10##x,_n5##y,z,v), I[351] = (img)(_n11##x,_n5##y,z,v), \
philpem@5 7491 I[352] = (img)(_p10##x,_n6##y,z,v), I[353] = (img)(_p9##x,_n6##y,z,v), I[354] = (img)(_p8##x,_n6##y,z,v), I[355] = (img)(_p7##x,_n6##y,z,v), I[356] = (img)(_p6##x,_n6##y,z,v), I[357] = (img)(_p5##x,_n6##y,z,v), I[358] = (img)(_p4##x,_n6##y,z,v), I[359] = (img)(_p3##x,_n6##y,z,v), I[360] = (img)(_p2##x,_n6##y,z,v), I[361] = (img)(_p1##x,_n6##y,z,v), I[362] = (img)(x,_n6##y,z,v), I[363] = (img)(_n1##x,_n6##y,z,v), I[364] = (img)(_n2##x,_n6##y,z,v), I[365] = (img)(_n3##x,_n6##y,z,v), I[366] = (img)(_n4##x,_n6##y,z,v), I[367] = (img)(_n5##x,_n6##y,z,v), I[368] = (img)(_n6##x,_n6##y,z,v), I[369] = (img)(_n7##x,_n6##y,z,v), I[370] = (img)(_n8##x,_n6##y,z,v), I[371] = (img)(_n9##x,_n6##y,z,v), I[372] = (img)(_n10##x,_n6##y,z,v), I[373] = (img)(_n11##x,_n6##y,z,v), \
philpem@5 7492 I[374] = (img)(_p10##x,_n7##y,z,v), I[375] = (img)(_p9##x,_n7##y,z,v), I[376] = (img)(_p8##x,_n7##y,z,v), I[377] = (img)(_p7##x,_n7##y,z,v), I[378] = (img)(_p6##x,_n7##y,z,v), I[379] = (img)(_p5##x,_n7##y,z,v), I[380] = (img)(_p4##x,_n7##y,z,v), I[381] = (img)(_p3##x,_n7##y,z,v), I[382] = (img)(_p2##x,_n7##y,z,v), I[383] = (img)(_p1##x,_n7##y,z,v), I[384] = (img)(x,_n7##y,z,v), I[385] = (img)(_n1##x,_n7##y,z,v), I[386] = (img)(_n2##x,_n7##y,z,v), I[387] = (img)(_n3##x,_n7##y,z,v), I[388] = (img)(_n4##x,_n7##y,z,v), I[389] = (img)(_n5##x,_n7##y,z,v), I[390] = (img)(_n6##x,_n7##y,z,v), I[391] = (img)(_n7##x,_n7##y,z,v), I[392] = (img)(_n8##x,_n7##y,z,v), I[393] = (img)(_n9##x,_n7##y,z,v), I[394] = (img)(_n10##x,_n7##y,z,v), I[395] = (img)(_n11##x,_n7##y,z,v), \
philpem@5 7493 I[396] = (img)(_p10##x,_n8##y,z,v), I[397] = (img)(_p9##x,_n8##y,z,v), I[398] = (img)(_p8##x,_n8##y,z,v), I[399] = (img)(_p7##x,_n8##y,z,v), I[400] = (img)(_p6##x,_n8##y,z,v), I[401] = (img)(_p5##x,_n8##y,z,v), I[402] = (img)(_p4##x,_n8##y,z,v), I[403] = (img)(_p3##x,_n8##y,z,v), I[404] = (img)(_p2##x,_n8##y,z,v), I[405] = (img)(_p1##x,_n8##y,z,v), I[406] = (img)(x,_n8##y,z,v), I[407] = (img)(_n1##x,_n8##y,z,v), I[408] = (img)(_n2##x,_n8##y,z,v), I[409] = (img)(_n3##x,_n8##y,z,v), I[410] = (img)(_n4##x,_n8##y,z,v), I[411] = (img)(_n5##x,_n8##y,z,v), I[412] = (img)(_n6##x,_n8##y,z,v), I[413] = (img)(_n7##x,_n8##y,z,v), I[414] = (img)(_n8##x,_n8##y,z,v), I[415] = (img)(_n9##x,_n8##y,z,v), I[416] = (img)(_n10##x,_n8##y,z,v), I[417] = (img)(_n11##x,_n8##y,z,v), \
philpem@5 7494 I[418] = (img)(_p10##x,_n9##y,z,v), I[419] = (img)(_p9##x,_n9##y,z,v), I[420] = (img)(_p8##x,_n9##y,z,v), I[421] = (img)(_p7##x,_n9##y,z,v), I[422] = (img)(_p6##x,_n9##y,z,v), I[423] = (img)(_p5##x,_n9##y,z,v), I[424] = (img)(_p4##x,_n9##y,z,v), I[425] = (img)(_p3##x,_n9##y,z,v), I[426] = (img)(_p2##x,_n9##y,z,v), I[427] = (img)(_p1##x,_n9##y,z,v), I[428] = (img)(x,_n9##y,z,v), I[429] = (img)(_n1##x,_n9##y,z,v), I[430] = (img)(_n2##x,_n9##y,z,v), I[431] = (img)(_n3##x,_n9##y,z,v), I[432] = (img)(_n4##x,_n9##y,z,v), I[433] = (img)(_n5##x,_n9##y,z,v), I[434] = (img)(_n6##x,_n9##y,z,v), I[435] = (img)(_n7##x,_n9##y,z,v), I[436] = (img)(_n8##x,_n9##y,z,v), I[437] = (img)(_n9##x,_n9##y,z,v), I[438] = (img)(_n10##x,_n9##y,z,v), I[439] = (img)(_n11##x,_n9##y,z,v), \
philpem@5 7495 I[440] = (img)(_p10##x,_n10##y,z,v), I[441] = (img)(_p9##x,_n10##y,z,v), I[442] = (img)(_p8##x,_n10##y,z,v), I[443] = (img)(_p7##x,_n10##y,z,v), I[444] = (img)(_p6##x,_n10##y,z,v), I[445] = (img)(_p5##x,_n10##y,z,v), I[446] = (img)(_p4##x,_n10##y,z,v), I[447] = (img)(_p3##x,_n10##y,z,v), I[448] = (img)(_p2##x,_n10##y,z,v), I[449] = (img)(_p1##x,_n10##y,z,v), I[450] = (img)(x,_n10##y,z,v), I[451] = (img)(_n1##x,_n10##y,z,v), I[452] = (img)(_n2##x,_n10##y,z,v), I[453] = (img)(_n3##x,_n10##y,z,v), I[454] = (img)(_n4##x,_n10##y,z,v), I[455] = (img)(_n5##x,_n10##y,z,v), I[456] = (img)(_n6##x,_n10##y,z,v), I[457] = (img)(_n7##x,_n10##y,z,v), I[458] = (img)(_n8##x,_n10##y,z,v), I[459] = (img)(_n9##x,_n10##y,z,v), I[460] = (img)(_n10##x,_n10##y,z,v), I[461] = (img)(_n11##x,_n10##y,z,v), \
philpem@5 7496 I[462] = (img)(_p10##x,_n11##y,z,v), I[463] = (img)(_p9##x,_n11##y,z,v), I[464] = (img)(_p8##x,_n11##y,z,v), I[465] = (img)(_p7##x,_n11##y,z,v), I[466] = (img)(_p6##x,_n11##y,z,v), I[467] = (img)(_p5##x,_n11##y,z,v), I[468] = (img)(_p4##x,_n11##y,z,v), I[469] = (img)(_p3##x,_n11##y,z,v), I[470] = (img)(_p2##x,_n11##y,z,v), I[471] = (img)(_p1##x,_n11##y,z,v), I[472] = (img)(x,_n11##y,z,v), I[473] = (img)(_n1##x,_n11##y,z,v), I[474] = (img)(_n2##x,_n11##y,z,v), I[475] = (img)(_n3##x,_n11##y,z,v), I[476] = (img)(_n4##x,_n11##y,z,v), I[477] = (img)(_n5##x,_n11##y,z,v), I[478] = (img)(_n6##x,_n11##y,z,v), I[479] = (img)(_n7##x,_n11##y,z,v), I[480] = (img)(_n8##x,_n11##y,z,v), I[481] = (img)(_n9##x,_n11##y,z,v), I[482] = (img)(_n10##x,_n11##y,z,v), I[483] = (img)(_n11##x,_n11##y,z,v);
philpem@5 7497
philpem@5 7498 // Define 23x23 loop macros for CImg
philpem@5 7499 //----------------------------------
philpem@5 7500 #define cimg_for23(bound,i) for (int i = 0, \
philpem@5 7501 _p11##i = 0, _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
philpem@5 7502 _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \
philpem@5 7503 _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \
philpem@5 7504 _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \
philpem@5 7505 _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \
philpem@5 7506 _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \
philpem@5 7507 _n6##i = 6>=(int)(bound)?(int)(bound)-1:6, \
philpem@5 7508 _n7##i = 7>=(int)(bound)?(int)(bound)-1:7, \
philpem@5 7509 _n8##i = 8>=(int)(bound)?(int)(bound)-1:8, \
philpem@5 7510 _n9##i = 9>=(int)(bound)?(int)(bound)-1:9, \
philpem@5 7511 _n10##i = 10>=(int)(bound)?(int)(bound)-1:10, \
philpem@5 7512 _n11##i = 11>=(int)(bound)?(int)(bound)-1:11; \
philpem@5 7513 _n11##i<(int)(bound) || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 7514 i==(_n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
philpem@5 7515 _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 7516 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i)
philpem@5 7517
philpem@5 7518 #define cimg_for23X(img,x) cimg_for23((img).width,x)
philpem@5 7519 #define cimg_for23Y(img,y) cimg_for23((img).height,y)
philpem@5 7520 #define cimg_for23Z(img,z) cimg_for23((img).depth,z)
philpem@5 7521 #define cimg_for23V(img,v) cimg_for23((img).dim,v)
philpem@5 7522 #define cimg_for23XY(img,x,y) cimg_for23Y(img,y) cimg_for23X(img,x)
philpem@5 7523 #define cimg_for23XZ(img,x,z) cimg_for23Z(img,z) cimg_for23X(img,x)
philpem@5 7524 #define cimg_for23XV(img,x,v) cimg_for23V(img,v) cimg_for23X(img,x)
philpem@5 7525 #define cimg_for23YZ(img,y,z) cimg_for23Z(img,z) cimg_for23Y(img,y)
philpem@5 7526 #define cimg_for23YV(img,y,v) cimg_for23V(img,v) cimg_for23Y(img,y)
philpem@5 7527 #define cimg_for23ZV(img,z,v) cimg_for23V(img,v) cimg_for23Z(img,z)
philpem@5 7528 #define cimg_for23XYZ(img,x,y,z) cimg_for23Z(img,z) cimg_for23XY(img,x,y)
philpem@5 7529 #define cimg_for23XZV(img,x,z,v) cimg_for23V(img,v) cimg_for23XZ(img,x,z)
philpem@5 7530 #define cimg_for23YZV(img,y,z,v) cimg_for23V(img,v) cimg_for23YZ(img,y,z)
philpem@5 7531 #define cimg_for23XYZV(img,x,y,z,v) cimg_for23V(img,v) cimg_for23XYZ(img,x,y,z)
philpem@5 7532
philpem@5 7533 #define cimg_for_in23(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
philpem@5 7534 _p11##i = i-11<0?0:i-11, \
philpem@5 7535 _p10##i = i-10<0?0:i-10, \
philpem@5 7536 _p9##i = i-9<0?0:i-9, \
philpem@5 7537 _p8##i = i-8<0?0:i-8, \
philpem@5 7538 _p7##i = i-7<0?0:i-7, \
philpem@5 7539 _p6##i = i-6<0?0:i-6, \
philpem@5 7540 _p5##i = i-5<0?0:i-5, \
philpem@5 7541 _p4##i = i-4<0?0:i-4, \
philpem@5 7542 _p3##i = i-3<0?0:i-3, \
philpem@5 7543 _p2##i = i-2<0?0:i-2, \
philpem@5 7544 _p1##i = i-1<0?0:i-1, \
philpem@5 7545 _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \
philpem@5 7546 _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \
philpem@5 7547 _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \
philpem@5 7548 _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \
philpem@5 7549 _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \
philpem@5 7550 _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6, \
philpem@5 7551 _n7##i = i+7>=(int)(bound)?(int)(bound)-1:i+7, \
philpem@5 7552 _n8##i = i+8>=(int)(bound)?(int)(bound)-1:i+8, \
philpem@5 7553 _n9##i = i+9>=(int)(bound)?(int)(bound)-1:i+9, \
philpem@5 7554 _n10##i = i+10>=(int)(bound)?(int)(bound)-1:i+10, \
philpem@5 7555 _n11##i = i+11>=(int)(bound)?(int)(bound)-1:i+11; \
philpem@5 7556 i<=(int)(i1) && (_n11##i<(int)(bound) || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 7557 i==(_n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
philpem@5 7558 _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 7559 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i)
philpem@5 7560
philpem@5 7561 #define cimg_for_in23X(img,x0,x1,x) cimg_for_in23((img).width,x0,x1,x)
philpem@5 7562 #define cimg_for_in23Y(img,y0,y1,y) cimg_for_in23((img).height,y0,y1,y)
philpem@5 7563 #define cimg_for_in23Z(img,z0,z1,z) cimg_for_in23((img).depth,z0,z1,z)
philpem@5 7564 #define cimg_for_in23V(img,v0,v1,v) cimg_for_in23((img).dim,v0,v1,v)
philpem@5 7565 #define cimg_for_in23XY(img,x0,y0,x1,y1,x,y) cimg_for_in23Y(img,y0,y1,y) cimg_for_in23X(img,x0,x1,x)
philpem@5 7566 #define cimg_for_in23XZ(img,x0,z0,x1,z1,x,z) cimg_for_in23Z(img,z0,z1,z) cimg_for_in23X(img,x0,x1,x)
philpem@5 7567 #define cimg_for_in23XV(img,x0,v0,x1,v1,x,v) cimg_for_in23V(img,v0,v1,v) cimg_for_in23X(img,x0,x1,x)
philpem@5 7568 #define cimg_for_in23YZ(img,y0,z0,y1,z1,y,z) cimg_for_in23Z(img,z0,z1,z) cimg_for_in23Y(img,y0,y1,y)
philpem@5 7569 #define cimg_for_in23YV(img,y0,v0,y1,v1,y,v) cimg_for_in23V(img,v0,v1,v) cimg_for_in23Y(img,y0,y1,y)
philpem@5 7570 #define cimg_for_in23ZV(img,z0,v0,z1,v1,z,v) cimg_for_in23V(img,v0,v1,v) cimg_for_in23Z(img,z0,z1,z)
philpem@5 7571 #define cimg_for_in23XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in23Z(img,z0,z1,z) cimg_for_in23XY(img,x0,y0,x1,y1,x,y)
philpem@5 7572 #define cimg_for_in23XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in23V(img,v0,v1,v) cimg_for_in23XZ(img,x0,y0,x1,y1,x,z)
philpem@5 7573 #define cimg_for_in23YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in23V(img,v0,v1,v) cimg_for_in23YZ(img,y0,z0,y1,z1,y,z)
philpem@5 7574 #define cimg_for_in23XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in23V(img,v0,v1,v) cimg_for_in23XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
philpem@5 7575
philpem@5 7576 #define cimg_for23x23(img,x,y,z,v,I) \
philpem@5 7577 cimg_for23((img).height,y) for (int x = 0, \
philpem@5 7578 _p11##x = 0, _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
philpem@5 7579 _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \
philpem@5 7580 _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \
philpem@5 7581 _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \
philpem@5 7582 _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \
philpem@5 7583 _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \
philpem@5 7584 _n6##x = 6>=((img).width)?(int)((img).width)-1:6, \
philpem@5 7585 _n7##x = 7>=((img).width)?(int)((img).width)-1:7, \
philpem@5 7586 _n8##x = 8>=((img).width)?(int)((img).width)-1:8, \
philpem@5 7587 _n9##x = 9>=((img).width)?(int)((img).width)-1:9, \
philpem@5 7588 _n10##x = 10>=((img).width)?(int)((img).width)-1:10, \
philpem@5 7589 _n11##x = (int)( \
philpem@5 7590 (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = I[11] = (img)(0,_p11##y,z,v)), \
philpem@5 7591 (I[23] = I[24] = I[25] = I[26] = I[27] = I[28] = I[29] = I[30] = I[31] = I[32] = I[33] = I[34] = (img)(0,_p10##y,z,v)), \
philpem@5 7592 (I[46] = I[47] = I[48] = I[49] = I[50] = I[51] = I[52] = I[53] = I[54] = I[55] = I[56] = I[57] = (img)(0,_p9##y,z,v)), \
philpem@5 7593 (I[69] = I[70] = I[71] = I[72] = I[73] = I[74] = I[75] = I[76] = I[77] = I[78] = I[79] = I[80] = (img)(0,_p8##y,z,v)), \
philpem@5 7594 (I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = (img)(0,_p7##y,z,v)), \
philpem@5 7595 (I[115] = I[116] = I[117] = I[118] = I[119] = I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = I[126] = (img)(0,_p6##y,z,v)), \
philpem@5 7596 (I[138] = I[139] = I[140] = I[141] = I[142] = I[143] = I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = (img)(0,_p5##y,z,v)), \
philpem@5 7597 (I[161] = I[162] = I[163] = I[164] = I[165] = I[166] = I[167] = I[168] = I[169] = I[170] = I[171] = I[172] = (img)(0,_p4##y,z,v)), \
philpem@5 7598 (I[184] = I[185] = I[186] = I[187] = I[188] = I[189] = I[190] = I[191] = I[192] = I[193] = I[194] = I[195] = (img)(0,_p3##y,z,v)), \
philpem@5 7599 (I[207] = I[208] = I[209] = I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = I[216] = I[217] = I[218] = (img)(0,_p2##y,z,v)), \
philpem@5 7600 (I[230] = I[231] = I[232] = I[233] = I[234] = I[235] = I[236] = I[237] = I[238] = I[239] = I[240] = I[241] = (img)(0,_p1##y,z,v)), \
philpem@5 7601 (I[253] = I[254] = I[255] = I[256] = I[257] = I[258] = I[259] = I[260] = I[261] = I[262] = I[263] = I[264] = (img)(0,y,z,v)), \
philpem@5 7602 (I[276] = I[277] = I[278] = I[279] = I[280] = I[281] = I[282] = I[283] = I[284] = I[285] = I[286] = I[287] = (img)(0,_n1##y,z,v)), \
philpem@5 7603 (I[299] = I[300] = I[301] = I[302] = I[303] = I[304] = I[305] = I[306] = I[307] = I[308] = I[309] = I[310] = (img)(0,_n2##y,z,v)), \
philpem@5 7604 (I[322] = I[323] = I[324] = I[325] = I[326] = I[327] = I[328] = I[329] = I[330] = I[331] = I[332] = I[333] = (img)(0,_n3##y,z,v)), \
philpem@5 7605 (I[345] = I[346] = I[347] = I[348] = I[349] = I[350] = I[351] = I[352] = I[353] = I[354] = I[355] = I[356] = (img)(0,_n4##y,z,v)), \
philpem@5 7606 (I[368] = I[369] = I[370] = I[371] = I[372] = I[373] = I[374] = I[375] = I[376] = I[377] = I[378] = I[379] = (img)(0,_n5##y,z,v)), \
philpem@5 7607 (I[391] = I[392] = I[393] = I[394] = I[395] = I[396] = I[397] = I[398] = I[399] = I[400] = I[401] = I[402] = (img)(0,_n6##y,z,v)), \
philpem@5 7608 (I[414] = I[415] = I[416] = I[417] = I[418] = I[419] = I[420] = I[421] = I[422] = I[423] = I[424] = I[425] = (img)(0,_n7##y,z,v)), \
philpem@5 7609 (I[437] = I[438] = I[439] = I[440] = I[441] = I[442] = I[443] = I[444] = I[445] = I[446] = I[447] = I[448] = (img)(0,_n8##y,z,v)), \
philpem@5 7610 (I[460] = I[461] = I[462] = I[463] = I[464] = I[465] = I[466] = I[467] = I[468] = I[469] = I[470] = I[471] = (img)(0,_n9##y,z,v)), \
philpem@5 7611 (I[483] = I[484] = I[485] = I[486] = I[487] = I[488] = I[489] = I[490] = I[491] = I[492] = I[493] = I[494] = (img)(0,_n10##y,z,v)), \
philpem@5 7612 (I[506] = I[507] = I[508] = I[509] = I[510] = I[511] = I[512] = I[513] = I[514] = I[515] = I[516] = I[517] = (img)(0,_n11##y,z,v)), \
philpem@5 7613 (I[12] = (img)(_n1##x,_p11##y,z,v)), \
philpem@5 7614 (I[35] = (img)(_n1##x,_p10##y,z,v)), \
philpem@5 7615 (I[58] = (img)(_n1##x,_p9##y,z,v)), \
philpem@5 7616 (I[81] = (img)(_n1##x,_p8##y,z,v)), \
philpem@5 7617 (I[104] = (img)(_n1##x,_p7##y,z,v)), \
philpem@5 7618 (I[127] = (img)(_n1##x,_p6##y,z,v)), \
philpem@5 7619 (I[150] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 7620 (I[173] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 7621 (I[196] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 7622 (I[219] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 7623 (I[242] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 7624 (I[265] = (img)(_n1##x,y,z,v)), \
philpem@5 7625 (I[288] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 7626 (I[311] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 7627 (I[334] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 7628 (I[357] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 7629 (I[380] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 7630 (I[403] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 7631 (I[426] = (img)(_n1##x,_n7##y,z,v)), \
philpem@5 7632 (I[449] = (img)(_n1##x,_n8##y,z,v)), \
philpem@5 7633 (I[472] = (img)(_n1##x,_n9##y,z,v)), \
philpem@5 7634 (I[495] = (img)(_n1##x,_n10##y,z,v)), \
philpem@5 7635 (I[518] = (img)(_n1##x,_n11##y,z,v)), \
philpem@5 7636 (I[13] = (img)(_n2##x,_p11##y,z,v)), \
philpem@5 7637 (I[36] = (img)(_n2##x,_p10##y,z,v)), \
philpem@5 7638 (I[59] = (img)(_n2##x,_p9##y,z,v)), \
philpem@5 7639 (I[82] = (img)(_n2##x,_p8##y,z,v)), \
philpem@5 7640 (I[105] = (img)(_n2##x,_p7##y,z,v)), \
philpem@5 7641 (I[128] = (img)(_n2##x,_p6##y,z,v)), \
philpem@5 7642 (I[151] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 7643 (I[174] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 7644 (I[197] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 7645 (I[220] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 7646 (I[243] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 7647 (I[266] = (img)(_n2##x,y,z,v)), \
philpem@5 7648 (I[289] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 7649 (I[312] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 7650 (I[335] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 7651 (I[358] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 7652 (I[381] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 7653 (I[404] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 7654 (I[427] = (img)(_n2##x,_n7##y,z,v)), \
philpem@5 7655 (I[450] = (img)(_n2##x,_n8##y,z,v)), \
philpem@5 7656 (I[473] = (img)(_n2##x,_n9##y,z,v)), \
philpem@5 7657 (I[496] = (img)(_n2##x,_n10##y,z,v)), \
philpem@5 7658 (I[519] = (img)(_n2##x,_n11##y,z,v)), \
philpem@5 7659 (I[14] = (img)(_n3##x,_p11##y,z,v)), \
philpem@5 7660 (I[37] = (img)(_n3##x,_p10##y,z,v)), \
philpem@5 7661 (I[60] = (img)(_n3##x,_p9##y,z,v)), \
philpem@5 7662 (I[83] = (img)(_n3##x,_p8##y,z,v)), \
philpem@5 7663 (I[106] = (img)(_n3##x,_p7##y,z,v)), \
philpem@5 7664 (I[129] = (img)(_n3##x,_p6##y,z,v)), \
philpem@5 7665 (I[152] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 7666 (I[175] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 7667 (I[198] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 7668 (I[221] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 7669 (I[244] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 7670 (I[267] = (img)(_n3##x,y,z,v)), \
philpem@5 7671 (I[290] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 7672 (I[313] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 7673 (I[336] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 7674 (I[359] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 7675 (I[382] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 7676 (I[405] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 7677 (I[428] = (img)(_n3##x,_n7##y,z,v)), \
philpem@5 7678 (I[451] = (img)(_n3##x,_n8##y,z,v)), \
philpem@5 7679 (I[474] = (img)(_n3##x,_n9##y,z,v)), \
philpem@5 7680 (I[497] = (img)(_n3##x,_n10##y,z,v)), \
philpem@5 7681 (I[520] = (img)(_n3##x,_n11##y,z,v)), \
philpem@5 7682 (I[15] = (img)(_n4##x,_p11##y,z,v)), \
philpem@5 7683 (I[38] = (img)(_n4##x,_p10##y,z,v)), \
philpem@5 7684 (I[61] = (img)(_n4##x,_p9##y,z,v)), \
philpem@5 7685 (I[84] = (img)(_n4##x,_p8##y,z,v)), \
philpem@5 7686 (I[107] = (img)(_n4##x,_p7##y,z,v)), \
philpem@5 7687 (I[130] = (img)(_n4##x,_p6##y,z,v)), \
philpem@5 7688 (I[153] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 7689 (I[176] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 7690 (I[199] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 7691 (I[222] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 7692 (I[245] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 7693 (I[268] = (img)(_n4##x,y,z,v)), \
philpem@5 7694 (I[291] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 7695 (I[314] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 7696 (I[337] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 7697 (I[360] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 7698 (I[383] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 7699 (I[406] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 7700 (I[429] = (img)(_n4##x,_n7##y,z,v)), \
philpem@5 7701 (I[452] = (img)(_n4##x,_n8##y,z,v)), \
philpem@5 7702 (I[475] = (img)(_n4##x,_n9##y,z,v)), \
philpem@5 7703 (I[498] = (img)(_n4##x,_n10##y,z,v)), \
philpem@5 7704 (I[521] = (img)(_n4##x,_n11##y,z,v)), \
philpem@5 7705 (I[16] = (img)(_n5##x,_p11##y,z,v)), \
philpem@5 7706 (I[39] = (img)(_n5##x,_p10##y,z,v)), \
philpem@5 7707 (I[62] = (img)(_n5##x,_p9##y,z,v)), \
philpem@5 7708 (I[85] = (img)(_n5##x,_p8##y,z,v)), \
philpem@5 7709 (I[108] = (img)(_n5##x,_p7##y,z,v)), \
philpem@5 7710 (I[131] = (img)(_n5##x,_p6##y,z,v)), \
philpem@5 7711 (I[154] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 7712 (I[177] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 7713 (I[200] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 7714 (I[223] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 7715 (I[246] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 7716 (I[269] = (img)(_n5##x,y,z,v)), \
philpem@5 7717 (I[292] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 7718 (I[315] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 7719 (I[338] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 7720 (I[361] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 7721 (I[384] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 7722 (I[407] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 7723 (I[430] = (img)(_n5##x,_n7##y,z,v)), \
philpem@5 7724 (I[453] = (img)(_n5##x,_n8##y,z,v)), \
philpem@5 7725 (I[476] = (img)(_n5##x,_n9##y,z,v)), \
philpem@5 7726 (I[499] = (img)(_n5##x,_n10##y,z,v)), \
philpem@5 7727 (I[522] = (img)(_n5##x,_n11##y,z,v)), \
philpem@5 7728 (I[17] = (img)(_n6##x,_p11##y,z,v)), \
philpem@5 7729 (I[40] = (img)(_n6##x,_p10##y,z,v)), \
philpem@5 7730 (I[63] = (img)(_n6##x,_p9##y,z,v)), \
philpem@5 7731 (I[86] = (img)(_n6##x,_p8##y,z,v)), \
philpem@5 7732 (I[109] = (img)(_n6##x,_p7##y,z,v)), \
philpem@5 7733 (I[132] = (img)(_n6##x,_p6##y,z,v)), \
philpem@5 7734 (I[155] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 7735 (I[178] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 7736 (I[201] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 7737 (I[224] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 7738 (I[247] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 7739 (I[270] = (img)(_n6##x,y,z,v)), \
philpem@5 7740 (I[293] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 7741 (I[316] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 7742 (I[339] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 7743 (I[362] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 7744 (I[385] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 7745 (I[408] = (img)(_n6##x,_n6##y,z,v)), \
philpem@5 7746 (I[431] = (img)(_n6##x,_n7##y,z,v)), \
philpem@5 7747 (I[454] = (img)(_n6##x,_n8##y,z,v)), \
philpem@5 7748 (I[477] = (img)(_n6##x,_n9##y,z,v)), \
philpem@5 7749 (I[500] = (img)(_n6##x,_n10##y,z,v)), \
philpem@5 7750 (I[523] = (img)(_n6##x,_n11##y,z,v)), \
philpem@5 7751 (I[18] = (img)(_n7##x,_p11##y,z,v)), \
philpem@5 7752 (I[41] = (img)(_n7##x,_p10##y,z,v)), \
philpem@5 7753 (I[64] = (img)(_n7##x,_p9##y,z,v)), \
philpem@5 7754 (I[87] = (img)(_n7##x,_p8##y,z,v)), \
philpem@5 7755 (I[110] = (img)(_n7##x,_p7##y,z,v)), \
philpem@5 7756 (I[133] = (img)(_n7##x,_p6##y,z,v)), \
philpem@5 7757 (I[156] = (img)(_n7##x,_p5##y,z,v)), \
philpem@5 7758 (I[179] = (img)(_n7##x,_p4##y,z,v)), \
philpem@5 7759 (I[202] = (img)(_n7##x,_p3##y,z,v)), \
philpem@5 7760 (I[225] = (img)(_n7##x,_p2##y,z,v)), \
philpem@5 7761 (I[248] = (img)(_n7##x,_p1##y,z,v)), \
philpem@5 7762 (I[271] = (img)(_n7##x,y,z,v)), \
philpem@5 7763 (I[294] = (img)(_n7##x,_n1##y,z,v)), \
philpem@5 7764 (I[317] = (img)(_n7##x,_n2##y,z,v)), \
philpem@5 7765 (I[340] = (img)(_n7##x,_n3##y,z,v)), \
philpem@5 7766 (I[363] = (img)(_n7##x,_n4##y,z,v)), \
philpem@5 7767 (I[386] = (img)(_n7##x,_n5##y,z,v)), \
philpem@5 7768 (I[409] = (img)(_n7##x,_n6##y,z,v)), \
philpem@5 7769 (I[432] = (img)(_n7##x,_n7##y,z,v)), \
philpem@5 7770 (I[455] = (img)(_n7##x,_n8##y,z,v)), \
philpem@5 7771 (I[478] = (img)(_n7##x,_n9##y,z,v)), \
philpem@5 7772 (I[501] = (img)(_n7##x,_n10##y,z,v)), \
philpem@5 7773 (I[524] = (img)(_n7##x,_n11##y,z,v)), \
philpem@5 7774 (I[19] = (img)(_n8##x,_p11##y,z,v)), \
philpem@5 7775 (I[42] = (img)(_n8##x,_p10##y,z,v)), \
philpem@5 7776 (I[65] = (img)(_n8##x,_p9##y,z,v)), \
philpem@5 7777 (I[88] = (img)(_n8##x,_p8##y,z,v)), \
philpem@5 7778 (I[111] = (img)(_n8##x,_p7##y,z,v)), \
philpem@5 7779 (I[134] = (img)(_n8##x,_p6##y,z,v)), \
philpem@5 7780 (I[157] = (img)(_n8##x,_p5##y,z,v)), \
philpem@5 7781 (I[180] = (img)(_n8##x,_p4##y,z,v)), \
philpem@5 7782 (I[203] = (img)(_n8##x,_p3##y,z,v)), \
philpem@5 7783 (I[226] = (img)(_n8##x,_p2##y,z,v)), \
philpem@5 7784 (I[249] = (img)(_n8##x,_p1##y,z,v)), \
philpem@5 7785 (I[272] = (img)(_n8##x,y,z,v)), \
philpem@5 7786 (I[295] = (img)(_n8##x,_n1##y,z,v)), \
philpem@5 7787 (I[318] = (img)(_n8##x,_n2##y,z,v)), \
philpem@5 7788 (I[341] = (img)(_n8##x,_n3##y,z,v)), \
philpem@5 7789 (I[364] = (img)(_n8##x,_n4##y,z,v)), \
philpem@5 7790 (I[387] = (img)(_n8##x,_n5##y,z,v)), \
philpem@5 7791 (I[410] = (img)(_n8##x,_n6##y,z,v)), \
philpem@5 7792 (I[433] = (img)(_n8##x,_n7##y,z,v)), \
philpem@5 7793 (I[456] = (img)(_n8##x,_n8##y,z,v)), \
philpem@5 7794 (I[479] = (img)(_n8##x,_n9##y,z,v)), \
philpem@5 7795 (I[502] = (img)(_n8##x,_n10##y,z,v)), \
philpem@5 7796 (I[525] = (img)(_n8##x,_n11##y,z,v)), \
philpem@5 7797 (I[20] = (img)(_n9##x,_p11##y,z,v)), \
philpem@5 7798 (I[43] = (img)(_n9##x,_p10##y,z,v)), \
philpem@5 7799 (I[66] = (img)(_n9##x,_p9##y,z,v)), \
philpem@5 7800 (I[89] = (img)(_n9##x,_p8##y,z,v)), \
philpem@5 7801 (I[112] = (img)(_n9##x,_p7##y,z,v)), \
philpem@5 7802 (I[135] = (img)(_n9##x,_p6##y,z,v)), \
philpem@5 7803 (I[158] = (img)(_n9##x,_p5##y,z,v)), \
philpem@5 7804 (I[181] = (img)(_n9##x,_p4##y,z,v)), \
philpem@5 7805 (I[204] = (img)(_n9##x,_p3##y,z,v)), \
philpem@5 7806 (I[227] = (img)(_n9##x,_p2##y,z,v)), \
philpem@5 7807 (I[250] = (img)(_n9##x,_p1##y,z,v)), \
philpem@5 7808 (I[273] = (img)(_n9##x,y,z,v)), \
philpem@5 7809 (I[296] = (img)(_n9##x,_n1##y,z,v)), \
philpem@5 7810 (I[319] = (img)(_n9##x,_n2##y,z,v)), \
philpem@5 7811 (I[342] = (img)(_n9##x,_n3##y,z,v)), \
philpem@5 7812 (I[365] = (img)(_n9##x,_n4##y,z,v)), \
philpem@5 7813 (I[388] = (img)(_n9##x,_n5##y,z,v)), \
philpem@5 7814 (I[411] = (img)(_n9##x,_n6##y,z,v)), \
philpem@5 7815 (I[434] = (img)(_n9##x,_n7##y,z,v)), \
philpem@5 7816 (I[457] = (img)(_n9##x,_n8##y,z,v)), \
philpem@5 7817 (I[480] = (img)(_n9##x,_n9##y,z,v)), \
philpem@5 7818 (I[503] = (img)(_n9##x,_n10##y,z,v)), \
philpem@5 7819 (I[526] = (img)(_n9##x,_n11##y,z,v)), \
philpem@5 7820 (I[21] = (img)(_n10##x,_p11##y,z,v)), \
philpem@5 7821 (I[44] = (img)(_n10##x,_p10##y,z,v)), \
philpem@5 7822 (I[67] = (img)(_n10##x,_p9##y,z,v)), \
philpem@5 7823 (I[90] = (img)(_n10##x,_p8##y,z,v)), \
philpem@5 7824 (I[113] = (img)(_n10##x,_p7##y,z,v)), \
philpem@5 7825 (I[136] = (img)(_n10##x,_p6##y,z,v)), \
philpem@5 7826 (I[159] = (img)(_n10##x,_p5##y,z,v)), \
philpem@5 7827 (I[182] = (img)(_n10##x,_p4##y,z,v)), \
philpem@5 7828 (I[205] = (img)(_n10##x,_p3##y,z,v)), \
philpem@5 7829 (I[228] = (img)(_n10##x,_p2##y,z,v)), \
philpem@5 7830 (I[251] = (img)(_n10##x,_p1##y,z,v)), \
philpem@5 7831 (I[274] = (img)(_n10##x,y,z,v)), \
philpem@5 7832 (I[297] = (img)(_n10##x,_n1##y,z,v)), \
philpem@5 7833 (I[320] = (img)(_n10##x,_n2##y,z,v)), \
philpem@5 7834 (I[343] = (img)(_n10##x,_n3##y,z,v)), \
philpem@5 7835 (I[366] = (img)(_n10##x,_n4##y,z,v)), \
philpem@5 7836 (I[389] = (img)(_n10##x,_n5##y,z,v)), \
philpem@5 7837 (I[412] = (img)(_n10##x,_n6##y,z,v)), \
philpem@5 7838 (I[435] = (img)(_n10##x,_n7##y,z,v)), \
philpem@5 7839 (I[458] = (img)(_n10##x,_n8##y,z,v)), \
philpem@5 7840 (I[481] = (img)(_n10##x,_n9##y,z,v)), \
philpem@5 7841 (I[504] = (img)(_n10##x,_n10##y,z,v)), \
philpem@5 7842 (I[527] = (img)(_n10##x,_n11##y,z,v)), \
philpem@5 7843 11>=((img).width)?(int)((img).width)-1:11); \
philpem@5 7844 (_n11##x<(int)((img).width) && ( \
philpem@5 7845 (I[22] = (img)(_n11##x,_p11##y,z,v)), \
philpem@5 7846 (I[45] = (img)(_n11##x,_p10##y,z,v)), \
philpem@5 7847 (I[68] = (img)(_n11##x,_p9##y,z,v)), \
philpem@5 7848 (I[91] = (img)(_n11##x,_p8##y,z,v)), \
philpem@5 7849 (I[114] = (img)(_n11##x,_p7##y,z,v)), \
philpem@5 7850 (I[137] = (img)(_n11##x,_p6##y,z,v)), \
philpem@5 7851 (I[160] = (img)(_n11##x,_p5##y,z,v)), \
philpem@5 7852 (I[183] = (img)(_n11##x,_p4##y,z,v)), \
philpem@5 7853 (I[206] = (img)(_n11##x,_p3##y,z,v)), \
philpem@5 7854 (I[229] = (img)(_n11##x,_p2##y,z,v)), \
philpem@5 7855 (I[252] = (img)(_n11##x,_p1##y,z,v)), \
philpem@5 7856 (I[275] = (img)(_n11##x,y,z,v)), \
philpem@5 7857 (I[298] = (img)(_n11##x,_n1##y,z,v)), \
philpem@5 7858 (I[321] = (img)(_n11##x,_n2##y,z,v)), \
philpem@5 7859 (I[344] = (img)(_n11##x,_n3##y,z,v)), \
philpem@5 7860 (I[367] = (img)(_n11##x,_n4##y,z,v)), \
philpem@5 7861 (I[390] = (img)(_n11##x,_n5##y,z,v)), \
philpem@5 7862 (I[413] = (img)(_n11##x,_n6##y,z,v)), \
philpem@5 7863 (I[436] = (img)(_n11##x,_n7##y,z,v)), \
philpem@5 7864 (I[459] = (img)(_n11##x,_n8##y,z,v)), \
philpem@5 7865 (I[482] = (img)(_n11##x,_n9##y,z,v)), \
philpem@5 7866 (I[505] = (img)(_n11##x,_n10##y,z,v)), \
philpem@5 7867 (I[528] = (img)(_n11##x,_n11##y,z,v)),1)) || \
philpem@5 7868 _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
philpem@5 7869 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], \
philpem@5 7870 I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], \
philpem@5 7871 I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], \
philpem@5 7872 I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], \
philpem@5 7873 I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], \
philpem@5 7874 I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], \
philpem@5 7875 I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], \
philpem@5 7876 I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], \
philpem@5 7877 I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], \
philpem@5 7878 I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], \
philpem@5 7879 I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], \
philpem@5 7880 I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], \
philpem@5 7881 I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], \
philpem@5 7882 I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], \
philpem@5 7883 I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], \
philpem@5 7884 I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], \
philpem@5 7885 I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], \
philpem@5 7886 I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], \
philpem@5 7887 I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], \
philpem@5 7888 I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], \
philpem@5 7889 I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], \
philpem@5 7890 I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], \
philpem@5 7891 I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], \
philpem@5 7892 _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x)
philpem@5 7893
philpem@5 7894 #define cimg_for_in23x23(img,x0,y0,x1,y1,x,y,z,v,I) \
philpem@5 7895 cimg_for_in23((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
philpem@5 7896 _p11##x = x-11<0?0:x-11, \
philpem@5 7897 _p10##x = x-10<0?0:x-10, \
philpem@5 7898 _p9##x = x-9<0?0:x-9, \
philpem@5 7899 _p8##x = x-8<0?0:x-8, \
philpem@5 7900 _p7##x = x-7<0?0:x-7, \
philpem@5 7901 _p6##x = x-6<0?0:x-6, \
philpem@5 7902 _p5##x = x-5<0?0:x-5, \
philpem@5 7903 _p4##x = x-4<0?0:x-4, \
philpem@5 7904 _p3##x = x-3<0?0:x-3, \
philpem@5 7905 _p2##x = x-2<0?0:x-2, \
philpem@5 7906 _p1##x = x-1<0?0:x-1, \
philpem@5 7907 _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \
philpem@5 7908 _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \
philpem@5 7909 _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \
philpem@5 7910 _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \
philpem@5 7911 _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \
philpem@5 7912 _n6##x = x+6>=(int)((img).width)?(int)((img).width)-1:x+6, \
philpem@5 7913 _n7##x = x+7>=(int)((img).width)?(int)((img).width)-1:x+7, \
philpem@5 7914 _n8##x = x+8>=(int)((img).width)?(int)((img).width)-1:x+8, \
philpem@5 7915 _n9##x = x+9>=(int)((img).width)?(int)((img).width)-1:x+9, \
philpem@5 7916 _n10##x = x+10>=(int)((img).width)?(int)((img).width)-1:x+10, \
philpem@5 7917 _n11##x = (int)( \
philpem@5 7918 (I[0] = (img)(_p11##x,_p11##y,z,v)), \
philpem@5 7919 (I[23] = (img)(_p11##x,_p10##y,z,v)), \
philpem@5 7920 (I[46] = (img)(_p11##x,_p9##y,z,v)), \
philpem@5 7921 (I[69] = (img)(_p11##x,_p8##y,z,v)), \
philpem@5 7922 (I[92] = (img)(_p11##x,_p7##y,z,v)), \
philpem@5 7923 (I[115] = (img)(_p11##x,_p6##y,z,v)), \
philpem@5 7924 (I[138] = (img)(_p11##x,_p5##y,z,v)), \
philpem@5 7925 (I[161] = (img)(_p11##x,_p4##y,z,v)), \
philpem@5 7926 (I[184] = (img)(_p11##x,_p3##y,z,v)), \
philpem@5 7927 (I[207] = (img)(_p11##x,_p2##y,z,v)), \
philpem@5 7928 (I[230] = (img)(_p11##x,_p1##y,z,v)), \
philpem@5 7929 (I[253] = (img)(_p11##x,y,z,v)), \
philpem@5 7930 (I[276] = (img)(_p11##x,_n1##y,z,v)), \
philpem@5 7931 (I[299] = (img)(_p11##x,_n2##y,z,v)), \
philpem@5 7932 (I[322] = (img)(_p11##x,_n3##y,z,v)), \
philpem@5 7933 (I[345] = (img)(_p11##x,_n4##y,z,v)), \
philpem@5 7934 (I[368] = (img)(_p11##x,_n5##y,z,v)), \
philpem@5 7935 (I[391] = (img)(_p11##x,_n6##y,z,v)), \
philpem@5 7936 (I[414] = (img)(_p11##x,_n7##y,z,v)), \
philpem@5 7937 (I[437] = (img)(_p11##x,_n8##y,z,v)), \
philpem@5 7938 (I[460] = (img)(_p11##x,_n9##y,z,v)), \
philpem@5 7939 (I[483] = (img)(_p11##x,_n10##y,z,v)), \
philpem@5 7940 (I[506] = (img)(_p11##x,_n11##y,z,v)), \
philpem@5 7941 (I[1] = (img)(_p10##x,_p11##y,z,v)), \
philpem@5 7942 (I[24] = (img)(_p10##x,_p10##y,z,v)), \
philpem@5 7943 (I[47] = (img)(_p10##x,_p9##y,z,v)), \
philpem@5 7944 (I[70] = (img)(_p10##x,_p8##y,z,v)), \
philpem@5 7945 (I[93] = (img)(_p10##x,_p7##y,z,v)), \
philpem@5 7946 (I[116] = (img)(_p10##x,_p6##y,z,v)), \
philpem@5 7947 (I[139] = (img)(_p10##x,_p5##y,z,v)), \
philpem@5 7948 (I[162] = (img)(_p10##x,_p4##y,z,v)), \
philpem@5 7949 (I[185] = (img)(_p10##x,_p3##y,z,v)), \
philpem@5 7950 (I[208] = (img)(_p10##x,_p2##y,z,v)), \
philpem@5 7951 (I[231] = (img)(_p10##x,_p1##y,z,v)), \
philpem@5 7952 (I[254] = (img)(_p10##x,y,z,v)), \
philpem@5 7953 (I[277] = (img)(_p10##x,_n1##y,z,v)), \
philpem@5 7954 (I[300] = (img)(_p10##x,_n2##y,z,v)), \
philpem@5 7955 (I[323] = (img)(_p10##x,_n3##y,z,v)), \
philpem@5 7956 (I[346] = (img)(_p10##x,_n4##y,z,v)), \
philpem@5 7957 (I[369] = (img)(_p10##x,_n5##y,z,v)), \
philpem@5 7958 (I[392] = (img)(_p10##x,_n6##y,z,v)), \
philpem@5 7959 (I[415] = (img)(_p10##x,_n7##y,z,v)), \
philpem@5 7960 (I[438] = (img)(_p10##x,_n8##y,z,v)), \
philpem@5 7961 (I[461] = (img)(_p10##x,_n9##y,z,v)), \
philpem@5 7962 (I[484] = (img)(_p10##x,_n10##y,z,v)), \
philpem@5 7963 (I[507] = (img)(_p10##x,_n11##y,z,v)), \
philpem@5 7964 (I[2] = (img)(_p9##x,_p11##y,z,v)), \
philpem@5 7965 (I[25] = (img)(_p9##x,_p10##y,z,v)), \
philpem@5 7966 (I[48] = (img)(_p9##x,_p9##y,z,v)), \
philpem@5 7967 (I[71] = (img)(_p9##x,_p8##y,z,v)), \
philpem@5 7968 (I[94] = (img)(_p9##x,_p7##y,z,v)), \
philpem@5 7969 (I[117] = (img)(_p9##x,_p6##y,z,v)), \
philpem@5 7970 (I[140] = (img)(_p9##x,_p5##y,z,v)), \
philpem@5 7971 (I[163] = (img)(_p9##x,_p4##y,z,v)), \
philpem@5 7972 (I[186] = (img)(_p9##x,_p3##y,z,v)), \
philpem@5 7973 (I[209] = (img)(_p9##x,_p2##y,z,v)), \
philpem@5 7974 (I[232] = (img)(_p9##x,_p1##y,z,v)), \
philpem@5 7975 (I[255] = (img)(_p9##x,y,z,v)), \
philpem@5 7976 (I[278] = (img)(_p9##x,_n1##y,z,v)), \
philpem@5 7977 (I[301] = (img)(_p9##x,_n2##y,z,v)), \
philpem@5 7978 (I[324] = (img)(_p9##x,_n3##y,z,v)), \
philpem@5 7979 (I[347] = (img)(_p9##x,_n4##y,z,v)), \
philpem@5 7980 (I[370] = (img)(_p9##x,_n5##y,z,v)), \
philpem@5 7981 (I[393] = (img)(_p9##x,_n6##y,z,v)), \
philpem@5 7982 (I[416] = (img)(_p9##x,_n7##y,z,v)), \
philpem@5 7983 (I[439] = (img)(_p9##x,_n8##y,z,v)), \
philpem@5 7984 (I[462] = (img)(_p9##x,_n9##y,z,v)), \
philpem@5 7985 (I[485] = (img)(_p9##x,_n10##y,z,v)), \
philpem@5 7986 (I[508] = (img)(_p9##x,_n11##y,z,v)), \
philpem@5 7987 (I[3] = (img)(_p8##x,_p11##y,z,v)), \
philpem@5 7988 (I[26] = (img)(_p8##x,_p10##y,z,v)), \
philpem@5 7989 (I[49] = (img)(_p8##x,_p9##y,z,v)), \
philpem@5 7990 (I[72] = (img)(_p8##x,_p8##y,z,v)), \
philpem@5 7991 (I[95] = (img)(_p8##x,_p7##y,z,v)), \
philpem@5 7992 (I[118] = (img)(_p8##x,_p6##y,z,v)), \
philpem@5 7993 (I[141] = (img)(_p8##x,_p5##y,z,v)), \
philpem@5 7994 (I[164] = (img)(_p8##x,_p4##y,z,v)), \
philpem@5 7995 (I[187] = (img)(_p8##x,_p3##y,z,v)), \
philpem@5 7996 (I[210] = (img)(_p8##x,_p2##y,z,v)), \
philpem@5 7997 (I[233] = (img)(_p8##x,_p1##y,z,v)), \
philpem@5 7998 (I[256] = (img)(_p8##x,y,z,v)), \
philpem@5 7999 (I[279] = (img)(_p8##x,_n1##y,z,v)), \
philpem@5 8000 (I[302] = (img)(_p8##x,_n2##y,z,v)), \
philpem@5 8001 (I[325] = (img)(_p8##x,_n3##y,z,v)), \
philpem@5 8002 (I[348] = (img)(_p8##x,_n4##y,z,v)), \
philpem@5 8003 (I[371] = (img)(_p8##x,_n5##y,z,v)), \
philpem@5 8004 (I[394] = (img)(_p8##x,_n6##y,z,v)), \
philpem@5 8005 (I[417] = (img)(_p8##x,_n7##y,z,v)), \
philpem@5 8006 (I[440] = (img)(_p8##x,_n8##y,z,v)), \
philpem@5 8007 (I[463] = (img)(_p8##x,_n9##y,z,v)), \
philpem@5 8008 (I[486] = (img)(_p8##x,_n10##y,z,v)), \
philpem@5 8009 (I[509] = (img)(_p8##x,_n11##y,z,v)), \
philpem@5 8010 (I[4] = (img)(_p7##x,_p11##y,z,v)), \
philpem@5 8011 (I[27] = (img)(_p7##x,_p10##y,z,v)), \
philpem@5 8012 (I[50] = (img)(_p7##x,_p9##y,z,v)), \
philpem@5 8013 (I[73] = (img)(_p7##x,_p8##y,z,v)), \
philpem@5 8014 (I[96] = (img)(_p7##x,_p7##y,z,v)), \
philpem@5 8015 (I[119] = (img)(_p7##x,_p6##y,z,v)), \
philpem@5 8016 (I[142] = (img)(_p7##x,_p5##y,z,v)), \
philpem@5 8017 (I[165] = (img)(_p7##x,_p4##y,z,v)), \
philpem@5 8018 (I[188] = (img)(_p7##x,_p3##y,z,v)), \
philpem@5 8019 (I[211] = (img)(_p7##x,_p2##y,z,v)), \
philpem@5 8020 (I[234] = (img)(_p7##x,_p1##y,z,v)), \
philpem@5 8021 (I[257] = (img)(_p7##x,y,z,v)), \
philpem@5 8022 (I[280] = (img)(_p7##x,_n1##y,z,v)), \
philpem@5 8023 (I[303] = (img)(_p7##x,_n2##y,z,v)), \
philpem@5 8024 (I[326] = (img)(_p7##x,_n3##y,z,v)), \
philpem@5 8025 (I[349] = (img)(_p7##x,_n4##y,z,v)), \
philpem@5 8026 (I[372] = (img)(_p7##x,_n5##y,z,v)), \
philpem@5 8027 (I[395] = (img)(_p7##x,_n6##y,z,v)), \
philpem@5 8028 (I[418] = (img)(_p7##x,_n7##y,z,v)), \
philpem@5 8029 (I[441] = (img)(_p7##x,_n8##y,z,v)), \
philpem@5 8030 (I[464] = (img)(_p7##x,_n9##y,z,v)), \
philpem@5 8031 (I[487] = (img)(_p7##x,_n10##y,z,v)), \
philpem@5 8032 (I[510] = (img)(_p7##x,_n11##y,z,v)), \
philpem@5 8033 (I[5] = (img)(_p6##x,_p11##y,z,v)), \
philpem@5 8034 (I[28] = (img)(_p6##x,_p10##y,z,v)), \
philpem@5 8035 (I[51] = (img)(_p6##x,_p9##y,z,v)), \
philpem@5 8036 (I[74] = (img)(_p6##x,_p8##y,z,v)), \
philpem@5 8037 (I[97] = (img)(_p6##x,_p7##y,z,v)), \
philpem@5 8038 (I[120] = (img)(_p6##x,_p6##y,z,v)), \
philpem@5 8039 (I[143] = (img)(_p6##x,_p5##y,z,v)), \
philpem@5 8040 (I[166] = (img)(_p6##x,_p4##y,z,v)), \
philpem@5 8041 (I[189] = (img)(_p6##x,_p3##y,z,v)), \
philpem@5 8042 (I[212] = (img)(_p6##x,_p2##y,z,v)), \
philpem@5 8043 (I[235] = (img)(_p6##x,_p1##y,z,v)), \
philpem@5 8044 (I[258] = (img)(_p6##x,y,z,v)), \
philpem@5 8045 (I[281] = (img)(_p6##x,_n1##y,z,v)), \
philpem@5 8046 (I[304] = (img)(_p6##x,_n2##y,z,v)), \
philpem@5 8047 (I[327] = (img)(_p6##x,_n3##y,z,v)), \
philpem@5 8048 (I[350] = (img)(_p6##x,_n4##y,z,v)), \
philpem@5 8049 (I[373] = (img)(_p6##x,_n5##y,z,v)), \
philpem@5 8050 (I[396] = (img)(_p6##x,_n6##y,z,v)), \
philpem@5 8051 (I[419] = (img)(_p6##x,_n7##y,z,v)), \
philpem@5 8052 (I[442] = (img)(_p6##x,_n8##y,z,v)), \
philpem@5 8053 (I[465] = (img)(_p6##x,_n9##y,z,v)), \
philpem@5 8054 (I[488] = (img)(_p6##x,_n10##y,z,v)), \
philpem@5 8055 (I[511] = (img)(_p6##x,_n11##y,z,v)), \
philpem@5 8056 (I[6] = (img)(_p5##x,_p11##y,z,v)), \
philpem@5 8057 (I[29] = (img)(_p5##x,_p10##y,z,v)), \
philpem@5 8058 (I[52] = (img)(_p5##x,_p9##y,z,v)), \
philpem@5 8059 (I[75] = (img)(_p5##x,_p8##y,z,v)), \
philpem@5 8060 (I[98] = (img)(_p5##x,_p7##y,z,v)), \
philpem@5 8061 (I[121] = (img)(_p5##x,_p6##y,z,v)), \
philpem@5 8062 (I[144] = (img)(_p5##x,_p5##y,z,v)), \
philpem@5 8063 (I[167] = (img)(_p5##x,_p4##y,z,v)), \
philpem@5 8064 (I[190] = (img)(_p5##x,_p3##y,z,v)), \
philpem@5 8065 (I[213] = (img)(_p5##x,_p2##y,z,v)), \
philpem@5 8066 (I[236] = (img)(_p5##x,_p1##y,z,v)), \
philpem@5 8067 (I[259] = (img)(_p5##x,y,z,v)), \
philpem@5 8068 (I[282] = (img)(_p5##x,_n1##y,z,v)), \
philpem@5 8069 (I[305] = (img)(_p5##x,_n2##y,z,v)), \
philpem@5 8070 (I[328] = (img)(_p5##x,_n3##y,z,v)), \
philpem@5 8071 (I[351] = (img)(_p5##x,_n4##y,z,v)), \
philpem@5 8072 (I[374] = (img)(_p5##x,_n5##y,z,v)), \
philpem@5 8073 (I[397] = (img)(_p5##x,_n6##y,z,v)), \
philpem@5 8074 (I[420] = (img)(_p5##x,_n7##y,z,v)), \
philpem@5 8075 (I[443] = (img)(_p5##x,_n8##y,z,v)), \
philpem@5 8076 (I[466] = (img)(_p5##x,_n9##y,z,v)), \
philpem@5 8077 (I[489] = (img)(_p5##x,_n10##y,z,v)), \
philpem@5 8078 (I[512] = (img)(_p5##x,_n11##y,z,v)), \
philpem@5 8079 (I[7] = (img)(_p4##x,_p11##y,z,v)), \
philpem@5 8080 (I[30] = (img)(_p4##x,_p10##y,z,v)), \
philpem@5 8081 (I[53] = (img)(_p4##x,_p9##y,z,v)), \
philpem@5 8082 (I[76] = (img)(_p4##x,_p8##y,z,v)), \
philpem@5 8083 (I[99] = (img)(_p4##x,_p7##y,z,v)), \
philpem@5 8084 (I[122] = (img)(_p4##x,_p6##y,z,v)), \
philpem@5 8085 (I[145] = (img)(_p4##x,_p5##y,z,v)), \
philpem@5 8086 (I[168] = (img)(_p4##x,_p4##y,z,v)), \
philpem@5 8087 (I[191] = (img)(_p4##x,_p3##y,z,v)), \
philpem@5 8088 (I[214] = (img)(_p4##x,_p2##y,z,v)), \
philpem@5 8089 (I[237] = (img)(_p4##x,_p1##y,z,v)), \
philpem@5 8090 (I[260] = (img)(_p4##x,y,z,v)), \
philpem@5 8091 (I[283] = (img)(_p4##x,_n1##y,z,v)), \
philpem@5 8092 (I[306] = (img)(_p4##x,_n2##y,z,v)), \
philpem@5 8093 (I[329] = (img)(_p4##x,_n3##y,z,v)), \
philpem@5 8094 (I[352] = (img)(_p4##x,_n4##y,z,v)), \
philpem@5 8095 (I[375] = (img)(_p4##x,_n5##y,z,v)), \
philpem@5 8096 (I[398] = (img)(_p4##x,_n6##y,z,v)), \
philpem@5 8097 (I[421] = (img)(_p4##x,_n7##y,z,v)), \
philpem@5 8098 (I[444] = (img)(_p4##x,_n8##y,z,v)), \
philpem@5 8099 (I[467] = (img)(_p4##x,_n9##y,z,v)), \
philpem@5 8100 (I[490] = (img)(_p4##x,_n10##y,z,v)), \
philpem@5 8101 (I[513] = (img)(_p4##x,_n11##y,z,v)), \
philpem@5 8102 (I[8] = (img)(_p3##x,_p11##y,z,v)), \
philpem@5 8103 (I[31] = (img)(_p3##x,_p10##y,z,v)), \
philpem@5 8104 (I[54] = (img)(_p3##x,_p9##y,z,v)), \
philpem@5 8105 (I[77] = (img)(_p3##x,_p8##y,z,v)), \
philpem@5 8106 (I[100] = (img)(_p3##x,_p7##y,z,v)), \
philpem@5 8107 (I[123] = (img)(_p3##x,_p6##y,z,v)), \
philpem@5 8108 (I[146] = (img)(_p3##x,_p5##y,z,v)), \
philpem@5 8109 (I[169] = (img)(_p3##x,_p4##y,z,v)), \
philpem@5 8110 (I[192] = (img)(_p3##x,_p3##y,z,v)), \
philpem@5 8111 (I[215] = (img)(_p3##x,_p2##y,z,v)), \
philpem@5 8112 (I[238] = (img)(_p3##x,_p1##y,z,v)), \
philpem@5 8113 (I[261] = (img)(_p3##x,y,z,v)), \
philpem@5 8114 (I[284] = (img)(_p3##x,_n1##y,z,v)), \
philpem@5 8115 (I[307] = (img)(_p3##x,_n2##y,z,v)), \
philpem@5 8116 (I[330] = (img)(_p3##x,_n3##y,z,v)), \
philpem@5 8117 (I[353] = (img)(_p3##x,_n4##y,z,v)), \
philpem@5 8118 (I[376] = (img)(_p3##x,_n5##y,z,v)), \
philpem@5 8119 (I[399] = (img)(_p3##x,_n6##y,z,v)), \
philpem@5 8120 (I[422] = (img)(_p3##x,_n7##y,z,v)), \
philpem@5 8121 (I[445] = (img)(_p3##x,_n8##y,z,v)), \
philpem@5 8122 (I[468] = (img)(_p3##x,_n9##y,z,v)), \
philpem@5 8123 (I[491] = (img)(_p3##x,_n10##y,z,v)), \
philpem@5 8124 (I[514] = (img)(_p3##x,_n11##y,z,v)), \
philpem@5 8125 (I[9] = (img)(_p2##x,_p11##y,z,v)), \
philpem@5 8126 (I[32] = (img)(_p2##x,_p10##y,z,v)), \
philpem@5 8127 (I[55] = (img)(_p2##x,_p9##y,z,v)), \
philpem@5 8128 (I[78] = (img)(_p2##x,_p8##y,z,v)), \
philpem@5 8129 (I[101] = (img)(_p2##x,_p7##y,z,v)), \
philpem@5 8130 (I[124] = (img)(_p2##x,_p6##y,z,v)), \
philpem@5 8131 (I[147] = (img)(_p2##x,_p5##y,z,v)), \
philpem@5 8132 (I[170] = (img)(_p2##x,_p4##y,z,v)), \
philpem@5 8133 (I[193] = (img)(_p2##x,_p3##y,z,v)), \
philpem@5 8134 (I[216] = (img)(_p2##x,_p2##y,z,v)), \
philpem@5 8135 (I[239] = (img)(_p2##x,_p1##y,z,v)), \
philpem@5 8136 (I[262] = (img)(_p2##x,y,z,v)), \
philpem@5 8137 (I[285] = (img)(_p2##x,_n1##y,z,v)), \
philpem@5 8138 (I[308] = (img)(_p2##x,_n2##y,z,v)), \
philpem@5 8139 (I[331] = (img)(_p2##x,_n3##y,z,v)), \
philpem@5 8140 (I[354] = (img)(_p2##x,_n4##y,z,v)), \
philpem@5 8141 (I[377] = (img)(_p2##x,_n5##y,z,v)), \
philpem@5 8142 (I[400] = (img)(_p2##x,_n6##y,z,v)), \
philpem@5 8143 (I[423] = (img)(_p2##x,_n7##y,z,v)), \
philpem@5 8144 (I[446] = (img)(_p2##x,_n8##y,z,v)), \
philpem@5 8145 (I[469] = (img)(_p2##x,_n9##y,z,v)), \
philpem@5 8146 (I[492] = (img)(_p2##x,_n10##y,z,v)), \
philpem@5 8147 (I[515] = (img)(_p2##x,_n11##y,z,v)), \
philpem@5 8148 (I[10] = (img)(_p1##x,_p11##y,z,v)), \
philpem@5 8149 (I[33] = (img)(_p1##x,_p10##y,z,v)), \
philpem@5 8150 (I[56] = (img)(_p1##x,_p9##y,z,v)), \
philpem@5 8151 (I[79] = (img)(_p1##x,_p8##y,z,v)), \
philpem@5 8152 (I[102] = (img)(_p1##x,_p7##y,z,v)), \
philpem@5 8153 (I[125] = (img)(_p1##x,_p6##y,z,v)), \
philpem@5 8154 (I[148] = (img)(_p1##x,_p5##y,z,v)), \
philpem@5 8155 (I[171] = (img)(_p1##x,_p4##y,z,v)), \
philpem@5 8156 (I[194] = (img)(_p1##x,_p3##y,z,v)), \
philpem@5 8157 (I[217] = (img)(_p1##x,_p2##y,z,v)), \
philpem@5 8158 (I[240] = (img)(_p1##x,_p1##y,z,v)), \
philpem@5 8159 (I[263] = (img)(_p1##x,y,z,v)), \
philpem@5 8160 (I[286] = (img)(_p1##x,_n1##y,z,v)), \
philpem@5 8161 (I[309] = (img)(_p1##x,_n2##y,z,v)), \
philpem@5 8162 (I[332] = (img)(_p1##x,_n3##y,z,v)), \
philpem@5 8163 (I[355] = (img)(_p1##x,_n4##y,z,v)), \
philpem@5 8164 (I[378] = (img)(_p1##x,_n5##y,z,v)), \
philpem@5 8165 (I[401] = (img)(_p1##x,_n6##y,z,v)), \
philpem@5 8166 (I[424] = (img)(_p1##x,_n7##y,z,v)), \
philpem@5 8167 (I[447] = (img)(_p1##x,_n8##y,z,v)), \
philpem@5 8168 (I[470] = (img)(_p1##x,_n9##y,z,v)), \
philpem@5 8169 (I[493] = (img)(_p1##x,_n10##y,z,v)), \
philpem@5 8170 (I[516] = (img)(_p1##x,_n11##y,z,v)), \
philpem@5 8171 (I[11] = (img)(x,_p11##y,z,v)), \
philpem@5 8172 (I[34] = (img)(x,_p10##y,z,v)), \
philpem@5 8173 (I[57] = (img)(x,_p9##y,z,v)), \
philpem@5 8174 (I[80] = (img)(x,_p8##y,z,v)), \
philpem@5 8175 (I[103] = (img)(x,_p7##y,z,v)), \
philpem@5 8176 (I[126] = (img)(x,_p6##y,z,v)), \
philpem@5 8177 (I[149] = (img)(x,_p5##y,z,v)), \
philpem@5 8178 (I[172] = (img)(x,_p4##y,z,v)), \
philpem@5 8179 (I[195] = (img)(x,_p3##y,z,v)), \
philpem@5 8180 (I[218] = (img)(x,_p2##y,z,v)), \
philpem@5 8181 (I[241] = (img)(x,_p1##y,z,v)), \
philpem@5 8182 (I[264] = (img)(x,y,z,v)), \
philpem@5 8183 (I[287] = (img)(x,_n1##y,z,v)), \
philpem@5 8184 (I[310] = (img)(x,_n2##y,z,v)), \
philpem@5 8185 (I[333] = (img)(x,_n3##y,z,v)), \
philpem@5 8186 (I[356] = (img)(x,_n4##y,z,v)), \
philpem@5 8187 (I[379] = (img)(x,_n5##y,z,v)), \
philpem@5 8188 (I[402] = (img)(x,_n6##y,z,v)), \
philpem@5 8189 (I[425] = (img)(x,_n7##y,z,v)), \
philpem@5 8190 (I[448] = (img)(x,_n8##y,z,v)), \
philpem@5 8191 (I[471] = (img)(x,_n9##y,z,v)), \
philpem@5 8192 (I[494] = (img)(x,_n10##y,z,v)), \
philpem@5 8193 (I[517] = (img)(x,_n11##y,z,v)), \
philpem@5 8194 (I[12] = (img)(_n1##x,_p11##y,z,v)), \
philpem@5 8195 (I[35] = (img)(_n1##x,_p10##y,z,v)), \
philpem@5 8196 (I[58] = (img)(_n1##x,_p9##y,z,v)), \
philpem@5 8197 (I[81] = (img)(_n1##x,_p8##y,z,v)), \
philpem@5 8198 (I[104] = (img)(_n1##x,_p7##y,z,v)), \
philpem@5 8199 (I[127] = (img)(_n1##x,_p6##y,z,v)), \
philpem@5 8200 (I[150] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 8201 (I[173] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 8202 (I[196] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 8203 (I[219] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 8204 (I[242] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 8205 (I[265] = (img)(_n1##x,y,z,v)), \
philpem@5 8206 (I[288] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 8207 (I[311] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 8208 (I[334] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 8209 (I[357] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 8210 (I[380] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 8211 (I[403] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 8212 (I[426] = (img)(_n1##x,_n7##y,z,v)), \
philpem@5 8213 (I[449] = (img)(_n1##x,_n8##y,z,v)), \
philpem@5 8214 (I[472] = (img)(_n1##x,_n9##y,z,v)), \
philpem@5 8215 (I[495] = (img)(_n1##x,_n10##y,z,v)), \
philpem@5 8216 (I[518] = (img)(_n1##x,_n11##y,z,v)), \
philpem@5 8217 (I[13] = (img)(_n2##x,_p11##y,z,v)), \
philpem@5 8218 (I[36] = (img)(_n2##x,_p10##y,z,v)), \
philpem@5 8219 (I[59] = (img)(_n2##x,_p9##y,z,v)), \
philpem@5 8220 (I[82] = (img)(_n2##x,_p8##y,z,v)), \
philpem@5 8221 (I[105] = (img)(_n2##x,_p7##y,z,v)), \
philpem@5 8222 (I[128] = (img)(_n2##x,_p6##y,z,v)), \
philpem@5 8223 (I[151] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 8224 (I[174] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 8225 (I[197] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 8226 (I[220] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 8227 (I[243] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 8228 (I[266] = (img)(_n2##x,y,z,v)), \
philpem@5 8229 (I[289] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 8230 (I[312] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 8231 (I[335] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 8232 (I[358] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 8233 (I[381] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 8234 (I[404] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 8235 (I[427] = (img)(_n2##x,_n7##y,z,v)), \
philpem@5 8236 (I[450] = (img)(_n2##x,_n8##y,z,v)), \
philpem@5 8237 (I[473] = (img)(_n2##x,_n9##y,z,v)), \
philpem@5 8238 (I[496] = (img)(_n2##x,_n10##y,z,v)), \
philpem@5 8239 (I[519] = (img)(_n2##x,_n11##y,z,v)), \
philpem@5 8240 (I[14] = (img)(_n3##x,_p11##y,z,v)), \
philpem@5 8241 (I[37] = (img)(_n3##x,_p10##y,z,v)), \
philpem@5 8242 (I[60] = (img)(_n3##x,_p9##y,z,v)), \
philpem@5 8243 (I[83] = (img)(_n3##x,_p8##y,z,v)), \
philpem@5 8244 (I[106] = (img)(_n3##x,_p7##y,z,v)), \
philpem@5 8245 (I[129] = (img)(_n3##x,_p6##y,z,v)), \
philpem@5 8246 (I[152] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 8247 (I[175] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 8248 (I[198] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 8249 (I[221] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 8250 (I[244] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 8251 (I[267] = (img)(_n3##x,y,z,v)), \
philpem@5 8252 (I[290] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 8253 (I[313] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 8254 (I[336] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 8255 (I[359] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 8256 (I[382] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 8257 (I[405] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 8258 (I[428] = (img)(_n3##x,_n7##y,z,v)), \
philpem@5 8259 (I[451] = (img)(_n3##x,_n8##y,z,v)), \
philpem@5 8260 (I[474] = (img)(_n3##x,_n9##y,z,v)), \
philpem@5 8261 (I[497] = (img)(_n3##x,_n10##y,z,v)), \
philpem@5 8262 (I[520] = (img)(_n3##x,_n11##y,z,v)), \
philpem@5 8263 (I[15] = (img)(_n4##x,_p11##y,z,v)), \
philpem@5 8264 (I[38] = (img)(_n4##x,_p10##y,z,v)), \
philpem@5 8265 (I[61] = (img)(_n4##x,_p9##y,z,v)), \
philpem@5 8266 (I[84] = (img)(_n4##x,_p8##y,z,v)), \
philpem@5 8267 (I[107] = (img)(_n4##x,_p7##y,z,v)), \
philpem@5 8268 (I[130] = (img)(_n4##x,_p6##y,z,v)), \
philpem@5 8269 (I[153] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 8270 (I[176] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 8271 (I[199] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 8272 (I[222] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 8273 (I[245] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 8274 (I[268] = (img)(_n4##x,y,z,v)), \
philpem@5 8275 (I[291] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 8276 (I[314] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 8277 (I[337] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 8278 (I[360] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 8279 (I[383] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 8280 (I[406] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 8281 (I[429] = (img)(_n4##x,_n7##y,z,v)), \
philpem@5 8282 (I[452] = (img)(_n4##x,_n8##y,z,v)), \
philpem@5 8283 (I[475] = (img)(_n4##x,_n9##y,z,v)), \
philpem@5 8284 (I[498] = (img)(_n4##x,_n10##y,z,v)), \
philpem@5 8285 (I[521] = (img)(_n4##x,_n11##y,z,v)), \
philpem@5 8286 (I[16] = (img)(_n5##x,_p11##y,z,v)), \
philpem@5 8287 (I[39] = (img)(_n5##x,_p10##y,z,v)), \
philpem@5 8288 (I[62] = (img)(_n5##x,_p9##y,z,v)), \
philpem@5 8289 (I[85] = (img)(_n5##x,_p8##y,z,v)), \
philpem@5 8290 (I[108] = (img)(_n5##x,_p7##y,z,v)), \
philpem@5 8291 (I[131] = (img)(_n5##x,_p6##y,z,v)), \
philpem@5 8292 (I[154] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 8293 (I[177] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 8294 (I[200] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 8295 (I[223] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 8296 (I[246] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 8297 (I[269] = (img)(_n5##x,y,z,v)), \
philpem@5 8298 (I[292] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 8299 (I[315] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 8300 (I[338] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 8301 (I[361] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 8302 (I[384] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 8303 (I[407] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 8304 (I[430] = (img)(_n5##x,_n7##y,z,v)), \
philpem@5 8305 (I[453] = (img)(_n5##x,_n8##y,z,v)), \
philpem@5 8306 (I[476] = (img)(_n5##x,_n9##y,z,v)), \
philpem@5 8307 (I[499] = (img)(_n5##x,_n10##y,z,v)), \
philpem@5 8308 (I[522] = (img)(_n5##x,_n11##y,z,v)), \
philpem@5 8309 (I[17] = (img)(_n6##x,_p11##y,z,v)), \
philpem@5 8310 (I[40] = (img)(_n6##x,_p10##y,z,v)), \
philpem@5 8311 (I[63] = (img)(_n6##x,_p9##y,z,v)), \
philpem@5 8312 (I[86] = (img)(_n6##x,_p8##y,z,v)), \
philpem@5 8313 (I[109] = (img)(_n6##x,_p7##y,z,v)), \
philpem@5 8314 (I[132] = (img)(_n6##x,_p6##y,z,v)), \
philpem@5 8315 (I[155] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 8316 (I[178] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 8317 (I[201] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 8318 (I[224] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 8319 (I[247] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 8320 (I[270] = (img)(_n6##x,y,z,v)), \
philpem@5 8321 (I[293] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 8322 (I[316] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 8323 (I[339] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 8324 (I[362] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 8325 (I[385] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 8326 (I[408] = (img)(_n6##x,_n6##y,z,v)), \
philpem@5 8327 (I[431] = (img)(_n6##x,_n7##y,z,v)), \
philpem@5 8328 (I[454] = (img)(_n6##x,_n8##y,z,v)), \
philpem@5 8329 (I[477] = (img)(_n6##x,_n9##y,z,v)), \
philpem@5 8330 (I[500] = (img)(_n6##x,_n10##y,z,v)), \
philpem@5 8331 (I[523] = (img)(_n6##x,_n11##y,z,v)), \
philpem@5 8332 (I[18] = (img)(_n7##x,_p11##y,z,v)), \
philpem@5 8333 (I[41] = (img)(_n7##x,_p10##y,z,v)), \
philpem@5 8334 (I[64] = (img)(_n7##x,_p9##y,z,v)), \
philpem@5 8335 (I[87] = (img)(_n7##x,_p8##y,z,v)), \
philpem@5 8336 (I[110] = (img)(_n7##x,_p7##y,z,v)), \
philpem@5 8337 (I[133] = (img)(_n7##x,_p6##y,z,v)), \
philpem@5 8338 (I[156] = (img)(_n7##x,_p5##y,z,v)), \
philpem@5 8339 (I[179] = (img)(_n7##x,_p4##y,z,v)), \
philpem@5 8340 (I[202] = (img)(_n7##x,_p3##y,z,v)), \
philpem@5 8341 (I[225] = (img)(_n7##x,_p2##y,z,v)), \
philpem@5 8342 (I[248] = (img)(_n7##x,_p1##y,z,v)), \
philpem@5 8343 (I[271] = (img)(_n7##x,y,z,v)), \
philpem@5 8344 (I[294] = (img)(_n7##x,_n1##y,z,v)), \
philpem@5 8345 (I[317] = (img)(_n7##x,_n2##y,z,v)), \
philpem@5 8346 (I[340] = (img)(_n7##x,_n3##y,z,v)), \
philpem@5 8347 (I[363] = (img)(_n7##x,_n4##y,z,v)), \
philpem@5 8348 (I[386] = (img)(_n7##x,_n5##y,z,v)), \
philpem@5 8349 (I[409] = (img)(_n7##x,_n6##y,z,v)), \
philpem@5 8350 (I[432] = (img)(_n7##x,_n7##y,z,v)), \
philpem@5 8351 (I[455] = (img)(_n7##x,_n8##y,z,v)), \
philpem@5 8352 (I[478] = (img)(_n7##x,_n9##y,z,v)), \
philpem@5 8353 (I[501] = (img)(_n7##x,_n10##y,z,v)), \
philpem@5 8354 (I[524] = (img)(_n7##x,_n11##y,z,v)), \
philpem@5 8355 (I[19] = (img)(_n8##x,_p11##y,z,v)), \
philpem@5 8356 (I[42] = (img)(_n8##x,_p10##y,z,v)), \
philpem@5 8357 (I[65] = (img)(_n8##x,_p9##y,z,v)), \
philpem@5 8358 (I[88] = (img)(_n8##x,_p8##y,z,v)), \
philpem@5 8359 (I[111] = (img)(_n8##x,_p7##y,z,v)), \
philpem@5 8360 (I[134] = (img)(_n8##x,_p6##y,z,v)), \
philpem@5 8361 (I[157] = (img)(_n8##x,_p5##y,z,v)), \
philpem@5 8362 (I[180] = (img)(_n8##x,_p4##y,z,v)), \
philpem@5 8363 (I[203] = (img)(_n8##x,_p3##y,z,v)), \
philpem@5 8364 (I[226] = (img)(_n8##x,_p2##y,z,v)), \
philpem@5 8365 (I[249] = (img)(_n8##x,_p1##y,z,v)), \
philpem@5 8366 (I[272] = (img)(_n8##x,y,z,v)), \
philpem@5 8367 (I[295] = (img)(_n8##x,_n1##y,z,v)), \
philpem@5 8368 (I[318] = (img)(_n8##x,_n2##y,z,v)), \
philpem@5 8369 (I[341] = (img)(_n8##x,_n3##y,z,v)), \
philpem@5 8370 (I[364] = (img)(_n8##x,_n4##y,z,v)), \
philpem@5 8371 (I[387] = (img)(_n8##x,_n5##y,z,v)), \
philpem@5 8372 (I[410] = (img)(_n8##x,_n6##y,z,v)), \
philpem@5 8373 (I[433] = (img)(_n8##x,_n7##y,z,v)), \
philpem@5 8374 (I[456] = (img)(_n8##x,_n8##y,z,v)), \
philpem@5 8375 (I[479] = (img)(_n8##x,_n9##y,z,v)), \
philpem@5 8376 (I[502] = (img)(_n8##x,_n10##y,z,v)), \
philpem@5 8377 (I[525] = (img)(_n8##x,_n11##y,z,v)), \
philpem@5 8378 (I[20] = (img)(_n9##x,_p11##y,z,v)), \
philpem@5 8379 (I[43] = (img)(_n9##x,_p10##y,z,v)), \
philpem@5 8380 (I[66] = (img)(_n9##x,_p9##y,z,v)), \
philpem@5 8381 (I[89] = (img)(_n9##x,_p8##y,z,v)), \
philpem@5 8382 (I[112] = (img)(_n9##x,_p7##y,z,v)), \
philpem@5 8383 (I[135] = (img)(_n9##x,_p6##y,z,v)), \
philpem@5 8384 (I[158] = (img)(_n9##x,_p5##y,z,v)), \
philpem@5 8385 (I[181] = (img)(_n9##x,_p4##y,z,v)), \
philpem@5 8386 (I[204] = (img)(_n9##x,_p3##y,z,v)), \
philpem@5 8387 (I[227] = (img)(_n9##x,_p2##y,z,v)), \
philpem@5 8388 (I[250] = (img)(_n9##x,_p1##y,z,v)), \
philpem@5 8389 (I[273] = (img)(_n9##x,y,z,v)), \
philpem@5 8390 (I[296] = (img)(_n9##x,_n1##y,z,v)), \
philpem@5 8391 (I[319] = (img)(_n9##x,_n2##y,z,v)), \
philpem@5 8392 (I[342] = (img)(_n9##x,_n3##y,z,v)), \
philpem@5 8393 (I[365] = (img)(_n9##x,_n4##y,z,v)), \
philpem@5 8394 (I[388] = (img)(_n9##x,_n5##y,z,v)), \
philpem@5 8395 (I[411] = (img)(_n9##x,_n6##y,z,v)), \
philpem@5 8396 (I[434] = (img)(_n9##x,_n7##y,z,v)), \
philpem@5 8397 (I[457] = (img)(_n9##x,_n8##y,z,v)), \
philpem@5 8398 (I[480] = (img)(_n9##x,_n9##y,z,v)), \
philpem@5 8399 (I[503] = (img)(_n9##x,_n10##y,z,v)), \
philpem@5 8400 (I[526] = (img)(_n9##x,_n11##y,z,v)), \
philpem@5 8401 (I[21] = (img)(_n10##x,_p11##y,z,v)), \
philpem@5 8402 (I[44] = (img)(_n10##x,_p10##y,z,v)), \
philpem@5 8403 (I[67] = (img)(_n10##x,_p9##y,z,v)), \
philpem@5 8404 (I[90] = (img)(_n10##x,_p8##y,z,v)), \
philpem@5 8405 (I[113] = (img)(_n10##x,_p7##y,z,v)), \
philpem@5 8406 (I[136] = (img)(_n10##x,_p6##y,z,v)), \
philpem@5 8407 (I[159] = (img)(_n10##x,_p5##y,z,v)), \
philpem@5 8408 (I[182] = (img)(_n10##x,_p4##y,z,v)), \
philpem@5 8409 (I[205] = (img)(_n10##x,_p3##y,z,v)), \
philpem@5 8410 (I[228] = (img)(_n10##x,_p2##y,z,v)), \
philpem@5 8411 (I[251] = (img)(_n10##x,_p1##y,z,v)), \
philpem@5 8412 (I[274] = (img)(_n10##x,y,z,v)), \
philpem@5 8413 (I[297] = (img)(_n10##x,_n1##y,z,v)), \
philpem@5 8414 (I[320] = (img)(_n10##x,_n2##y,z,v)), \
philpem@5 8415 (I[343] = (img)(_n10##x,_n3##y,z,v)), \
philpem@5 8416 (I[366] = (img)(_n10##x,_n4##y,z,v)), \
philpem@5 8417 (I[389] = (img)(_n10##x,_n5##y,z,v)), \
philpem@5 8418 (I[412] = (img)(_n10##x,_n6##y,z,v)), \
philpem@5 8419 (I[435] = (img)(_n10##x,_n7##y,z,v)), \
philpem@5 8420 (I[458] = (img)(_n10##x,_n8##y,z,v)), \
philpem@5 8421 (I[481] = (img)(_n10##x,_n9##y,z,v)), \
philpem@5 8422 (I[504] = (img)(_n10##x,_n10##y,z,v)), \
philpem@5 8423 (I[527] = (img)(_n10##x,_n11##y,z,v)), \
philpem@5 8424 x+11>=(int)((img).width)?(int)((img).width)-1:x+11); \
philpem@5 8425 x<=(int)(x1) && ((_n11##x<(int)((img).width) && ( \
philpem@5 8426 (I[22] = (img)(_n11##x,_p11##y,z,v)), \
philpem@5 8427 (I[45] = (img)(_n11##x,_p10##y,z,v)), \
philpem@5 8428 (I[68] = (img)(_n11##x,_p9##y,z,v)), \
philpem@5 8429 (I[91] = (img)(_n11##x,_p8##y,z,v)), \
philpem@5 8430 (I[114] = (img)(_n11##x,_p7##y,z,v)), \
philpem@5 8431 (I[137] = (img)(_n11##x,_p6##y,z,v)), \
philpem@5 8432 (I[160] = (img)(_n11##x,_p5##y,z,v)), \
philpem@5 8433 (I[183] = (img)(_n11##x,_p4##y,z,v)), \
philpem@5 8434 (I[206] = (img)(_n11##x,_p3##y,z,v)), \
philpem@5 8435 (I[229] = (img)(_n11##x,_p2##y,z,v)), \
philpem@5 8436 (I[252] = (img)(_n11##x,_p1##y,z,v)), \
philpem@5 8437 (I[275] = (img)(_n11##x,y,z,v)), \
philpem@5 8438 (I[298] = (img)(_n11##x,_n1##y,z,v)), \
philpem@5 8439 (I[321] = (img)(_n11##x,_n2##y,z,v)), \
philpem@5 8440 (I[344] = (img)(_n11##x,_n3##y,z,v)), \
philpem@5 8441 (I[367] = (img)(_n11##x,_n4##y,z,v)), \
philpem@5 8442 (I[390] = (img)(_n11##x,_n5##y,z,v)), \
philpem@5 8443 (I[413] = (img)(_n11##x,_n6##y,z,v)), \
philpem@5 8444 (I[436] = (img)(_n11##x,_n7##y,z,v)), \
philpem@5 8445 (I[459] = (img)(_n11##x,_n8##y,z,v)), \
philpem@5 8446 (I[482] = (img)(_n11##x,_n9##y,z,v)), \
philpem@5 8447 (I[505] = (img)(_n11##x,_n10##y,z,v)), \
philpem@5 8448 (I[528] = (img)(_n11##x,_n11##y,z,v)),1)) || \
philpem@5 8449 _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
philpem@5 8450 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], \
philpem@5 8451 I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], \
philpem@5 8452 I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], \
philpem@5 8453 I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], \
philpem@5 8454 I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], \
philpem@5 8455 I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], \
philpem@5 8456 I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], \
philpem@5 8457 I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], \
philpem@5 8458 I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], \
philpem@5 8459 I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], \
philpem@5 8460 I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], \
philpem@5 8461 I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], \
philpem@5 8462 I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], \
philpem@5 8463 I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], \
philpem@5 8464 I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], \
philpem@5 8465 I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], \
philpem@5 8466 I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], \
philpem@5 8467 I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], \
philpem@5 8468 I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], \
philpem@5 8469 I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], \
philpem@5 8470 I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], \
philpem@5 8471 I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], \
philpem@5 8472 I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], \
philpem@5 8473 _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x)
philpem@5 8474
philpem@5 8475 #define cimg_get23x23(img,x,y,z,v,I) \
philpem@5 8476 I[0] = (img)(_p11##x,_p11##y,z,v), I[1] = (img)(_p10##x,_p11##y,z,v), I[2] = (img)(_p9##x,_p11##y,z,v), I[3] = (img)(_p8##x,_p11##y,z,v), I[4] = (img)(_p7##x,_p11##y,z,v), I[5] = (img)(_p6##x,_p11##y,z,v), I[6] = (img)(_p5##x,_p11##y,z,v), I[7] = (img)(_p4##x,_p11##y,z,v), I[8] = (img)(_p3##x,_p11##y,z,v), I[9] = (img)(_p2##x,_p11##y,z,v), I[10] = (img)(_p1##x,_p11##y,z,v), I[11] = (img)(x,_p11##y,z,v), I[12] = (img)(_n1##x,_p11##y,z,v), I[13] = (img)(_n2##x,_p11##y,z,v), I[14] = (img)(_n3##x,_p11##y,z,v), I[15] = (img)(_n4##x,_p11##y,z,v), I[16] = (img)(_n5##x,_p11##y,z,v), I[17] = (img)(_n6##x,_p11##y,z,v), I[18] = (img)(_n7##x,_p11##y,z,v), I[19] = (img)(_n8##x,_p11##y,z,v), I[20] = (img)(_n9##x,_p11##y,z,v), I[21] = (img)(_n10##x,_p11##y,z,v), I[22] = (img)(_n11##x,_p11##y,z,v), \
philpem@5 8477 I[23] = (img)(_p11##x,_p10##y,z,v), I[24] = (img)(_p10##x,_p10##y,z,v), I[25] = (img)(_p9##x,_p10##y,z,v), I[26] = (img)(_p8##x,_p10##y,z,v), I[27] = (img)(_p7##x,_p10##y,z,v), I[28] = (img)(_p6##x,_p10##y,z,v), I[29] = (img)(_p5##x,_p10##y,z,v), I[30] = (img)(_p4##x,_p10##y,z,v), I[31] = (img)(_p3##x,_p10##y,z,v), I[32] = (img)(_p2##x,_p10##y,z,v), I[33] = (img)(_p1##x,_p10##y,z,v), I[34] = (img)(x,_p10##y,z,v), I[35] = (img)(_n1##x,_p10##y,z,v), I[36] = (img)(_n2##x,_p10##y,z,v), I[37] = (img)(_n3##x,_p10##y,z,v), I[38] = (img)(_n4##x,_p10##y,z,v), I[39] = (img)(_n5##x,_p10##y,z,v), I[40] = (img)(_n6##x,_p10##y,z,v), I[41] = (img)(_n7##x,_p10##y,z,v), I[42] = (img)(_n8##x,_p10##y,z,v), I[43] = (img)(_n9##x,_p10##y,z,v), I[44] = (img)(_n10##x,_p10##y,z,v), I[45] = (img)(_n11##x,_p10##y,z,v), \
philpem@5 8478 I[46] = (img)(_p11##x,_p9##y,z,v), I[47] = (img)(_p10##x,_p9##y,z,v), I[48] = (img)(_p9##x,_p9##y,z,v), I[49] = (img)(_p8##x,_p9##y,z,v), I[50] = (img)(_p7##x,_p9##y,z,v), I[51] = (img)(_p6##x,_p9##y,z,v), I[52] = (img)(_p5##x,_p9##y,z,v), I[53] = (img)(_p4##x,_p9##y,z,v), I[54] = (img)(_p3##x,_p9##y,z,v), I[55] = (img)(_p2##x,_p9##y,z,v), I[56] = (img)(_p1##x,_p9##y,z,v), I[57] = (img)(x,_p9##y,z,v), I[58] = (img)(_n1##x,_p9##y,z,v), I[59] = (img)(_n2##x,_p9##y,z,v), I[60] = (img)(_n3##x,_p9##y,z,v), I[61] = (img)(_n4##x,_p9##y,z,v), I[62] = (img)(_n5##x,_p9##y,z,v), I[63] = (img)(_n6##x,_p9##y,z,v), I[64] = (img)(_n7##x,_p9##y,z,v), I[65] = (img)(_n8##x,_p9##y,z,v), I[66] = (img)(_n9##x,_p9##y,z,v), I[67] = (img)(_n10##x,_p9##y,z,v), I[68] = (img)(_n11##x,_p9##y,z,v), \
philpem@5 8479 I[69] = (img)(_p11##x,_p8##y,z,v), I[70] = (img)(_p10##x,_p8##y,z,v), I[71] = (img)(_p9##x,_p8##y,z,v), I[72] = (img)(_p8##x,_p8##y,z,v), I[73] = (img)(_p7##x,_p8##y,z,v), I[74] = (img)(_p6##x,_p8##y,z,v), I[75] = (img)(_p5##x,_p8##y,z,v), I[76] = (img)(_p4##x,_p8##y,z,v), I[77] = (img)(_p3##x,_p8##y,z,v), I[78] = (img)(_p2##x,_p8##y,z,v), I[79] = (img)(_p1##x,_p8##y,z,v), I[80] = (img)(x,_p8##y,z,v), I[81] = (img)(_n1##x,_p8##y,z,v), I[82] = (img)(_n2##x,_p8##y,z,v), I[83] = (img)(_n3##x,_p8##y,z,v), I[84] = (img)(_n4##x,_p8##y,z,v), I[85] = (img)(_n5##x,_p8##y,z,v), I[86] = (img)(_n6##x,_p8##y,z,v), I[87] = (img)(_n7##x,_p8##y,z,v), I[88] = (img)(_n8##x,_p8##y,z,v), I[89] = (img)(_n9##x,_p8##y,z,v), I[90] = (img)(_n10##x,_p8##y,z,v), I[91] = (img)(_n11##x,_p8##y,z,v), \
philpem@5 8480 I[92] = (img)(_p11##x,_p7##y,z,v), I[93] = (img)(_p10##x,_p7##y,z,v), I[94] = (img)(_p9##x,_p7##y,z,v), I[95] = (img)(_p8##x,_p7##y,z,v), I[96] = (img)(_p7##x,_p7##y,z,v), I[97] = (img)(_p6##x,_p7##y,z,v), I[98] = (img)(_p5##x,_p7##y,z,v), I[99] = (img)(_p4##x,_p7##y,z,v), I[100] = (img)(_p3##x,_p7##y,z,v), I[101] = (img)(_p2##x,_p7##y,z,v), I[102] = (img)(_p1##x,_p7##y,z,v), I[103] = (img)(x,_p7##y,z,v), I[104] = (img)(_n1##x,_p7##y,z,v), I[105] = (img)(_n2##x,_p7##y,z,v), I[106] = (img)(_n3##x,_p7##y,z,v), I[107] = (img)(_n4##x,_p7##y,z,v), I[108] = (img)(_n5##x,_p7##y,z,v), I[109] = (img)(_n6##x,_p7##y,z,v), I[110] = (img)(_n7##x,_p7##y,z,v), I[111] = (img)(_n8##x,_p7##y,z,v), I[112] = (img)(_n9##x,_p7##y,z,v), I[113] = (img)(_n10##x,_p7##y,z,v), I[114] = (img)(_n11##x,_p7##y,z,v), \
philpem@5 8481 I[115] = (img)(_p11##x,_p6##y,z,v), I[116] = (img)(_p10##x,_p6##y,z,v), I[117] = (img)(_p9##x,_p6##y,z,v), I[118] = (img)(_p8##x,_p6##y,z,v), I[119] = (img)(_p7##x,_p6##y,z,v), I[120] = (img)(_p6##x,_p6##y,z,v), I[121] = (img)(_p5##x,_p6##y,z,v), I[122] = (img)(_p4##x,_p6##y,z,v), I[123] = (img)(_p3##x,_p6##y,z,v), I[124] = (img)(_p2##x,_p6##y,z,v), I[125] = (img)(_p1##x,_p6##y,z,v), I[126] = (img)(x,_p6##y,z,v), I[127] = (img)(_n1##x,_p6##y,z,v), I[128] = (img)(_n2##x,_p6##y,z,v), I[129] = (img)(_n3##x,_p6##y,z,v), I[130] = (img)(_n4##x,_p6##y,z,v), I[131] = (img)(_n5##x,_p6##y,z,v), I[132] = (img)(_n6##x,_p6##y,z,v), I[133] = (img)(_n7##x,_p6##y,z,v), I[134] = (img)(_n8##x,_p6##y,z,v), I[135] = (img)(_n9##x,_p6##y,z,v), I[136] = (img)(_n10##x,_p6##y,z,v), I[137] = (img)(_n11##x,_p6##y,z,v), \
philpem@5 8482 I[138] = (img)(_p11##x,_p5##y,z,v), I[139] = (img)(_p10##x,_p5##y,z,v), I[140] = (img)(_p9##x,_p5##y,z,v), I[141] = (img)(_p8##x,_p5##y,z,v), I[142] = (img)(_p7##x,_p5##y,z,v), I[143] = (img)(_p6##x,_p5##y,z,v), I[144] = (img)(_p5##x,_p5##y,z,v), I[145] = (img)(_p4##x,_p5##y,z,v), I[146] = (img)(_p3##x,_p5##y,z,v), I[147] = (img)(_p2##x,_p5##y,z,v), I[148] = (img)(_p1##x,_p5##y,z,v), I[149] = (img)(x,_p5##y,z,v), I[150] = (img)(_n1##x,_p5##y,z,v), I[151] = (img)(_n2##x,_p5##y,z,v), I[152] = (img)(_n3##x,_p5##y,z,v), I[153] = (img)(_n4##x,_p5##y,z,v), I[154] = (img)(_n5##x,_p5##y,z,v), I[155] = (img)(_n6##x,_p5##y,z,v), I[156] = (img)(_n7##x,_p5##y,z,v), I[157] = (img)(_n8##x,_p5##y,z,v), I[158] = (img)(_n9##x,_p5##y,z,v), I[159] = (img)(_n10##x,_p5##y,z,v), I[160] = (img)(_n11##x,_p5##y,z,v), \
philpem@5 8483 I[161] = (img)(_p11##x,_p4##y,z,v), I[162] = (img)(_p10##x,_p4##y,z,v), I[163] = (img)(_p9##x,_p4##y,z,v), I[164] = (img)(_p8##x,_p4##y,z,v), I[165] = (img)(_p7##x,_p4##y,z,v), I[166] = (img)(_p6##x,_p4##y,z,v), I[167] = (img)(_p5##x,_p4##y,z,v), I[168] = (img)(_p4##x,_p4##y,z,v), I[169] = (img)(_p3##x,_p4##y,z,v), I[170] = (img)(_p2##x,_p4##y,z,v), I[171] = (img)(_p1##x,_p4##y,z,v), I[172] = (img)(x,_p4##y,z,v), I[173] = (img)(_n1##x,_p4##y,z,v), I[174] = (img)(_n2##x,_p4##y,z,v), I[175] = (img)(_n3##x,_p4##y,z,v), I[176] = (img)(_n4##x,_p4##y,z,v), I[177] = (img)(_n5##x,_p4##y,z,v), I[178] = (img)(_n6##x,_p4##y,z,v), I[179] = (img)(_n7##x,_p4##y,z,v), I[180] = (img)(_n8##x,_p4##y,z,v), I[181] = (img)(_n9##x,_p4##y,z,v), I[182] = (img)(_n10##x,_p4##y,z,v), I[183] = (img)(_n11##x,_p4##y,z,v), \
philpem@5 8484 I[184] = (img)(_p11##x,_p3##y,z,v), I[185] = (img)(_p10##x,_p3##y,z,v), I[186] = (img)(_p9##x,_p3##y,z,v), I[187] = (img)(_p8##x,_p3##y,z,v), I[188] = (img)(_p7##x,_p3##y,z,v), I[189] = (img)(_p6##x,_p3##y,z,v), I[190] = (img)(_p5##x,_p3##y,z,v), I[191] = (img)(_p4##x,_p3##y,z,v), I[192] = (img)(_p3##x,_p3##y,z,v), I[193] = (img)(_p2##x,_p3##y,z,v), I[194] = (img)(_p1##x,_p3##y,z,v), I[195] = (img)(x,_p3##y,z,v), I[196] = (img)(_n1##x,_p3##y,z,v), I[197] = (img)(_n2##x,_p3##y,z,v), I[198] = (img)(_n3##x,_p3##y,z,v), I[199] = (img)(_n4##x,_p3##y,z,v), I[200] = (img)(_n5##x,_p3##y,z,v), I[201] = (img)(_n6##x,_p3##y,z,v), I[202] = (img)(_n7##x,_p3##y,z,v), I[203] = (img)(_n8##x,_p3##y,z,v), I[204] = (img)(_n9##x,_p3##y,z,v), I[205] = (img)(_n10##x,_p3##y,z,v), I[206] = (img)(_n11##x,_p3##y,z,v), \
philpem@5 8485 I[207] = (img)(_p11##x,_p2##y,z,v), I[208] = (img)(_p10##x,_p2##y,z,v), I[209] = (img)(_p9##x,_p2##y,z,v), I[210] = (img)(_p8##x,_p2##y,z,v), I[211] = (img)(_p7##x,_p2##y,z,v), I[212] = (img)(_p6##x,_p2##y,z,v), I[213] = (img)(_p5##x,_p2##y,z,v), I[214] = (img)(_p4##x,_p2##y,z,v), I[215] = (img)(_p3##x,_p2##y,z,v), I[216] = (img)(_p2##x,_p2##y,z,v), I[217] = (img)(_p1##x,_p2##y,z,v), I[218] = (img)(x,_p2##y,z,v), I[219] = (img)(_n1##x,_p2##y,z,v), I[220] = (img)(_n2##x,_p2##y,z,v), I[221] = (img)(_n3##x,_p2##y,z,v), I[222] = (img)(_n4##x,_p2##y,z,v), I[223] = (img)(_n5##x,_p2##y,z,v), I[224] = (img)(_n6##x,_p2##y,z,v), I[225] = (img)(_n7##x,_p2##y,z,v), I[226] = (img)(_n8##x,_p2##y,z,v), I[227] = (img)(_n9##x,_p2##y,z,v), I[228] = (img)(_n10##x,_p2##y,z,v), I[229] = (img)(_n11##x,_p2##y,z,v), \
philpem@5 8486 I[230] = (img)(_p11##x,_p1##y,z,v), I[231] = (img)(_p10##x,_p1##y,z,v), I[232] = (img)(_p9##x,_p1##y,z,v), I[233] = (img)(_p8##x,_p1##y,z,v), I[234] = (img)(_p7##x,_p1##y,z,v), I[235] = (img)(_p6##x,_p1##y,z,v), I[236] = (img)(_p5##x,_p1##y,z,v), I[237] = (img)(_p4##x,_p1##y,z,v), I[238] = (img)(_p3##x,_p1##y,z,v), I[239] = (img)(_p2##x,_p1##y,z,v), I[240] = (img)(_p1##x,_p1##y,z,v), I[241] = (img)(x,_p1##y,z,v), I[242] = (img)(_n1##x,_p1##y,z,v), I[243] = (img)(_n2##x,_p1##y,z,v), I[244] = (img)(_n3##x,_p1##y,z,v), I[245] = (img)(_n4##x,_p1##y,z,v), I[246] = (img)(_n5##x,_p1##y,z,v), I[247] = (img)(_n6##x,_p1##y,z,v), I[248] = (img)(_n7##x,_p1##y,z,v), I[249] = (img)(_n8##x,_p1##y,z,v), I[250] = (img)(_n9##x,_p1##y,z,v), I[251] = (img)(_n10##x,_p1##y,z,v), I[252] = (img)(_n11##x,_p1##y,z,v), \
philpem@5 8487 I[253] = (img)(_p11##x,y,z,v), I[254] = (img)(_p10##x,y,z,v), I[255] = (img)(_p9##x,y,z,v), I[256] = (img)(_p8##x,y,z,v), I[257] = (img)(_p7##x,y,z,v), I[258] = (img)(_p6##x,y,z,v), I[259] = (img)(_p5##x,y,z,v), I[260] = (img)(_p4##x,y,z,v), I[261] = (img)(_p3##x,y,z,v), I[262] = (img)(_p2##x,y,z,v), I[263] = (img)(_p1##x,y,z,v), I[264] = (img)(x,y,z,v), I[265] = (img)(_n1##x,y,z,v), I[266] = (img)(_n2##x,y,z,v), I[267] = (img)(_n3##x,y,z,v), I[268] = (img)(_n4##x,y,z,v), I[269] = (img)(_n5##x,y,z,v), I[270] = (img)(_n6##x,y,z,v), I[271] = (img)(_n7##x,y,z,v), I[272] = (img)(_n8##x,y,z,v), I[273] = (img)(_n9##x,y,z,v), I[274] = (img)(_n10##x,y,z,v), I[275] = (img)(_n11##x,y,z,v), \
philpem@5 8488 I[276] = (img)(_p11##x,_n1##y,z,v), I[277] = (img)(_p10##x,_n1##y,z,v), I[278] = (img)(_p9##x,_n1##y,z,v), I[279] = (img)(_p8##x,_n1##y,z,v), I[280] = (img)(_p7##x,_n1##y,z,v), I[281] = (img)(_p6##x,_n1##y,z,v), I[282] = (img)(_p5##x,_n1##y,z,v), I[283] = (img)(_p4##x,_n1##y,z,v), I[284] = (img)(_p3##x,_n1##y,z,v), I[285] = (img)(_p2##x,_n1##y,z,v), I[286] = (img)(_p1##x,_n1##y,z,v), I[287] = (img)(x,_n1##y,z,v), I[288] = (img)(_n1##x,_n1##y,z,v), I[289] = (img)(_n2##x,_n1##y,z,v), I[290] = (img)(_n3##x,_n1##y,z,v), I[291] = (img)(_n4##x,_n1##y,z,v), I[292] = (img)(_n5##x,_n1##y,z,v), I[293] = (img)(_n6##x,_n1##y,z,v), I[294] = (img)(_n7##x,_n1##y,z,v), I[295] = (img)(_n8##x,_n1##y,z,v), I[296] = (img)(_n9##x,_n1##y,z,v), I[297] = (img)(_n10##x,_n1##y,z,v), I[298] = (img)(_n11##x,_n1##y,z,v), \
philpem@5 8489 I[299] = (img)(_p11##x,_n2##y,z,v), I[300] = (img)(_p10##x,_n2##y,z,v), I[301] = (img)(_p9##x,_n2##y,z,v), I[302] = (img)(_p8##x,_n2##y,z,v), I[303] = (img)(_p7##x,_n2##y,z,v), I[304] = (img)(_p6##x,_n2##y,z,v), I[305] = (img)(_p5##x,_n2##y,z,v), I[306] = (img)(_p4##x,_n2##y,z,v), I[307] = (img)(_p3##x,_n2##y,z,v), I[308] = (img)(_p2##x,_n2##y,z,v), I[309] = (img)(_p1##x,_n2##y,z,v), I[310] = (img)(x,_n2##y,z,v), I[311] = (img)(_n1##x,_n2##y,z,v), I[312] = (img)(_n2##x,_n2##y,z,v), I[313] = (img)(_n3##x,_n2##y,z,v), I[314] = (img)(_n4##x,_n2##y,z,v), I[315] = (img)(_n5##x,_n2##y,z,v), I[316] = (img)(_n6##x,_n2##y,z,v), I[317] = (img)(_n7##x,_n2##y,z,v), I[318] = (img)(_n8##x,_n2##y,z,v), I[319] = (img)(_n9##x,_n2##y,z,v), I[320] = (img)(_n10##x,_n2##y,z,v), I[321] = (img)(_n11##x,_n2##y,z,v), \
philpem@5 8490 I[322] = (img)(_p11##x,_n3##y,z,v), I[323] = (img)(_p10##x,_n3##y,z,v), I[324] = (img)(_p9##x,_n3##y,z,v), I[325] = (img)(_p8##x,_n3##y,z,v), I[326] = (img)(_p7##x,_n3##y,z,v), I[327] = (img)(_p6##x,_n3##y,z,v), I[328] = (img)(_p5##x,_n3##y,z,v), I[329] = (img)(_p4##x,_n3##y,z,v), I[330] = (img)(_p3##x,_n3##y,z,v), I[331] = (img)(_p2##x,_n3##y,z,v), I[332] = (img)(_p1##x,_n3##y,z,v), I[333] = (img)(x,_n3##y,z,v), I[334] = (img)(_n1##x,_n3##y,z,v), I[335] = (img)(_n2##x,_n3##y,z,v), I[336] = (img)(_n3##x,_n3##y,z,v), I[337] = (img)(_n4##x,_n3##y,z,v), I[338] = (img)(_n5##x,_n3##y,z,v), I[339] = (img)(_n6##x,_n3##y,z,v), I[340] = (img)(_n7##x,_n3##y,z,v), I[341] = (img)(_n8##x,_n3##y,z,v), I[342] = (img)(_n9##x,_n3##y,z,v), I[343] = (img)(_n10##x,_n3##y,z,v), I[344] = (img)(_n11##x,_n3##y,z,v), \
philpem@5 8491 I[345] = (img)(_p11##x,_n4##y,z,v), I[346] = (img)(_p10##x,_n4##y,z,v), I[347] = (img)(_p9##x,_n4##y,z,v), I[348] = (img)(_p8##x,_n4##y,z,v), I[349] = (img)(_p7##x,_n4##y,z,v), I[350] = (img)(_p6##x,_n4##y,z,v), I[351] = (img)(_p5##x,_n4##y,z,v), I[352] = (img)(_p4##x,_n4##y,z,v), I[353] = (img)(_p3##x,_n4##y,z,v), I[354] = (img)(_p2##x,_n4##y,z,v), I[355] = (img)(_p1##x,_n4##y,z,v), I[356] = (img)(x,_n4##y,z,v), I[357] = (img)(_n1##x,_n4##y,z,v), I[358] = (img)(_n2##x,_n4##y,z,v), I[359] = (img)(_n3##x,_n4##y,z,v), I[360] = (img)(_n4##x,_n4##y,z,v), I[361] = (img)(_n5##x,_n4##y,z,v), I[362] = (img)(_n6##x,_n4##y,z,v), I[363] = (img)(_n7##x,_n4##y,z,v), I[364] = (img)(_n8##x,_n4##y,z,v), I[365] = (img)(_n9##x,_n4##y,z,v), I[366] = (img)(_n10##x,_n4##y,z,v), I[367] = (img)(_n11##x,_n4##y,z,v), \
philpem@5 8492 I[368] = (img)(_p11##x,_n5##y,z,v), I[369] = (img)(_p10##x,_n5##y,z,v), I[370] = (img)(_p9##x,_n5##y,z,v), I[371] = (img)(_p8##x,_n5##y,z,v), I[372] = (img)(_p7##x,_n5##y,z,v), I[373] = (img)(_p6##x,_n5##y,z,v), I[374] = (img)(_p5##x,_n5##y,z,v), I[375] = (img)(_p4##x,_n5##y,z,v), I[376] = (img)(_p3##x,_n5##y,z,v), I[377] = (img)(_p2##x,_n5##y,z,v), I[378] = (img)(_p1##x,_n5##y,z,v), I[379] = (img)(x,_n5##y,z,v), I[380] = (img)(_n1##x,_n5##y,z,v), I[381] = (img)(_n2##x,_n5##y,z,v), I[382] = (img)(_n3##x,_n5##y,z,v), I[383] = (img)(_n4##x,_n5##y,z,v), I[384] = (img)(_n5##x,_n5##y,z,v), I[385] = (img)(_n6##x,_n5##y,z,v), I[386] = (img)(_n7##x,_n5##y,z,v), I[387] = (img)(_n8##x,_n5##y,z,v), I[388] = (img)(_n9##x,_n5##y,z,v), I[389] = (img)(_n10##x,_n5##y,z,v), I[390] = (img)(_n11##x,_n5##y,z,v), \
philpem@5 8493 I[391] = (img)(_p11##x,_n6##y,z,v), I[392] = (img)(_p10##x,_n6##y,z,v), I[393] = (img)(_p9##x,_n6##y,z,v), I[394] = (img)(_p8##x,_n6##y,z,v), I[395] = (img)(_p7##x,_n6##y,z,v), I[396] = (img)(_p6##x,_n6##y,z,v), I[397] = (img)(_p5##x,_n6##y,z,v), I[398] = (img)(_p4##x,_n6##y,z,v), I[399] = (img)(_p3##x,_n6##y,z,v), I[400] = (img)(_p2##x,_n6##y,z,v), I[401] = (img)(_p1##x,_n6##y,z,v), I[402] = (img)(x,_n6##y,z,v), I[403] = (img)(_n1##x,_n6##y,z,v), I[404] = (img)(_n2##x,_n6##y,z,v), I[405] = (img)(_n3##x,_n6##y,z,v), I[406] = (img)(_n4##x,_n6##y,z,v), I[407] = (img)(_n5##x,_n6##y,z,v), I[408] = (img)(_n6##x,_n6##y,z,v), I[409] = (img)(_n7##x,_n6##y,z,v), I[410] = (img)(_n8##x,_n6##y,z,v), I[411] = (img)(_n9##x,_n6##y,z,v), I[412] = (img)(_n10##x,_n6##y,z,v), I[413] = (img)(_n11##x,_n6##y,z,v), \
philpem@5 8494 I[414] = (img)(_p11##x,_n7##y,z,v), I[415] = (img)(_p10##x,_n7##y,z,v), I[416] = (img)(_p9##x,_n7##y,z,v), I[417] = (img)(_p8##x,_n7##y,z,v), I[418] = (img)(_p7##x,_n7##y,z,v), I[419] = (img)(_p6##x,_n7##y,z,v), I[420] = (img)(_p5##x,_n7##y,z,v), I[421] = (img)(_p4##x,_n7##y,z,v), I[422] = (img)(_p3##x,_n7##y,z,v), I[423] = (img)(_p2##x,_n7##y,z,v), I[424] = (img)(_p1##x,_n7##y,z,v), I[425] = (img)(x,_n7##y,z,v), I[426] = (img)(_n1##x,_n7##y,z,v), I[427] = (img)(_n2##x,_n7##y,z,v), I[428] = (img)(_n3##x,_n7##y,z,v), I[429] = (img)(_n4##x,_n7##y,z,v), I[430] = (img)(_n5##x,_n7##y,z,v), I[431] = (img)(_n6##x,_n7##y,z,v), I[432] = (img)(_n7##x,_n7##y,z,v), I[433] = (img)(_n8##x,_n7##y,z,v), I[434] = (img)(_n9##x,_n7##y,z,v), I[435] = (img)(_n10##x,_n7##y,z,v), I[436] = (img)(_n11##x,_n7##y,z,v), \
philpem@5 8495 I[437] = (img)(_p11##x,_n8##y,z,v), I[438] = (img)(_p10##x,_n8##y,z,v), I[439] = (img)(_p9##x,_n8##y,z,v), I[440] = (img)(_p8##x,_n8##y,z,v), I[441] = (img)(_p7##x,_n8##y,z,v), I[442] = (img)(_p6##x,_n8##y,z,v), I[443] = (img)(_p5##x,_n8##y,z,v), I[444] = (img)(_p4##x,_n8##y,z,v), I[445] = (img)(_p3##x,_n8##y,z,v), I[446] = (img)(_p2##x,_n8##y,z,v), I[447] = (img)(_p1##x,_n8##y,z,v), I[448] = (img)(x,_n8##y,z,v), I[449] = (img)(_n1##x,_n8##y,z,v), I[450] = (img)(_n2##x,_n8##y,z,v), I[451] = (img)(_n3##x,_n8##y,z,v), I[452] = (img)(_n4##x,_n8##y,z,v), I[453] = (img)(_n5##x,_n8##y,z,v), I[454] = (img)(_n6##x,_n8##y,z,v), I[455] = (img)(_n7##x,_n8##y,z,v), I[456] = (img)(_n8##x,_n8##y,z,v), I[457] = (img)(_n9##x,_n8##y,z,v), I[458] = (img)(_n10##x,_n8##y,z,v), I[459] = (img)(_n11##x,_n8##y,z,v), \
philpem@5 8496 I[460] = (img)(_p11##x,_n9##y,z,v), I[461] = (img)(_p10##x,_n9##y,z,v), I[462] = (img)(_p9##x,_n9##y,z,v), I[463] = (img)(_p8##x,_n9##y,z,v), I[464] = (img)(_p7##x,_n9##y,z,v), I[465] = (img)(_p6##x,_n9##y,z,v), I[466] = (img)(_p5##x,_n9##y,z,v), I[467] = (img)(_p4##x,_n9##y,z,v), I[468] = (img)(_p3##x,_n9##y,z,v), I[469] = (img)(_p2##x,_n9##y,z,v), I[470] = (img)(_p1##x,_n9##y,z,v), I[471] = (img)(x,_n9##y,z,v), I[472] = (img)(_n1##x,_n9##y,z,v), I[473] = (img)(_n2##x,_n9##y,z,v), I[474] = (img)(_n3##x,_n9##y,z,v), I[475] = (img)(_n4##x,_n9##y,z,v), I[476] = (img)(_n5##x,_n9##y,z,v), I[477] = (img)(_n6##x,_n9##y,z,v), I[478] = (img)(_n7##x,_n9##y,z,v), I[479] = (img)(_n8##x,_n9##y,z,v), I[480] = (img)(_n9##x,_n9##y,z,v), I[481] = (img)(_n10##x,_n9##y,z,v), I[482] = (img)(_n11##x,_n9##y,z,v), \
philpem@5 8497 I[483] = (img)(_p11##x,_n10##y,z,v), I[484] = (img)(_p10##x,_n10##y,z,v), I[485] = (img)(_p9##x,_n10##y,z,v), I[486] = (img)(_p8##x,_n10##y,z,v), I[487] = (img)(_p7##x,_n10##y,z,v), I[488] = (img)(_p6##x,_n10##y,z,v), I[489] = (img)(_p5##x,_n10##y,z,v), I[490] = (img)(_p4##x,_n10##y,z,v), I[491] = (img)(_p3##x,_n10##y,z,v), I[492] = (img)(_p2##x,_n10##y,z,v), I[493] = (img)(_p1##x,_n10##y,z,v), I[494] = (img)(x,_n10##y,z,v), I[495] = (img)(_n1##x,_n10##y,z,v), I[496] = (img)(_n2##x,_n10##y,z,v), I[497] = (img)(_n3##x,_n10##y,z,v), I[498] = (img)(_n4##x,_n10##y,z,v), I[499] = (img)(_n5##x,_n10##y,z,v), I[500] = (img)(_n6##x,_n10##y,z,v), I[501] = (img)(_n7##x,_n10##y,z,v), I[502] = (img)(_n8##x,_n10##y,z,v), I[503] = (img)(_n9##x,_n10##y,z,v), I[504] = (img)(_n10##x,_n10##y,z,v), I[505] = (img)(_n11##x,_n10##y,z,v), \
philpem@5 8498 I[506] = (img)(_p11##x,_n11##y,z,v), I[507] = (img)(_p10##x,_n11##y,z,v), I[508] = (img)(_p9##x,_n11##y,z,v), I[509] = (img)(_p8##x,_n11##y,z,v), I[510] = (img)(_p7##x,_n11##y,z,v), I[511] = (img)(_p6##x,_n11##y,z,v), I[512] = (img)(_p5##x,_n11##y,z,v), I[513] = (img)(_p4##x,_n11##y,z,v), I[514] = (img)(_p3##x,_n11##y,z,v), I[515] = (img)(_p2##x,_n11##y,z,v), I[516] = (img)(_p1##x,_n11##y,z,v), I[517] = (img)(x,_n11##y,z,v), I[518] = (img)(_n1##x,_n11##y,z,v), I[519] = (img)(_n2##x,_n11##y,z,v), I[520] = (img)(_n3##x,_n11##y,z,v), I[521] = (img)(_n4##x,_n11##y,z,v), I[522] = (img)(_n5##x,_n11##y,z,v), I[523] = (img)(_n6##x,_n11##y,z,v), I[524] = (img)(_n7##x,_n11##y,z,v), I[525] = (img)(_n8##x,_n11##y,z,v), I[526] = (img)(_n9##x,_n11##y,z,v), I[527] = (img)(_n10##x,_n11##y,z,v), I[528] = (img)(_n11##x,_n11##y,z,v);
philpem@5 8499
philpem@5 8500 // Define 24x24 loop macros for CImg
philpem@5 8501 //----------------------------------
philpem@5 8502 #define cimg_for24(bound,i) for (int i = 0, \
philpem@5 8503 _p11##i = 0, _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
philpem@5 8504 _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \
philpem@5 8505 _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \
philpem@5 8506 _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \
philpem@5 8507 _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \
philpem@5 8508 _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \
philpem@5 8509 _n6##i = 6>=(int)(bound)?(int)(bound)-1:6, \
philpem@5 8510 _n7##i = 7>=(int)(bound)?(int)(bound)-1:7, \
philpem@5 8511 _n8##i = 8>=(int)(bound)?(int)(bound)-1:8, \
philpem@5 8512 _n9##i = 9>=(int)(bound)?(int)(bound)-1:9, \
philpem@5 8513 _n10##i = 10>=(int)(bound)?(int)(bound)-1:10, \
philpem@5 8514 _n11##i = 11>=(int)(bound)?(int)(bound)-1:11, \
philpem@5 8515 _n12##i = 12>=(int)(bound)?(int)(bound)-1:12; \
philpem@5 8516 _n12##i<(int)(bound) || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 8517 i==(_n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
philpem@5 8518 _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 8519 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i)
philpem@5 8520
philpem@5 8521 #define cimg_for24X(img,x) cimg_for24((img).width,x)
philpem@5 8522 #define cimg_for24Y(img,y) cimg_for24((img).height,y)
philpem@5 8523 #define cimg_for24Z(img,z) cimg_for24((img).depth,z)
philpem@5 8524 #define cimg_for24V(img,v) cimg_for24((img).dim,v)
philpem@5 8525 #define cimg_for24XY(img,x,y) cimg_for24Y(img,y) cimg_for24X(img,x)
philpem@5 8526 #define cimg_for24XZ(img,x,z) cimg_for24Z(img,z) cimg_for24X(img,x)
philpem@5 8527 #define cimg_for24XV(img,x,v) cimg_for24V(img,v) cimg_for24X(img,x)
philpem@5 8528 #define cimg_for24YZ(img,y,z) cimg_for24Z(img,z) cimg_for24Y(img,y)
philpem@5 8529 #define cimg_for24YV(img,y,v) cimg_for24V(img,v) cimg_for24Y(img,y)
philpem@5 8530 #define cimg_for24ZV(img,z,v) cimg_for24V(img,v) cimg_for24Z(img,z)
philpem@5 8531 #define cimg_for24XYZ(img,x,y,z) cimg_for24Z(img,z) cimg_for24XY(img,x,y)
philpem@5 8532 #define cimg_for24XZV(img,x,z,v) cimg_for24V(img,v) cimg_for24XZ(img,x,z)
philpem@5 8533 #define cimg_for24YZV(img,y,z,v) cimg_for24V(img,v) cimg_for24YZ(img,y,z)
philpem@5 8534 #define cimg_for24XYZV(img,x,y,z,v) cimg_for24V(img,v) cimg_for24XYZ(img,x,y,z)
philpem@5 8535
philpem@5 8536 #define cimg_for_in24(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
philpem@5 8537 _p11##i = i-11<0?0:i-11, \
philpem@5 8538 _p10##i = i-10<0?0:i-10, \
philpem@5 8539 _p9##i = i-9<0?0:i-9, \
philpem@5 8540 _p8##i = i-8<0?0:i-8, \
philpem@5 8541 _p7##i = i-7<0?0:i-7, \
philpem@5 8542 _p6##i = i-6<0?0:i-6, \
philpem@5 8543 _p5##i = i-5<0?0:i-5, \
philpem@5 8544 _p4##i = i-4<0?0:i-4, \
philpem@5 8545 _p3##i = i-3<0?0:i-3, \
philpem@5 8546 _p2##i = i-2<0?0:i-2, \
philpem@5 8547 _p1##i = i-1<0?0:i-1, \
philpem@5 8548 _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \
philpem@5 8549 _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \
philpem@5 8550 _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \
philpem@5 8551 _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \
philpem@5 8552 _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \
philpem@5 8553 _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6, \
philpem@5 8554 _n7##i = i+7>=(int)(bound)?(int)(bound)-1:i+7, \
philpem@5 8555 _n8##i = i+8>=(int)(bound)?(int)(bound)-1:i+8, \
philpem@5 8556 _n9##i = i+9>=(int)(bound)?(int)(bound)-1:i+9, \
philpem@5 8557 _n10##i = i+10>=(int)(bound)?(int)(bound)-1:i+10, \
philpem@5 8558 _n11##i = i+11>=(int)(bound)?(int)(bound)-1:i+11, \
philpem@5 8559 _n12##i = i+12>=(int)(bound)?(int)(bound)-1:i+12; \
philpem@5 8560 i<=(int)(i1) && (_n12##i<(int)(bound) || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 8561 i==(_n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
philpem@5 8562 _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 8563 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i)
philpem@5 8564
philpem@5 8565 #define cimg_for_in24X(img,x0,x1,x) cimg_for_in24((img).width,x0,x1,x)
philpem@5 8566 #define cimg_for_in24Y(img,y0,y1,y) cimg_for_in24((img).height,y0,y1,y)
philpem@5 8567 #define cimg_for_in24Z(img,z0,z1,z) cimg_for_in24((img).depth,z0,z1,z)
philpem@5 8568 #define cimg_for_in24V(img,v0,v1,v) cimg_for_in24((img).dim,v0,v1,v)
philpem@5 8569 #define cimg_for_in24XY(img,x0,y0,x1,y1,x,y) cimg_for_in24Y(img,y0,y1,y) cimg_for_in24X(img,x0,x1,x)
philpem@5 8570 #define cimg_for_in24XZ(img,x0,z0,x1,z1,x,z) cimg_for_in24Z(img,z0,z1,z) cimg_for_in24X(img,x0,x1,x)
philpem@5 8571 #define cimg_for_in24XV(img,x0,v0,x1,v1,x,v) cimg_for_in24V(img,v0,v1,v) cimg_for_in24X(img,x0,x1,x)
philpem@5 8572 #define cimg_for_in24YZ(img,y0,z0,y1,z1,y,z) cimg_for_in24Z(img,z0,z1,z) cimg_for_in24Y(img,y0,y1,y)
philpem@5 8573 #define cimg_for_in24YV(img,y0,v0,y1,v1,y,v) cimg_for_in24V(img,v0,v1,v) cimg_for_in24Y(img,y0,y1,y)
philpem@5 8574 #define cimg_for_in24ZV(img,z0,v0,z1,v1,z,v) cimg_for_in24V(img,v0,v1,v) cimg_for_in24Z(img,z0,z1,z)
philpem@5 8575 #define cimg_for_in24XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in24Z(img,z0,z1,z) cimg_for_in24XY(img,x0,y0,x1,y1,x,y)
philpem@5 8576 #define cimg_for_in24XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in24V(img,v0,v1,v) cimg_for_in24XZ(img,x0,y0,x1,y1,x,z)
philpem@5 8577 #define cimg_for_in24YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in24V(img,v0,v1,v) cimg_for_in24YZ(img,y0,z0,y1,z1,y,z)
philpem@5 8578 #define cimg_for_in24XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in24V(img,v0,v1,v) cimg_for_in24XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
philpem@5 8579
philpem@5 8580 #define cimg_for24x24(img,x,y,z,v,I) \
philpem@5 8581 cimg_for24((img).height,y) for (int x = 0, \
philpem@5 8582 _p11##x = 0, _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
philpem@5 8583 _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \
philpem@5 8584 _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \
philpem@5 8585 _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \
philpem@5 8586 _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \
philpem@5 8587 _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \
philpem@5 8588 _n6##x = 6>=((img).width)?(int)((img).width)-1:6, \
philpem@5 8589 _n7##x = 7>=((img).width)?(int)((img).width)-1:7, \
philpem@5 8590 _n8##x = 8>=((img).width)?(int)((img).width)-1:8, \
philpem@5 8591 _n9##x = 9>=((img).width)?(int)((img).width)-1:9, \
philpem@5 8592 _n10##x = 10>=((img).width)?(int)((img).width)-1:10, \
philpem@5 8593 _n11##x = 11>=((img).width)?(int)((img).width)-1:11, \
philpem@5 8594 _n12##x = (int)( \
philpem@5 8595 (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = I[11] = (img)(0,_p11##y,z,v)), \
philpem@5 8596 (I[24] = I[25] = I[26] = I[27] = I[28] = I[29] = I[30] = I[31] = I[32] = I[33] = I[34] = I[35] = (img)(0,_p10##y,z,v)), \
philpem@5 8597 (I[48] = I[49] = I[50] = I[51] = I[52] = I[53] = I[54] = I[55] = I[56] = I[57] = I[58] = I[59] = (img)(0,_p9##y,z,v)), \
philpem@5 8598 (I[72] = I[73] = I[74] = I[75] = I[76] = I[77] = I[78] = I[79] = I[80] = I[81] = I[82] = I[83] = (img)(0,_p8##y,z,v)), \
philpem@5 8599 (I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = I[104] = I[105] = I[106] = I[107] = (img)(0,_p7##y,z,v)), \
philpem@5 8600 (I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = I[126] = I[127] = I[128] = I[129] = I[130] = I[131] = (img)(0,_p6##y,z,v)), \
philpem@5 8601 (I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = I[150] = I[151] = I[152] = I[153] = I[154] = I[155] = (img)(0,_p5##y,z,v)), \
philpem@5 8602 (I[168] = I[169] = I[170] = I[171] = I[172] = I[173] = I[174] = I[175] = I[176] = I[177] = I[178] = I[179] = (img)(0,_p4##y,z,v)), \
philpem@5 8603 (I[192] = I[193] = I[194] = I[195] = I[196] = I[197] = I[198] = I[199] = I[200] = I[201] = I[202] = I[203] = (img)(0,_p3##y,z,v)), \
philpem@5 8604 (I[216] = I[217] = I[218] = I[219] = I[220] = I[221] = I[222] = I[223] = I[224] = I[225] = I[226] = I[227] = (img)(0,_p2##y,z,v)), \
philpem@5 8605 (I[240] = I[241] = I[242] = I[243] = I[244] = I[245] = I[246] = I[247] = I[248] = I[249] = I[250] = I[251] = (img)(0,_p1##y,z,v)), \
philpem@5 8606 (I[264] = I[265] = I[266] = I[267] = I[268] = I[269] = I[270] = I[271] = I[272] = I[273] = I[274] = I[275] = (img)(0,y,z,v)), \
philpem@5 8607 (I[288] = I[289] = I[290] = I[291] = I[292] = I[293] = I[294] = I[295] = I[296] = I[297] = I[298] = I[299] = (img)(0,_n1##y,z,v)), \
philpem@5 8608 (I[312] = I[313] = I[314] = I[315] = I[316] = I[317] = I[318] = I[319] = I[320] = I[321] = I[322] = I[323] = (img)(0,_n2##y,z,v)), \
philpem@5 8609 (I[336] = I[337] = I[338] = I[339] = I[340] = I[341] = I[342] = I[343] = I[344] = I[345] = I[346] = I[347] = (img)(0,_n3##y,z,v)), \
philpem@5 8610 (I[360] = I[361] = I[362] = I[363] = I[364] = I[365] = I[366] = I[367] = I[368] = I[369] = I[370] = I[371] = (img)(0,_n4##y,z,v)), \
philpem@5 8611 (I[384] = I[385] = I[386] = I[387] = I[388] = I[389] = I[390] = I[391] = I[392] = I[393] = I[394] = I[395] = (img)(0,_n5##y,z,v)), \
philpem@5 8612 (I[408] = I[409] = I[410] = I[411] = I[412] = I[413] = I[414] = I[415] = I[416] = I[417] = I[418] = I[419] = (img)(0,_n6##y,z,v)), \
philpem@5 8613 (I[432] = I[433] = I[434] = I[435] = I[436] = I[437] = I[438] = I[439] = I[440] = I[441] = I[442] = I[443] = (img)(0,_n7##y,z,v)), \
philpem@5 8614 (I[456] = I[457] = I[458] = I[459] = I[460] = I[461] = I[462] = I[463] = I[464] = I[465] = I[466] = I[467] = (img)(0,_n8##y,z,v)), \
philpem@5 8615 (I[480] = I[481] = I[482] = I[483] = I[484] = I[485] = I[486] = I[487] = I[488] = I[489] = I[490] = I[491] = (img)(0,_n9##y,z,v)), \
philpem@5 8616 (I[504] = I[505] = I[506] = I[507] = I[508] = I[509] = I[510] = I[511] = I[512] = I[513] = I[514] = I[515] = (img)(0,_n10##y,z,v)), \
philpem@5 8617 (I[528] = I[529] = I[530] = I[531] = I[532] = I[533] = I[534] = I[535] = I[536] = I[537] = I[538] = I[539] = (img)(0,_n11##y,z,v)), \
philpem@5 8618 (I[552] = I[553] = I[554] = I[555] = I[556] = I[557] = I[558] = I[559] = I[560] = I[561] = I[562] = I[563] = (img)(0,_n12##y,z,v)), \
philpem@5 8619 (I[12] = (img)(_n1##x,_p11##y,z,v)), \
philpem@5 8620 (I[36] = (img)(_n1##x,_p10##y,z,v)), \
philpem@5 8621 (I[60] = (img)(_n1##x,_p9##y,z,v)), \
philpem@5 8622 (I[84] = (img)(_n1##x,_p8##y,z,v)), \
philpem@5 8623 (I[108] = (img)(_n1##x,_p7##y,z,v)), \
philpem@5 8624 (I[132] = (img)(_n1##x,_p6##y,z,v)), \
philpem@5 8625 (I[156] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 8626 (I[180] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 8627 (I[204] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 8628 (I[228] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 8629 (I[252] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 8630 (I[276] = (img)(_n1##x,y,z,v)), \
philpem@5 8631 (I[300] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 8632 (I[324] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 8633 (I[348] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 8634 (I[372] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 8635 (I[396] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 8636 (I[420] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 8637 (I[444] = (img)(_n1##x,_n7##y,z,v)), \
philpem@5 8638 (I[468] = (img)(_n1##x,_n8##y,z,v)), \
philpem@5 8639 (I[492] = (img)(_n1##x,_n9##y,z,v)), \
philpem@5 8640 (I[516] = (img)(_n1##x,_n10##y,z,v)), \
philpem@5 8641 (I[540] = (img)(_n1##x,_n11##y,z,v)), \
philpem@5 8642 (I[564] = (img)(_n1##x,_n12##y,z,v)), \
philpem@5 8643 (I[13] = (img)(_n2##x,_p11##y,z,v)), \
philpem@5 8644 (I[37] = (img)(_n2##x,_p10##y,z,v)), \
philpem@5 8645 (I[61] = (img)(_n2##x,_p9##y,z,v)), \
philpem@5 8646 (I[85] = (img)(_n2##x,_p8##y,z,v)), \
philpem@5 8647 (I[109] = (img)(_n2##x,_p7##y,z,v)), \
philpem@5 8648 (I[133] = (img)(_n2##x,_p6##y,z,v)), \
philpem@5 8649 (I[157] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 8650 (I[181] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 8651 (I[205] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 8652 (I[229] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 8653 (I[253] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 8654 (I[277] = (img)(_n2##x,y,z,v)), \
philpem@5 8655 (I[301] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 8656 (I[325] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 8657 (I[349] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 8658 (I[373] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 8659 (I[397] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 8660 (I[421] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 8661 (I[445] = (img)(_n2##x,_n7##y,z,v)), \
philpem@5 8662 (I[469] = (img)(_n2##x,_n8##y,z,v)), \
philpem@5 8663 (I[493] = (img)(_n2##x,_n9##y,z,v)), \
philpem@5 8664 (I[517] = (img)(_n2##x,_n10##y,z,v)), \
philpem@5 8665 (I[541] = (img)(_n2##x,_n11##y,z,v)), \
philpem@5 8666 (I[565] = (img)(_n2##x,_n12##y,z,v)), \
philpem@5 8667 (I[14] = (img)(_n3##x,_p11##y,z,v)), \
philpem@5 8668 (I[38] = (img)(_n3##x,_p10##y,z,v)), \
philpem@5 8669 (I[62] = (img)(_n3##x,_p9##y,z,v)), \
philpem@5 8670 (I[86] = (img)(_n3##x,_p8##y,z,v)), \
philpem@5 8671 (I[110] = (img)(_n3##x,_p7##y,z,v)), \
philpem@5 8672 (I[134] = (img)(_n3##x,_p6##y,z,v)), \
philpem@5 8673 (I[158] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 8674 (I[182] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 8675 (I[206] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 8676 (I[230] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 8677 (I[254] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 8678 (I[278] = (img)(_n3##x,y,z,v)), \
philpem@5 8679 (I[302] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 8680 (I[326] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 8681 (I[350] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 8682 (I[374] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 8683 (I[398] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 8684 (I[422] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 8685 (I[446] = (img)(_n3##x,_n7##y,z,v)), \
philpem@5 8686 (I[470] = (img)(_n3##x,_n8##y,z,v)), \
philpem@5 8687 (I[494] = (img)(_n3##x,_n9##y,z,v)), \
philpem@5 8688 (I[518] = (img)(_n3##x,_n10##y,z,v)), \
philpem@5 8689 (I[542] = (img)(_n3##x,_n11##y,z,v)), \
philpem@5 8690 (I[566] = (img)(_n3##x,_n12##y,z,v)), \
philpem@5 8691 (I[15] = (img)(_n4##x,_p11##y,z,v)), \
philpem@5 8692 (I[39] = (img)(_n4##x,_p10##y,z,v)), \
philpem@5 8693 (I[63] = (img)(_n4##x,_p9##y,z,v)), \
philpem@5 8694 (I[87] = (img)(_n4##x,_p8##y,z,v)), \
philpem@5 8695 (I[111] = (img)(_n4##x,_p7##y,z,v)), \
philpem@5 8696 (I[135] = (img)(_n4##x,_p6##y,z,v)), \
philpem@5 8697 (I[159] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 8698 (I[183] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 8699 (I[207] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 8700 (I[231] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 8701 (I[255] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 8702 (I[279] = (img)(_n4##x,y,z,v)), \
philpem@5 8703 (I[303] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 8704 (I[327] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 8705 (I[351] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 8706 (I[375] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 8707 (I[399] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 8708 (I[423] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 8709 (I[447] = (img)(_n4##x,_n7##y,z,v)), \
philpem@5 8710 (I[471] = (img)(_n4##x,_n8##y,z,v)), \
philpem@5 8711 (I[495] = (img)(_n4##x,_n9##y,z,v)), \
philpem@5 8712 (I[519] = (img)(_n4##x,_n10##y,z,v)), \
philpem@5 8713 (I[543] = (img)(_n4##x,_n11##y,z,v)), \
philpem@5 8714 (I[567] = (img)(_n4##x,_n12##y,z,v)), \
philpem@5 8715 (I[16] = (img)(_n5##x,_p11##y,z,v)), \
philpem@5 8716 (I[40] = (img)(_n5##x,_p10##y,z,v)), \
philpem@5 8717 (I[64] = (img)(_n5##x,_p9##y,z,v)), \
philpem@5 8718 (I[88] = (img)(_n5##x,_p8##y,z,v)), \
philpem@5 8719 (I[112] = (img)(_n5##x,_p7##y,z,v)), \
philpem@5 8720 (I[136] = (img)(_n5##x,_p6##y,z,v)), \
philpem@5 8721 (I[160] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 8722 (I[184] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 8723 (I[208] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 8724 (I[232] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 8725 (I[256] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 8726 (I[280] = (img)(_n5##x,y,z,v)), \
philpem@5 8727 (I[304] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 8728 (I[328] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 8729 (I[352] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 8730 (I[376] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 8731 (I[400] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 8732 (I[424] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 8733 (I[448] = (img)(_n5##x,_n7##y,z,v)), \
philpem@5 8734 (I[472] = (img)(_n5##x,_n8##y,z,v)), \
philpem@5 8735 (I[496] = (img)(_n5##x,_n9##y,z,v)), \
philpem@5 8736 (I[520] = (img)(_n5##x,_n10##y,z,v)), \
philpem@5 8737 (I[544] = (img)(_n5##x,_n11##y,z,v)), \
philpem@5 8738 (I[568] = (img)(_n5##x,_n12##y,z,v)), \
philpem@5 8739 (I[17] = (img)(_n6##x,_p11##y,z,v)), \
philpem@5 8740 (I[41] = (img)(_n6##x,_p10##y,z,v)), \
philpem@5 8741 (I[65] = (img)(_n6##x,_p9##y,z,v)), \
philpem@5 8742 (I[89] = (img)(_n6##x,_p8##y,z,v)), \
philpem@5 8743 (I[113] = (img)(_n6##x,_p7##y,z,v)), \
philpem@5 8744 (I[137] = (img)(_n6##x,_p6##y,z,v)), \
philpem@5 8745 (I[161] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 8746 (I[185] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 8747 (I[209] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 8748 (I[233] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 8749 (I[257] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 8750 (I[281] = (img)(_n6##x,y,z,v)), \
philpem@5 8751 (I[305] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 8752 (I[329] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 8753 (I[353] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 8754 (I[377] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 8755 (I[401] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 8756 (I[425] = (img)(_n6##x,_n6##y,z,v)), \
philpem@5 8757 (I[449] = (img)(_n6##x,_n7##y,z,v)), \
philpem@5 8758 (I[473] = (img)(_n6##x,_n8##y,z,v)), \
philpem@5 8759 (I[497] = (img)(_n6##x,_n9##y,z,v)), \
philpem@5 8760 (I[521] = (img)(_n6##x,_n10##y,z,v)), \
philpem@5 8761 (I[545] = (img)(_n6##x,_n11##y,z,v)), \
philpem@5 8762 (I[569] = (img)(_n6##x,_n12##y,z,v)), \
philpem@5 8763 (I[18] = (img)(_n7##x,_p11##y,z,v)), \
philpem@5 8764 (I[42] = (img)(_n7##x,_p10##y,z,v)), \
philpem@5 8765 (I[66] = (img)(_n7##x,_p9##y,z,v)), \
philpem@5 8766 (I[90] = (img)(_n7##x,_p8##y,z,v)), \
philpem@5 8767 (I[114] = (img)(_n7##x,_p7##y,z,v)), \
philpem@5 8768 (I[138] = (img)(_n7##x,_p6##y,z,v)), \
philpem@5 8769 (I[162] = (img)(_n7##x,_p5##y,z,v)), \
philpem@5 8770 (I[186] = (img)(_n7##x,_p4##y,z,v)), \
philpem@5 8771 (I[210] = (img)(_n7##x,_p3##y,z,v)), \
philpem@5 8772 (I[234] = (img)(_n7##x,_p2##y,z,v)), \
philpem@5 8773 (I[258] = (img)(_n7##x,_p1##y,z,v)), \
philpem@5 8774 (I[282] = (img)(_n7##x,y,z,v)), \
philpem@5 8775 (I[306] = (img)(_n7##x,_n1##y,z,v)), \
philpem@5 8776 (I[330] = (img)(_n7##x,_n2##y,z,v)), \
philpem@5 8777 (I[354] = (img)(_n7##x,_n3##y,z,v)), \
philpem@5 8778 (I[378] = (img)(_n7##x,_n4##y,z,v)), \
philpem@5 8779 (I[402] = (img)(_n7##x,_n5##y,z,v)), \
philpem@5 8780 (I[426] = (img)(_n7##x,_n6##y,z,v)), \
philpem@5 8781 (I[450] = (img)(_n7##x,_n7##y,z,v)), \
philpem@5 8782 (I[474] = (img)(_n7##x,_n8##y,z,v)), \
philpem@5 8783 (I[498] = (img)(_n7##x,_n9##y,z,v)), \
philpem@5 8784 (I[522] = (img)(_n7##x,_n10##y,z,v)), \
philpem@5 8785 (I[546] = (img)(_n7##x,_n11##y,z,v)), \
philpem@5 8786 (I[570] = (img)(_n7##x,_n12##y,z,v)), \
philpem@5 8787 (I[19] = (img)(_n8##x,_p11##y,z,v)), \
philpem@5 8788 (I[43] = (img)(_n8##x,_p10##y,z,v)), \
philpem@5 8789 (I[67] = (img)(_n8##x,_p9##y,z,v)), \
philpem@5 8790 (I[91] = (img)(_n8##x,_p8##y,z,v)), \
philpem@5 8791 (I[115] = (img)(_n8##x,_p7##y,z,v)), \
philpem@5 8792 (I[139] = (img)(_n8##x,_p6##y,z,v)), \
philpem@5 8793 (I[163] = (img)(_n8##x,_p5##y,z,v)), \
philpem@5 8794 (I[187] = (img)(_n8##x,_p4##y,z,v)), \
philpem@5 8795 (I[211] = (img)(_n8##x,_p3##y,z,v)), \
philpem@5 8796 (I[235] = (img)(_n8##x,_p2##y,z,v)), \
philpem@5 8797 (I[259] = (img)(_n8##x,_p1##y,z,v)), \
philpem@5 8798 (I[283] = (img)(_n8##x,y,z,v)), \
philpem@5 8799 (I[307] = (img)(_n8##x,_n1##y,z,v)), \
philpem@5 8800 (I[331] = (img)(_n8##x,_n2##y,z,v)), \
philpem@5 8801 (I[355] = (img)(_n8##x,_n3##y,z,v)), \
philpem@5 8802 (I[379] = (img)(_n8##x,_n4##y,z,v)), \
philpem@5 8803 (I[403] = (img)(_n8##x,_n5##y,z,v)), \
philpem@5 8804 (I[427] = (img)(_n8##x,_n6##y,z,v)), \
philpem@5 8805 (I[451] = (img)(_n8##x,_n7##y,z,v)), \
philpem@5 8806 (I[475] = (img)(_n8##x,_n8##y,z,v)), \
philpem@5 8807 (I[499] = (img)(_n8##x,_n9##y,z,v)), \
philpem@5 8808 (I[523] = (img)(_n8##x,_n10##y,z,v)), \
philpem@5 8809 (I[547] = (img)(_n8##x,_n11##y,z,v)), \
philpem@5 8810 (I[571] = (img)(_n8##x,_n12##y,z,v)), \
philpem@5 8811 (I[20] = (img)(_n9##x,_p11##y,z,v)), \
philpem@5 8812 (I[44] = (img)(_n9##x,_p10##y,z,v)), \
philpem@5 8813 (I[68] = (img)(_n9##x,_p9##y,z,v)), \
philpem@5 8814 (I[92] = (img)(_n9##x,_p8##y,z,v)), \
philpem@5 8815 (I[116] = (img)(_n9##x,_p7##y,z,v)), \
philpem@5 8816 (I[140] = (img)(_n9##x,_p6##y,z,v)), \
philpem@5 8817 (I[164] = (img)(_n9##x,_p5##y,z,v)), \
philpem@5 8818 (I[188] = (img)(_n9##x,_p4##y,z,v)), \
philpem@5 8819 (I[212] = (img)(_n9##x,_p3##y,z,v)), \
philpem@5 8820 (I[236] = (img)(_n9##x,_p2##y,z,v)), \
philpem@5 8821 (I[260] = (img)(_n9##x,_p1##y,z,v)), \
philpem@5 8822 (I[284] = (img)(_n9##x,y,z,v)), \
philpem@5 8823 (I[308] = (img)(_n9##x,_n1##y,z,v)), \
philpem@5 8824 (I[332] = (img)(_n9##x,_n2##y,z,v)), \
philpem@5 8825 (I[356] = (img)(_n9##x,_n3##y,z,v)), \
philpem@5 8826 (I[380] = (img)(_n9##x,_n4##y,z,v)), \
philpem@5 8827 (I[404] = (img)(_n9##x,_n5##y,z,v)), \
philpem@5 8828 (I[428] = (img)(_n9##x,_n6##y,z,v)), \
philpem@5 8829 (I[452] = (img)(_n9##x,_n7##y,z,v)), \
philpem@5 8830 (I[476] = (img)(_n9##x,_n8##y,z,v)), \
philpem@5 8831 (I[500] = (img)(_n9##x,_n9##y,z,v)), \
philpem@5 8832 (I[524] = (img)(_n9##x,_n10##y,z,v)), \
philpem@5 8833 (I[548] = (img)(_n9##x,_n11##y,z,v)), \
philpem@5 8834 (I[572] = (img)(_n9##x,_n12##y,z,v)), \
philpem@5 8835 (I[21] = (img)(_n10##x,_p11##y,z,v)), \
philpem@5 8836 (I[45] = (img)(_n10##x,_p10##y,z,v)), \
philpem@5 8837 (I[69] = (img)(_n10##x,_p9##y,z,v)), \
philpem@5 8838 (I[93] = (img)(_n10##x,_p8##y,z,v)), \
philpem@5 8839 (I[117] = (img)(_n10##x,_p7##y,z,v)), \
philpem@5 8840 (I[141] = (img)(_n10##x,_p6##y,z,v)), \
philpem@5 8841 (I[165] = (img)(_n10##x,_p5##y,z,v)), \
philpem@5 8842 (I[189] = (img)(_n10##x,_p4##y,z,v)), \
philpem@5 8843 (I[213] = (img)(_n10##x,_p3##y,z,v)), \
philpem@5 8844 (I[237] = (img)(_n10##x,_p2##y,z,v)), \
philpem@5 8845 (I[261] = (img)(_n10##x,_p1##y,z,v)), \
philpem@5 8846 (I[285] = (img)(_n10##x,y,z,v)), \
philpem@5 8847 (I[309] = (img)(_n10##x,_n1##y,z,v)), \
philpem@5 8848 (I[333] = (img)(_n10##x,_n2##y,z,v)), \
philpem@5 8849 (I[357] = (img)(_n10##x,_n3##y,z,v)), \
philpem@5 8850 (I[381] = (img)(_n10##x,_n4##y,z,v)), \
philpem@5 8851 (I[405] = (img)(_n10##x,_n5##y,z,v)), \
philpem@5 8852 (I[429] = (img)(_n10##x,_n6##y,z,v)), \
philpem@5 8853 (I[453] = (img)(_n10##x,_n7##y,z,v)), \
philpem@5 8854 (I[477] = (img)(_n10##x,_n8##y,z,v)), \
philpem@5 8855 (I[501] = (img)(_n10##x,_n9##y,z,v)), \
philpem@5 8856 (I[525] = (img)(_n10##x,_n10##y,z,v)), \
philpem@5 8857 (I[549] = (img)(_n10##x,_n11##y,z,v)), \
philpem@5 8858 (I[573] = (img)(_n10##x,_n12##y,z,v)), \
philpem@5 8859 (I[22] = (img)(_n11##x,_p11##y,z,v)), \
philpem@5 8860 (I[46] = (img)(_n11##x,_p10##y,z,v)), \
philpem@5 8861 (I[70] = (img)(_n11##x,_p9##y,z,v)), \
philpem@5 8862 (I[94] = (img)(_n11##x,_p8##y,z,v)), \
philpem@5 8863 (I[118] = (img)(_n11##x,_p7##y,z,v)), \
philpem@5 8864 (I[142] = (img)(_n11##x,_p6##y,z,v)), \
philpem@5 8865 (I[166] = (img)(_n11##x,_p5##y,z,v)), \
philpem@5 8866 (I[190] = (img)(_n11##x,_p4##y,z,v)), \
philpem@5 8867 (I[214] = (img)(_n11##x,_p3##y,z,v)), \
philpem@5 8868 (I[238] = (img)(_n11##x,_p2##y,z,v)), \
philpem@5 8869 (I[262] = (img)(_n11##x,_p1##y,z,v)), \
philpem@5 8870 (I[286] = (img)(_n11##x,y,z,v)), \
philpem@5 8871 (I[310] = (img)(_n11##x,_n1##y,z,v)), \
philpem@5 8872 (I[334] = (img)(_n11##x,_n2##y,z,v)), \
philpem@5 8873 (I[358] = (img)(_n11##x,_n3##y,z,v)), \
philpem@5 8874 (I[382] = (img)(_n11##x,_n4##y,z,v)), \
philpem@5 8875 (I[406] = (img)(_n11##x,_n5##y,z,v)), \
philpem@5 8876 (I[430] = (img)(_n11##x,_n6##y,z,v)), \
philpem@5 8877 (I[454] = (img)(_n11##x,_n7##y,z,v)), \
philpem@5 8878 (I[478] = (img)(_n11##x,_n8##y,z,v)), \
philpem@5 8879 (I[502] = (img)(_n11##x,_n9##y,z,v)), \
philpem@5 8880 (I[526] = (img)(_n11##x,_n10##y,z,v)), \
philpem@5 8881 (I[550] = (img)(_n11##x,_n11##y,z,v)), \
philpem@5 8882 (I[574] = (img)(_n11##x,_n12##y,z,v)), \
philpem@5 8883 12>=((img).width)?(int)((img).width)-1:12); \
philpem@5 8884 (_n12##x<(int)((img).width) && ( \
philpem@5 8885 (I[23] = (img)(_n12##x,_p11##y,z,v)), \
philpem@5 8886 (I[47] = (img)(_n12##x,_p10##y,z,v)), \
philpem@5 8887 (I[71] = (img)(_n12##x,_p9##y,z,v)), \
philpem@5 8888 (I[95] = (img)(_n12##x,_p8##y,z,v)), \
philpem@5 8889 (I[119] = (img)(_n12##x,_p7##y,z,v)), \
philpem@5 8890 (I[143] = (img)(_n12##x,_p6##y,z,v)), \
philpem@5 8891 (I[167] = (img)(_n12##x,_p5##y,z,v)), \
philpem@5 8892 (I[191] = (img)(_n12##x,_p4##y,z,v)), \
philpem@5 8893 (I[215] = (img)(_n12##x,_p3##y,z,v)), \
philpem@5 8894 (I[239] = (img)(_n12##x,_p2##y,z,v)), \
philpem@5 8895 (I[263] = (img)(_n12##x,_p1##y,z,v)), \
philpem@5 8896 (I[287] = (img)(_n12##x,y,z,v)), \
philpem@5 8897 (I[311] = (img)(_n12##x,_n1##y,z,v)), \
philpem@5 8898 (I[335] = (img)(_n12##x,_n2##y,z,v)), \
philpem@5 8899 (I[359] = (img)(_n12##x,_n3##y,z,v)), \
philpem@5 8900 (I[383] = (img)(_n12##x,_n4##y,z,v)), \
philpem@5 8901 (I[407] = (img)(_n12##x,_n5##y,z,v)), \
philpem@5 8902 (I[431] = (img)(_n12##x,_n6##y,z,v)), \
philpem@5 8903 (I[455] = (img)(_n12##x,_n7##y,z,v)), \
philpem@5 8904 (I[479] = (img)(_n12##x,_n8##y,z,v)), \
philpem@5 8905 (I[503] = (img)(_n12##x,_n9##y,z,v)), \
philpem@5 8906 (I[527] = (img)(_n12##x,_n10##y,z,v)), \
philpem@5 8907 (I[551] = (img)(_n12##x,_n11##y,z,v)), \
philpem@5 8908 (I[575] = (img)(_n12##x,_n12##y,z,v)),1)) || \
philpem@5 8909 _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
philpem@5 8910 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
philpem@5 8911 I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
philpem@5 8912 I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
philpem@5 8913 I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
philpem@5 8914 I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
philpem@5 8915 I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
philpem@5 8916 I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
philpem@5 8917 I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
philpem@5 8918 I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
philpem@5 8919 I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
philpem@5 8920 I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], \
philpem@5 8921 I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \
philpem@5 8922 I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], \
philpem@5 8923 I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
philpem@5 8924 I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \
philpem@5 8925 I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], \
philpem@5 8926 I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], \
philpem@5 8927 I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], \
philpem@5 8928 I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], \
philpem@5 8929 I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], \
philpem@5 8930 I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], \
philpem@5 8931 I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], \
philpem@5 8932 I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], \
philpem@5 8933 I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], \
philpem@5 8934 _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x)
philpem@5 8935
philpem@5 8936 #define cimg_for_in24x24(img,x0,y0,x1,y1,x,y,z,v,I) \
philpem@5 8937 cimg_for_in24((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
philpem@5 8938 _p11##x = x-11<0?0:x-11, \
philpem@5 8939 _p10##x = x-10<0?0:x-10, \
philpem@5 8940 _p9##x = x-9<0?0:x-9, \
philpem@5 8941 _p8##x = x-8<0?0:x-8, \
philpem@5 8942 _p7##x = x-7<0?0:x-7, \
philpem@5 8943 _p6##x = x-6<0?0:x-6, \
philpem@5 8944 _p5##x = x-5<0?0:x-5, \
philpem@5 8945 _p4##x = x-4<0?0:x-4, \
philpem@5 8946 _p3##x = x-3<0?0:x-3, \
philpem@5 8947 _p2##x = x-2<0?0:x-2, \
philpem@5 8948 _p1##x = x-1<0?0:x-1, \
philpem@5 8949 _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \
philpem@5 8950 _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \
philpem@5 8951 _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \
philpem@5 8952 _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \
philpem@5 8953 _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \
philpem@5 8954 _n6##x = x+6>=(int)((img).width)?(int)((img).width)-1:x+6, \
philpem@5 8955 _n7##x = x+7>=(int)((img).width)?(int)((img).width)-1:x+7, \
philpem@5 8956 _n8##x = x+8>=(int)((img).width)?(int)((img).width)-1:x+8, \
philpem@5 8957 _n9##x = x+9>=(int)((img).width)?(int)((img).width)-1:x+9, \
philpem@5 8958 _n10##x = x+10>=(int)((img).width)?(int)((img).width)-1:x+10, \
philpem@5 8959 _n11##x = x+11>=(int)((img).width)?(int)((img).width)-1:x+11, \
philpem@5 8960 _n12##x = (int)( \
philpem@5 8961 (I[0] = (img)(_p11##x,_p11##y,z,v)), \
philpem@5 8962 (I[24] = (img)(_p11##x,_p10##y,z,v)), \
philpem@5 8963 (I[48] = (img)(_p11##x,_p9##y,z,v)), \
philpem@5 8964 (I[72] = (img)(_p11##x,_p8##y,z,v)), \
philpem@5 8965 (I[96] = (img)(_p11##x,_p7##y,z,v)), \
philpem@5 8966 (I[120] = (img)(_p11##x,_p6##y,z,v)), \
philpem@5 8967 (I[144] = (img)(_p11##x,_p5##y,z,v)), \
philpem@5 8968 (I[168] = (img)(_p11##x,_p4##y,z,v)), \
philpem@5 8969 (I[192] = (img)(_p11##x,_p3##y,z,v)), \
philpem@5 8970 (I[216] = (img)(_p11##x,_p2##y,z,v)), \
philpem@5 8971 (I[240] = (img)(_p11##x,_p1##y,z,v)), \
philpem@5 8972 (I[264] = (img)(_p11##x,y,z,v)), \
philpem@5 8973 (I[288] = (img)(_p11##x,_n1##y,z,v)), \
philpem@5 8974 (I[312] = (img)(_p11##x,_n2##y,z,v)), \
philpem@5 8975 (I[336] = (img)(_p11##x,_n3##y,z,v)), \
philpem@5 8976 (I[360] = (img)(_p11##x,_n4##y,z,v)), \
philpem@5 8977 (I[384] = (img)(_p11##x,_n5##y,z,v)), \
philpem@5 8978 (I[408] = (img)(_p11##x,_n6##y,z,v)), \
philpem@5 8979 (I[432] = (img)(_p11##x,_n7##y,z,v)), \
philpem@5 8980 (I[456] = (img)(_p11##x,_n8##y,z,v)), \
philpem@5 8981 (I[480] = (img)(_p11##x,_n9##y,z,v)), \
philpem@5 8982 (I[504] = (img)(_p11##x,_n10##y,z,v)), \
philpem@5 8983 (I[528] = (img)(_p11##x,_n11##y,z,v)), \
philpem@5 8984 (I[552] = (img)(_p11##x,_n12##y,z,v)), \
philpem@5 8985 (I[1] = (img)(_p10##x,_p11##y,z,v)), \
philpem@5 8986 (I[25] = (img)(_p10##x,_p10##y,z,v)), \
philpem@5 8987 (I[49] = (img)(_p10##x,_p9##y,z,v)), \
philpem@5 8988 (I[73] = (img)(_p10##x,_p8##y,z,v)), \
philpem@5 8989 (I[97] = (img)(_p10##x,_p7##y,z,v)), \
philpem@5 8990 (I[121] = (img)(_p10##x,_p6##y,z,v)), \
philpem@5 8991 (I[145] = (img)(_p10##x,_p5##y,z,v)), \
philpem@5 8992 (I[169] = (img)(_p10##x,_p4##y,z,v)), \
philpem@5 8993 (I[193] = (img)(_p10##x,_p3##y,z,v)), \
philpem@5 8994 (I[217] = (img)(_p10##x,_p2##y,z,v)), \
philpem@5 8995 (I[241] = (img)(_p10##x,_p1##y,z,v)), \
philpem@5 8996 (I[265] = (img)(_p10##x,y,z,v)), \
philpem@5 8997 (I[289] = (img)(_p10##x,_n1##y,z,v)), \
philpem@5 8998 (I[313] = (img)(_p10##x,_n2##y,z,v)), \
philpem@5 8999 (I[337] = (img)(_p10##x,_n3##y,z,v)), \
philpem@5 9000 (I[361] = (img)(_p10##x,_n4##y,z,v)), \
philpem@5 9001 (I[385] = (img)(_p10##x,_n5##y,z,v)), \
philpem@5 9002 (I[409] = (img)(_p10##x,_n6##y,z,v)), \
philpem@5 9003 (I[433] = (img)(_p10##x,_n7##y,z,v)), \
philpem@5 9004 (I[457] = (img)(_p10##x,_n8##y,z,v)), \
philpem@5 9005 (I[481] = (img)(_p10##x,_n9##y,z,v)), \
philpem@5 9006 (I[505] = (img)(_p10##x,_n10##y,z,v)), \
philpem@5 9007 (I[529] = (img)(_p10##x,_n11##y,z,v)), \
philpem@5 9008 (I[553] = (img)(_p10##x,_n12##y,z,v)), \
philpem@5 9009 (I[2] = (img)(_p9##x,_p11##y,z,v)), \
philpem@5 9010 (I[26] = (img)(_p9##x,_p10##y,z,v)), \
philpem@5 9011 (I[50] = (img)(_p9##x,_p9##y,z,v)), \
philpem@5 9012 (I[74] = (img)(_p9##x,_p8##y,z,v)), \
philpem@5 9013 (I[98] = (img)(_p9##x,_p7##y,z,v)), \
philpem@5 9014 (I[122] = (img)(_p9##x,_p6##y,z,v)), \
philpem@5 9015 (I[146] = (img)(_p9##x,_p5##y,z,v)), \
philpem@5 9016 (I[170] = (img)(_p9##x,_p4##y,z,v)), \
philpem@5 9017 (I[194] = (img)(_p9##x,_p3##y,z,v)), \
philpem@5 9018 (I[218] = (img)(_p9##x,_p2##y,z,v)), \
philpem@5 9019 (I[242] = (img)(_p9##x,_p1##y,z,v)), \
philpem@5 9020 (I[266] = (img)(_p9##x,y,z,v)), \
philpem@5 9021 (I[290] = (img)(_p9##x,_n1##y,z,v)), \
philpem@5 9022 (I[314] = (img)(_p9##x,_n2##y,z,v)), \
philpem@5 9023 (I[338] = (img)(_p9##x,_n3##y,z,v)), \
philpem@5 9024 (I[362] = (img)(_p9##x,_n4##y,z,v)), \
philpem@5 9025 (I[386] = (img)(_p9##x,_n5##y,z,v)), \
philpem@5 9026 (I[410] = (img)(_p9##x,_n6##y,z,v)), \
philpem@5 9027 (I[434] = (img)(_p9##x,_n7##y,z,v)), \
philpem@5 9028 (I[458] = (img)(_p9##x,_n8##y,z,v)), \
philpem@5 9029 (I[482] = (img)(_p9##x,_n9##y,z,v)), \
philpem@5 9030 (I[506] = (img)(_p9##x,_n10##y,z,v)), \
philpem@5 9031 (I[530] = (img)(_p9##x,_n11##y,z,v)), \
philpem@5 9032 (I[554] = (img)(_p9##x,_n12##y,z,v)), \
philpem@5 9033 (I[3] = (img)(_p8##x,_p11##y,z,v)), \
philpem@5 9034 (I[27] = (img)(_p8##x,_p10##y,z,v)), \
philpem@5 9035 (I[51] = (img)(_p8##x,_p9##y,z,v)), \
philpem@5 9036 (I[75] = (img)(_p8##x,_p8##y,z,v)), \
philpem@5 9037 (I[99] = (img)(_p8##x,_p7##y,z,v)), \
philpem@5 9038 (I[123] = (img)(_p8##x,_p6##y,z,v)), \
philpem@5 9039 (I[147] = (img)(_p8##x,_p5##y,z,v)), \
philpem@5 9040 (I[171] = (img)(_p8##x,_p4##y,z,v)), \
philpem@5 9041 (I[195] = (img)(_p8##x,_p3##y,z,v)), \
philpem@5 9042 (I[219] = (img)(_p8##x,_p2##y,z,v)), \
philpem@5 9043 (I[243] = (img)(_p8##x,_p1##y,z,v)), \
philpem@5 9044 (I[267] = (img)(_p8##x,y,z,v)), \
philpem@5 9045 (I[291] = (img)(_p8##x,_n1##y,z,v)), \
philpem@5 9046 (I[315] = (img)(_p8##x,_n2##y,z,v)), \
philpem@5 9047 (I[339] = (img)(_p8##x,_n3##y,z,v)), \
philpem@5 9048 (I[363] = (img)(_p8##x,_n4##y,z,v)), \
philpem@5 9049 (I[387] = (img)(_p8##x,_n5##y,z,v)), \
philpem@5 9050 (I[411] = (img)(_p8##x,_n6##y,z,v)), \
philpem@5 9051 (I[435] = (img)(_p8##x,_n7##y,z,v)), \
philpem@5 9052 (I[459] = (img)(_p8##x,_n8##y,z,v)), \
philpem@5 9053 (I[483] = (img)(_p8##x,_n9##y,z,v)), \
philpem@5 9054 (I[507] = (img)(_p8##x,_n10##y,z,v)), \
philpem@5 9055 (I[531] = (img)(_p8##x,_n11##y,z,v)), \
philpem@5 9056 (I[555] = (img)(_p8##x,_n12##y,z,v)), \
philpem@5 9057 (I[4] = (img)(_p7##x,_p11##y,z,v)), \
philpem@5 9058 (I[28] = (img)(_p7##x,_p10##y,z,v)), \
philpem@5 9059 (I[52] = (img)(_p7##x,_p9##y,z,v)), \
philpem@5 9060 (I[76] = (img)(_p7##x,_p8##y,z,v)), \
philpem@5 9061 (I[100] = (img)(_p7##x,_p7##y,z,v)), \
philpem@5 9062 (I[124] = (img)(_p7##x,_p6##y,z,v)), \
philpem@5 9063 (I[148] = (img)(_p7##x,_p5##y,z,v)), \
philpem@5 9064 (I[172] = (img)(_p7##x,_p4##y,z,v)), \
philpem@5 9065 (I[196] = (img)(_p7##x,_p3##y,z,v)), \
philpem@5 9066 (I[220] = (img)(_p7##x,_p2##y,z,v)), \
philpem@5 9067 (I[244] = (img)(_p7##x,_p1##y,z,v)), \
philpem@5 9068 (I[268] = (img)(_p7##x,y,z,v)), \
philpem@5 9069 (I[292] = (img)(_p7##x,_n1##y,z,v)), \
philpem@5 9070 (I[316] = (img)(_p7##x,_n2##y,z,v)), \
philpem@5 9071 (I[340] = (img)(_p7##x,_n3##y,z,v)), \
philpem@5 9072 (I[364] = (img)(_p7##x,_n4##y,z,v)), \
philpem@5 9073 (I[388] = (img)(_p7##x,_n5##y,z,v)), \
philpem@5 9074 (I[412] = (img)(_p7##x,_n6##y,z,v)), \
philpem@5 9075 (I[436] = (img)(_p7##x,_n7##y,z,v)), \
philpem@5 9076 (I[460] = (img)(_p7##x,_n8##y,z,v)), \
philpem@5 9077 (I[484] = (img)(_p7##x,_n9##y,z,v)), \
philpem@5 9078 (I[508] = (img)(_p7##x,_n10##y,z,v)), \
philpem@5 9079 (I[532] = (img)(_p7##x,_n11##y,z,v)), \
philpem@5 9080 (I[556] = (img)(_p7##x,_n12##y,z,v)), \
philpem@5 9081 (I[5] = (img)(_p6##x,_p11##y,z,v)), \
philpem@5 9082 (I[29] = (img)(_p6##x,_p10##y,z,v)), \
philpem@5 9083 (I[53] = (img)(_p6##x,_p9##y,z,v)), \
philpem@5 9084 (I[77] = (img)(_p6##x,_p8##y,z,v)), \
philpem@5 9085 (I[101] = (img)(_p6##x,_p7##y,z,v)), \
philpem@5 9086 (I[125] = (img)(_p6##x,_p6##y,z,v)), \
philpem@5 9087 (I[149] = (img)(_p6##x,_p5##y,z,v)), \
philpem@5 9088 (I[173] = (img)(_p6##x,_p4##y,z,v)), \
philpem@5 9089 (I[197] = (img)(_p6##x,_p3##y,z,v)), \
philpem@5 9090 (I[221] = (img)(_p6##x,_p2##y,z,v)), \
philpem@5 9091 (I[245] = (img)(_p6##x,_p1##y,z,v)), \
philpem@5 9092 (I[269] = (img)(_p6##x,y,z,v)), \
philpem@5 9093 (I[293] = (img)(_p6##x,_n1##y,z,v)), \
philpem@5 9094 (I[317] = (img)(_p6##x,_n2##y,z,v)), \
philpem@5 9095 (I[341] = (img)(_p6##x,_n3##y,z,v)), \
philpem@5 9096 (I[365] = (img)(_p6##x,_n4##y,z,v)), \
philpem@5 9097 (I[389] = (img)(_p6##x,_n5##y,z,v)), \
philpem@5 9098 (I[413] = (img)(_p6##x,_n6##y,z,v)), \
philpem@5 9099 (I[437] = (img)(_p6##x,_n7##y,z,v)), \
philpem@5 9100 (I[461] = (img)(_p6##x,_n8##y,z,v)), \
philpem@5 9101 (I[485] = (img)(_p6##x,_n9##y,z,v)), \
philpem@5 9102 (I[509] = (img)(_p6##x,_n10##y,z,v)), \
philpem@5 9103 (I[533] = (img)(_p6##x,_n11##y,z,v)), \
philpem@5 9104 (I[557] = (img)(_p6##x,_n12##y,z,v)), \
philpem@5 9105 (I[6] = (img)(_p5##x,_p11##y,z,v)), \
philpem@5 9106 (I[30] = (img)(_p5##x,_p10##y,z,v)), \
philpem@5 9107 (I[54] = (img)(_p5##x,_p9##y,z,v)), \
philpem@5 9108 (I[78] = (img)(_p5##x,_p8##y,z,v)), \
philpem@5 9109 (I[102] = (img)(_p5##x,_p7##y,z,v)), \
philpem@5 9110 (I[126] = (img)(_p5##x,_p6##y,z,v)), \
philpem@5 9111 (I[150] = (img)(_p5##x,_p5##y,z,v)), \
philpem@5 9112 (I[174] = (img)(_p5##x,_p4##y,z,v)), \
philpem@5 9113 (I[198] = (img)(_p5##x,_p3##y,z,v)), \
philpem@5 9114 (I[222] = (img)(_p5##x,_p2##y,z,v)), \
philpem@5 9115 (I[246] = (img)(_p5##x,_p1##y,z,v)), \
philpem@5 9116 (I[270] = (img)(_p5##x,y,z,v)), \
philpem@5 9117 (I[294] = (img)(_p5##x,_n1##y,z,v)), \
philpem@5 9118 (I[318] = (img)(_p5##x,_n2##y,z,v)), \
philpem@5 9119 (I[342] = (img)(_p5##x,_n3##y,z,v)), \
philpem@5 9120 (I[366] = (img)(_p5##x,_n4##y,z,v)), \
philpem@5 9121 (I[390] = (img)(_p5##x,_n5##y,z,v)), \
philpem@5 9122 (I[414] = (img)(_p5##x,_n6##y,z,v)), \
philpem@5 9123 (I[438] = (img)(_p5##x,_n7##y,z,v)), \
philpem@5 9124 (I[462] = (img)(_p5##x,_n8##y,z,v)), \
philpem@5 9125 (I[486] = (img)(_p5##x,_n9##y,z,v)), \
philpem@5 9126 (I[510] = (img)(_p5##x,_n10##y,z,v)), \
philpem@5 9127 (I[534] = (img)(_p5##x,_n11##y,z,v)), \
philpem@5 9128 (I[558] = (img)(_p5##x,_n12##y,z,v)), \
philpem@5 9129 (I[7] = (img)(_p4##x,_p11##y,z,v)), \
philpem@5 9130 (I[31] = (img)(_p4##x,_p10##y,z,v)), \
philpem@5 9131 (I[55] = (img)(_p4##x,_p9##y,z,v)), \
philpem@5 9132 (I[79] = (img)(_p4##x,_p8##y,z,v)), \
philpem@5 9133 (I[103] = (img)(_p4##x,_p7##y,z,v)), \
philpem@5 9134 (I[127] = (img)(_p4##x,_p6##y,z,v)), \
philpem@5 9135 (I[151] = (img)(_p4##x,_p5##y,z,v)), \
philpem@5 9136 (I[175] = (img)(_p4##x,_p4##y,z,v)), \
philpem@5 9137 (I[199] = (img)(_p4##x,_p3##y,z,v)), \
philpem@5 9138 (I[223] = (img)(_p4##x,_p2##y,z,v)), \
philpem@5 9139 (I[247] = (img)(_p4##x,_p1##y,z,v)), \
philpem@5 9140 (I[271] = (img)(_p4##x,y,z,v)), \
philpem@5 9141 (I[295] = (img)(_p4##x,_n1##y,z,v)), \
philpem@5 9142 (I[319] = (img)(_p4##x,_n2##y,z,v)), \
philpem@5 9143 (I[343] = (img)(_p4##x,_n3##y,z,v)), \
philpem@5 9144 (I[367] = (img)(_p4##x,_n4##y,z,v)), \
philpem@5 9145 (I[391] = (img)(_p4##x,_n5##y,z,v)), \
philpem@5 9146 (I[415] = (img)(_p4##x,_n6##y,z,v)), \
philpem@5 9147 (I[439] = (img)(_p4##x,_n7##y,z,v)), \
philpem@5 9148 (I[463] = (img)(_p4##x,_n8##y,z,v)), \
philpem@5 9149 (I[487] = (img)(_p4##x,_n9##y,z,v)), \
philpem@5 9150 (I[511] = (img)(_p4##x,_n10##y,z,v)), \
philpem@5 9151 (I[535] = (img)(_p4##x,_n11##y,z,v)), \
philpem@5 9152 (I[559] = (img)(_p4##x,_n12##y,z,v)), \
philpem@5 9153 (I[8] = (img)(_p3##x,_p11##y,z,v)), \
philpem@5 9154 (I[32] = (img)(_p3##x,_p10##y,z,v)), \
philpem@5 9155 (I[56] = (img)(_p3##x,_p9##y,z,v)), \
philpem@5 9156 (I[80] = (img)(_p3##x,_p8##y,z,v)), \
philpem@5 9157 (I[104] = (img)(_p3##x,_p7##y,z,v)), \
philpem@5 9158 (I[128] = (img)(_p3##x,_p6##y,z,v)), \
philpem@5 9159 (I[152] = (img)(_p3##x,_p5##y,z,v)), \
philpem@5 9160 (I[176] = (img)(_p3##x,_p4##y,z,v)), \
philpem@5 9161 (I[200] = (img)(_p3##x,_p3##y,z,v)), \
philpem@5 9162 (I[224] = (img)(_p3##x,_p2##y,z,v)), \
philpem@5 9163 (I[248] = (img)(_p3##x,_p1##y,z,v)), \
philpem@5 9164 (I[272] = (img)(_p3##x,y,z,v)), \
philpem@5 9165 (I[296] = (img)(_p3##x,_n1##y,z,v)), \
philpem@5 9166 (I[320] = (img)(_p3##x,_n2##y,z,v)), \
philpem@5 9167 (I[344] = (img)(_p3##x,_n3##y,z,v)), \
philpem@5 9168 (I[368] = (img)(_p3##x,_n4##y,z,v)), \
philpem@5 9169 (I[392] = (img)(_p3##x,_n5##y,z,v)), \
philpem@5 9170 (I[416] = (img)(_p3##x,_n6##y,z,v)), \
philpem@5 9171 (I[440] = (img)(_p3##x,_n7##y,z,v)), \
philpem@5 9172 (I[464] = (img)(_p3##x,_n8##y,z,v)), \
philpem@5 9173 (I[488] = (img)(_p3##x,_n9##y,z,v)), \
philpem@5 9174 (I[512] = (img)(_p3##x,_n10##y,z,v)), \
philpem@5 9175 (I[536] = (img)(_p3##x,_n11##y,z,v)), \
philpem@5 9176 (I[560] = (img)(_p3##x,_n12##y,z,v)), \
philpem@5 9177 (I[9] = (img)(_p2##x,_p11##y,z,v)), \
philpem@5 9178 (I[33] = (img)(_p2##x,_p10##y,z,v)), \
philpem@5 9179 (I[57] = (img)(_p2##x,_p9##y,z,v)), \
philpem@5 9180 (I[81] = (img)(_p2##x,_p8##y,z,v)), \
philpem@5 9181 (I[105] = (img)(_p2##x,_p7##y,z,v)), \
philpem@5 9182 (I[129] = (img)(_p2##x,_p6##y,z,v)), \
philpem@5 9183 (I[153] = (img)(_p2##x,_p5##y,z,v)), \
philpem@5 9184 (I[177] = (img)(_p2##x,_p4##y,z,v)), \
philpem@5 9185 (I[201] = (img)(_p2##x,_p3##y,z,v)), \
philpem@5 9186 (I[225] = (img)(_p2##x,_p2##y,z,v)), \
philpem@5 9187 (I[249] = (img)(_p2##x,_p1##y,z,v)), \
philpem@5 9188 (I[273] = (img)(_p2##x,y,z,v)), \
philpem@5 9189 (I[297] = (img)(_p2##x,_n1##y,z,v)), \
philpem@5 9190 (I[321] = (img)(_p2##x,_n2##y,z,v)), \
philpem@5 9191 (I[345] = (img)(_p2##x,_n3##y,z,v)), \
philpem@5 9192 (I[369] = (img)(_p2##x,_n4##y,z,v)), \
philpem@5 9193 (I[393] = (img)(_p2##x,_n5##y,z,v)), \
philpem@5 9194 (I[417] = (img)(_p2##x,_n6##y,z,v)), \
philpem@5 9195 (I[441] = (img)(_p2##x,_n7##y,z,v)), \
philpem@5 9196 (I[465] = (img)(_p2##x,_n8##y,z,v)), \
philpem@5 9197 (I[489] = (img)(_p2##x,_n9##y,z,v)), \
philpem@5 9198 (I[513] = (img)(_p2##x,_n10##y,z,v)), \
philpem@5 9199 (I[537] = (img)(_p2##x,_n11##y,z,v)), \
philpem@5 9200 (I[561] = (img)(_p2##x,_n12##y,z,v)), \
philpem@5 9201 (I[10] = (img)(_p1##x,_p11##y,z,v)), \
philpem@5 9202 (I[34] = (img)(_p1##x,_p10##y,z,v)), \
philpem@5 9203 (I[58] = (img)(_p1##x,_p9##y,z,v)), \
philpem@5 9204 (I[82] = (img)(_p1##x,_p8##y,z,v)), \
philpem@5 9205 (I[106] = (img)(_p1##x,_p7##y,z,v)), \
philpem@5 9206 (I[130] = (img)(_p1##x,_p6##y,z,v)), \
philpem@5 9207 (I[154] = (img)(_p1##x,_p5##y,z,v)), \
philpem@5 9208 (I[178] = (img)(_p1##x,_p4##y,z,v)), \
philpem@5 9209 (I[202] = (img)(_p1##x,_p3##y,z,v)), \
philpem@5 9210 (I[226] = (img)(_p1##x,_p2##y,z,v)), \
philpem@5 9211 (I[250] = (img)(_p1##x,_p1##y,z,v)), \
philpem@5 9212 (I[274] = (img)(_p1##x,y,z,v)), \
philpem@5 9213 (I[298] = (img)(_p1##x,_n1##y,z,v)), \
philpem@5 9214 (I[322] = (img)(_p1##x,_n2##y,z,v)), \
philpem@5 9215 (I[346] = (img)(_p1##x,_n3##y,z,v)), \
philpem@5 9216 (I[370] = (img)(_p1##x,_n4##y,z,v)), \
philpem@5 9217 (I[394] = (img)(_p1##x,_n5##y,z,v)), \
philpem@5 9218 (I[418] = (img)(_p1##x,_n6##y,z,v)), \
philpem@5 9219 (I[442] = (img)(_p1##x,_n7##y,z,v)), \
philpem@5 9220 (I[466] = (img)(_p1##x,_n8##y,z,v)), \
philpem@5 9221 (I[490] = (img)(_p1##x,_n9##y,z,v)), \
philpem@5 9222 (I[514] = (img)(_p1##x,_n10##y,z,v)), \
philpem@5 9223 (I[538] = (img)(_p1##x,_n11##y,z,v)), \
philpem@5 9224 (I[562] = (img)(_p1##x,_n12##y,z,v)), \
philpem@5 9225 (I[11] = (img)(x,_p11##y,z,v)), \
philpem@5 9226 (I[35] = (img)(x,_p10##y,z,v)), \
philpem@5 9227 (I[59] = (img)(x,_p9##y,z,v)), \
philpem@5 9228 (I[83] = (img)(x,_p8##y,z,v)), \
philpem@5 9229 (I[107] = (img)(x,_p7##y,z,v)), \
philpem@5 9230 (I[131] = (img)(x,_p6##y,z,v)), \
philpem@5 9231 (I[155] = (img)(x,_p5##y,z,v)), \
philpem@5 9232 (I[179] = (img)(x,_p4##y,z,v)), \
philpem@5 9233 (I[203] = (img)(x,_p3##y,z,v)), \
philpem@5 9234 (I[227] = (img)(x,_p2##y,z,v)), \
philpem@5 9235 (I[251] = (img)(x,_p1##y,z,v)), \
philpem@5 9236 (I[275] = (img)(x,y,z,v)), \
philpem@5 9237 (I[299] = (img)(x,_n1##y,z,v)), \
philpem@5 9238 (I[323] = (img)(x,_n2##y,z,v)), \
philpem@5 9239 (I[347] = (img)(x,_n3##y,z,v)), \
philpem@5 9240 (I[371] = (img)(x,_n4##y,z,v)), \
philpem@5 9241 (I[395] = (img)(x,_n5##y,z,v)), \
philpem@5 9242 (I[419] = (img)(x,_n6##y,z,v)), \
philpem@5 9243 (I[443] = (img)(x,_n7##y,z,v)), \
philpem@5 9244 (I[467] = (img)(x,_n8##y,z,v)), \
philpem@5 9245 (I[491] = (img)(x,_n9##y,z,v)), \
philpem@5 9246 (I[515] = (img)(x,_n10##y,z,v)), \
philpem@5 9247 (I[539] = (img)(x,_n11##y,z,v)), \
philpem@5 9248 (I[563] = (img)(x,_n12##y,z,v)), \
philpem@5 9249 (I[12] = (img)(_n1##x,_p11##y,z,v)), \
philpem@5 9250 (I[36] = (img)(_n1##x,_p10##y,z,v)), \
philpem@5 9251 (I[60] = (img)(_n1##x,_p9##y,z,v)), \
philpem@5 9252 (I[84] = (img)(_n1##x,_p8##y,z,v)), \
philpem@5 9253 (I[108] = (img)(_n1##x,_p7##y,z,v)), \
philpem@5 9254 (I[132] = (img)(_n1##x,_p6##y,z,v)), \
philpem@5 9255 (I[156] = (img)(_n1##x,_p5##y,z,v)), \
philpem@5 9256 (I[180] = (img)(_n1##x,_p4##y,z,v)), \
philpem@5 9257 (I[204] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 9258 (I[228] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 9259 (I[252] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 9260 (I[276] = (img)(_n1##x,y,z,v)), \
philpem@5 9261 (I[300] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 9262 (I[324] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 9263 (I[348] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 9264 (I[372] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 9265 (I[396] = (img)(_n1##x,_n5##y,z,v)), \
philpem@5 9266 (I[420] = (img)(_n1##x,_n6##y,z,v)), \
philpem@5 9267 (I[444] = (img)(_n1##x,_n7##y,z,v)), \
philpem@5 9268 (I[468] = (img)(_n1##x,_n8##y,z,v)), \
philpem@5 9269 (I[492] = (img)(_n1##x,_n9##y,z,v)), \
philpem@5 9270 (I[516] = (img)(_n1##x,_n10##y,z,v)), \
philpem@5 9271 (I[540] = (img)(_n1##x,_n11##y,z,v)), \
philpem@5 9272 (I[564] = (img)(_n1##x,_n12##y,z,v)), \
philpem@5 9273 (I[13] = (img)(_n2##x,_p11##y,z,v)), \
philpem@5 9274 (I[37] = (img)(_n2##x,_p10##y,z,v)), \
philpem@5 9275 (I[61] = (img)(_n2##x,_p9##y,z,v)), \
philpem@5 9276 (I[85] = (img)(_n2##x,_p8##y,z,v)), \
philpem@5 9277 (I[109] = (img)(_n2##x,_p7##y,z,v)), \
philpem@5 9278 (I[133] = (img)(_n2##x,_p6##y,z,v)), \
philpem@5 9279 (I[157] = (img)(_n2##x,_p5##y,z,v)), \
philpem@5 9280 (I[181] = (img)(_n2##x,_p4##y,z,v)), \
philpem@5 9281 (I[205] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 9282 (I[229] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 9283 (I[253] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 9284 (I[277] = (img)(_n2##x,y,z,v)), \
philpem@5 9285 (I[301] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 9286 (I[325] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 9287 (I[349] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 9288 (I[373] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 9289 (I[397] = (img)(_n2##x,_n5##y,z,v)), \
philpem@5 9290 (I[421] = (img)(_n2##x,_n6##y,z,v)), \
philpem@5 9291 (I[445] = (img)(_n2##x,_n7##y,z,v)), \
philpem@5 9292 (I[469] = (img)(_n2##x,_n8##y,z,v)), \
philpem@5 9293 (I[493] = (img)(_n2##x,_n9##y,z,v)), \
philpem@5 9294 (I[517] = (img)(_n2##x,_n10##y,z,v)), \
philpem@5 9295 (I[541] = (img)(_n2##x,_n11##y,z,v)), \
philpem@5 9296 (I[565] = (img)(_n2##x,_n12##y,z,v)), \
philpem@5 9297 (I[14] = (img)(_n3##x,_p11##y,z,v)), \
philpem@5 9298 (I[38] = (img)(_n3##x,_p10##y,z,v)), \
philpem@5 9299 (I[62] = (img)(_n3##x,_p9##y,z,v)), \
philpem@5 9300 (I[86] = (img)(_n3##x,_p8##y,z,v)), \
philpem@5 9301 (I[110] = (img)(_n3##x,_p7##y,z,v)), \
philpem@5 9302 (I[134] = (img)(_n3##x,_p6##y,z,v)), \
philpem@5 9303 (I[158] = (img)(_n3##x,_p5##y,z,v)), \
philpem@5 9304 (I[182] = (img)(_n3##x,_p4##y,z,v)), \
philpem@5 9305 (I[206] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 9306 (I[230] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 9307 (I[254] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 9308 (I[278] = (img)(_n3##x,y,z,v)), \
philpem@5 9309 (I[302] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 9310 (I[326] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 9311 (I[350] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 9312 (I[374] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 9313 (I[398] = (img)(_n3##x,_n5##y,z,v)), \
philpem@5 9314 (I[422] = (img)(_n3##x,_n6##y,z,v)), \
philpem@5 9315 (I[446] = (img)(_n3##x,_n7##y,z,v)), \
philpem@5 9316 (I[470] = (img)(_n3##x,_n8##y,z,v)), \
philpem@5 9317 (I[494] = (img)(_n3##x,_n9##y,z,v)), \
philpem@5 9318 (I[518] = (img)(_n3##x,_n10##y,z,v)), \
philpem@5 9319 (I[542] = (img)(_n3##x,_n11##y,z,v)), \
philpem@5 9320 (I[566] = (img)(_n3##x,_n12##y,z,v)), \
philpem@5 9321 (I[15] = (img)(_n4##x,_p11##y,z,v)), \
philpem@5 9322 (I[39] = (img)(_n4##x,_p10##y,z,v)), \
philpem@5 9323 (I[63] = (img)(_n4##x,_p9##y,z,v)), \
philpem@5 9324 (I[87] = (img)(_n4##x,_p8##y,z,v)), \
philpem@5 9325 (I[111] = (img)(_n4##x,_p7##y,z,v)), \
philpem@5 9326 (I[135] = (img)(_n4##x,_p6##y,z,v)), \
philpem@5 9327 (I[159] = (img)(_n4##x,_p5##y,z,v)), \
philpem@5 9328 (I[183] = (img)(_n4##x,_p4##y,z,v)), \
philpem@5 9329 (I[207] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 9330 (I[231] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 9331 (I[255] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 9332 (I[279] = (img)(_n4##x,y,z,v)), \
philpem@5 9333 (I[303] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 9334 (I[327] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 9335 (I[351] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 9336 (I[375] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 9337 (I[399] = (img)(_n4##x,_n5##y,z,v)), \
philpem@5 9338 (I[423] = (img)(_n4##x,_n6##y,z,v)), \
philpem@5 9339 (I[447] = (img)(_n4##x,_n7##y,z,v)), \
philpem@5 9340 (I[471] = (img)(_n4##x,_n8##y,z,v)), \
philpem@5 9341 (I[495] = (img)(_n4##x,_n9##y,z,v)), \
philpem@5 9342 (I[519] = (img)(_n4##x,_n10##y,z,v)), \
philpem@5 9343 (I[543] = (img)(_n4##x,_n11##y,z,v)), \
philpem@5 9344 (I[567] = (img)(_n4##x,_n12##y,z,v)), \
philpem@5 9345 (I[16] = (img)(_n5##x,_p11##y,z,v)), \
philpem@5 9346 (I[40] = (img)(_n5##x,_p10##y,z,v)), \
philpem@5 9347 (I[64] = (img)(_n5##x,_p9##y,z,v)), \
philpem@5 9348 (I[88] = (img)(_n5##x,_p8##y,z,v)), \
philpem@5 9349 (I[112] = (img)(_n5##x,_p7##y,z,v)), \
philpem@5 9350 (I[136] = (img)(_n5##x,_p6##y,z,v)), \
philpem@5 9351 (I[160] = (img)(_n5##x,_p5##y,z,v)), \
philpem@5 9352 (I[184] = (img)(_n5##x,_p4##y,z,v)), \
philpem@5 9353 (I[208] = (img)(_n5##x,_p3##y,z,v)), \
philpem@5 9354 (I[232] = (img)(_n5##x,_p2##y,z,v)), \
philpem@5 9355 (I[256] = (img)(_n5##x,_p1##y,z,v)), \
philpem@5 9356 (I[280] = (img)(_n5##x,y,z,v)), \
philpem@5 9357 (I[304] = (img)(_n5##x,_n1##y,z,v)), \
philpem@5 9358 (I[328] = (img)(_n5##x,_n2##y,z,v)), \
philpem@5 9359 (I[352] = (img)(_n5##x,_n3##y,z,v)), \
philpem@5 9360 (I[376] = (img)(_n5##x,_n4##y,z,v)), \
philpem@5 9361 (I[400] = (img)(_n5##x,_n5##y,z,v)), \
philpem@5 9362 (I[424] = (img)(_n5##x,_n6##y,z,v)), \
philpem@5 9363 (I[448] = (img)(_n5##x,_n7##y,z,v)), \
philpem@5 9364 (I[472] = (img)(_n5##x,_n8##y,z,v)), \
philpem@5 9365 (I[496] = (img)(_n5##x,_n9##y,z,v)), \
philpem@5 9366 (I[520] = (img)(_n5##x,_n10##y,z,v)), \
philpem@5 9367 (I[544] = (img)(_n5##x,_n11##y,z,v)), \
philpem@5 9368 (I[568] = (img)(_n5##x,_n12##y,z,v)), \
philpem@5 9369 (I[17] = (img)(_n6##x,_p11##y,z,v)), \
philpem@5 9370 (I[41] = (img)(_n6##x,_p10##y,z,v)), \
philpem@5 9371 (I[65] = (img)(_n6##x,_p9##y,z,v)), \
philpem@5 9372 (I[89] = (img)(_n6##x,_p8##y,z,v)), \
philpem@5 9373 (I[113] = (img)(_n6##x,_p7##y,z,v)), \
philpem@5 9374 (I[137] = (img)(_n6##x,_p6##y,z,v)), \
philpem@5 9375 (I[161] = (img)(_n6##x,_p5##y,z,v)), \
philpem@5 9376 (I[185] = (img)(_n6##x,_p4##y,z,v)), \
philpem@5 9377 (I[209] = (img)(_n6##x,_p3##y,z,v)), \
philpem@5 9378 (I[233] = (img)(_n6##x,_p2##y,z,v)), \
philpem@5 9379 (I[257] = (img)(_n6##x,_p1##y,z,v)), \
philpem@5 9380 (I[281] = (img)(_n6##x,y,z,v)), \
philpem@5 9381 (I[305] = (img)(_n6##x,_n1##y,z,v)), \
philpem@5 9382 (I[329] = (img)(_n6##x,_n2##y,z,v)), \
philpem@5 9383 (I[353] = (img)(_n6##x,_n3##y,z,v)), \
philpem@5 9384 (I[377] = (img)(_n6##x,_n4##y,z,v)), \
philpem@5 9385 (I[401] = (img)(_n6##x,_n5##y,z,v)), \
philpem@5 9386 (I[425] = (img)(_n6##x,_n6##y,z,v)), \
philpem@5 9387 (I[449] = (img)(_n6##x,_n7##y,z,v)), \
philpem@5 9388 (I[473] = (img)(_n6##x,_n8##y,z,v)), \
philpem@5 9389 (I[497] = (img)(_n6##x,_n9##y,z,v)), \
philpem@5 9390 (I[521] = (img)(_n6##x,_n10##y,z,v)), \
philpem@5 9391 (I[545] = (img)(_n6##x,_n11##y,z,v)), \
philpem@5 9392 (I[569] = (img)(_n6##x,_n12##y,z,v)), \
philpem@5 9393 (I[18] = (img)(_n7##x,_p11##y,z,v)), \
philpem@5 9394 (I[42] = (img)(_n7##x,_p10##y,z,v)), \
philpem@5 9395 (I[66] = (img)(_n7##x,_p9##y,z,v)), \
philpem@5 9396 (I[90] = (img)(_n7##x,_p8##y,z,v)), \
philpem@5 9397 (I[114] = (img)(_n7##x,_p7##y,z,v)), \
philpem@5 9398 (I[138] = (img)(_n7##x,_p6##y,z,v)), \
philpem@5 9399 (I[162] = (img)(_n7##x,_p5##y,z,v)), \
philpem@5 9400 (I[186] = (img)(_n7##x,_p4##y,z,v)), \
philpem@5 9401 (I[210] = (img)(_n7##x,_p3##y,z,v)), \
philpem@5 9402 (I[234] = (img)(_n7##x,_p2##y,z,v)), \
philpem@5 9403 (I[258] = (img)(_n7##x,_p1##y,z,v)), \
philpem@5 9404 (I[282] = (img)(_n7##x,y,z,v)), \
philpem@5 9405 (I[306] = (img)(_n7##x,_n1##y,z,v)), \
philpem@5 9406 (I[330] = (img)(_n7##x,_n2##y,z,v)), \
philpem@5 9407 (I[354] = (img)(_n7##x,_n3##y,z,v)), \
philpem@5 9408 (I[378] = (img)(_n7##x,_n4##y,z,v)), \
philpem@5 9409 (I[402] = (img)(_n7##x,_n5##y,z,v)), \
philpem@5 9410 (I[426] = (img)(_n7##x,_n6##y,z,v)), \
philpem@5 9411 (I[450] = (img)(_n7##x,_n7##y,z,v)), \
philpem@5 9412 (I[474] = (img)(_n7##x,_n8##y,z,v)), \
philpem@5 9413 (I[498] = (img)(_n7##x,_n9##y,z,v)), \
philpem@5 9414 (I[522] = (img)(_n7##x,_n10##y,z,v)), \
philpem@5 9415 (I[546] = (img)(_n7##x,_n11##y,z,v)), \
philpem@5 9416 (I[570] = (img)(_n7##x,_n12##y,z,v)), \
philpem@5 9417 (I[19] = (img)(_n8##x,_p11##y,z,v)), \
philpem@5 9418 (I[43] = (img)(_n8##x,_p10##y,z,v)), \
philpem@5 9419 (I[67] = (img)(_n8##x,_p9##y,z,v)), \
philpem@5 9420 (I[91] = (img)(_n8##x,_p8##y,z,v)), \
philpem@5 9421 (I[115] = (img)(_n8##x,_p7##y,z,v)), \
philpem@5 9422 (I[139] = (img)(_n8##x,_p6##y,z,v)), \
philpem@5 9423 (I[163] = (img)(_n8##x,_p5##y,z,v)), \
philpem@5 9424 (I[187] = (img)(_n8##x,_p4##y,z,v)), \
philpem@5 9425 (I[211] = (img)(_n8##x,_p3##y,z,v)), \
philpem@5 9426 (I[235] = (img)(_n8##x,_p2##y,z,v)), \
philpem@5 9427 (I[259] = (img)(_n8##x,_p1##y,z,v)), \
philpem@5 9428 (I[283] = (img)(_n8##x,y,z,v)), \
philpem@5 9429 (I[307] = (img)(_n8##x,_n1##y,z,v)), \
philpem@5 9430 (I[331] = (img)(_n8##x,_n2##y,z,v)), \
philpem@5 9431 (I[355] = (img)(_n8##x,_n3##y,z,v)), \
philpem@5 9432 (I[379] = (img)(_n8##x,_n4##y,z,v)), \
philpem@5 9433 (I[403] = (img)(_n8##x,_n5##y,z,v)), \
philpem@5 9434 (I[427] = (img)(_n8##x,_n6##y,z,v)), \
philpem@5 9435 (I[451] = (img)(_n8##x,_n7##y,z,v)), \
philpem@5 9436 (I[475] = (img)(_n8##x,_n8##y,z,v)), \
philpem@5 9437 (I[499] = (img)(_n8##x,_n9##y,z,v)), \
philpem@5 9438 (I[523] = (img)(_n8##x,_n10##y,z,v)), \
philpem@5 9439 (I[547] = (img)(_n8##x,_n11##y,z,v)), \
philpem@5 9440 (I[571] = (img)(_n8##x,_n12##y,z,v)), \
philpem@5 9441 (I[20] = (img)(_n9##x,_p11##y,z,v)), \
philpem@5 9442 (I[44] = (img)(_n9##x,_p10##y,z,v)), \
philpem@5 9443 (I[68] = (img)(_n9##x,_p9##y,z,v)), \
philpem@5 9444 (I[92] = (img)(_n9##x,_p8##y,z,v)), \
philpem@5 9445 (I[116] = (img)(_n9##x,_p7##y,z,v)), \
philpem@5 9446 (I[140] = (img)(_n9##x,_p6##y,z,v)), \
philpem@5 9447 (I[164] = (img)(_n9##x,_p5##y,z,v)), \
philpem@5 9448 (I[188] = (img)(_n9##x,_p4##y,z,v)), \
philpem@5 9449 (I[212] = (img)(_n9##x,_p3##y,z,v)), \
philpem@5 9450 (I[236] = (img)(_n9##x,_p2##y,z,v)), \
philpem@5 9451 (I[260] = (img)(_n9##x,_p1##y,z,v)), \
philpem@5 9452 (I[284] = (img)(_n9##x,y,z,v)), \
philpem@5 9453 (I[308] = (img)(_n9##x,_n1##y,z,v)), \
philpem@5 9454 (I[332] = (img)(_n9##x,_n2##y,z,v)), \
philpem@5 9455 (I[356] = (img)(_n9##x,_n3##y,z,v)), \
philpem@5 9456 (I[380] = (img)(_n9##x,_n4##y,z,v)), \
philpem@5 9457 (I[404] = (img)(_n9##x,_n5##y,z,v)), \
philpem@5 9458 (I[428] = (img)(_n9##x,_n6##y,z,v)), \
philpem@5 9459 (I[452] = (img)(_n9##x,_n7##y,z,v)), \
philpem@5 9460 (I[476] = (img)(_n9##x,_n8##y,z,v)), \
philpem@5 9461 (I[500] = (img)(_n9##x,_n9##y,z,v)), \
philpem@5 9462 (I[524] = (img)(_n9##x,_n10##y,z,v)), \
philpem@5 9463 (I[548] = (img)(_n9##x,_n11##y,z,v)), \
philpem@5 9464 (I[572] = (img)(_n9##x,_n12##y,z,v)), \
philpem@5 9465 (I[21] = (img)(_n10##x,_p11##y,z,v)), \
philpem@5 9466 (I[45] = (img)(_n10##x,_p10##y,z,v)), \
philpem@5 9467 (I[69] = (img)(_n10##x,_p9##y,z,v)), \
philpem@5 9468 (I[93] = (img)(_n10##x,_p8##y,z,v)), \
philpem@5 9469 (I[117] = (img)(_n10##x,_p7##y,z,v)), \
philpem@5 9470 (I[141] = (img)(_n10##x,_p6##y,z,v)), \
philpem@5 9471 (I[165] = (img)(_n10##x,_p5##y,z,v)), \
philpem@5 9472 (I[189] = (img)(_n10##x,_p4##y,z,v)), \
philpem@5 9473 (I[213] = (img)(_n10##x,_p3##y,z,v)), \
philpem@5 9474 (I[237] = (img)(_n10##x,_p2##y,z,v)), \
philpem@5 9475 (I[261] = (img)(_n10##x,_p1##y,z,v)), \
philpem@5 9476 (I[285] = (img)(_n10##x,y,z,v)), \
philpem@5 9477 (I[309] = (img)(_n10##x,_n1##y,z,v)), \
philpem@5 9478 (I[333] = (img)(_n10##x,_n2##y,z,v)), \
philpem@5 9479 (I[357] = (img)(_n10##x,_n3##y,z,v)), \
philpem@5 9480 (I[381] = (img)(_n10##x,_n4##y,z,v)), \
philpem@5 9481 (I[405] = (img)(_n10##x,_n5##y,z,v)), \
philpem@5 9482 (I[429] = (img)(_n10##x,_n6##y,z,v)), \
philpem@5 9483 (I[453] = (img)(_n10##x,_n7##y,z,v)), \
philpem@5 9484 (I[477] = (img)(_n10##x,_n8##y,z,v)), \
philpem@5 9485 (I[501] = (img)(_n10##x,_n9##y,z,v)), \
philpem@5 9486 (I[525] = (img)(_n10##x,_n10##y,z,v)), \
philpem@5 9487 (I[549] = (img)(_n10##x,_n11##y,z,v)), \
philpem@5 9488 (I[573] = (img)(_n10##x,_n12##y,z,v)), \
philpem@5 9489 (I[22] = (img)(_n11##x,_p11##y,z,v)), \
philpem@5 9490 (I[46] = (img)(_n11##x,_p10##y,z,v)), \
philpem@5 9491 (I[70] = (img)(_n11##x,_p9##y,z,v)), \
philpem@5 9492 (I[94] = (img)(_n11##x,_p8##y,z,v)), \
philpem@5 9493 (I[118] = (img)(_n11##x,_p7##y,z,v)), \
philpem@5 9494 (I[142] = (img)(_n11##x,_p6##y,z,v)), \
philpem@5 9495 (I[166] = (img)(_n11##x,_p5##y,z,v)), \
philpem@5 9496 (I[190] = (img)(_n11##x,_p4##y,z,v)), \
philpem@5 9497 (I[214] = (img)(_n11##x,_p3##y,z,v)), \
philpem@5 9498 (I[238] = (img)(_n11##x,_p2##y,z,v)), \
philpem@5 9499 (I[262] = (img)(_n11##x,_p1##y,z,v)), \
philpem@5 9500 (I[286] = (img)(_n11##x,y,z,v)), \
philpem@5 9501 (I[310] = (img)(_n11##x,_n1##y,z,v)), \
philpem@5 9502 (I[334] = (img)(_n11##x,_n2##y,z,v)), \
philpem@5 9503 (I[358] = (img)(_n11##x,_n3##y,z,v)), \
philpem@5 9504 (I[382] = (img)(_n11##x,_n4##y,z,v)), \
philpem@5 9505 (I[406] = (img)(_n11##x,_n5##y,z,v)), \
philpem@5 9506 (I[430] = (img)(_n11##x,_n6##y,z,v)), \
philpem@5 9507 (I[454] = (img)(_n11##x,_n7##y,z,v)), \
philpem@5 9508 (I[478] = (img)(_n11##x,_n8##y,z,v)), \
philpem@5 9509 (I[502] = (img)(_n11##x,_n9##y,z,v)), \
philpem@5 9510 (I[526] = (img)(_n11##x,_n10##y,z,v)), \
philpem@5 9511 (I[550] = (img)(_n11##x,_n11##y,z,v)), \
philpem@5 9512 (I[574] = (img)(_n11##x,_n12##y,z,v)), \
philpem@5 9513 x+12>=(int)((img).width)?(int)((img).width)-1:x+12); \
philpem@5 9514 x<=(int)(x1) && ((_n12##x<(int)((img).width) && ( \
philpem@5 9515 (I[23] = (img)(_n12##x,_p11##y,z,v)), \
philpem@5 9516 (I[47] = (img)(_n12##x,_p10##y,z,v)), \
philpem@5 9517 (I[71] = (img)(_n12##x,_p9##y,z,v)), \
philpem@5 9518 (I[95] = (img)(_n12##x,_p8##y,z,v)), \
philpem@5 9519 (I[119] = (img)(_n12##x,_p7##y,z,v)), \
philpem@5 9520 (I[143] = (img)(_n12##x,_p6##y,z,v)), \
philpem@5 9521 (I[167] = (img)(_n12##x,_p5##y,z,v)), \
philpem@5 9522 (I[191] = (img)(_n12##x,_p4##y,z,v)), \
philpem@5 9523 (I[215] = (img)(_n12##x,_p3##y,z,v)), \
philpem@5 9524 (I[239] = (img)(_n12##x,_p2##y,z,v)), \
philpem@5 9525 (I[263] = (img)(_n12##x,_p1##y,z,v)), \
philpem@5 9526 (I[287] = (img)(_n12##x,y,z,v)), \
philpem@5 9527 (I[311] = (img)(_n12##x,_n1##y,z,v)), \
philpem@5 9528 (I[335] = (img)(_n12##x,_n2##y,z,v)), \
philpem@5 9529 (I[359] = (img)(_n12##x,_n3##y,z,v)), \
philpem@5 9530 (I[383] = (img)(_n12##x,_n4##y,z,v)), \
philpem@5 9531 (I[407] = (img)(_n12##x,_n5##y,z,v)), \
philpem@5 9532 (I[431] = (img)(_n12##x,_n6##y,z,v)), \
philpem@5 9533 (I[455] = (img)(_n12##x,_n7##y,z,v)), \
philpem@5 9534 (I[479] = (img)(_n12##x,_n8##y,z,v)), \
philpem@5 9535 (I[503] = (img)(_n12##x,_n9##y,z,v)), \
philpem@5 9536 (I[527] = (img)(_n12##x,_n10##y,z,v)), \
philpem@5 9537 (I[551] = (img)(_n12##x,_n11##y,z,v)), \
philpem@5 9538 (I[575] = (img)(_n12##x,_n12##y,z,v)),1)) || \
philpem@5 9539 _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
philpem@5 9540 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
philpem@5 9541 I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
philpem@5 9542 I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
philpem@5 9543 I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
philpem@5 9544 I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
philpem@5 9545 I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
philpem@5 9546 I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
philpem@5 9547 I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
philpem@5 9548 I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
philpem@5 9549 I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
philpem@5 9550 I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], \
philpem@5 9551 I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \
philpem@5 9552 I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], \
philpem@5 9553 I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
philpem@5 9554 I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \
philpem@5 9555 I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], \
philpem@5 9556 I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], \
philpem@5 9557 I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], \
philpem@5 9558 I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], \
philpem@5 9559 I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], \
philpem@5 9560 I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], \
philpem@5 9561 I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], \
philpem@5 9562 I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], \
philpem@5 9563 I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], \
philpem@5 9564 _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x)
philpem@5 9565
philpem@5 9566 #define cimg_get24x24(img,x,y,z,v,I) \
philpem@5 9567 I[0] = (img)(_p11##x,_p11##y,z,v), I[1] = (img)(_p10##x,_p11##y,z,v), I[2] = (img)(_p9##x,_p11##y,z,v), I[3] = (img)(_p8##x,_p11##y,z,v), I[4] = (img)(_p7##x,_p11##y,z,v), I[5] = (img)(_p6##x,_p11##y,z,v), I[6] = (img)(_p5##x,_p11##y,z,v), I[7] = (img)(_p4##x,_p11##y,z,v), I[8] = (img)(_p3##x,_p11##y,z,v), I[9] = (img)(_p2##x,_p11##y,z,v), I[10] = (img)(_p1##x,_p11##y,z,v), I[11] = (img)(x,_p11##y,z,v), I[12] = (img)(_n1##x,_p11##y,z,v), I[13] = (img)(_n2##x,_p11##y,z,v), I[14] = (img)(_n3##x,_p11##y,z,v), I[15] = (img)(_n4##x,_p11##y,z,v), I[16] = (img)(_n5##x,_p11##y,z,v), I[17] = (img)(_n6##x,_p11##y,z,v), I[18] = (img)(_n7##x,_p11##y,z,v), I[19] = (img)(_n8##x,_p11##y,z,v), I[20] = (img)(_n9##x,_p11##y,z,v), I[21] = (img)(_n10##x,_p11##y,z,v), I[22] = (img)(_n11##x,_p11##y,z,v), I[23] = (img)(_n12##x,_p11##y,z,v), \
philpem@5 9568 I[24] = (img)(_p11##x,_p10##y,z,v), I[25] = (img)(_p10##x,_p10##y,z,v), I[26] = (img)(_p9##x,_p10##y,z,v), I[27] = (img)(_p8##x,_p10##y,z,v), I[28] = (img)(_p7##x,_p10##y,z,v), I[29] = (img)(_p6##x,_p10##y,z,v), I[30] = (img)(_p5##x,_p10##y,z,v), I[31] = (img)(_p4##x,_p10##y,z,v), I[32] = (img)(_p3##x,_p10##y,z,v), I[33] = (img)(_p2##x,_p10##y,z,v), I[34] = (img)(_p1##x,_p10##y,z,v), I[35] = (img)(x,_p10##y,z,v), I[36] = (img)(_n1##x,_p10##y,z,v), I[37] = (img)(_n2##x,_p10##y,z,v), I[38] = (img)(_n3##x,_p10##y,z,v), I[39] = (img)(_n4##x,_p10##y,z,v), I[40] = (img)(_n5##x,_p10##y,z,v), I[41] = (img)(_n6##x,_p10##y,z,v), I[42] = (img)(_n7##x,_p10##y,z,v), I[43] = (img)(_n8##x,_p10##y,z,v), I[44] = (img)(_n9##x,_p10##y,z,v), I[45] = (img)(_n10##x,_p10##y,z,v), I[46] = (img)(_n11##x,_p10##y,z,v), I[47] = (img)(_n12##x,_p10##y,z,v), \
philpem@5 9569 I[48] = (img)(_p11##x,_p9##y,z,v), I[49] = (img)(_p10##x,_p9##y,z,v), I[50] = (img)(_p9##x,_p9##y,z,v), I[51] = (img)(_p8##x,_p9##y,z,v), I[52] = (img)(_p7##x,_p9##y,z,v), I[53] = (img)(_p6##x,_p9##y,z,v), I[54] = (img)(_p5##x,_p9##y,z,v), I[55] = (img)(_p4##x,_p9##y,z,v), I[56] = (img)(_p3##x,_p9##y,z,v), I[57] = (img)(_p2##x,_p9##y,z,v), I[58] = (img)(_p1##x,_p9##y,z,v), I[59] = (img)(x,_p9##y,z,v), I[60] = (img)(_n1##x,_p9##y,z,v), I[61] = (img)(_n2##x,_p9##y,z,v), I[62] = (img)(_n3##x,_p9##y,z,v), I[63] = (img)(_n4##x,_p9##y,z,v), I[64] = (img)(_n5##x,_p9##y,z,v), I[65] = (img)(_n6##x,_p9##y,z,v), I[66] = (img)(_n7##x,_p9##y,z,v), I[67] = (img)(_n8##x,_p9##y,z,v), I[68] = (img)(_n9##x,_p9##y,z,v), I[69] = (img)(_n10##x,_p9##y,z,v), I[70] = (img)(_n11##x,_p9##y,z,v), I[71] = (img)(_n12##x,_p9##y,z,v), \
philpem@5 9570 I[72] = (img)(_p11##x,_p8##y,z,v), I[73] = (img)(_p10##x,_p8##y,z,v), I[74] = (img)(_p9##x,_p8##y,z,v), I[75] = (img)(_p8##x,_p8##y,z,v), I[76] = (img)(_p7##x,_p8##y,z,v), I[77] = (img)(_p6##x,_p8##y,z,v), I[78] = (img)(_p5##x,_p8##y,z,v), I[79] = (img)(_p4##x,_p8##y,z,v), I[80] = (img)(_p3##x,_p8##y,z,v), I[81] = (img)(_p2##x,_p8##y,z,v), I[82] = (img)(_p1##x,_p8##y,z,v), I[83] = (img)(x,_p8##y,z,v), I[84] = (img)(_n1##x,_p8##y,z,v), I[85] = (img)(_n2##x,_p8##y,z,v), I[86] = (img)(_n3##x,_p8##y,z,v), I[87] = (img)(_n4##x,_p8##y,z,v), I[88] = (img)(_n5##x,_p8##y,z,v), I[89] = (img)(_n6##x,_p8##y,z,v), I[90] = (img)(_n7##x,_p8##y,z,v), I[91] = (img)(_n8##x,_p8##y,z,v), I[92] = (img)(_n9##x,_p8##y,z,v), I[93] = (img)(_n10##x,_p8##y,z,v), I[94] = (img)(_n11##x,_p8##y,z,v), I[95] = (img)(_n12##x,_p8##y,z,v), \
philpem@5 9571 I[96] = (img)(_p11##x,_p7##y,z,v), I[97] = (img)(_p10##x,_p7##y,z,v), I[98] = (img)(_p9##x,_p7##y,z,v), I[99] = (img)(_p8##x,_p7##y,z,v), I[100] = (img)(_p7##x,_p7##y,z,v), I[101] = (img)(_p6##x,_p7##y,z,v), I[102] = (img)(_p5##x,_p7##y,z,v), I[103] = (img)(_p4##x,_p7##y,z,v), I[104] = (img)(_p3##x,_p7##y,z,v), I[105] = (img)(_p2##x,_p7##y,z,v), I[106] = (img)(_p1##x,_p7##y,z,v), I[107] = (img)(x,_p7##y,z,v), I[108] = (img)(_n1##x,_p7##y,z,v), I[109] = (img)(_n2##x,_p7##y,z,v), I[110] = (img)(_n3##x,_p7##y,z,v), I[111] = (img)(_n4##x,_p7##y,z,v), I[112] = (img)(_n5##x,_p7##y,z,v), I[113] = (img)(_n6##x,_p7##y,z,v), I[114] = (img)(_n7##x,_p7##y,z,v), I[115] = (img)(_n8##x,_p7##y,z,v), I[116] = (img)(_n9##x,_p7##y,z,v), I[117] = (img)(_n10##x,_p7##y,z,v), I[118] = (img)(_n11##x,_p7##y,z,v), I[119] = (img)(_n12##x,_p7##y,z,v), \
philpem@5 9572 I[120] = (img)(_p11##x,_p6##y,z,v), I[121] = (img)(_p10##x,_p6##y,z,v), I[122] = (img)(_p9##x,_p6##y,z,v), I[123] = (img)(_p8##x,_p6##y,z,v), I[124] = (img)(_p7##x,_p6##y,z,v), I[125] = (img)(_p6##x,_p6##y,z,v), I[126] = (img)(_p5##x,_p6##y,z,v), I[127] = (img)(_p4##x,_p6##y,z,v), I[128] = (img)(_p3##x,_p6##y,z,v), I[129] = (img)(_p2##x,_p6##y,z,v), I[130] = (img)(_p1##x,_p6##y,z,v), I[131] = (img)(x,_p6##y,z,v), I[132] = (img)(_n1##x,_p6##y,z,v), I[133] = (img)(_n2##x,_p6##y,z,v), I[134] = (img)(_n3##x,_p6##y,z,v), I[135] = (img)(_n4##x,_p6##y,z,v), I[136] = (img)(_n5##x,_p6##y,z,v), I[137] = (img)(_n6##x,_p6##y,z,v), I[138] = (img)(_n7##x,_p6##y,z,v), I[139] = (img)(_n8##x,_p6##y,z,v), I[140] = (img)(_n9##x,_p6##y,z,v), I[141] = (img)(_n10##x,_p6##y,z,v), I[142] = (img)(_n11##x,_p6##y,z,v), I[143] = (img)(_n12##x,_p6##y,z,v), \
philpem@5 9573 I[144] = (img)(_p11##x,_p5##y,z,v), I[145] = (img)(_p10##x,_p5##y,z,v), I[146] = (img)(_p9##x,_p5##y,z,v), I[147] = (img)(_p8##x,_p5##y,z,v), I[148] = (img)(_p7##x,_p5##y,z,v), I[149] = (img)(_p6##x,_p5##y,z,v), I[150] = (img)(_p5##x,_p5##y,z,v), I[151] = (img)(_p4##x,_p5##y,z,v), I[152] = (img)(_p3##x,_p5##y,z,v), I[153] = (img)(_p2##x,_p5##y,z,v), I[154] = (img)(_p1##x,_p5##y,z,v), I[155] = (img)(x,_p5##y,z,v), I[156] = (img)(_n1##x,_p5##y,z,v), I[157] = (img)(_n2##x,_p5##y,z,v), I[158] = (img)(_n3##x,_p5##y,z,v), I[159] = (img)(_n4##x,_p5##y,z,v), I[160] = (img)(_n5##x,_p5##y,z,v), I[161] = (img)(_n6##x,_p5##y,z,v), I[162] = (img)(_n7##x,_p5##y,z,v), I[163] = (img)(_n8##x,_p5##y,z,v), I[164] = (img)(_n9##x,_p5##y,z,v), I[165] = (img)(_n10##x,_p5##y,z,v), I[166] = (img)(_n11##x,_p5##y,z,v), I[167] = (img)(_n12##x,_p5##y,z,v), \
philpem@5 9574 I[168] = (img)(_p11##x,_p4##y,z,v), I[169] = (img)(_p10##x,_p4##y,z,v), I[170] = (img)(_p9##x,_p4##y,z,v), I[171] = (img)(_p8##x,_p4##y,z,v), I[172] = (img)(_p7##x,_p4##y,z,v), I[173] = (img)(_p6##x,_p4##y,z,v), I[174] = (img)(_p5##x,_p4##y,z,v), I[175] = (img)(_p4##x,_p4##y,z,v), I[176] = (img)(_p3##x,_p4##y,z,v), I[177] = (img)(_p2##x,_p4##y,z,v), I[178] = (img)(_p1##x,_p4##y,z,v), I[179] = (img)(x,_p4##y,z,v), I[180] = (img)(_n1##x,_p4##y,z,v), I[181] = (img)(_n2##x,_p4##y,z,v), I[182] = (img)(_n3##x,_p4##y,z,v), I[183] = (img)(_n4##x,_p4##y,z,v), I[184] = (img)(_n5##x,_p4##y,z,v), I[185] = (img)(_n6##x,_p4##y,z,v), I[186] = (img)(_n7##x,_p4##y,z,v), I[187] = (img)(_n8##x,_p4##y,z,v), I[188] = (img)(_n9##x,_p4##y,z,v), I[189] = (img)(_n10##x,_p4##y,z,v), I[190] = (img)(_n11##x,_p4##y,z,v), I[191] = (img)(_n12##x,_p4##y,z,v), \
philpem@5 9575 I[192] = (img)(_p11##x,_p3##y,z,v), I[193] = (img)(_p10##x,_p3##y,z,v), I[194] = (img)(_p9##x,_p3##y,z,v), I[195] = (img)(_p8##x,_p3##y,z,v), I[196] = (img)(_p7##x,_p3##y,z,v), I[197] = (img)(_p6##x,_p3##y,z,v), I[198] = (img)(_p5##x,_p3##y,z,v), I[199] = (img)(_p4##x,_p3##y,z,v), I[200] = (img)(_p3##x,_p3##y,z,v), I[201] = (img)(_p2##x,_p3##y,z,v), I[202] = (img)(_p1##x,_p3##y,z,v), I[203] = (img)(x,_p3##y,z,v), I[204] = (img)(_n1##x,_p3##y,z,v), I[205] = (img)(_n2##x,_p3##y,z,v), I[206] = (img)(_n3##x,_p3##y,z,v), I[207] = (img)(_n4##x,_p3##y,z,v), I[208] = (img)(_n5##x,_p3##y,z,v), I[209] = (img)(_n6##x,_p3##y,z,v), I[210] = (img)(_n7##x,_p3##y,z,v), I[211] = (img)(_n8##x,_p3##y,z,v), I[212] = (img)(_n9##x,_p3##y,z,v), I[213] = (img)(_n10##x,_p3##y,z,v), I[214] = (img)(_n11##x,_p3##y,z,v), I[215] = (img)(_n12##x,_p3##y,z,v), \
philpem@5 9576 I[216] = (img)(_p11##x,_p2##y,z,v), I[217] = (img)(_p10##x,_p2##y,z,v), I[218] = (img)(_p9##x,_p2##y,z,v), I[219] = (img)(_p8##x,_p2##y,z,v), I[220] = (img)(_p7##x,_p2##y,z,v), I[221] = (img)(_p6##x,_p2##y,z,v), I[222] = (img)(_p5##x,_p2##y,z,v), I[223] = (img)(_p4##x,_p2##y,z,v), I[224] = (img)(_p3##x,_p2##y,z,v), I[225] = (img)(_p2##x,_p2##y,z,v), I[226] = (img)(_p1##x,_p2##y,z,v), I[227] = (img)(x,_p2##y,z,v), I[228] = (img)(_n1##x,_p2##y,z,v), I[229] = (img)(_n2##x,_p2##y,z,v), I[230] = (img)(_n3##x,_p2##y,z,v), I[231] = (img)(_n4##x,_p2##y,z,v), I[232] = (img)(_n5##x,_p2##y,z,v), I[233] = (img)(_n6##x,_p2##y,z,v), I[234] = (img)(_n7##x,_p2##y,z,v), I[235] = (img)(_n8##x,_p2##y,z,v), I[236] = (img)(_n9##x,_p2##y,z,v), I[237] = (img)(_n10##x,_p2##y,z,v), I[238] = (img)(_n11##x,_p2##y,z,v), I[239] = (img)(_n12##x,_p2##y,z,v), \
philpem@5 9577 I[240] = (img)(_p11##x,_p1##y,z,v), I[241] = (img)(_p10##x,_p1##y,z,v), I[242] = (img)(_p9##x,_p1##y,z,v), I[243] = (img)(_p8##x,_p1##y,z,v), I[244] = (img)(_p7##x,_p1##y,z,v), I[245] = (img)(_p6##x,_p1##y,z,v), I[246] = (img)(_p5##x,_p1##y,z,v), I[247] = (img)(_p4##x,_p1##y,z,v), I[248] = (img)(_p3##x,_p1##y,z,v), I[249] = (img)(_p2##x,_p1##y,z,v), I[250] = (img)(_p1##x,_p1##y,z,v), I[251] = (img)(x,_p1##y,z,v), I[252] = (img)(_n1##x,_p1##y,z,v), I[253] = (img)(_n2##x,_p1##y,z,v), I[254] = (img)(_n3##x,_p1##y,z,v), I[255] = (img)(_n4##x,_p1##y,z,v), I[256] = (img)(_n5##x,_p1##y,z,v), I[257] = (img)(_n6##x,_p1##y,z,v), I[258] = (img)(_n7##x,_p1##y,z,v), I[259] = (img)(_n8##x,_p1##y,z,v), I[260] = (img)(_n9##x,_p1##y,z,v), I[261] = (img)(_n10##x,_p1##y,z,v), I[262] = (img)(_n11##x,_p1##y,z,v), I[263] = (img)(_n12##x,_p1##y,z,v), \
philpem@5 9578 I[264] = (img)(_p11##x,y,z,v), I[265] = (img)(_p10##x,y,z,v), I[266] = (img)(_p9##x,y,z,v), I[267] = (img)(_p8##x,y,z,v), I[268] = (img)(_p7##x,y,z,v), I[269] = (img)(_p6##x,y,z,v), I[270] = (img)(_p5##x,y,z,v), I[271] = (img)(_p4##x,y,z,v), I[272] = (img)(_p3##x,y,z,v), I[273] = (img)(_p2##x,y,z,v), I[274] = (img)(_p1##x,y,z,v), I[275] = (img)(x,y,z,v), I[276] = (img)(_n1##x,y,z,v), I[277] = (img)(_n2##x,y,z,v), I[278] = (img)(_n3##x,y,z,v), I[279] = (img)(_n4##x,y,z,v), I[280] = (img)(_n5##x,y,z,v), I[281] = (img)(_n6##x,y,z,v), I[282] = (img)(_n7##x,y,z,v), I[283] = (img)(_n8##x,y,z,v), I[284] = (img)(_n9##x,y,z,v), I[285] = (img)(_n10##x,y,z,v), I[286] = (img)(_n11##x,y,z,v), I[287] = (img)(_n12##x,y,z,v), \
philpem@5 9579 I[288] = (img)(_p11##x,_n1##y,z,v), I[289] = (img)(_p10##x,_n1##y,z,v), I[290] = (img)(_p9##x,_n1##y,z,v), I[291] = (img)(_p8##x,_n1##y,z,v), I[292] = (img)(_p7##x,_n1##y,z,v), I[293] = (img)(_p6##x,_n1##y,z,v), I[294] = (img)(_p5##x,_n1##y,z,v), I[295] = (img)(_p4##x,_n1##y,z,v), I[296] = (img)(_p3##x,_n1##y,z,v), I[297] = (img)(_p2##x,_n1##y,z,v), I[298] = (img)(_p1##x,_n1##y,z,v), I[299] = (img)(x,_n1##y,z,v), I[300] = (img)(_n1##x,_n1##y,z,v), I[301] = (img)(_n2##x,_n1##y,z,v), I[302] = (img)(_n3##x,_n1##y,z,v), I[303] = (img)(_n4##x,_n1##y,z,v), I[304] = (img)(_n5##x,_n1##y,z,v), I[305] = (img)(_n6##x,_n1##y,z,v), I[306] = (img)(_n7##x,_n1##y,z,v), I[307] = (img)(_n8##x,_n1##y,z,v), I[308] = (img)(_n9##x,_n1##y,z,v), I[309] = (img)(_n10##x,_n1##y,z,v), I[310] = (img)(_n11##x,_n1##y,z,v), I[311] = (img)(_n12##x,_n1##y,z,v), \
philpem@5 9580 I[312] = (img)(_p11##x,_n2##y,z,v), I[313] = (img)(_p10##x,_n2##y,z,v), I[314] = (img)(_p9##x,_n2##y,z,v), I[315] = (img)(_p8##x,_n2##y,z,v), I[316] = (img)(_p7##x,_n2##y,z,v), I[317] = (img)(_p6##x,_n2##y,z,v), I[318] = (img)(_p5##x,_n2##y,z,v), I[319] = (img)(_p4##x,_n2##y,z,v), I[320] = (img)(_p3##x,_n2##y,z,v), I[321] = (img)(_p2##x,_n2##y,z,v), I[322] = (img)(_p1##x,_n2##y,z,v), I[323] = (img)(x,_n2##y,z,v), I[324] = (img)(_n1##x,_n2##y,z,v), I[325] = (img)(_n2##x,_n2##y,z,v), I[326] = (img)(_n3##x,_n2##y,z,v), I[327] = (img)(_n4##x,_n2##y,z,v), I[328] = (img)(_n5##x,_n2##y,z,v), I[329] = (img)(_n6##x,_n2##y,z,v), I[330] = (img)(_n7##x,_n2##y,z,v), I[331] = (img)(_n8##x,_n2##y,z,v), I[332] = (img)(_n9##x,_n2##y,z,v), I[333] = (img)(_n10##x,_n2##y,z,v), I[334] = (img)(_n11##x,_n2##y,z,v), I[335] = (img)(_n12##x,_n2##y,z,v), \
philpem@5 9581 I[336] = (img)(_p11##x,_n3##y,z,v), I[337] = (img)(_p10##x,_n3##y,z,v), I[338] = (img)(_p9##x,_n3##y,z,v), I[339] = (img)(_p8##x,_n3##y,z,v), I[340] = (img)(_p7##x,_n3##y,z,v), I[341] = (img)(_p6##x,_n3##y,z,v), I[342] = (img)(_p5##x,_n3##y,z,v), I[343] = (img)(_p4##x,_n3##y,z,v), I[344] = (img)(_p3##x,_n3##y,z,v), I[345] = (img)(_p2##x,_n3##y,z,v), I[346] = (img)(_p1##x,_n3##y,z,v), I[347] = (img)(x,_n3##y,z,v), I[348] = (img)(_n1##x,_n3##y,z,v), I[349] = (img)(_n2##x,_n3##y,z,v), I[350] = (img)(_n3##x,_n3##y,z,v), I[351] = (img)(_n4##x,_n3##y,z,v), I[352] = (img)(_n5##x,_n3##y,z,v), I[353] = (img)(_n6##x,_n3##y,z,v), I[354] = (img)(_n7##x,_n3##y,z,v), I[355] = (img)(_n8##x,_n3##y,z,v), I[356] = (img)(_n9##x,_n3##y,z,v), I[357] = (img)(_n10##x,_n3##y,z,v), I[358] = (img)(_n11##x,_n3##y,z,v), I[359] = (img)(_n12##x,_n3##y,z,v), \
philpem@5 9582 I[360] = (img)(_p11##x,_n4##y,z,v), I[361] = (img)(_p10##x,_n4##y,z,v), I[362] = (img)(_p9##x,_n4##y,z,v), I[363] = (img)(_p8##x,_n4##y,z,v), I[364] = (img)(_p7##x,_n4##y,z,v), I[365] = (img)(_p6##x,_n4##y,z,v), I[366] = (img)(_p5##x,_n4##y,z,v), I[367] = (img)(_p4##x,_n4##y,z,v), I[368] = (img)(_p3##x,_n4##y,z,v), I[369] = (img)(_p2##x,_n4##y,z,v), I[370] = (img)(_p1##x,_n4##y,z,v), I[371] = (img)(x,_n4##y,z,v), I[372] = (img)(_n1##x,_n4##y,z,v), I[373] = (img)(_n2##x,_n4##y,z,v), I[374] = (img)(_n3##x,_n4##y,z,v), I[375] = (img)(_n4##x,_n4##y,z,v), I[376] = (img)(_n5##x,_n4##y,z,v), I[377] = (img)(_n6##x,_n4##y,z,v), I[378] = (img)(_n7##x,_n4##y,z,v), I[379] = (img)(_n8##x,_n4##y,z,v), I[380] = (img)(_n9##x,_n4##y,z,v), I[381] = (img)(_n10##x,_n4##y,z,v), I[382] = (img)(_n11##x,_n4##y,z,v), I[383] = (img)(_n12##x,_n4##y,z,v), \
philpem@5 9583 I[384] = (img)(_p11##x,_n5##y,z,v), I[385] = (img)(_p10##x,_n5##y,z,v), I[386] = (img)(_p9##x,_n5##y,z,v), I[387] = (img)(_p8##x,_n5##y,z,v), I[388] = (img)(_p7##x,_n5##y,z,v), I[389] = (img)(_p6##x,_n5##y,z,v), I[390] = (img)(_p5##x,_n5##y,z,v), I[391] = (img)(_p4##x,_n5##y,z,v), I[392] = (img)(_p3##x,_n5##y,z,v), I[393] = (img)(_p2##x,_n5##y,z,v), I[394] = (img)(_p1##x,_n5##y,z,v), I[395] = (img)(x,_n5##y,z,v), I[396] = (img)(_n1##x,_n5##y,z,v), I[397] = (img)(_n2##x,_n5##y,z,v), I[398] = (img)(_n3##x,_n5##y,z,v), I[399] = (img)(_n4##x,_n5##y,z,v), I[400] = (img)(_n5##x,_n5##y,z,v), I[401] = (img)(_n6##x,_n5##y,z,v), I[402] = (img)(_n7##x,_n5##y,z,v), I[403] = (img)(_n8##x,_n5##y,z,v), I[404] = (img)(_n9##x,_n5##y,z,v), I[405] = (img)(_n10##x,_n5##y,z,v), I[406] = (img)(_n11##x,_n5##y,z,v), I[407] = (img)(_n12##x,_n5##y,z,v), \
philpem@5 9584 I[408] = (img)(_p11##x,_n6##y,z,v), I[409] = (img)(_p10##x,_n6##y,z,v), I[410] = (img)(_p9##x,_n6##y,z,v), I[411] = (img)(_p8##x,_n6##y,z,v), I[412] = (img)(_p7##x,_n6##y,z,v), I[413] = (img)(_p6##x,_n6##y,z,v), I[414] = (img)(_p5##x,_n6##y,z,v), I[415] = (img)(_p4##x,_n6##y,z,v), I[416] = (img)(_p3##x,_n6##y,z,v), I[417] = (img)(_p2##x,_n6##y,z,v), I[418] = (img)(_p1##x,_n6##y,z,v), I[419] = (img)(x,_n6##y,z,v), I[420] = (img)(_n1##x,_n6##y,z,v), I[421] = (img)(_n2##x,_n6##y,z,v), I[422] = (img)(_n3##x,_n6##y,z,v), I[423] = (img)(_n4##x,_n6##y,z,v), I[424] = (img)(_n5##x,_n6##y,z,v), I[425] = (img)(_n6##x,_n6##y,z,v), I[426] = (img)(_n7##x,_n6##y,z,v), I[427] = (img)(_n8##x,_n6##y,z,v), I[428] = (img)(_n9##x,_n6##y,z,v), I[429] = (img)(_n10##x,_n6##y,z,v), I[430] = (img)(_n11##x,_n6##y,z,v), I[431] = (img)(_n12##x,_n6##y,z,v), \
philpem@5 9585 I[432] = (img)(_p11##x,_n7##y,z,v), I[433] = (img)(_p10##x,_n7##y,z,v), I[434] = (img)(_p9##x,_n7##y,z,v), I[435] = (img)(_p8##x,_n7##y,z,v), I[436] = (img)(_p7##x,_n7##y,z,v), I[437] = (img)(_p6##x,_n7##y,z,v), I[438] = (img)(_p5##x,_n7##y,z,v), I[439] = (img)(_p4##x,_n7##y,z,v), I[440] = (img)(_p3##x,_n7##y,z,v), I[441] = (img)(_p2##x,_n7##y,z,v), I[442] = (img)(_p1##x,_n7##y,z,v), I[443] = (img)(x,_n7##y,z,v), I[444] = (img)(_n1##x,_n7##y,z,v), I[445] = (img)(_n2##x,_n7##y,z,v), I[446] = (img)(_n3##x,_n7##y,z,v), I[447] = (img)(_n4##x,_n7##y,z,v), I[448] = (img)(_n5##x,_n7##y,z,v), I[449] = (img)(_n6##x,_n7##y,z,v), I[450] = (img)(_n7##x,_n7##y,z,v), I[451] = (img)(_n8##x,_n7##y,z,v), I[452] = (img)(_n9##x,_n7##y,z,v), I[453] = (img)(_n10##x,_n7##y,z,v), I[454] = (img)(_n11##x,_n7##y,z,v), I[455] = (img)(_n12##x,_n7##y,z,v), \
philpem@5 9586 I[456] = (img)(_p11##x,_n8##y,z,v), I[457] = (img)(_p10##x,_n8##y,z,v), I[458] = (img)(_p9##x,_n8##y,z,v), I[459] = (img)(_p8##x,_n8##y,z,v), I[460] = (img)(_p7##x,_n8##y,z,v), I[461] = (img)(_p6##x,_n8##y,z,v), I[462] = (img)(_p5##x,_n8##y,z,v), I[463] = (img)(_p4##x,_n8##y,z,v), I[464] = (img)(_p3##x,_n8##y,z,v), I[465] = (img)(_p2##x,_n8##y,z,v), I[466] = (img)(_p1##x,_n8##y,z,v), I[467] = (img)(x,_n8##y,z,v), I[468] = (img)(_n1##x,_n8##y,z,v), I[469] = (img)(_n2##x,_n8##y,z,v), I[470] = (img)(_n3##x,_n8##y,z,v), I[471] = (img)(_n4##x,_n8##y,z,v), I[472] = (img)(_n5##x,_n8##y,z,v), I[473] = (img)(_n6##x,_n8##y,z,v), I[474] = (img)(_n7##x,_n8##y,z,v), I[475] = (img)(_n8##x,_n8##y,z,v), I[476] = (img)(_n9##x,_n8##y,z,v), I[477] = (img)(_n10##x,_n8##y,z,v), I[478] = (img)(_n11##x,_n8##y,z,v), I[479] = (img)(_n12##x,_n8##y,z,v), \
philpem@5 9587 I[480] = (img)(_p11##x,_n9##y,z,v), I[481] = (img)(_p10##x,_n9##y,z,v), I[482] = (img)(_p9##x,_n9##y,z,v), I[483] = (img)(_p8##x,_n9##y,z,v), I[484] = (img)(_p7##x,_n9##y,z,v), I[485] = (img)(_p6##x,_n9##y,z,v), I[486] = (img)(_p5##x,_n9##y,z,v), I[487] = (img)(_p4##x,_n9##y,z,v), I[488] = (img)(_p3##x,_n9##y,z,v), I[489] = (img)(_p2##x,_n9##y,z,v), I[490] = (img)(_p1##x,_n9##y,z,v), I[491] = (img)(x,_n9##y,z,v), I[492] = (img)(_n1##x,_n9##y,z,v), I[493] = (img)(_n2##x,_n9##y,z,v), I[494] = (img)(_n3##x,_n9##y,z,v), I[495] = (img)(_n4##x,_n9##y,z,v), I[496] = (img)(_n5##x,_n9##y,z,v), I[497] = (img)(_n6##x,_n9##y,z,v), I[498] = (img)(_n7##x,_n9##y,z,v), I[499] = (img)(_n8##x,_n9##y,z,v), I[500] = (img)(_n9##x,_n9##y,z,v), I[501] = (img)(_n10##x,_n9##y,z,v), I[502] = (img)(_n11##x,_n9##y,z,v), I[503] = (img)(_n12##x,_n9##y,z,v), \
philpem@5 9588 I[504] = (img)(_p11##x,_n10##y,z,v), I[505] = (img)(_p10##x,_n10##y,z,v), I[506] = (img)(_p9##x,_n10##y,z,v), I[507] = (img)(_p8##x,_n10##y,z,v), I[508] = (img)(_p7##x,_n10##y,z,v), I[509] = (img)(_p6##x,_n10##y,z,v), I[510] = (img)(_p5##x,_n10##y,z,v), I[511] = (img)(_p4##x,_n10##y,z,v), I[512] = (img)(_p3##x,_n10##y,z,v), I[513] = (img)(_p2##x,_n10##y,z,v), I[514] = (img)(_p1##x,_n10##y,z,v), I[515] = (img)(x,_n10##y,z,v), I[516] = (img)(_n1##x,_n10##y,z,v), I[517] = (img)(_n2##x,_n10##y,z,v), I[518] = (img)(_n3##x,_n10##y,z,v), I[519] = (img)(_n4##x,_n10##y,z,v), I[520] = (img)(_n5##x,_n10##y,z,v), I[521] = (img)(_n6##x,_n10##y,z,v), I[522] = (img)(_n7##x,_n10##y,z,v), I[523] = (img)(_n8##x,_n10##y,z,v), I[524] = (img)(_n9##x,_n10##y,z,v), I[525] = (img)(_n10##x,_n10##y,z,v), I[526] = (img)(_n11##x,_n10##y,z,v), I[527] = (img)(_n12##x,_n10##y,z,v), \
philpem@5 9589 I[528] = (img)(_p11##x,_n11##y,z,v), I[529] = (img)(_p10##x,_n11##y,z,v), I[530] = (img)(_p9##x,_n11##y,z,v), I[531] = (img)(_p8##x,_n11##y,z,v), I[532] = (img)(_p7##x,_n11##y,z,v), I[533] = (img)(_p6##x,_n11##y,z,v), I[534] = (img)(_p5##x,_n11##y,z,v), I[535] = (img)(_p4##x,_n11##y,z,v), I[536] = (img)(_p3##x,_n11##y,z,v), I[537] = (img)(_p2##x,_n11##y,z,v), I[538] = (img)(_p1##x,_n11##y,z,v), I[539] = (img)(x,_n11##y,z,v), I[540] = (img)(_n1##x,_n11##y,z,v), I[541] = (img)(_n2##x,_n11##y,z,v), I[542] = (img)(_n3##x,_n11##y,z,v), I[543] = (img)(_n4##x,_n11##y,z,v), I[544] = (img)(_n5##x,_n11##y,z,v), I[545] = (img)(_n6##x,_n11##y,z,v), I[546] = (img)(_n7##x,_n11##y,z,v), I[547] = (img)(_n8##x,_n11##y,z,v), I[548] = (img)(_n9##x,_n11##y,z,v), I[549] = (img)(_n10##x,_n11##y,z,v), I[550] = (img)(_n11##x,_n11##y,z,v), I[551] = (img)(_n12##x,_n11##y,z,v), \
philpem@5 9590 I[552] = (img)(_p11##x,_n12##y,z,v), I[553] = (img)(_p10##x,_n12##y,z,v), I[554] = (img)(_p9##x,_n12##y,z,v), I[555] = (img)(_p8##x,_n12##y,z,v), I[556] = (img)(_p7##x,_n12##y,z,v), I[557] = (img)(_p6##x,_n12##y,z,v), I[558] = (img)(_p5##x,_n12##y,z,v), I[559] = (img)(_p4##x,_n12##y,z,v), I[560] = (img)(_p3##x,_n12##y,z,v), I[561] = (img)(_p2##x,_n12##y,z,v), I[562] = (img)(_p1##x,_n12##y,z,v), I[563] = (img)(x,_n12##y,z,v), I[564] = (img)(_n1##x,_n12##y,z,v), I[565] = (img)(_n2##x,_n12##y,z,v), I[566] = (img)(_n3##x,_n12##y,z,v), I[567] = (img)(_n4##x,_n12##y,z,v), I[568] = (img)(_n5##x,_n12##y,z,v), I[569] = (img)(_n6##x,_n12##y,z,v), I[570] = (img)(_n7##x,_n12##y,z,v), I[571] = (img)(_n8##x,_n12##y,z,v), I[572] = (img)(_n9##x,_n12##y,z,v), I[573] = (img)(_n10##x,_n12##y,z,v), I[574] = (img)(_n11##x,_n12##y,z,v), I[575] = (img)(_n12##x,_n12##y,z,v);
philpem@5 9591
philpem@5 9592 // Define 4x4x4 loop macros for CImg
philpem@5 9593 //-------------------------------------
philpem@5 9594 #define cimg_for_in4(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
philpem@5 9595 _p1##i = i-1<0?0:i-1, \
philpem@5 9596 _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \
philpem@5 9597 _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2; \
philpem@5 9598 i<=(int)(i1) && (_n2##i<(int)(bound) || _n1##i==--_n2##i || \
philpem@5 9599 i==(_n2##i = --_n1##i)); \
philpem@5 9600 _p1##i = i++, \
philpem@5 9601 ++_n1##i, ++_n2##i)
philpem@5 9602
philpem@5 9603 #define cimg_for_in4X(img,x0,x1,x) cimg_for_in4((img).width,x0,x1,x)
philpem@5 9604 #define cimg_for_in4Y(img,y0,y1,y) cimg_for_in4((img).height,y0,y1,y)
philpem@5 9605 #define cimg_for_in4Z(img,z0,z1,z) cimg_for_in4((img).depth,z0,z1,z)
philpem@5 9606 #define cimg_for_in4V(img,v0,v1,v) cimg_for_in4((img).dim,v0,v1,v)
philpem@5 9607 #define cimg_for_in4XY(img,x0,y0,x1,y1,x,y) cimg_for_in4Y(img,y0,y1,y) cimg_for_in4X(img,x0,x1,x)
philpem@5 9608 #define cimg_for_in4XZ(img,x0,z0,x1,z1,x,z) cimg_for_in4Z(img,z0,z1,z) cimg_for_in4X(img,x0,x1,x)
philpem@5 9609 #define cimg_for_in4XV(img,x0,v0,x1,v1,x,v) cimg_for_in4V(img,v0,v1,v) cimg_for_in4X(img,x0,x1,x)
philpem@5 9610 #define cimg_for_in4YZ(img,y0,z0,y1,z1,y,z) cimg_for_in4Z(img,z0,z1,z) cimg_for_in4Y(img,y0,y1,y)
philpem@5 9611 #define cimg_for_in4YV(img,y0,v0,y1,v1,y,v) cimg_for_in4V(img,v0,v1,v) cimg_for_in4Y(img,y0,y1,y)
philpem@5 9612 #define cimg_for_in4ZV(img,z0,v0,z1,v1,z,v) cimg_for_in4V(img,v0,v1,v) cimg_for_in4Z(img,z0,z1,z)
philpem@5 9613 #define cimg_for_in4XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in4Z(img,z0,z1,z) cimg_for_in4XY(img,x0,y0,x1,y1,x,y)
philpem@5 9614 #define cimg_for_in4XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in4V(img,v0,v1,v) cimg_for_in4XZ(img,x0,y0,x1,y1,x,z)
philpem@5 9615 #define cimg_for_in4YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in4V(img,v0,v1,v) cimg_for_in4YZ(img,y0,z0,y1,z1,y,z)
philpem@5 9616 #define cimg_for_in4XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in4V(img,v0,v1,v) cimg_for_in4XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
philpem@5 9617
philpem@5 9618 #define cimg_for4x4x4(img,x,y,z,v,I) \
philpem@5 9619 cimg_for4((img).depth,z) cimg_for4((img).height,y) for (int x = 0, \
philpem@5 9620 _p1##x = 0, \
philpem@5 9621 _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \
philpem@5 9622 _n2##x = (int)( \
philpem@5 9623 (I[0] = I[1] = (img)(0,_p1##y,_p1##z,v)), \
philpem@5 9624 (I[4] = I[5] = (img)(0,y,_p1##z,v)), \
philpem@5 9625 (I[8] = I[9] = (img)(0,_n1##y,_p1##z,v)), \
philpem@5 9626 (I[12] = I[13] = (img)(0,_n2##y,_p1##z,v)), \
philpem@5 9627 (I[16] = I[17] = (img)(0,_p1##y,z,v)), \
philpem@5 9628 (I[20] = I[21] = (img)(0,y,z,v)), \
philpem@5 9629 (I[24] = I[25] = (img)(0,_n1##y,z,v)), \
philpem@5 9630 (I[28] = I[29] = (img)(0,_n2##y,z,v)), \
philpem@5 9631 (I[32] = I[33] = (img)(0,_p1##y,_n1##z,v)), \
philpem@5 9632 (I[36] = I[37] = (img)(0,y,_n1##z,v)), \
philpem@5 9633 (I[40] = I[41] = (img)(0,_n1##y,_n1##z,v)), \
philpem@5 9634 (I[44] = I[45] = (img)(0,_n2##y,_n1##z,v)), \
philpem@5 9635 (I[48] = I[49] = (img)(0,_p1##y,_n2##z,v)), \
philpem@5 9636 (I[52] = I[53] = (img)(0,y,_n2##z,v)), \
philpem@5 9637 (I[56] = I[57] = (img)(0,_n1##y,_n2##z,v)), \
philpem@5 9638 (I[60] = I[61] = (img)(0,_n2##y,_n2##z,v)), \
philpem@5 9639 (I[2] = (img)(_n1##x,_p1##y,_p1##z,v)), \
philpem@5 9640 (I[6] = (img)(_n1##x,y,_p1##z,v)), \
philpem@5 9641 (I[10] = (img)(_n1##x,_n1##y,_p1##z,v)), \
philpem@5 9642 (I[14] = (img)(_n1##x,_n2##y,_p1##z,v)), \
philpem@5 9643 (I[18] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 9644 (I[22] = (img)(_n1##x,y,z,v)), \
philpem@5 9645 (I[26] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 9646 (I[30] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 9647 (I[34] = (img)(_n1##x,_p1##y,_n1##z,v)), \
philpem@5 9648 (I[38] = (img)(_n1##x,y,_n1##z,v)), \
philpem@5 9649 (I[42] = (img)(_n1##x,_n1##y,_n1##z,v)), \
philpem@5 9650 (I[46] = (img)(_n1##x,_n2##y,_n1##z,v)), \
philpem@5 9651 (I[50] = (img)(_n1##x,_p1##y,_n2##z,v)), \
philpem@5 9652 (I[54] = (img)(_n1##x,y,_n2##z,v)), \
philpem@5 9653 (I[58] = (img)(_n1##x,_n1##y,_n2##z,v)), \
philpem@5 9654 (I[62] = (img)(_n1##x,_n2##y,_n2##z,v)), \
philpem@5 9655 2>=((img).width)?(int)((img).width)-1:2); \
philpem@5 9656 (_n2##x<(int)((img).width) && ( \
philpem@5 9657 (I[3] = (img)(_n2##x,_p1##y,_p1##z,v)), \
philpem@5 9658 (I[7] = (img)(_n2##x,y,_p1##z,v)), \
philpem@5 9659 (I[11] = (img)(_n2##x,_n1##y,_p1##z,v)), \
philpem@5 9660 (I[15] = (img)(_n2##x,_n2##y,_p1##z,v)), \
philpem@5 9661 (I[19] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 9662 (I[23] = (img)(_n2##x,y,z,v)), \
philpem@5 9663 (I[27] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 9664 (I[31] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 9665 (I[35] = (img)(_n2##x,_p1##y,_n1##z,v)), \
philpem@5 9666 (I[39] = (img)(_n2##x,y,_n1##z,v)), \
philpem@5 9667 (I[43] = (img)(_n2##x,_n1##y,_n1##z,v)), \
philpem@5 9668 (I[47] = (img)(_n2##x,_n2##y,_n1##z,v)), \
philpem@5 9669 (I[51] = (img)(_n2##x,_p1##y,_n2##z,v)), \
philpem@5 9670 (I[55] = (img)(_n2##x,y,_n2##z,v)), \
philpem@5 9671 (I[59] = (img)(_n2##x,_n1##y,_n2##z,v)), \
philpem@5 9672 (I[63] = (img)(_n2##x,_n2##y,_n2##z,v)),1)) || \
philpem@5 9673 _n1##x==--_n2##x || x==(_n2##x = --_n1##x); \
philpem@5 9674 I[0] = I[1], I[1] = I[2], I[2] = I[3], \
philpem@5 9675 I[4] = I[5], I[5] = I[6], I[6] = I[7], \
philpem@5 9676 I[8] = I[9], I[9] = I[10], I[10] = I[11], \
philpem@5 9677 I[12] = I[13], I[13] = I[14], I[14] = I[15], \
philpem@5 9678 I[16] = I[17], I[17] = I[18], I[18] = I[19], \
philpem@5 9679 I[20] = I[21], I[21] = I[22], I[22] = I[23], \
philpem@5 9680 I[24] = I[25], I[25] = I[26], I[26] = I[27], \
philpem@5 9681 I[28] = I[29], I[29] = I[30], I[30] = I[31], \
philpem@5 9682 I[32] = I[33], I[33] = I[34], I[34] = I[35], \
philpem@5 9683 I[36] = I[37], I[37] = I[38], I[38] = I[39], \
philpem@5 9684 I[40] = I[41], I[41] = I[42], I[42] = I[43], \
philpem@5 9685 I[44] = I[45], I[45] = I[46], I[46] = I[47], \
philpem@5 9686 I[48] = I[49], I[49] = I[50], I[50] = I[51], \
philpem@5 9687 I[52] = I[53], I[53] = I[54], I[54] = I[55], \
philpem@5 9688 I[56] = I[57], I[57] = I[58], I[58] = I[59], \
philpem@5 9689 I[60] = I[61], I[61] = I[62], I[62] = I[63], \
philpem@5 9690 _p1##x = x++, ++_n1##x, ++_n2##x)
philpem@5 9691
philpem@5 9692 #define cimg_for_in4x4x4(img,x0,y0,z0,x1,y1,z1,x,y,z,v,I) \
philpem@5 9693 cimg_for_in4((img).depth,z0,z1,z) cimg_for_in4((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
philpem@5 9694 _p1##x = x-1<0?0:x-1, \
philpem@5 9695 _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \
philpem@5 9696 _n2##x = (int)( \
philpem@5 9697 (I[0] = (img)(_p1##x,_p1##y,_p1##z,v)), \
philpem@5 9698 (I[4] = (img)(_p1##x,y,_p1##z,v)), \
philpem@5 9699 (I[8] = (img)(_p1##x,_n1##y,_p1##z,v)), \
philpem@5 9700 (I[12] = (img)(_p1##x,_n2##y,_p1##z,v)), \
philpem@5 9701 (I[16] = (img)(_p1##x,_p1##y,z,v)), \
philpem@5 9702 (I[20] = (img)(_p1##x,y,z,v)), \
philpem@5 9703 (I[24] = (img)(_p1##x,_n1##y,z,v)), \
philpem@5 9704 (I[28] = (img)(_p1##x,_n2##y,z,v)), \
philpem@5 9705 (I[32] = (img)(_p1##x,_p1##y,_n1##z,v)), \
philpem@5 9706 (I[36] = (img)(_p1##x,y,_n1##z,v)), \
philpem@5 9707 (I[40] = (img)(_p1##x,_n1##y,_n1##z,v)), \
philpem@5 9708 (I[44] = (img)(_p1##x,_n2##y,_n1##z,v)), \
philpem@5 9709 (I[48] = (img)(_p1##x,_p1##y,_n2##z,v)), \
philpem@5 9710 (I[52] = (img)(_p1##x,y,_n2##z,v)), \
philpem@5 9711 (I[56] = (img)(_p1##x,_n1##y,_n2##z,v)), \
philpem@5 9712 (I[60] = (img)(_p1##x,_n2##y,_n2##z,v)), \
philpem@5 9713 (I[1] = (img)(x,_p1##y,_p1##z,v)), \
philpem@5 9714 (I[5] = (img)(x,y,_p1##z,v)), \
philpem@5 9715 (I[9] = (img)(x,_n1##y,_p1##z,v)), \
philpem@5 9716 (I[13] = (img)(x,_n2##y,_p1##z,v)), \
philpem@5 9717 (I[17] = (img)(x,_p1##y,z,v)), \
philpem@5 9718 (I[21] = (img)(x,y,z,v)), \
philpem@5 9719 (I[25] = (img)(x,_n1##y,z,v)), \
philpem@5 9720 (I[29] = (img)(x,_n2##y,z,v)), \
philpem@5 9721 (I[33] = (img)(x,_p1##y,_n1##z,v)), \
philpem@5 9722 (I[37] = (img)(x,y,_n1##z,v)), \
philpem@5 9723 (I[41] = (img)(x,_n1##y,_n1##z,v)), \
philpem@5 9724 (I[45] = (img)(x,_n2##y,_n1##z,v)), \
philpem@5 9725 (I[49] = (img)(x,_p1##y,_n2##z,v)), \
philpem@5 9726 (I[53] = (img)(x,y,_n2##z,v)), \
philpem@5 9727 (I[57] = (img)(x,_n1##y,_n2##z,v)), \
philpem@5 9728 (I[61] = (img)(x,_n2##y,_n2##z,v)), \
philpem@5 9729 (I[2] = (img)(_n1##x,_p1##y,_p1##z,v)), \
philpem@5 9730 (I[6] = (img)(_n1##x,y,_p1##z,v)), \
philpem@5 9731 (I[10] = (img)(_n1##x,_n1##y,_p1##z,v)), \
philpem@5 9732 (I[14] = (img)(_n1##x,_n2##y,_p1##z,v)), \
philpem@5 9733 (I[18] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 9734 (I[22] = (img)(_n1##x,y,z,v)), \
philpem@5 9735 (I[26] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 9736 (I[30] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 9737 (I[34] = (img)(_n1##x,_p1##y,_n1##z,v)), \
philpem@5 9738 (I[38] = (img)(_n1##x,y,_n1##z,v)), \
philpem@5 9739 (I[42] = (img)(_n1##x,_n1##y,_n1##z,v)), \
philpem@5 9740 (I[46] = (img)(_n1##x,_n2##y,_n1##z,v)), \
philpem@5 9741 (I[50] = (img)(_n1##x,_p1##y,_n2##z,v)), \
philpem@5 9742 (I[54] = (img)(_n1##x,y,_n2##z,v)), \
philpem@5 9743 (I[58] = (img)(_n1##x,_n1##y,_n2##z,v)), \
philpem@5 9744 (I[62] = (img)(_n1##x,_n2##y,_n2##z,v)), \
philpem@5 9745 x+2>=(int)((img).width)?(int)((img).width)-1:x+2); \
philpem@5 9746 x<=(int)(x1) && ((_n2##x<(int)((img).width) && ( \
philpem@5 9747 (I[3] = (img)(_n2##x,_p1##y,_p1##z,v)), \
philpem@5 9748 (I[7] = (img)(_n2##x,y,_p1##z,v)), \
philpem@5 9749 (I[11] = (img)(_n2##x,_n1##y,_p1##z,v)), \
philpem@5 9750 (I[15] = (img)(_n2##x,_n2##y,_p1##z,v)), \
philpem@5 9751 (I[19] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 9752 (I[23] = (img)(_n2##x,y,z,v)), \
philpem@5 9753 (I[27] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 9754 (I[31] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 9755 (I[35] = (img)(_n2##x,_p1##y,_n1##z,v)), \
philpem@5 9756 (I[39] = (img)(_n2##x,y,_n1##z,v)), \
philpem@5 9757 (I[43] = (img)(_n2##x,_n1##y,_n1##z,v)), \
philpem@5 9758 (I[47] = (img)(_n2##x,_n2##y,_n1##z,v)), \
philpem@5 9759 (I[51] = (img)(_n2##x,_p1##y,_n2##z,v)), \
philpem@5 9760 (I[55] = (img)(_n2##x,y,_n2##z,v)), \
philpem@5 9761 (I[59] = (img)(_n2##x,_n1##y,_n2##z,v)), \
philpem@5 9762 (I[63] = (img)(_n2##x,_n2##y,_n2##z,v)),1)) || \
philpem@5 9763 _n1##x==--_n2##x || x==(_n2##x = --_n1##x)); \
philpem@5 9764 I[0] = I[1], I[1] = I[2], I[2] = I[3], \
philpem@5 9765 I[4] = I[5], I[5] = I[6], I[6] = I[7], \
philpem@5 9766 I[8] = I[9], I[9] = I[10], I[10] = I[11], \
philpem@5 9767 I[12] = I[13], I[13] = I[14], I[14] = I[15], \
philpem@5 9768 I[16] = I[17], I[17] = I[18], I[18] = I[19], \
philpem@5 9769 I[20] = I[21], I[21] = I[22], I[22] = I[23], \
philpem@5 9770 I[24] = I[25], I[25] = I[26], I[26] = I[27], \
philpem@5 9771 I[28] = I[29], I[29] = I[30], I[30] = I[31], \
philpem@5 9772 I[32] = I[33], I[33] = I[34], I[34] = I[35], \
philpem@5 9773 I[36] = I[37], I[37] = I[38], I[38] = I[39], \
philpem@5 9774 I[40] = I[41], I[41] = I[42], I[42] = I[43], \
philpem@5 9775 I[44] = I[45], I[45] = I[46], I[46] = I[47], \
philpem@5 9776 I[48] = I[49], I[49] = I[50], I[50] = I[51], \
philpem@5 9777 I[52] = I[53], I[53] = I[54], I[54] = I[55], \
philpem@5 9778 I[56] = I[57], I[57] = I[58], I[58] = I[59], \
philpem@5 9779 I[60] = I[61], I[61] = I[62], I[62] = I[63], \
philpem@5 9780 _p1##x = x++, ++_n1##x, ++_n2##x)
philpem@5 9781
philpem@5 9782 #define cimg_get4x4x4(img,x,y,z,v,I) \
philpem@5 9783 I[0] = (img)(_p1##x,_p1##y,_p1##z,v), I[1] = (img)(x,_p1##y,_p1##z,v), I[2] = (img)(_n1##x,_p1##y,_p1##z,v), I[3] = (img)(_n2##x,_p1##y,_p1##z,v), \
philpem@5 9784 I[4] = (img)(_p1##x,y,_p1##z,v), I[5] = (img)(x,y,_p1##z,v), I[6] = (img)(_n1##x,y,_p1##z,v), I[7] = (img)(_n2##x,y,_p1##z,v), \
philpem@5 9785 I[8] = (img)(_p1##x,_n1##y,_p1##z,v), I[9] = (img)(x,_n1##y,_p1##z,v), I[10] = (img)(_n1##x,_n1##y,_p1##z,v), I[11] = (img)(_n2##x,_n1##y,_p1##z,v), \
philpem@5 9786 I[12] = (img)(_p1##x,_n2##y,_p1##z,v), I[13] = (img)(x,_n2##y,_p1##z,v), I[14] = (img)(_n1##x,_n2##y,_p1##z,v), I[15] = (img)(_n2##x,_n2##y,_p1##z,v), \
philpem@5 9787 I[16] = (img)(_p1##x,_p1##y,z,v), I[17] = (img)(x,_p1##y,z,v), I[18] = (img)(_n1##x,_p1##y,z,v), I[19] = (img)(_n2##x,_p1##y,z,v), \
philpem@5 9788 I[20] = (img)(_p1##x,y,z,v), I[21] = (img)(x,y,z,v), I[22] = (img)(_n1##x,y,z,v), I[23] = (img)(_n2##x,y,z,v), \
philpem@5 9789 I[24] = (img)(_p1##x,_n1##y,z,v), I[25] = (img)(x,_n1##y,z,v), I[26] = (img)(_n1##x,_n1##y,z,v), I[27] = (img)(_n2##x,_n1##y,z,v), \
philpem@5 9790 I[28] = (img)(_p1##x,_n2##y,z,v), I[29] = (img)(x,_n2##y,z,v), I[30] = (img)(_n1##x,_n2##y,z,v), I[31] = (img)(_n2##x,_n2##y,z,v), \
philpem@5 9791 I[32] = (img)(_p1##x,_p1##y,_n1##z,v), I[33] = (img)(x,_p1##y,_n1##z,v), I[34] = (img)(_n1##x,_p1##y,_n1##z,v), I[35] = (img)(_n2##x,_p1##y,_n1##z,v), \
philpem@5 9792 I[36] = (img)(_p1##x,y,_n1##z,v), I[37] = (img)(x,y,_n1##z,v), I[38] = (img)(_n1##x,y,_n1##z,v), I[39] = (img)(_n2##x,y,_n1##z,v), \
philpem@5 9793 I[40] = (img)(_p1##x,_n1##y,_n1##z,v), I[41] = (img)(x,_n1##y,_n1##z,v), I[42] = (img)(_n1##x,_n1##y,_n1##z,v), I[43] = (img)(_n2##x,_n1##y,_n1##z,v), \
philpem@5 9794 I[44] = (img)(_p1##x,_n2##y,_n1##z,v), I[45] = (img)(x,_n2##y,_n1##z,v), I[46] = (img)(_n1##x,_n2##y,_n1##z,v), I[47] = (img)(_n2##x,_n2##y,_n1##z,v), \
philpem@5 9795 I[48] = (img)(_p1##x,_p1##y,_n2##z,v), I[49] = (img)(x,_p1##y,_n2##z,v), I[50] = (img)(_n1##x,_p1##y,_n2##z,v), I[51] = (img)(_n2##x,_p1##y,_n2##z,v), \
philpem@5 9796 I[52] = (img)(_p1##x,y,_n2##z,v), I[53] = (img)(x,y,_n2##z,v), I[54] = (img)(_n1##x,y,_n2##z,v), I[55] = (img)(_n2##x,y,_n2##z,v), \
philpem@5 9797 I[56] = (img)(_p1##x,_n1##y,_n2##z,v), I[57] = (img)(x,_n1##y,_n2##z,v), I[58] = (img)(_n1##x,_n1##y,_n2##z,v), I[59] = (img)(_n2##x,_n1##y,_n2##z,v), \
philpem@5 9798 I[60] = (img)(_p1##x,_n2##y,_n2##z,v), I[61] = (img)(x,_n2##y,_n2##z,v), I[62] = (img)(_n1##x,_n2##y,_n2##z,v), I[63] = (img)(_n2##x,_n2##y,_n2##z,v);
philpem@5 9799
philpem@5 9800 // Define 5x5x5 loop macros for CImg
philpem@5 9801 //-------------------------------------
philpem@5 9802 #define cimg_for_in5(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
philpem@5 9803 _p2##i = i-2<0?0:i-2, \
philpem@5 9804 _p1##i = i-1<0?0:i-1, \
philpem@5 9805 _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \
philpem@5 9806 _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2; \
philpem@5 9807 i<=(int)(i1) && (_n2##i<(int)(bound) || _n1##i==--_n2##i || \
philpem@5 9808 i==(_n2##i = --_n1##i)); \
philpem@5 9809 _p2##i = _p1##i, _p1##i = i++, \
philpem@5 9810 ++_n1##i, ++_n2##i)
philpem@5 9811
philpem@5 9812 #define cimg_for_in5X(img,x0,x1,x) cimg_for_in5((img).width,x0,x1,x)
philpem@5 9813 #define cimg_for_in5Y(img,y0,y1,y) cimg_for_in5((img).height,y0,y1,y)
philpem@5 9814 #define cimg_for_in5Z(img,z0,z1,z) cimg_for_in5((img).depth,z0,z1,z)
philpem@5 9815 #define cimg_for_in5V(img,v0,v1,v) cimg_for_in5((img).dim,v0,v1,v)
philpem@5 9816 #define cimg_for_in5XY(img,x0,y0,x1,y1,x,y) cimg_for_in5Y(img,y0,y1,y) cimg_for_in5X(img,x0,x1,x)
philpem@5 9817 #define cimg_for_in5XZ(img,x0,z0,x1,z1,x,z) cimg_for_in5Z(img,z0,z1,z) cimg_for_in5X(img,x0,x1,x)
philpem@5 9818 #define cimg_for_in5XV(img,x0,v0,x1,v1,x,v) cimg_for_in5V(img,v0,v1,v) cimg_for_in5X(img,x0,x1,x)
philpem@5 9819 #define cimg_for_in5YZ(img,y0,z0,y1,z1,y,z) cimg_for_in5Z(img,z0,z1,z) cimg_for_in5Y(img,y0,y1,y)
philpem@5 9820 #define cimg_for_in5YV(img,y0,v0,y1,v1,y,v) cimg_for_in5V(img,v0,v1,v) cimg_for_in5Y(img,y0,y1,y)
philpem@5 9821 #define cimg_for_in5ZV(img,z0,v0,z1,v1,z,v) cimg_for_in5V(img,v0,v1,v) cimg_for_in5Z(img,z0,z1,z)
philpem@5 9822 #define cimg_for_in5XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in5Z(img,z0,z1,z) cimg_for_in5XY(img,x0,y0,x1,y1,x,y)
philpem@5 9823 #define cimg_for_in5XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in5V(img,v0,v1,v) cimg_for_in5XZ(img,x0,y0,x1,y1,x,z)
philpem@5 9824 #define cimg_for_in5YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in5V(img,v0,v1,v) cimg_for_in5YZ(img,y0,z0,y1,z1,y,z)
philpem@5 9825 #define cimg_for_in5XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in5V(img,v0,v1,v) cimg_for_in5XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
philpem@5 9826
philpem@5 9827 #define cimg_for5x5x5(img,x,y,z,v,I) \
philpem@5 9828 cimg_for5((img).depth,z) cimg_for5((img).height,y) for (int x = 0, \
philpem@5 9829 _p2##x = 0, _p1##x = 0, \
philpem@5 9830 _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \
philpem@5 9831 _n2##x = (int)( \
philpem@5 9832 (I[0] = I[1] = I[2] = (img)(0,_p2##y,_p2##z,v)), \
philpem@5 9833 (I[5] = I[6] = I[7] = (img)(0,_p1##y,_p2##z,v)), \
philpem@5 9834 (I[10] = I[11] = I[12] = (img)(0,y,_p2##z,v)), \
philpem@5 9835 (I[15] = I[16] = I[17] = (img)(0,_n1##y,_p2##z,v)), \
philpem@5 9836 (I[20] = I[21] = I[22] = (img)(0,_n2##y,_p2##z,v)), \
philpem@5 9837 (I[25] = I[26] = I[27] = (img)(0,_p2##y,_p1##z,v)), \
philpem@5 9838 (I[30] = I[31] = I[32] = (img)(0,_p1##y,_p1##z,v)), \
philpem@5 9839 (I[35] = I[36] = I[37] = (img)(0,y,_p1##z,v)), \
philpem@5 9840 (I[40] = I[41] = I[42] = (img)(0,_n1##y,_p1##z,v)), \
philpem@5 9841 (I[45] = I[46] = I[47] = (img)(0,_n2##y,_p1##z,v)), \
philpem@5 9842 (I[50] = I[51] = I[52] = (img)(0,_p2##y,z,v)), \
philpem@5 9843 (I[55] = I[56] = I[57] = (img)(0,_p1##y,z,v)), \
philpem@5 9844 (I[60] = I[61] = I[62] = (img)(0,y,z,v)), \
philpem@5 9845 (I[65] = I[66] = I[67] = (img)(0,_n1##y,z,v)), \
philpem@5 9846 (I[70] = I[71] = I[72] = (img)(0,_n2##y,z,v)), \
philpem@5 9847 (I[75] = I[76] = I[77] = (img)(0,_p2##y,_n1##z,v)), \
philpem@5 9848 (I[80] = I[81] = I[82] = (img)(0,_p1##y,_n1##z,v)), \
philpem@5 9849 (I[85] = I[86] = I[87] = (img)(0,y,_n1##z,v)), \
philpem@5 9850 (I[90] = I[91] = I[92] = (img)(0,_n1##y,_n1##z,v)), \
philpem@5 9851 (I[95] = I[96] = I[97] = (img)(0,_n2##y,_n1##z,v)), \
philpem@5 9852 (I[100] = I[101] = I[102] = (img)(0,_p2##y,_n2##z,v)), \
philpem@5 9853 (I[105] = I[106] = I[107] = (img)(0,_p1##y,_n2##z,v)), \
philpem@5 9854 (I[110] = I[111] = I[112] = (img)(0,y,_n2##z,v)), \
philpem@5 9855 (I[115] = I[116] = I[117] = (img)(0,_n1##y,_n2##z,v)), \
philpem@5 9856 (I[120] = I[121] = I[122] = (img)(0,_n2##y,_n2##z,v)), \
philpem@5 9857 (I[3] = (img)(_n1##x,_p2##y,_p2##z,v)), \
philpem@5 9858 (I[8] = (img)(_n1##x,_p1##y,_p2##z,v)), \
philpem@5 9859 (I[13] = (img)(_n1##x,y,_p2##z,v)), \
philpem@5 9860 (I[18] = (img)(_n1##x,_n1##y,_p2##z,v)), \
philpem@5 9861 (I[23] = (img)(_n1##x,_n2##y,_p2##z,v)), \
philpem@5 9862 (I[28] = (img)(_n1##x,_p2##y,_p1##z,v)), \
philpem@5 9863 (I[33] = (img)(_n1##x,_p1##y,_p1##z,v)), \
philpem@5 9864 (I[38] = (img)(_n1##x,y,_p1##z,v)), \
philpem@5 9865 (I[43] = (img)(_n1##x,_n1##y,_p1##z,v)), \
philpem@5 9866 (I[48] = (img)(_n1##x,_n2##y,_p1##z,v)), \
philpem@5 9867 (I[53] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 9868 (I[58] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 9869 (I[63] = (img)(_n1##x,y,z,v)), \
philpem@5 9870 (I[68] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 9871 (I[73] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 9872 (I[78] = (img)(_n1##x,_p2##y,_n1##z,v)), \
philpem@5 9873 (I[83] = (img)(_n1##x,_p1##y,_n1##z,v)), \
philpem@5 9874 (I[88] = (img)(_n1##x,y,_n1##z,v)), \
philpem@5 9875 (I[93] = (img)(_n1##x,_n1##y,_n1##z,v)), \
philpem@5 9876 (I[98] = (img)(_n1##x,_n2##y,_n1##z,v)), \
philpem@5 9877 (I[103] = (img)(_n1##x,_p2##y,_n2##z,v)), \
philpem@5 9878 (I[108] = (img)(_n1##x,_p1##y,_n2##z,v)), \
philpem@5 9879 (I[113] = (img)(_n1##x,y,_n2##z,v)), \
philpem@5 9880 (I[118] = (img)(_n1##x,_n1##y,_n2##z,v)), \
philpem@5 9881 (I[123] = (img)(_n1##x,_n2##y,_n2##z,v)), \
philpem@5 9882 2>=((img).width)?(int)((img).width)-1:2); \
philpem@5 9883 (_n2##x<(int)((img).width) && ( \
philpem@5 9884 (I[4] = (img)(_n2##x,_p2##y,_p2##z,v)), \
philpem@5 9885 (I[9] = (img)(_n2##x,_p1##y,_p2##z,v)), \
philpem@5 9886 (I[14] = (img)(_n2##x,y,_p2##z,v)), \
philpem@5 9887 (I[19] = (img)(_n2##x,_n1##y,_p2##z,v)), \
philpem@5 9888 (I[24] = (img)(_n2##x,_n2##y,_p2##z,v)), \
philpem@5 9889 (I[29] = (img)(_n2##x,_p2##y,_p1##z,v)), \
philpem@5 9890 (I[34] = (img)(_n2##x,_p1##y,_p1##z,v)), \
philpem@5 9891 (I[39] = (img)(_n2##x,y,_p1##z,v)), \
philpem@5 9892 (I[44] = (img)(_n2##x,_n1##y,_p1##z,v)), \
philpem@5 9893 (I[49] = (img)(_n2##x,_n2##y,_p1##z,v)), \
philpem@5 9894 (I[54] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 9895 (I[59] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 9896 (I[64] = (img)(_n2##x,y,z,v)), \
philpem@5 9897 (I[69] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 9898 (I[74] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 9899 (I[79] = (img)(_n2##x,_p2##y,_n1##z,v)), \
philpem@5 9900 (I[84] = (img)(_n2##x,_p1##y,_n1##z,v)), \
philpem@5 9901 (I[89] = (img)(_n2##x,y,_n1##z,v)), \
philpem@5 9902 (I[94] = (img)(_n2##x,_n1##y,_n1##z,v)), \
philpem@5 9903 (I[99] = (img)(_n2##x,_n2##y,_n1##z,v)), \
philpem@5 9904 (I[104] = (img)(_n2##x,_p2##y,_n2##z,v)), \
philpem@5 9905 (I[109] = (img)(_n2##x,_p1##y,_n2##z,v)), \
philpem@5 9906 (I[114] = (img)(_n2##x,y,_n2##z,v)), \
philpem@5 9907 (I[119] = (img)(_n2##x,_n1##y,_n2##z,v)), \
philpem@5 9908 (I[124] = (img)(_n2##x,_n2##y,_n2##z,v)),1)) || \
philpem@5 9909 _n1##x==--_n2##x || x==(_n2##x = --_n1##x); \
philpem@5 9910 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], \
philpem@5 9911 I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], \
philpem@5 9912 I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], \
philpem@5 9913 I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \
philpem@5 9914 I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \
philpem@5 9915 I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
philpem@5 9916 I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], \
philpem@5 9917 I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
philpem@5 9918 I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], \
philpem@5 9919 I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], \
philpem@5 9920 I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], \
philpem@5 9921 I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
philpem@5 9922 I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], \
philpem@5 9923 I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \
philpem@5 9924 I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], \
philpem@5 9925 I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
philpem@5 9926 I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], \
philpem@5 9927 I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
philpem@5 9928 I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], \
philpem@5 9929 I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \
philpem@5 9930 I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \
philpem@5 9931 I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], \
philpem@5 9932 I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], \
philpem@5 9933 I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
philpem@5 9934 I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], \
philpem@5 9935 _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x)
philpem@5 9936
philpem@5 9937 #define cimg_for_in5x5x5(img,x0,y0,z0,x1,y1,z1,x,y,z,v,I) \
philpem@5 9938 cimg_for_in5((img).depth,z0,z1,z) cimg_for_in5((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
philpem@5 9939 _p2##x = x-2<0?0:x-2, \
philpem@5 9940 _p1##x = x-1<0?0:x-1, \
philpem@5 9941 _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \
philpem@5 9942 _n2##x = (int)( \
philpem@5 9943 (I[0] = (img)(_p2##x,_p2##y,_p2##z,v)), \
philpem@5 9944 (I[5] = (img)(_p2##x,_p1##y,_p2##z,v)), \
philpem@5 9945 (I[10] = (img)(_p2##x,y,_p2##z,v)), \
philpem@5 9946 (I[15] = (img)(_p2##x,_n1##y,_p2##z,v)), \
philpem@5 9947 (I[20] = (img)(_p2##x,_n2##y,_p2##z,v)), \
philpem@5 9948 (I[25] = (img)(_p2##x,_p2##y,_p1##z,v)), \
philpem@5 9949 (I[30] = (img)(_p2##x,_p1##y,_p1##z,v)), \
philpem@5 9950 (I[35] = (img)(_p2##x,y,_p1##z,v)), \
philpem@5 9951 (I[40] = (img)(_p2##x,_n1##y,_p1##z,v)), \
philpem@5 9952 (I[45] = (img)(_p2##x,_n2##y,_p1##z,v)), \
philpem@5 9953 (I[50] = (img)(_p2##x,_p2##y,z,v)), \
philpem@5 9954 (I[55] = (img)(_p2##x,_p1##y,z,v)), \
philpem@5 9955 (I[60] = (img)(_p2##x,y,z,v)), \
philpem@5 9956 (I[65] = (img)(_p2##x,_n1##y,z,v)), \
philpem@5 9957 (I[70] = (img)(_p2##x,_n2##y,z,v)), \
philpem@5 9958 (I[75] = (img)(_p2##x,_p2##y,_n1##z,v)), \
philpem@5 9959 (I[80] = (img)(_p2##x,_p1##y,_n1##z,v)), \
philpem@5 9960 (I[85] = (img)(_p2##x,y,_n1##z,v)), \
philpem@5 9961 (I[90] = (img)(_p2##x,_n1##y,_n1##z,v)), \
philpem@5 9962 (I[95] = (img)(_p2##x,_n2##y,_n1##z,v)), \
philpem@5 9963 (I[100] = (img)(_p2##x,_p2##y,_n2##z,v)), \
philpem@5 9964 (I[105] = (img)(_p2##x,_p1##y,_n2##z,v)), \
philpem@5 9965 (I[110] = (img)(_p2##x,y,_n2##z,v)), \
philpem@5 9966 (I[115] = (img)(_p2##x,_n1##y,_n2##z,v)), \
philpem@5 9967 (I[120] = (img)(_p2##x,_n2##y,_n2##z,v)), \
philpem@5 9968 (I[1] = (img)(_p1##x,_p2##y,_p2##z,v)), \
philpem@5 9969 (I[6] = (img)(_p1##x,_p1##y,_p2##z,v)), \
philpem@5 9970 (I[11] = (img)(_p1##x,y,_p2##z,v)), \
philpem@5 9971 (I[16] = (img)(_p1##x,_n1##y,_p2##z,v)), \
philpem@5 9972 (I[21] = (img)(_p1##x,_n2##y,_p2##z,v)), \
philpem@5 9973 (I[26] = (img)(_p1##x,_p2##y,_p1##z,v)), \
philpem@5 9974 (I[31] = (img)(_p1##x,_p1##y,_p1##z,v)), \
philpem@5 9975 (I[36] = (img)(_p1##x,y,_p1##z,v)), \
philpem@5 9976 (I[41] = (img)(_p1##x,_n1##y,_p1##z,v)), \
philpem@5 9977 (I[46] = (img)(_p1##x,_n2##y,_p1##z,v)), \
philpem@5 9978 (I[51] = (img)(_p1##x,_p2##y,z,v)), \
philpem@5 9979 (I[56] = (img)(_p1##x,_p1##y,z,v)), \
philpem@5 9980 (I[61] = (img)(_p1##x,y,z,v)), \
philpem@5 9981 (I[66] = (img)(_p1##x,_n1##y,z,v)), \
philpem@5 9982 (I[71] = (img)(_p1##x,_n2##y,z,v)), \
philpem@5 9983 (I[76] = (img)(_p1##x,_p2##y,_n1##z,v)), \
philpem@5 9984 (I[81] = (img)(_p1##x,_p1##y,_n1##z,v)), \
philpem@5 9985 (I[86] = (img)(_p1##x,y,_n1##z,v)), \
philpem@5 9986 (I[91] = (img)(_p1##x,_n1##y,_n1##z,v)), \
philpem@5 9987 (I[96] = (img)(_p1##x,_n2##y,_n1##z,v)), \
philpem@5 9988 (I[101] = (img)(_p1##x,_p2##y,_n2##z,v)), \
philpem@5 9989 (I[106] = (img)(_p1##x,_p1##y,_n2##z,v)), \
philpem@5 9990 (I[111] = (img)(_p1##x,y,_n2##z,v)), \
philpem@5 9991 (I[116] = (img)(_p1##x,_n1##y,_n2##z,v)), \
philpem@5 9992 (I[121] = (img)(_p1##x,_n2##y,_n2##z,v)), \
philpem@5 9993 (I[2] = (img)(x,_p2##y,_p2##z,v)), \
philpem@5 9994 (I[7] = (img)(x,_p1##y,_p2##z,v)), \
philpem@5 9995 (I[12] = (img)(x,y,_p2##z,v)), \
philpem@5 9996 (I[17] = (img)(x,_n1##y,_p2##z,v)), \
philpem@5 9997 (I[22] = (img)(x,_n2##y,_p2##z,v)), \
philpem@5 9998 (I[27] = (img)(x,_p2##y,_p1##z,v)), \
philpem@5 9999 (I[32] = (img)(x,_p1##y,_p1##z,v)), \
philpem@5 10000 (I[37] = (img)(x,y,_p1##z,v)), \
philpem@5 10001 (I[42] = (img)(x,_n1##y,_p1##z,v)), \
philpem@5 10002 (I[47] = (img)(x,_n2##y,_p1##z,v)), \
philpem@5 10003 (I[52] = (img)(x,_p2##y,z,v)), \
philpem@5 10004 (I[57] = (img)(x,_p1##y,z,v)), \
philpem@5 10005 (I[62] = (img)(x,y,z,v)), \
philpem@5 10006 (I[67] = (img)(x,_n1##y,z,v)), \
philpem@5 10007 (I[72] = (img)(x,_n2##y,z,v)), \
philpem@5 10008 (I[77] = (img)(x,_p2##y,_n1##z,v)), \
philpem@5 10009 (I[82] = (img)(x,_p1##y,_n1##z,v)), \
philpem@5 10010 (I[87] = (img)(x,y,_n1##z,v)), \
philpem@5 10011 (I[92] = (img)(x,_n1##y,_n1##z,v)), \
philpem@5 10012 (I[97] = (img)(x,_n2##y,_n1##z,v)), \
philpem@5 10013 (I[102] = (img)(x,_p2##y,_n2##z,v)), \
philpem@5 10014 (I[107] = (img)(x,_p1##y,_n2##z,v)), \
philpem@5 10015 (I[112] = (img)(x,y,_n2##z,v)), \
philpem@5 10016 (I[117] = (img)(x,_n1##y,_n2##z,v)), \
philpem@5 10017 (I[122] = (img)(x,_n2##y,_n2##z,v)), \
philpem@5 10018 (I[3] = (img)(_n1##x,_p2##y,_p2##z,v)), \
philpem@5 10019 (I[8] = (img)(_n1##x,_p1##y,_p2##z,v)), \
philpem@5 10020 (I[13] = (img)(_n1##x,y,_p2##z,v)), \
philpem@5 10021 (I[18] = (img)(_n1##x,_n1##y,_p2##z,v)), \
philpem@5 10022 (I[23] = (img)(_n1##x,_n2##y,_p2##z,v)), \
philpem@5 10023 (I[28] = (img)(_n1##x,_p2##y,_p1##z,v)), \
philpem@5 10024 (I[33] = (img)(_n1##x,_p1##y,_p1##z,v)), \
philpem@5 10025 (I[38] = (img)(_n1##x,y,_p1##z,v)), \
philpem@5 10026 (I[43] = (img)(_n1##x,_n1##y,_p1##z,v)), \
philpem@5 10027 (I[48] = (img)(_n1##x,_n2##y,_p1##z,v)), \
philpem@5 10028 (I[53] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 10029 (I[58] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 10030 (I[63] = (img)(_n1##x,y,z,v)), \
philpem@5 10031 (I[68] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 10032 (I[73] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 10033 (I[78] = (img)(_n1##x,_p2##y,_n1##z,v)), \
philpem@5 10034 (I[83] = (img)(_n1##x,_p1##y,_n1##z,v)), \
philpem@5 10035 (I[88] = (img)(_n1##x,y,_n1##z,v)), \
philpem@5 10036 (I[93] = (img)(_n1##x,_n1##y,_n1##z,v)), \
philpem@5 10037 (I[98] = (img)(_n1##x,_n2##y,_n1##z,v)), \
philpem@5 10038 (I[103] = (img)(_n1##x,_p2##y,_n2##z,v)), \
philpem@5 10039 (I[108] = (img)(_n1##x,_p1##y,_n2##z,v)), \
philpem@5 10040 (I[113] = (img)(_n1##x,y,_n2##z,v)), \
philpem@5 10041 (I[118] = (img)(_n1##x,_n1##y,_n2##z,v)), \
philpem@5 10042 (I[123] = (img)(_n1##x,_n2##y,_n2##z,v)), \
philpem@5 10043 x+2>=(int)((img).width)?(int)((img).width)-1:x+2); \
philpem@5 10044 x<=(int)(x1) && ((_n2##x<(int)((img).width) && ( \
philpem@5 10045 (I[4] = (img)(_n2##x,_p2##y,_p2##z,v)), \
philpem@5 10046 (I[9] = (img)(_n2##x,_p1##y,_p2##z,v)), \
philpem@5 10047 (I[14] = (img)(_n2##x,y,_p2##z,v)), \
philpem@5 10048 (I[19] = (img)(_n2##x,_n1##y,_p2##z,v)), \
philpem@5 10049 (I[24] = (img)(_n2##x,_n2##y,_p2##z,v)), \
philpem@5 10050 (I[29] = (img)(_n2##x,_p2##y,_p1##z,v)), \
philpem@5 10051 (I[34] = (img)(_n2##x,_p1##y,_p1##z,v)), \
philpem@5 10052 (I[39] = (img)(_n2##x,y,_p1##z,v)), \
philpem@5 10053 (I[44] = (img)(_n2##x,_n1##y,_p1##z,v)), \
philpem@5 10054 (I[49] = (img)(_n2##x,_n2##y,_p1##z,v)), \
philpem@5 10055 (I[54] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 10056 (I[59] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 10057 (I[64] = (img)(_n2##x,y,z,v)), \
philpem@5 10058 (I[69] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 10059 (I[74] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 10060 (I[79] = (img)(_n2##x,_p2##y,_n1##z,v)), \
philpem@5 10061 (I[84] = (img)(_n2##x,_p1##y,_n1##z,v)), \
philpem@5 10062 (I[89] = (img)(_n2##x,y,_n1##z,v)), \
philpem@5 10063 (I[94] = (img)(_n2##x,_n1##y,_n1##z,v)), \
philpem@5 10064 (I[99] = (img)(_n2##x,_n2##y,_n1##z,v)), \
philpem@5 10065 (I[104] = (img)(_n2##x,_p2##y,_n2##z,v)), \
philpem@5 10066 (I[109] = (img)(_n2##x,_p1##y,_n2##z,v)), \
philpem@5 10067 (I[114] = (img)(_n2##x,y,_n2##z,v)), \
philpem@5 10068 (I[119] = (img)(_n2##x,_n1##y,_n2##z,v)), \
philpem@5 10069 (I[124] = (img)(_n2##x,_n2##y,_n2##z,v)),1)) || \
philpem@5 10070 _n1##x==--_n2##x || x==(_n2##x = --_n1##x)); \
philpem@5 10071 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], \
philpem@5 10072 I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], \
philpem@5 10073 I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], \
philpem@5 10074 I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \
philpem@5 10075 I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \
philpem@5 10076 I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
philpem@5 10077 I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], \
philpem@5 10078 I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
philpem@5 10079 I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], \
philpem@5 10080 I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], \
philpem@5 10081 I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], \
philpem@5 10082 I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
philpem@5 10083 I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], \
philpem@5 10084 I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \
philpem@5 10085 I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], \
philpem@5 10086 I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
philpem@5 10087 I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], \
philpem@5 10088 I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
philpem@5 10089 I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], \
philpem@5 10090 I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \
philpem@5 10091 I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \
philpem@5 10092 I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], \
philpem@5 10093 I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], \
philpem@5 10094 I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
philpem@5 10095 I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], \
philpem@5 10096 _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x)
philpem@5 10097
philpem@5 10098 #define cimg_get5x5x5(img,x,y,z,v,I) \
philpem@5 10099 I[0] = (img)(_p2##x,_p2##y,_p2##z,v), I[1] = (img)(_p1##x,_p2##y,_p2##z,v), I[2] = (img)(x,_p2##y,_p2##z,v), I[3] = (img)(_n1##x,_p2##y,_p2##z,v), I[4] = (img)(_n2##x,_p2##y,_p2##z,v), \
philpem@5 10100 I[5] = (img)(_p2##x,_p1##y,_p2##z,v), I[6] = (img)(_p1##x,_p1##y,_p2##z,v), I[7] = (img)(x,_p1##y,_p2##z,v), I[8] = (img)(_n1##x,_p1##y,_p2##z,v), I[9] = (img)(_n2##x,_p1##y,_p2##z,v), \
philpem@5 10101 I[10] = (img)(_p2##x,y,_p2##z,v), I[11] = (img)(_p1##x,y,_p2##z,v), I[12] = (img)(x,y,_p2##z,v), I[13] = (img)(_n1##x,y,_p2##z,v), I[14] = (img)(_n2##x,y,_p2##z,v), \
philpem@5 10102 I[15] = (img)(_p2##x,_n1##y,_p2##z,v), I[16] = (img)(_p1##x,_n1##y,_p2##z,v), I[17] = (img)(x,_n1##y,_p2##z,v), I[18] = (img)(_n1##x,_n1##y,_p2##z,v), I[19] = (img)(_n2##x,_n1##y,_p2##z,v), \
philpem@5 10103 I[20] = (img)(_p2##x,_n2##y,_p2##z,v), I[21] = (img)(_p1##x,_n2##y,_p2##z,v), I[22] = (img)(x,_n2##y,_p2##z,v), I[23] = (img)(_n1##x,_n2##y,_p2##z,v), I[24] = (img)(_n2##x,_n2##y,_p2##z,v), \
philpem@5 10104 I[25] = (img)(_p2##x,_p2##y,_p1##z,v), I[26] = (img)(_p1##x,_p2##y,_p1##z,v), I[27] = (img)(x,_p2##y,_p1##z,v), I[28] = (img)(_n1##x,_p2##y,_p1##z,v), I[29] = (img)(_n2##x,_p2##y,_p1##z,v), \
philpem@5 10105 I[30] = (img)(_p2##x,_p1##y,_p1##z,v), I[31] = (img)(_p1##x,_p1##y,_p1##z,v), I[32] = (img)(x,_p1##y,_p1##z,v), I[33] = (img)(_n1##x,_p1##y,_p1##z,v), I[34] = (img)(_n2##x,_p1##y,_p1##z,v), \
philpem@5 10106 I[35] = (img)(_p2##x,y,_p1##z,v), I[36] = (img)(_p1##x,y,_p1##z,v), I[37] = (img)(x,y,_p1##z,v), I[38] = (img)(_n1##x,y,_p1##z,v), I[39] = (img)(_n2##x,y,_p1##z,v), \
philpem@5 10107 I[40] = (img)(_p2##x,_n1##y,_p1##z,v), I[41] = (img)(_p1##x,_n1##y,_p1##z,v), I[42] = (img)(x,_n1##y,_p1##z,v), I[43] = (img)(_n1##x,_n1##y,_p1##z,v), I[44] = (img)(_n2##x,_n1##y,_p1##z,v), \
philpem@5 10108 I[45] = (img)(_p2##x,_n2##y,_p1##z,v), I[46] = (img)(_p1##x,_n2##y,_p1##z,v), I[47] = (img)(x,_n2##y,_p1##z,v), I[48] = (img)(_n1##x,_n2##y,_p1##z,v), I[49] = (img)(_n2##x,_n2##y,_p1##z,v), \
philpem@5 10109 I[50] = (img)(_p2##x,_p2##y,z,v), I[51] = (img)(_p1##x,_p2##y,z,v), I[52] = (img)(x,_p2##y,z,v), I[53] = (img)(_n1##x,_p2##y,z,v), I[54] = (img)(_n2##x,_p2##y,z,v), \
philpem@5 10110 I[55] = (img)(_p2##x,_p1##y,z,v), I[56] = (img)(_p1##x,_p1##y,z,v), I[57] = (img)(x,_p1##y,z,v), I[58] = (img)(_n1##x,_p1##y,z,v), I[59] = (img)(_n2##x,_p1##y,z,v), \
philpem@5 10111 I[60] = (img)(_p2##x,y,z,v), I[61] = (img)(_p1##x,y,z,v), I[62] = (img)(x,y,z,v), I[63] = (img)(_n1##x,y,z,v), I[64] = (img)(_n2##x,y,z,v), \
philpem@5 10112 I[65] = (img)(_p2##x,_n1##y,z,v), I[66] = (img)(_p1##x,_n1##y,z,v), I[67] = (img)(x,_n1##y,z,v), I[68] = (img)(_n1##x,_n1##y,z,v), I[69] = (img)(_n2##x,_n1##y,z,v), \
philpem@5 10113 I[70] = (img)(_p2##x,_n2##y,z,v), I[71] = (img)(_p1##x,_n2##y,z,v), I[72] = (img)(x,_n2##y,z,v), I[73] = (img)(_n1##x,_n2##y,z,v), I[74] = (img)(_n2##x,_n2##y,z,v), \
philpem@5 10114 I[75] = (img)(_p2##x,_p2##y,_n1##z,v), I[76] = (img)(_p1##x,_p2##y,_n1##z,v), I[77] = (img)(x,_p2##y,_n1##z,v), I[78] = (img)(_n1##x,_p2##y,_n1##z,v), I[79] = (img)(_n2##x,_p2##y,_n1##z,v), \
philpem@5 10115 I[80] = (img)(_p2##x,_p1##y,_n1##z,v), I[81] = (img)(_p1##x,_p1##y,_n1##z,v), I[82] = (img)(x,_p1##y,_n1##z,v), I[83] = (img)(_n1##x,_p1##y,_n1##z,v), I[84] = (img)(_n2##x,_p1##y,_n1##z,v), \
philpem@5 10116 I[85] = (img)(_p2##x,y,_n1##z,v), I[86] = (img)(_p1##x,y,_n1##z,v), I[87] = (img)(x,y,_n1##z,v), I[88] = (img)(_n1##x,y,_n1##z,v), I[89] = (img)(_n2##x,y,_n1##z,v), \
philpem@5 10117 I[90] = (img)(_p2##x,_n1##y,_n1##z,v), I[91] = (img)(_p1##x,_n1##y,_n1##z,v), I[92] = (img)(x,_n1##y,_n1##z,v), I[93] = (img)(_n1##x,_n1##y,_n1##z,v), I[94] = (img)(_n2##x,_n1##y,_n1##z,v), \
philpem@5 10118 I[95] = (img)(_p2##x,_n2##y,_n1##z,v), I[96] = (img)(_p1##x,_n2##y,_n1##z,v), I[97] = (img)(x,_n2##y,_n1##z,v), I[98] = (img)(_n1##x,_n2##y,_n1##z,v), I[99] = (img)(_n2##x,_n2##y,_n1##z,v), \
philpem@5 10119 I[100] = (img)(_p2##x,_p2##y,_n2##z,v), I[101] = (img)(_p1##x,_p2##y,_n2##z,v), I[102] = (img)(x,_p2##y,_n2##z,v), I[103] = (img)(_n1##x,_p2##y,_n2##z,v), I[104] = (img)(_n2##x,_p2##y,_n2##z,v), \
philpem@5 10120 I[105] = (img)(_p2##x,_p1##y,_n2##z,v), I[106] = (img)(_p1##x,_p1##y,_n2##z,v), I[107] = (img)(x,_p1##y,_n2##z,v), I[108] = (img)(_n1##x,_p1##y,_n2##z,v), I[109] = (img)(_n2##x,_p1##y,_n2##z,v), \
philpem@5 10121 I[110] = (img)(_p2##x,y,_n2##z,v), I[111] = (img)(_p1##x,y,_n2##z,v), I[112] = (img)(x,y,_n2##z,v), I[113] = (img)(_n1##x,y,_n2##z,v), I[114] = (img)(_n2##x,y,_n2##z,v), \
philpem@5 10122 I[115] = (img)(_p2##x,_n1##y,_n2##z,v), I[116] = (img)(_p1##x,_n1##y,_n2##z,v), I[117] = (img)(x,_n1##y,_n2##z,v), I[118] = (img)(_n1##x,_n1##y,_n2##z,v), I[119] = (img)(_n2##x,_n1##y,_n2##z,v), \
philpem@5 10123 I[120] = (img)(_p2##x,_n2##y,_n2##z,v), I[121] = (img)(_p1##x,_n2##y,_n2##z,v), I[122] = (img)(x,_n2##y,_n2##z,v), I[123] = (img)(_n1##x,_n2##y,_n2##z,v), I[124] = (img)(_n2##x,_n2##y,_n2##z,v);
philpem@5 10124
philpem@5 10125 // Define 6x6x6 loop macros for CImg
philpem@5 10126 //-------------------------------------
philpem@5 10127 #define cimg_for_in6(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
philpem@5 10128 _p2##i = i-2<0?0:i-2, \
philpem@5 10129 _p1##i = i-1<0?0:i-1, \
philpem@5 10130 _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \
philpem@5 10131 _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \
philpem@5 10132 _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3; \
philpem@5 10133 i<=(int)(i1) && (_n3##i<(int)(bound) || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 10134 i==(_n3##i = _n2##i = --_n1##i)); \
philpem@5 10135 _p2##i = _p1##i, _p1##i = i++, \
philpem@5 10136 ++_n1##i, ++_n2##i, ++_n3##i)
philpem@5 10137
philpem@5 10138 #define cimg_for_in6X(img,x0,x1,x) cimg_for_in6((img).width,x0,x1,x)
philpem@5 10139 #define cimg_for_in6Y(img,y0,y1,y) cimg_for_in6((img).height,y0,y1,y)
philpem@5 10140 #define cimg_for_in6Z(img,z0,z1,z) cimg_for_in6((img).depth,z0,z1,z)
philpem@5 10141 #define cimg_for_in6V(img,v0,v1,v) cimg_for_in6((img).dim,v0,v1,v)
philpem@5 10142 #define cimg_for_in6XY(img,x0,y0,x1,y1,x,y) cimg_for_in6Y(img,y0,y1,y) cimg_for_in6X(img,x0,x1,x)
philpem@5 10143 #define cimg_for_in6XZ(img,x0,z0,x1,z1,x,z) cimg_for_in6Z(img,z0,z1,z) cimg_for_in6X(img,x0,x1,x)
philpem@5 10144 #define cimg_for_in6XV(img,x0,v0,x1,v1,x,v) cimg_for_in6V(img,v0,v1,v) cimg_for_in6X(img,x0,x1,x)
philpem@5 10145 #define cimg_for_in6YZ(img,y0,z0,y1,z1,y,z) cimg_for_in6Z(img,z0,z1,z) cimg_for_in6Y(img,y0,y1,y)
philpem@5 10146 #define cimg_for_in6YV(img,y0,v0,y1,v1,y,v) cimg_for_in6V(img,v0,v1,v) cimg_for_in6Y(img,y0,y1,y)
philpem@5 10147 #define cimg_for_in6ZV(img,z0,v0,z1,v1,z,v) cimg_for_in6V(img,v0,v1,v) cimg_for_in6Z(img,z0,z1,z)
philpem@5 10148 #define cimg_for_in6XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in6Z(img,z0,z1,z) cimg_for_in6XY(img,x0,y0,x1,y1,x,y)
philpem@5 10149 #define cimg_for_in6XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in6V(img,v0,v1,v) cimg_for_in6XZ(img,x0,y0,x1,y1,x,z)
philpem@5 10150 #define cimg_for_in6YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in6V(img,v0,v1,v) cimg_for_in6YZ(img,y0,z0,y1,z1,y,z)
philpem@5 10151 #define cimg_for_in6XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in6V(img,v0,v1,v) cimg_for_in6XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
philpem@5 10152
philpem@5 10153 #define cimg_for6x6x6(img,x,y,z,v,I) \
philpem@5 10154 cimg_for6((img).depth,z) cimg_for6((img).height,y) for (int x = 0, \
philpem@5 10155 _p2##x = 0, _p1##x = 0, \
philpem@5 10156 _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \
philpem@5 10157 _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \
philpem@5 10158 _n3##x = (int)( \
philpem@5 10159 (I[0] = I[1] = I[2] = (img)(0,_p2##y,_p2##z,v)), \
philpem@5 10160 (I[6] = I[7] = I[8] = (img)(0,_p1##y,_p2##z,v)), \
philpem@5 10161 (I[12] = I[13] = I[14] = (img)(0,y,_p2##z,v)), \
philpem@5 10162 (I[18] = I[19] = I[20] = (img)(0,_n1##y,_p2##z,v)), \
philpem@5 10163 (I[24] = I[25] = I[26] = (img)(0,_n2##y,_p2##z,v)), \
philpem@5 10164 (I[30] = I[31] = I[32] = (img)(0,_n3##y,_p2##z,v)), \
philpem@5 10165 (I[36] = I[37] = I[38] = (img)(0,_p2##y,_p1##z,v)), \
philpem@5 10166 (I[42] = I[43] = I[44] = (img)(0,_p1##y,_p1##z,v)), \
philpem@5 10167 (I[48] = I[49] = I[50] = (img)(0,y,_p1##z,v)), \
philpem@5 10168 (I[54] = I[55] = I[56] = (img)(0,_n1##y,_p1##z,v)), \
philpem@5 10169 (I[60] = I[61] = I[62] = (img)(0,_n2##y,_p1##z,v)), \
philpem@5 10170 (I[66] = I[67] = I[68] = (img)(0,_n3##y,_p1##z,v)), \
philpem@5 10171 (I[72] = I[73] = I[74] = (img)(0,_p2##y,z,v)), \
philpem@5 10172 (I[78] = I[79] = I[80] = (img)(0,_p1##y,z,v)), \
philpem@5 10173 (I[84] = I[85] = I[86] = (img)(0,y,z,v)), \
philpem@5 10174 (I[90] = I[91] = I[92] = (img)(0,_n1##y,z,v)), \
philpem@5 10175 (I[96] = I[97] = I[98] = (img)(0,_n2##y,z,v)), \
philpem@5 10176 (I[102] = I[103] = I[104] = (img)(0,_n3##y,z,v)), \
philpem@5 10177 (I[108] = I[109] = I[110] = (img)(0,_p2##y,_n1##z,v)), \
philpem@5 10178 (I[114] = I[115] = I[116] = (img)(0,_p1##y,_n1##z,v)), \
philpem@5 10179 (I[120] = I[121] = I[122] = (img)(0,y,_n1##z,v)), \
philpem@5 10180 (I[126] = I[127] = I[128] = (img)(0,_n1##y,_n1##z,v)), \
philpem@5 10181 (I[132] = I[133] = I[134] = (img)(0,_n2##y,_n1##z,v)), \
philpem@5 10182 (I[138] = I[139] = I[140] = (img)(0,_n3##y,_n1##z,v)), \
philpem@5 10183 (I[144] = I[145] = I[146] = (img)(0,_p2##y,_n2##z,v)), \
philpem@5 10184 (I[150] = I[151] = I[152] = (img)(0,_p1##y,_n2##z,v)), \
philpem@5 10185 (I[156] = I[157] = I[158] = (img)(0,y,_n2##z,v)), \
philpem@5 10186 (I[162] = I[163] = I[164] = (img)(0,_n1##y,_n2##z,v)), \
philpem@5 10187 (I[168] = I[169] = I[170] = (img)(0,_n2##y,_n2##z,v)), \
philpem@5 10188 (I[174] = I[175] = I[176] = (img)(0,_n3##y,_n2##z,v)), \
philpem@5 10189 (I[180] = I[181] = I[182] = (img)(0,_p2##y,_n3##z,v)), \
philpem@5 10190 (I[186] = I[187] = I[188] = (img)(0,_p1##y,_n3##z,v)), \
philpem@5 10191 (I[192] = I[193] = I[194] = (img)(0,y,_n3##z,v)), \
philpem@5 10192 (I[198] = I[199] = I[200] = (img)(0,_n1##y,_n3##z,v)), \
philpem@5 10193 (I[204] = I[205] = I[206] = (img)(0,_n2##y,_n3##z,v)), \
philpem@5 10194 (I[210] = I[211] = I[212] = (img)(0,_n3##y,_n3##z,v)), \
philpem@5 10195 (I[3] = (img)(_n1##x,_p2##y,_p2##z,v)), \
philpem@5 10196 (I[9] = (img)(_n1##x,_p1##y,_p2##z,v)), \
philpem@5 10197 (I[15] = (img)(_n1##x,y,_p2##z,v)), \
philpem@5 10198 (I[21] = (img)(_n1##x,_n1##y,_p2##z,v)), \
philpem@5 10199 (I[27] = (img)(_n1##x,_n2##y,_p2##z,v)), \
philpem@5 10200 (I[33] = (img)(_n1##x,_n3##y,_p2##z,v)), \
philpem@5 10201 (I[39] = (img)(_n1##x,_p2##y,_p1##z,v)), \
philpem@5 10202 (I[45] = (img)(_n1##x,_p1##y,_p1##z,v)), \
philpem@5 10203 (I[51] = (img)(_n1##x,y,_p1##z,v)), \
philpem@5 10204 (I[57] = (img)(_n1##x,_n1##y,_p1##z,v)), \
philpem@5 10205 (I[63] = (img)(_n1##x,_n2##y,_p1##z,v)), \
philpem@5 10206 (I[69] = (img)(_n1##x,_n3##y,_p1##z,v)), \
philpem@5 10207 (I[75] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 10208 (I[81] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 10209 (I[87] = (img)(_n1##x,y,z,v)), \
philpem@5 10210 (I[93] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 10211 (I[99] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 10212 (I[105] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 10213 (I[111] = (img)(_n1##x,_p2##y,_n1##z,v)), \
philpem@5 10214 (I[117] = (img)(_n1##x,_p1##y,_n1##z,v)), \
philpem@5 10215 (I[123] = (img)(_n1##x,y,_n1##z,v)), \
philpem@5 10216 (I[129] = (img)(_n1##x,_n1##y,_n1##z,v)), \
philpem@5 10217 (I[135] = (img)(_n1##x,_n2##y,_n1##z,v)), \
philpem@5 10218 (I[141] = (img)(_n1##x,_n3##y,_n1##z,v)), \
philpem@5 10219 (I[147] = (img)(_n1##x,_p2##y,_n2##z,v)), \
philpem@5 10220 (I[153] = (img)(_n1##x,_p1##y,_n2##z,v)), \
philpem@5 10221 (I[159] = (img)(_n1##x,y,_n2##z,v)), \
philpem@5 10222 (I[165] = (img)(_n1##x,_n1##y,_n2##z,v)), \
philpem@5 10223 (I[171] = (img)(_n1##x,_n2##y,_n2##z,v)), \
philpem@5 10224 (I[177] = (img)(_n1##x,_n3##y,_n2##z,v)), \
philpem@5 10225 (I[183] = (img)(_n1##x,_p2##y,_n3##z,v)), \
philpem@5 10226 (I[189] = (img)(_n1##x,_p1##y,_n3##z,v)), \
philpem@5 10227 (I[195] = (img)(_n1##x,y,_n3##z,v)), \
philpem@5 10228 (I[201] = (img)(_n1##x,_n1##y,_n3##z,v)), \
philpem@5 10229 (I[207] = (img)(_n1##x,_n2##y,_n3##z,v)), \
philpem@5 10230 (I[213] = (img)(_n1##x,_n3##y,_n3##z,v)), \
philpem@5 10231 (I[4] = (img)(_n2##x,_p2##y,_p2##z,v)), \
philpem@5 10232 (I[10] = (img)(_n2##x,_p1##y,_p2##z,v)), \
philpem@5 10233 (I[16] = (img)(_n2##x,y,_p2##z,v)), \
philpem@5 10234 (I[22] = (img)(_n2##x,_n1##y,_p2##z,v)), \
philpem@5 10235 (I[28] = (img)(_n2##x,_n2##y,_p2##z,v)), \
philpem@5 10236 (I[34] = (img)(_n2##x,_n3##y,_p2##z,v)), \
philpem@5 10237 (I[40] = (img)(_n2##x,_p2##y,_p1##z,v)), \
philpem@5 10238 (I[46] = (img)(_n2##x,_p1##y,_p1##z,v)), \
philpem@5 10239 (I[52] = (img)(_n2##x,y,_p1##z,v)), \
philpem@5 10240 (I[58] = (img)(_n2##x,_n1##y,_p1##z,v)), \
philpem@5 10241 (I[64] = (img)(_n2##x,_n2##y,_p1##z,v)), \
philpem@5 10242 (I[70] = (img)(_n2##x,_n3##y,_p1##z,v)), \
philpem@5 10243 (I[76] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 10244 (I[82] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 10245 (I[88] = (img)(_n2##x,y,z,v)), \
philpem@5 10246 (I[94] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 10247 (I[100] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 10248 (I[106] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 10249 (I[112] = (img)(_n2##x,_p2##y,_n1##z,v)), \
philpem@5 10250 (I[118] = (img)(_n2##x,_p1##y,_n1##z,v)), \
philpem@5 10251 (I[124] = (img)(_n2##x,y,_n1##z,v)), \
philpem@5 10252 (I[130] = (img)(_n2##x,_n1##y,_n1##z,v)), \
philpem@5 10253 (I[136] = (img)(_n2##x,_n2##y,_n1##z,v)), \
philpem@5 10254 (I[142] = (img)(_n2##x,_n3##y,_n1##z,v)), \
philpem@5 10255 (I[148] = (img)(_n2##x,_p2##y,_n2##z,v)), \
philpem@5 10256 (I[154] = (img)(_n2##x,_p1##y,_n2##z,v)), \
philpem@5 10257 (I[160] = (img)(_n2##x,y,_n2##z,v)), \
philpem@5 10258 (I[166] = (img)(_n2##x,_n1##y,_n2##z,v)), \
philpem@5 10259 (I[172] = (img)(_n2##x,_n2##y,_n2##z,v)), \
philpem@5 10260 (I[178] = (img)(_n2##x,_n3##y,_n2##z,v)), \
philpem@5 10261 (I[184] = (img)(_n2##x,_p2##y,_n3##z,v)), \
philpem@5 10262 (I[190] = (img)(_n2##x,_p1##y,_n3##z,v)), \
philpem@5 10263 (I[196] = (img)(_n2##x,y,_n3##z,v)), \
philpem@5 10264 (I[202] = (img)(_n2##x,_n1##y,_n3##z,v)), \
philpem@5 10265 (I[208] = (img)(_n2##x,_n2##y,_n3##z,v)), \
philpem@5 10266 (I[214] = (img)(_n2##x,_n3##y,_n3##z,v)), \
philpem@5 10267 3>=((img).width)?(int)((img).width)-1:3); \
philpem@5 10268 (_n3##x<(int)((img).width) && ( \
philpem@5 10269 (I[5] = (img)(_n3##x,_p2##y,_p2##z,v)), \
philpem@5 10270 (I[11] = (img)(_n3##x,_p1##y,_p2##z,v)), \
philpem@5 10271 (I[17] = (img)(_n3##x,y,_p2##z,v)), \
philpem@5 10272 (I[23] = (img)(_n3##x,_n1##y,_p2##z,v)), \
philpem@5 10273 (I[29] = (img)(_n3##x,_n2##y,_p2##z,v)), \
philpem@5 10274 (I[35] = (img)(_n3##x,_n3##y,_p2##z,v)), \
philpem@5 10275 (I[41] = (img)(_n3##x,_p2##y,_p1##z,v)), \
philpem@5 10276 (I[47] = (img)(_n3##x,_p1##y,_p1##z,v)), \
philpem@5 10277 (I[53] = (img)(_n3##x,y,_p1##z,v)), \
philpem@5 10278 (I[59] = (img)(_n3##x,_n1##y,_p1##z,v)), \
philpem@5 10279 (I[65] = (img)(_n3##x,_n2##y,_p1##z,v)), \
philpem@5 10280 (I[71] = (img)(_n3##x,_n3##y,_p1##z,v)), \
philpem@5 10281 (I[77] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 10282 (I[83] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 10283 (I[89] = (img)(_n3##x,y,z,v)), \
philpem@5 10284 (I[95] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 10285 (I[101] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 10286 (I[107] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 10287 (I[113] = (img)(_n3##x,_p2##y,_n1##z,v)), \
philpem@5 10288 (I[119] = (img)(_n3##x,_p1##y,_n1##z,v)), \
philpem@5 10289 (I[125] = (img)(_n3##x,y,_n1##z,v)), \
philpem@5 10290 (I[131] = (img)(_n3##x,_n1##y,_n1##z,v)), \
philpem@5 10291 (I[137] = (img)(_n3##x,_n2##y,_n1##z,v)), \
philpem@5 10292 (I[143] = (img)(_n3##x,_n3##y,_n1##z,v)), \
philpem@5 10293 (I[149] = (img)(_n3##x,_p2##y,_n2##z,v)), \
philpem@5 10294 (I[155] = (img)(_n3##x,_p1##y,_n2##z,v)), \
philpem@5 10295 (I[161] = (img)(_n3##x,y,_n2##z,v)), \
philpem@5 10296 (I[167] = (img)(_n3##x,_n1##y,_n2##z,v)), \
philpem@5 10297 (I[173] = (img)(_n3##x,_n2##y,_n2##z,v)), \
philpem@5 10298 (I[179] = (img)(_n3##x,_n3##y,_n2##z,v)), \
philpem@5 10299 (I[185] = (img)(_n3##x,_p2##y,_n3##z,v)), \
philpem@5 10300 (I[191] = (img)(_n3##x,_p1##y,_n3##z,v)), \
philpem@5 10301 (I[197] = (img)(_n3##x,y,_n3##z,v)), \
philpem@5 10302 (I[203] = (img)(_n3##x,_n1##y,_n3##z,v)), \
philpem@5 10303 (I[209] = (img)(_n3##x,_n2##y,_n3##z,v)), \
philpem@5 10304 (I[215] = (img)(_n3##x,_n3##y,_n3##z,v)),1)) || \
philpem@5 10305 _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3##x = _n2##x = --_n1##x); \
philpem@5 10306 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], \
philpem@5 10307 I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], \
philpem@5 10308 I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], \
philpem@5 10309 I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
philpem@5 10310 I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
philpem@5 10311 I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \
philpem@5 10312 I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
philpem@5 10313 I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
philpem@5 10314 I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], \
philpem@5 10315 I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
philpem@5 10316 I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], \
philpem@5 10317 I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
philpem@5 10318 I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], \
philpem@5 10319 I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
philpem@5 10320 I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
philpem@5 10321 I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
philpem@5 10322 I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], \
philpem@5 10323 I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \
philpem@5 10324 I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], \
philpem@5 10325 I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
philpem@5 10326 I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
philpem@5 10327 I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], \
philpem@5 10328 I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], \
philpem@5 10329 I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
philpem@5 10330 I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], \
philpem@5 10331 I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], \
philpem@5 10332 I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], \
philpem@5 10333 I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
philpem@5 10334 I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], \
philpem@5 10335 I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
philpem@5 10336 I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], \
philpem@5 10337 I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
philpem@5 10338 I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], \
philpem@5 10339 I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], \
philpem@5 10340 I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
philpem@5 10341 I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
philpem@5 10342 _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x)
philpem@5 10343
philpem@5 10344 #define cimg_for_in6x6x6(img,x0,y0,z0,x1,y1,z1,x,y,z,v,I) \
philpem@5 10345 cimg_for_in6((img).depth,z0,z1,z) cimg_for_in6((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
philpem@5 10346 _p2##x = x-2<0?0:x-2, \
philpem@5 10347 _p1##x = x-1<0?0:x-1, \
philpem@5 10348 _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \
philpem@5 10349 _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \
philpem@5 10350 _n3##x = (int)( \
philpem@5 10351 (I[0] = (img)(_p2##x,_p2##y,_p2##z,v)), \
philpem@5 10352 (I[6] = (img)(_p2##x,_p1##y,_p2##z,v)), \
philpem@5 10353 (I[12] = (img)(_p2##x,y,_p2##z,v)), \
philpem@5 10354 (I[18] = (img)(_p2##x,_n1##y,_p2##z,v)), \
philpem@5 10355 (I[24] = (img)(_p2##x,_n2##y,_p2##z,v)), \
philpem@5 10356 (I[30] = (img)(_p2##x,_n3##y,_p2##z,v)), \
philpem@5 10357 (I[36] = (img)(_p2##x,_p2##y,_p1##z,v)), \
philpem@5 10358 (I[42] = (img)(_p2##x,_p1##y,_p1##z,v)), \
philpem@5 10359 (I[48] = (img)(_p2##x,y,_p1##z,v)), \
philpem@5 10360 (I[54] = (img)(_p2##x,_n1##y,_p1##z,v)), \
philpem@5 10361 (I[60] = (img)(_p2##x,_n2##y,_p1##z,v)), \
philpem@5 10362 (I[66] = (img)(_p2##x,_n3##y,_p1##z,v)), \
philpem@5 10363 (I[72] = (img)(_p2##x,_p2##y,z,v)), \
philpem@5 10364 (I[78] = (img)(_p2##x,_p1##y,z,v)), \
philpem@5 10365 (I[84] = (img)(_p2##x,y,z,v)), \
philpem@5 10366 (I[90] = (img)(_p2##x,_n1##y,z,v)), \
philpem@5 10367 (I[96] = (img)(_p2##x,_n2##y,z,v)), \
philpem@5 10368 (I[102] = (img)(_p2##x,_n3##y,z,v)), \
philpem@5 10369 (I[108] = (img)(_p2##x,_p2##y,_n1##z,v)), \
philpem@5 10370 (I[114] = (img)(_p2##x,_p1##y,_n1##z,v)), \
philpem@5 10371 (I[120] = (img)(_p2##x,y,_n1##z,v)), \
philpem@5 10372 (I[126] = (img)(_p2##x,_n1##y,_n1##z,v)), \
philpem@5 10373 (I[132] = (img)(_p2##x,_n2##y,_n1##z,v)), \
philpem@5 10374 (I[138] = (img)(_p2##x,_n3##y,_n1##z,v)), \
philpem@5 10375 (I[144] = (img)(_p2##x,_p2##y,_n2##z,v)), \
philpem@5 10376 (I[150] = (img)(_p2##x,_p1##y,_n2##z,v)), \
philpem@5 10377 (I[156] = (img)(_p2##x,y,_n2##z,v)), \
philpem@5 10378 (I[162] = (img)(_p2##x,_n1##y,_n2##z,v)), \
philpem@5 10379 (I[168] = (img)(_p2##x,_n2##y,_n2##z,v)), \
philpem@5 10380 (I[174] = (img)(_p2##x,_n3##y,_n2##z,v)), \
philpem@5 10381 (I[180] = (img)(_p2##x,_p2##y,_n3##z,v)), \
philpem@5 10382 (I[186] = (img)(_p2##x,_p1##y,_n3##z,v)), \
philpem@5 10383 (I[192] = (img)(_p2##x,y,_n3##z,v)), \
philpem@5 10384 (I[198] = (img)(_p2##x,_n1##y,_n3##z,v)), \
philpem@5 10385 (I[204] = (img)(_p2##x,_n2##y,_n3##z,v)), \
philpem@5 10386 (I[210] = (img)(_p2##x,_n3##y,_n3##z,v)), \
philpem@5 10387 (I[1] = (img)(_p1##x,_p2##y,_p2##z,v)), \
philpem@5 10388 (I[7] = (img)(_p1##x,_p1##y,_p2##z,v)), \
philpem@5 10389 (I[13] = (img)(_p1##x,y,_p2##z,v)), \
philpem@5 10390 (I[19] = (img)(_p1##x,_n1##y,_p2##z,v)), \
philpem@5 10391 (I[25] = (img)(_p1##x,_n2##y,_p2##z,v)), \
philpem@5 10392 (I[31] = (img)(_p1##x,_n3##y,_p2##z,v)), \
philpem@5 10393 (I[37] = (img)(_p1##x,_p2##y,_p1##z,v)), \
philpem@5 10394 (I[43] = (img)(_p1##x,_p1##y,_p1##z,v)), \
philpem@5 10395 (I[49] = (img)(_p1##x,y,_p1##z,v)), \
philpem@5 10396 (I[55] = (img)(_p1##x,_n1##y,_p1##z,v)), \
philpem@5 10397 (I[61] = (img)(_p1##x,_n2##y,_p1##z,v)), \
philpem@5 10398 (I[67] = (img)(_p1##x,_n3##y,_p1##z,v)), \
philpem@5 10399 (I[73] = (img)(_p1##x,_p2##y,z,v)), \
philpem@5 10400 (I[79] = (img)(_p1##x,_p1##y,z,v)), \
philpem@5 10401 (I[85] = (img)(_p1##x,y,z,v)), \
philpem@5 10402 (I[91] = (img)(_p1##x,_n1##y,z,v)), \
philpem@5 10403 (I[97] = (img)(_p1##x,_n2##y,z,v)), \
philpem@5 10404 (I[103] = (img)(_p1##x,_n3##y,z,v)), \
philpem@5 10405 (I[109] = (img)(_p1##x,_p2##y,_n1##z,v)), \
philpem@5 10406 (I[115] = (img)(_p1##x,_p1##y,_n1##z,v)), \
philpem@5 10407 (I[121] = (img)(_p1##x,y,_n1##z,v)), \
philpem@5 10408 (I[127] = (img)(_p1##x,_n1##y,_n1##z,v)), \
philpem@5 10409 (I[133] = (img)(_p1##x,_n2##y,_n1##z,v)), \
philpem@5 10410 (I[139] = (img)(_p1##x,_n3##y,_n1##z,v)), \
philpem@5 10411 (I[145] = (img)(_p1##x,_p2##y,_n2##z,v)), \
philpem@5 10412 (I[151] = (img)(_p1##x,_p1##y,_n2##z,v)), \
philpem@5 10413 (I[157] = (img)(_p1##x,y,_n2##z,v)), \
philpem@5 10414 (I[163] = (img)(_p1##x,_n1##y,_n2##z,v)), \
philpem@5 10415 (I[169] = (img)(_p1##x,_n2##y,_n2##z,v)), \
philpem@5 10416 (I[175] = (img)(_p1##x,_n3##y,_n2##z,v)), \
philpem@5 10417 (I[181] = (img)(_p1##x,_p2##y,_n3##z,v)), \
philpem@5 10418 (I[187] = (img)(_p1##x,_p1##y,_n3##z,v)), \
philpem@5 10419 (I[193] = (img)(_p1##x,y,_n3##z,v)), \
philpem@5 10420 (I[199] = (img)(_p1##x,_n1##y,_n3##z,v)), \
philpem@5 10421 (I[205] = (img)(_p1##x,_n2##y,_n3##z,v)), \
philpem@5 10422 (I[211] = (img)(_p1##x,_n3##y,_n3##z,v)), \
philpem@5 10423 (I[2] = (img)(x,_p2##y,_p2##z,v)), \
philpem@5 10424 (I[8] = (img)(x,_p1##y,_p2##z,v)), \
philpem@5 10425 (I[14] = (img)(x,y,_p2##z,v)), \
philpem@5 10426 (I[20] = (img)(x,_n1##y,_p2##z,v)), \
philpem@5 10427 (I[26] = (img)(x,_n2##y,_p2##z,v)), \
philpem@5 10428 (I[32] = (img)(x,_n3##y,_p2##z,v)), \
philpem@5 10429 (I[38] = (img)(x,_p2##y,_p1##z,v)), \
philpem@5 10430 (I[44] = (img)(x,_p1##y,_p1##z,v)), \
philpem@5 10431 (I[50] = (img)(x,y,_p1##z,v)), \
philpem@5 10432 (I[56] = (img)(x,_n1##y,_p1##z,v)), \
philpem@5 10433 (I[62] = (img)(x,_n2##y,_p1##z,v)), \
philpem@5 10434 (I[68] = (img)(x,_n3##y,_p1##z,v)), \
philpem@5 10435 (I[74] = (img)(x,_p2##y,z,v)), \
philpem@5 10436 (I[80] = (img)(x,_p1##y,z,v)), \
philpem@5 10437 (I[86] = (img)(x,y,z,v)), \
philpem@5 10438 (I[92] = (img)(x,_n1##y,z,v)), \
philpem@5 10439 (I[98] = (img)(x,_n2##y,z,v)), \
philpem@5 10440 (I[104] = (img)(x,_n3##y,z,v)), \
philpem@5 10441 (I[110] = (img)(x,_p2##y,_n1##z,v)), \
philpem@5 10442 (I[116] = (img)(x,_p1##y,_n1##z,v)), \
philpem@5 10443 (I[122] = (img)(x,y,_n1##z,v)), \
philpem@5 10444 (I[128] = (img)(x,_n1##y,_n1##z,v)), \
philpem@5 10445 (I[134] = (img)(x,_n2##y,_n1##z,v)), \
philpem@5 10446 (I[140] = (img)(x,_n3##y,_n1##z,v)), \
philpem@5 10447 (I[146] = (img)(x,_p2##y,_n2##z,v)), \
philpem@5 10448 (I[152] = (img)(x,_p1##y,_n2##z,v)), \
philpem@5 10449 (I[158] = (img)(x,y,_n2##z,v)), \
philpem@5 10450 (I[164] = (img)(x,_n1##y,_n2##z,v)), \
philpem@5 10451 (I[170] = (img)(x,_n2##y,_n2##z,v)), \
philpem@5 10452 (I[176] = (img)(x,_n3##y,_n2##z,v)), \
philpem@5 10453 (I[182] = (img)(x,_p2##y,_n3##z,v)), \
philpem@5 10454 (I[188] = (img)(x,_p1##y,_n3##z,v)), \
philpem@5 10455 (I[194] = (img)(x,y,_n3##z,v)), \
philpem@5 10456 (I[200] = (img)(x,_n1##y,_n3##z,v)), \
philpem@5 10457 (I[206] = (img)(x,_n2##y,_n3##z,v)), \
philpem@5 10458 (I[212] = (img)(x,_n3##y,_n3##z,v)), \
philpem@5 10459 (I[3] = (img)(_n1##x,_p2##y,_p2##z,v)), \
philpem@5 10460 (I[9] = (img)(_n1##x,_p1##y,_p2##z,v)), \
philpem@5 10461 (I[15] = (img)(_n1##x,y,_p2##z,v)), \
philpem@5 10462 (I[21] = (img)(_n1##x,_n1##y,_p2##z,v)), \
philpem@5 10463 (I[27] = (img)(_n1##x,_n2##y,_p2##z,v)), \
philpem@5 10464 (I[33] = (img)(_n1##x,_n3##y,_p2##z,v)), \
philpem@5 10465 (I[39] = (img)(_n1##x,_p2##y,_p1##z,v)), \
philpem@5 10466 (I[45] = (img)(_n1##x,_p1##y,_p1##z,v)), \
philpem@5 10467 (I[51] = (img)(_n1##x,y,_p1##z,v)), \
philpem@5 10468 (I[57] = (img)(_n1##x,_n1##y,_p1##z,v)), \
philpem@5 10469 (I[63] = (img)(_n1##x,_n2##y,_p1##z,v)), \
philpem@5 10470 (I[69] = (img)(_n1##x,_n3##y,_p1##z,v)), \
philpem@5 10471 (I[75] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 10472 (I[81] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 10473 (I[87] = (img)(_n1##x,y,z,v)), \
philpem@5 10474 (I[93] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 10475 (I[99] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 10476 (I[105] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 10477 (I[111] = (img)(_n1##x,_p2##y,_n1##z,v)), \
philpem@5 10478 (I[117] = (img)(_n1##x,_p1##y,_n1##z,v)), \
philpem@5 10479 (I[123] = (img)(_n1##x,y,_n1##z,v)), \
philpem@5 10480 (I[129] = (img)(_n1##x,_n1##y,_n1##z,v)), \
philpem@5 10481 (I[135] = (img)(_n1##x,_n2##y,_n1##z,v)), \
philpem@5 10482 (I[141] = (img)(_n1##x,_n3##y,_n1##z,v)), \
philpem@5 10483 (I[147] = (img)(_n1##x,_p2##y,_n2##z,v)), \
philpem@5 10484 (I[153] = (img)(_n1##x,_p1##y,_n2##z,v)), \
philpem@5 10485 (I[159] = (img)(_n1##x,y,_n2##z,v)), \
philpem@5 10486 (I[165] = (img)(_n1##x,_n1##y,_n2##z,v)), \
philpem@5 10487 (I[171] = (img)(_n1##x,_n2##y,_n2##z,v)), \
philpem@5 10488 (I[177] = (img)(_n1##x,_n3##y,_n2##z,v)), \
philpem@5 10489 (I[183] = (img)(_n1##x,_p2##y,_n3##z,v)), \
philpem@5 10490 (I[189] = (img)(_n1##x,_p1##y,_n3##z,v)), \
philpem@5 10491 (I[195] = (img)(_n1##x,y,_n3##z,v)), \
philpem@5 10492 (I[201] = (img)(_n1##x,_n1##y,_n3##z,v)), \
philpem@5 10493 (I[207] = (img)(_n1##x,_n2##y,_n3##z,v)), \
philpem@5 10494 (I[213] = (img)(_n1##x,_n3##y,_n3##z,v)), \
philpem@5 10495 (I[4] = (img)(_n2##x,_p2##y,_p2##z,v)), \
philpem@5 10496 (I[10] = (img)(_n2##x,_p1##y,_p2##z,v)), \
philpem@5 10497 (I[16] = (img)(_n2##x,y,_p2##z,v)), \
philpem@5 10498 (I[22] = (img)(_n2##x,_n1##y,_p2##z,v)), \
philpem@5 10499 (I[28] = (img)(_n2##x,_n2##y,_p2##z,v)), \
philpem@5 10500 (I[34] = (img)(_n2##x,_n3##y,_p2##z,v)), \
philpem@5 10501 (I[40] = (img)(_n2##x,_p2##y,_p1##z,v)), \
philpem@5 10502 (I[46] = (img)(_n2##x,_p1##y,_p1##z,v)), \
philpem@5 10503 (I[52] = (img)(_n2##x,y,_p1##z,v)), \
philpem@5 10504 (I[58] = (img)(_n2##x,_n1##y,_p1##z,v)), \
philpem@5 10505 (I[64] = (img)(_n2##x,_n2##y,_p1##z,v)), \
philpem@5 10506 (I[70] = (img)(_n2##x,_n3##y,_p1##z,v)), \
philpem@5 10507 (I[76] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 10508 (I[82] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 10509 (I[88] = (img)(_n2##x,y,z,v)), \
philpem@5 10510 (I[94] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 10511 (I[100] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 10512 (I[106] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 10513 (I[112] = (img)(_n2##x,_p2##y,_n1##z,v)), \
philpem@5 10514 (I[118] = (img)(_n2##x,_p1##y,_n1##z,v)), \
philpem@5 10515 (I[124] = (img)(_n2##x,y,_n1##z,v)), \
philpem@5 10516 (I[130] = (img)(_n2##x,_n1##y,_n1##z,v)), \
philpem@5 10517 (I[136] = (img)(_n2##x,_n2##y,_n1##z,v)), \
philpem@5 10518 (I[142] = (img)(_n2##x,_n3##y,_n1##z,v)), \
philpem@5 10519 (I[148] = (img)(_n2##x,_p2##y,_n2##z,v)), \
philpem@5 10520 (I[154] = (img)(_n2##x,_p1##y,_n2##z,v)), \
philpem@5 10521 (I[160] = (img)(_n2##x,y,_n2##z,v)), \
philpem@5 10522 (I[166] = (img)(_n2##x,_n1##y,_n2##z,v)), \
philpem@5 10523 (I[172] = (img)(_n2##x,_n2##y,_n2##z,v)), \
philpem@5 10524 (I[178] = (img)(_n2##x,_n3##y,_n2##z,v)), \
philpem@5 10525 (I[184] = (img)(_n2##x,_p2##y,_n3##z,v)), \
philpem@5 10526 (I[190] = (img)(_n2##x,_p1##y,_n3##z,v)), \
philpem@5 10527 (I[196] = (img)(_n2##x,y,_n3##z,v)), \
philpem@5 10528 (I[202] = (img)(_n2##x,_n1##y,_n3##z,v)), \
philpem@5 10529 (I[208] = (img)(_n2##x,_n2##y,_n3##z,v)), \
philpem@5 10530 (I[214] = (img)(_n2##x,_n3##y,_n3##z,v)), \
philpem@5 10531 x+3>=(int)((img).width)?(int)((img).width)-1:x+3); \
philpem@5 10532 x<=(int)(x1) && ((_n3##x<(int)((img).width) && ( \
philpem@5 10533 (I[5] = (img)(_n3##x,_p2##y,_p2##z,v)), \
philpem@5 10534 (I[11] = (img)(_n3##x,_p1##y,_p2##z,v)), \
philpem@5 10535 (I[17] = (img)(_n3##x,y,_p2##z,v)), \
philpem@5 10536 (I[23] = (img)(_n3##x,_n1##y,_p2##z,v)), \
philpem@5 10537 (I[29] = (img)(_n3##x,_n2##y,_p2##z,v)), \
philpem@5 10538 (I[35] = (img)(_n3##x,_n3##y,_p2##z,v)), \
philpem@5 10539 (I[41] = (img)(_n3##x,_p2##y,_p1##z,v)), \
philpem@5 10540 (I[47] = (img)(_n3##x,_p1##y,_p1##z,v)), \
philpem@5 10541 (I[53] = (img)(_n3##x,y,_p1##z,v)), \
philpem@5 10542 (I[59] = (img)(_n3##x,_n1##y,_p1##z,v)), \
philpem@5 10543 (I[65] = (img)(_n3##x,_n2##y,_p1##z,v)), \
philpem@5 10544 (I[71] = (img)(_n3##x,_n3##y,_p1##z,v)), \
philpem@5 10545 (I[77] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 10546 (I[83] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 10547 (I[89] = (img)(_n3##x,y,z,v)), \
philpem@5 10548 (I[95] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 10549 (I[101] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 10550 (I[107] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 10551 (I[113] = (img)(_n3##x,_p2##y,_n1##z,v)), \
philpem@5 10552 (I[119] = (img)(_n3##x,_p1##y,_n1##z,v)), \
philpem@5 10553 (I[125] = (img)(_n3##x,y,_n1##z,v)), \
philpem@5 10554 (I[131] = (img)(_n3##x,_n1##y,_n1##z,v)), \
philpem@5 10555 (I[137] = (img)(_n3##x,_n2##y,_n1##z,v)), \
philpem@5 10556 (I[143] = (img)(_n3##x,_n3##y,_n1##z,v)), \
philpem@5 10557 (I[149] = (img)(_n3##x,_p2##y,_n2##z,v)), \
philpem@5 10558 (I[155] = (img)(_n3##x,_p1##y,_n2##z,v)), \
philpem@5 10559 (I[161] = (img)(_n3##x,y,_n2##z,v)), \
philpem@5 10560 (I[167] = (img)(_n3##x,_n1##y,_n2##z,v)), \
philpem@5 10561 (I[173] = (img)(_n3##x,_n2##y,_n2##z,v)), \
philpem@5 10562 (I[179] = (img)(_n3##x,_n3##y,_n2##z,v)), \
philpem@5 10563 (I[185] = (img)(_n3##x,_p2##y,_n3##z,v)), \
philpem@5 10564 (I[191] = (img)(_n3##x,_p1##y,_n3##z,v)), \
philpem@5 10565 (I[197] = (img)(_n3##x,y,_n3##z,v)), \
philpem@5 10566 (I[203] = (img)(_n3##x,_n1##y,_n3##z,v)), \
philpem@5 10567 (I[209] = (img)(_n3##x,_n2##y,_n3##z,v)), \
philpem@5 10568 (I[215] = (img)(_n3##x,_n3##y,_n3##z,v)),1)) || \
philpem@5 10569 _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3##x = _n2##x = --_n1##x)); \
philpem@5 10570 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], \
philpem@5 10571 I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], \
philpem@5 10572 I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], \
philpem@5 10573 I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
philpem@5 10574 I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
philpem@5 10575 I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \
philpem@5 10576 I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
philpem@5 10577 I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
philpem@5 10578 I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], \
philpem@5 10579 I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
philpem@5 10580 I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], \
philpem@5 10581 I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
philpem@5 10582 I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], \
philpem@5 10583 I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
philpem@5 10584 I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
philpem@5 10585 I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
philpem@5 10586 I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], \
philpem@5 10587 I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \
philpem@5 10588 I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], \
philpem@5 10589 I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
philpem@5 10590 I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
philpem@5 10591 I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], \
philpem@5 10592 I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], \
philpem@5 10593 I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
philpem@5 10594 I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], \
philpem@5 10595 I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], \
philpem@5 10596 I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], \
philpem@5 10597 I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
philpem@5 10598 I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], \
philpem@5 10599 I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
philpem@5 10600 I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], \
philpem@5 10601 I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
philpem@5 10602 I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], \
philpem@5 10603 I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], \
philpem@5 10604 I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
philpem@5 10605 I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
philpem@5 10606 _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x)
philpem@5 10607
philpem@5 10608 #define cimg_get6x6x6(img,x,y,z,v,I) \
philpem@5 10609 I[0] = (img)(_p2##x,_p2##y,_p2##z,v), I[1] = (img)(_p1##x,_p2##y,_p2##z,v), I[2] = (img)(x,_p2##y,_p2##z,v), I[3] = (img)(_n1##x,_p2##y,_p2##z,v), I[4] = (img)(_n2##x,_p2##y,_p2##z,v), I[5] = (img)(_n3##x,_p2##y,_p2##z,v), \
philpem@5 10610 I[6] = (img)(_p2##x,_p1##y,_p2##z,v), I[7] = (img)(_p1##x,_p1##y,_p2##z,v), I[8] = (img)(x,_p1##y,_p2##z,v), I[9] = (img)(_n1##x,_p1##y,_p2##z,v), I[10] = (img)(_n2##x,_p1##y,_p2##z,v), I[11] = (img)(_n3##x,_p1##y,_p2##z,v), \
philpem@5 10611 I[12] = (img)(_p2##x,y,_p2##z,v), I[13] = (img)(_p1##x,y,_p2##z,v), I[14] = (img)(x,y,_p2##z,v), I[15] = (img)(_n1##x,y,_p2##z,v), I[16] = (img)(_n2##x,y,_p2##z,v), I[17] = (img)(_n3##x,y,_p2##z,v), \
philpem@5 10612 I[18] = (img)(_p2##x,_n1##y,_p2##z,v), I[19] = (img)(_p1##x,_n1##y,_p2##z,v), I[20] = (img)(x,_n1##y,_p2##z,v), I[21] = (img)(_n1##x,_n1##y,_p2##z,v), I[22] = (img)(_n2##x,_n1##y,_p2##z,v), I[23] = (img)(_n3##x,_n1##y,_p2##z,v), \
philpem@5 10613 I[24] = (img)(_p2##x,_n2##y,_p2##z,v), I[25] = (img)(_p1##x,_n2##y,_p2##z,v), I[26] = (img)(x,_n2##y,_p2##z,v), I[27] = (img)(_n1##x,_n2##y,_p2##z,v), I[28] = (img)(_n2##x,_n2##y,_p2##z,v), I[29] = (img)(_n3##x,_n2##y,_p2##z,v), \
philpem@5 10614 I[30] = (img)(_p2##x,_n3##y,_p2##z,v), I[31] = (img)(_p1##x,_n3##y,_p2##z,v), I[32] = (img)(x,_n3##y,_p2##z,v), I[33] = (img)(_n1##x,_n3##y,_p2##z,v), I[34] = (img)(_n2##x,_n3##y,_p2##z,v), I[35] = (img)(_n3##x,_n3##y,_p2##z,v), \
philpem@5 10615 I[36] = (img)(_p2##x,_p2##y,_p1##z,v), I[37] = (img)(_p1##x,_p2##y,_p1##z,v), I[38] = (img)(x,_p2##y,_p1##z,v), I[39] = (img)(_n1##x,_p2##y,_p1##z,v), I[40] = (img)(_n2##x,_p2##y,_p1##z,v), I[41] = (img)(_n3##x,_p2##y,_p1##z,v), \
philpem@5 10616 I[42] = (img)(_p2##x,_p1##y,_p1##z,v), I[43] = (img)(_p1##x,_p1##y,_p1##z,v), I[44] = (img)(x,_p1##y,_p1##z,v), I[45] = (img)(_n1##x,_p1##y,_p1##z,v), I[46] = (img)(_n2##x,_p1##y,_p1##z,v), I[47] = (img)(_n3##x,_p1##y,_p1##z,v), \
philpem@5 10617 I[48] = (img)(_p2##x,y,_p1##z,v), I[49] = (img)(_p1##x,y,_p1##z,v), I[50] = (img)(x,y,_p1##z,v), I[51] = (img)(_n1##x,y,_p1##z,v), I[52] = (img)(_n2##x,y,_p1##z,v), I[53] = (img)(_n3##x,y,_p1##z,v), \
philpem@5 10618 I[54] = (img)(_p2##x,_n1##y,_p1##z,v), I[55] = (img)(_p1##x,_n1##y,_p1##z,v), I[56] = (img)(x,_n1##y,_p1##z,v), I[57] = (img)(_n1##x,_n1##y,_p1##z,v), I[58] = (img)(_n2##x,_n1##y,_p1##z,v), I[59] = (img)(_n3##x,_n1##y,_p1##z,v), \
philpem@5 10619 I[60] = (img)(_p2##x,_n2##y,_p1##z,v), I[61] = (img)(_p1##x,_n2##y,_p1##z,v), I[62] = (img)(x,_n2##y,_p1##z,v), I[63] = (img)(_n1##x,_n2##y,_p1##z,v), I[64] = (img)(_n2##x,_n2##y,_p1##z,v), I[65] = (img)(_n3##x,_n2##y,_p1##z,v), \
philpem@5 10620 I[66] = (img)(_p2##x,_n3##y,_p1##z,v), I[67] = (img)(_p1##x,_n3##y,_p1##z,v), I[68] = (img)(x,_n3##y,_p1##z,v), I[69] = (img)(_n1##x,_n3##y,_p1##z,v), I[70] = (img)(_n2##x,_n3##y,_p1##z,v), I[71] = (img)(_n3##x,_n3##y,_p1##z,v), \
philpem@5 10621 I[72] = (img)(_p2##x,_p2##y,z,v), I[73] = (img)(_p1##x,_p2##y,z,v), I[74] = (img)(x,_p2##y,z,v), I[75] = (img)(_n1##x,_p2##y,z,v), I[76] = (img)(_n2##x,_p2##y,z,v), I[77] = (img)(_n3##x,_p2##y,z,v), \
philpem@5 10622 I[78] = (img)(_p2##x,_p1##y,z,v), I[79] = (img)(_p1##x,_p1##y,z,v), I[80] = (img)(x,_p1##y,z,v), I[81] = (img)(_n1##x,_p1##y,z,v), I[82] = (img)(_n2##x,_p1##y,z,v), I[83] = (img)(_n3##x,_p1##y,z,v), \
philpem@5 10623 I[84] = (img)(_p2##x,y,z,v), I[85] = (img)(_p1##x,y,z,v), I[86] = (img)(x,y,z,v), I[87] = (img)(_n1##x,y,z,v), I[88] = (img)(_n2##x,y,z,v), I[89] = (img)(_n3##x,y,z,v), \
philpem@5 10624 I[90] = (img)(_p2##x,_n1##y,z,v), I[91] = (img)(_p1##x,_n1##y,z,v), I[92] = (img)(x,_n1##y,z,v), I[93] = (img)(_n1##x,_n1##y,z,v), I[94] = (img)(_n2##x,_n1##y,z,v), I[95] = (img)(_n3##x,_n1##y,z,v), \
philpem@5 10625 I[96] = (img)(_p2##x,_n2##y,z,v), I[97] = (img)(_p1##x,_n2##y,z,v), I[98] = (img)(x,_n2##y,z,v), I[99] = (img)(_n1##x,_n2##y,z,v), I[100] = (img)(_n2##x,_n2##y,z,v), I[101] = (img)(_n3##x,_n2##y,z,v), \
philpem@5 10626 I[102] = (img)(_p2##x,_n3##y,z,v), I[103] = (img)(_p1##x,_n3##y,z,v), I[104] = (img)(x,_n3##y,z,v), I[105] = (img)(_n1##x,_n3##y,z,v), I[106] = (img)(_n2##x,_n3##y,z,v), I[107] = (img)(_n3##x,_n3##y,z,v), \
philpem@5 10627 I[108] = (img)(_p2##x,_p2##y,_n1##z,v), I[109] = (img)(_p1##x,_p2##y,_n1##z,v), I[110] = (img)(x,_p2##y,_n1##z,v), I[111] = (img)(_n1##x,_p2##y,_n1##z,v), I[112] = (img)(_n2##x,_p2##y,_n1##z,v), I[113] = (img)(_n3##x,_p2##y,_n1##z,v), \
philpem@5 10628 I[114] = (img)(_p2##x,_p1##y,_n1##z,v), I[115] = (img)(_p1##x,_p1##y,_n1##z,v), I[116] = (img)(x,_p1##y,_n1##z,v), I[117] = (img)(_n1##x,_p1##y,_n1##z,v), I[118] = (img)(_n2##x,_p1##y,_n1##z,v), I[119] = (img)(_n3##x,_p1##y,_n1##z,v), \
philpem@5 10629 I[120] = (img)(_p2##x,y,_n1##z,v), I[121] = (img)(_p1##x,y,_n1##z,v), I[122] = (img)(x,y,_n1##z,v), I[123] = (img)(_n1##x,y,_n1##z,v), I[124] = (img)(_n2##x,y,_n1##z,v), I[125] = (img)(_n3##x,y,_n1##z,v), \
philpem@5 10630 I[126] = (img)(_p2##x,_n1##y,_n1##z,v), I[127] = (img)(_p1##x,_n1##y,_n1##z,v), I[128] = (img)(x,_n1##y,_n1##z,v), I[129] = (img)(_n1##x,_n1##y,_n1##z,v), I[130] = (img)(_n2##x,_n1##y,_n1##z,v), I[131] = (img)(_n3##x,_n1##y,_n1##z,v), \
philpem@5 10631 I[132] = (img)(_p2##x,_n2##y,_n1##z,v), I[133] = (img)(_p1##x,_n2##y,_n1##z,v), I[134] = (img)(x,_n2##y,_n1##z,v), I[135] = (img)(_n1##x,_n2##y,_n1##z,v), I[136] = (img)(_n2##x,_n2##y,_n1##z,v), I[137] = (img)(_n3##x,_n2##y,_n1##z,v), \
philpem@5 10632 I[138] = (img)(_p2##x,_n3##y,_n1##z,v), I[139] = (img)(_p1##x,_n3##y,_n1##z,v), I[140] = (img)(x,_n3##y,_n1##z,v), I[141] = (img)(_n1##x,_n3##y,_n1##z,v), I[142] = (img)(_n2##x,_n3##y,_n1##z,v), I[143] = (img)(_n3##x,_n3##y,_n1##z,v), \
philpem@5 10633 I[144] = (img)(_p2##x,_p2##y,_n2##z,v), I[145] = (img)(_p1##x,_p2##y,_n2##z,v), I[146] = (img)(x,_p2##y,_n2##z,v), I[147] = (img)(_n1##x,_p2##y,_n2##z,v), I[148] = (img)(_n2##x,_p2##y,_n2##z,v), I[149] = (img)(_n3##x,_p2##y,_n2##z,v), \
philpem@5 10634 I[150] = (img)(_p2##x,_p1##y,_n2##z,v), I[151] = (img)(_p1##x,_p1##y,_n2##z,v), I[152] = (img)(x,_p1##y,_n2##z,v), I[153] = (img)(_n1##x,_p1##y,_n2##z,v), I[154] = (img)(_n2##x,_p1##y,_n2##z,v), I[155] = (img)(_n3##x,_p1##y,_n2##z,v), \
philpem@5 10635 I[156] = (img)(_p2##x,y,_n2##z,v), I[157] = (img)(_p1##x,y,_n2##z,v), I[158] = (img)(x,y,_n2##z,v), I[159] = (img)(_n1##x,y,_n2##z,v), I[160] = (img)(_n2##x,y,_n2##z,v), I[161] = (img)(_n3##x,y,_n2##z,v), \
philpem@5 10636 I[162] = (img)(_p2##x,_n1##y,_n2##z,v), I[163] = (img)(_p1##x,_n1##y,_n2##z,v), I[164] = (img)(x,_n1##y,_n2##z,v), I[165] = (img)(_n1##x,_n1##y,_n2##z,v), I[166] = (img)(_n2##x,_n1##y,_n2##z,v), I[167] = (img)(_n3##x,_n1##y,_n2##z,v), \
philpem@5 10637 I[168] = (img)(_p2##x,_n2##y,_n2##z,v), I[169] = (img)(_p1##x,_n2##y,_n2##z,v), I[170] = (img)(x,_n2##y,_n2##z,v), I[171] = (img)(_n1##x,_n2##y,_n2##z,v), I[172] = (img)(_n2##x,_n2##y,_n2##z,v), I[173] = (img)(_n3##x,_n2##y,_n2##z,v), \
philpem@5 10638 I[174] = (img)(_p2##x,_n3##y,_n2##z,v), I[175] = (img)(_p1##x,_n3##y,_n2##z,v), I[176] = (img)(x,_n3##y,_n2##z,v), I[177] = (img)(_n1##x,_n3##y,_n2##z,v), I[178] = (img)(_n2##x,_n3##y,_n2##z,v), I[179] = (img)(_n3##x,_n3##y,_n2##z,v), \
philpem@5 10639 I[180] = (img)(_p2##x,_p2##y,_n3##z,v), I[181] = (img)(_p1##x,_p2##y,_n3##z,v), I[182] = (img)(x,_p2##y,_n3##z,v), I[183] = (img)(_n1##x,_p2##y,_n3##z,v), I[184] = (img)(_n2##x,_p2##y,_n3##z,v), I[185] = (img)(_n3##x,_p2##y,_n3##z,v), \
philpem@5 10640 I[186] = (img)(_p2##x,_p1##y,_n3##z,v), I[187] = (img)(_p1##x,_p1##y,_n3##z,v), I[188] = (img)(x,_p1##y,_n3##z,v), I[189] = (img)(_n1##x,_p1##y,_n3##z,v), I[190] = (img)(_n2##x,_p1##y,_n3##z,v), I[191] = (img)(_n3##x,_p1##y,_n3##z,v), \
philpem@5 10641 I[192] = (img)(_p2##x,y,_n3##z,v), I[193] = (img)(_p1##x,y,_n3##z,v), I[194] = (img)(x,y,_n3##z,v), I[195] = (img)(_n1##x,y,_n3##z,v), I[196] = (img)(_n2##x,y,_n3##z,v), I[197] = (img)(_n3##x,y,_n3##z,v), \
philpem@5 10642 I[198] = (img)(_p2##x,_n1##y,_n3##z,v), I[199] = (img)(_p1##x,_n1##y,_n3##z,v), I[200] = (img)(x,_n1##y,_n3##z,v), I[201] = (img)(_n1##x,_n1##y,_n3##z,v), I[202] = (img)(_n2##x,_n1##y,_n3##z,v), I[203] = (img)(_n3##x,_n1##y,_n3##z,v), \
philpem@5 10643 I[204] = (img)(_p2##x,_n2##y,_n3##z,v), I[205] = (img)(_p1##x,_n2##y,_n3##z,v), I[206] = (img)(x,_n2##y,_n3##z,v), I[207] = (img)(_n1##x,_n2##y,_n3##z,v), I[208] = (img)(_n2##x,_n2##y,_n3##z,v), I[209] = (img)(_n3##x,_n2##y,_n3##z,v), \
philpem@5 10644 I[210] = (img)(_p2##x,_n3##y,_n3##z,v), I[211] = (img)(_p1##x,_n3##y,_n3##z,v), I[212] = (img)(x,_n3##y,_n3##z,v), I[213] = (img)(_n1##x,_n3##y,_n3##z,v), I[214] = (img)(_n2##x,_n3##y,_n3##z,v), I[215] = (img)(_n3##x,_n3##y,_n3##z,v);
philpem@5 10645
philpem@5 10646 // Define 7x7x7 loop macros for CImg
philpem@5 10647 //-------------------------------------
philpem@5 10648 #define cimg_for_in7(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
philpem@5 10649 _p3##i = i-3<0?0:i-3, \
philpem@5 10650 _p2##i = i-2<0?0:i-2, \
philpem@5 10651 _p1##i = i-1<0?0:i-1, \
philpem@5 10652 _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \
philpem@5 10653 _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \
philpem@5 10654 _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3; \
philpem@5 10655 i<=(int)(i1) && (_n3##i<(int)(bound) || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 10656 i==(_n3##i = _n2##i = --_n1##i)); \
philpem@5 10657 _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 10658 ++_n1##i, ++_n2##i, ++_n3##i)
philpem@5 10659
philpem@5 10660 #define cimg_for_in7X(img,x0,x1,x) cimg_for_in7((img).width,x0,x1,x)
philpem@5 10661 #define cimg_for_in7Y(img,y0,y1,y) cimg_for_in7((img).height,y0,y1,y)
philpem@5 10662 #define cimg_for_in7Z(img,z0,z1,z) cimg_for_in7((img).depth,z0,z1,z)
philpem@5 10663 #define cimg_for_in7V(img,v0,v1,v) cimg_for_in7((img).dim,v0,v1,v)
philpem@5 10664 #define cimg_for_in7XY(img,x0,y0,x1,y1,x,y) cimg_for_in7Y(img,y0,y1,y) cimg_for_in7X(img,x0,x1,x)
philpem@5 10665 #define cimg_for_in7XZ(img,x0,z0,x1,z1,x,z) cimg_for_in7Z(img,z0,z1,z) cimg_for_in7X(img,x0,x1,x)
philpem@5 10666 #define cimg_for_in7XV(img,x0,v0,x1,v1,x,v) cimg_for_in7V(img,v0,v1,v) cimg_for_in7X(img,x0,x1,x)
philpem@5 10667 #define cimg_for_in7YZ(img,y0,z0,y1,z1,y,z) cimg_for_in7Z(img,z0,z1,z) cimg_for_in7Y(img,y0,y1,y)
philpem@5 10668 #define cimg_for_in7YV(img,y0,v0,y1,v1,y,v) cimg_for_in7V(img,v0,v1,v) cimg_for_in7Y(img,y0,y1,y)
philpem@5 10669 #define cimg_for_in7ZV(img,z0,v0,z1,v1,z,v) cimg_for_in7V(img,v0,v1,v) cimg_for_in7Z(img,z0,z1,z)
philpem@5 10670 #define cimg_for_in7XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in7Z(img,z0,z1,z) cimg_for_in7XY(img,x0,y0,x1,y1,x,y)
philpem@5 10671 #define cimg_for_in7XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in7V(img,v0,v1,v) cimg_for_in7XZ(img,x0,y0,x1,y1,x,z)
philpem@5 10672 #define cimg_for_in7YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in7V(img,v0,v1,v) cimg_for_in7YZ(img,y0,z0,y1,z1,y,z)
philpem@5 10673 #define cimg_for_in7XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in7V(img,v0,v1,v) cimg_for_in7XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
philpem@5 10674
philpem@5 10675 #define cimg_for7x7x7(img,x,y,z,v,I) \
philpem@5 10676 cimg_for7((img).depth,z) cimg_for7((img).height,y) for (int x = 0, \
philpem@5 10677 _p3##x = 0, _p2##x = 0, _p1##x = 0, \
philpem@5 10678 _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \
philpem@5 10679 _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \
philpem@5 10680 _n3##x = (int)( \
philpem@5 10681 (I[0] = I[1] = I[2] = I[3] = (img)(0,_p3##y,_p3##z,v)), \
philpem@5 10682 (I[7] = I[8] = I[9] = I[10] = (img)(0,_p2##y,_p3##z,v)), \
philpem@5 10683 (I[14] = I[15] = I[16] = I[17] = (img)(0,_p1##y,_p3##z,v)), \
philpem@5 10684 (I[21] = I[22] = I[23] = I[24] = (img)(0,y,_p3##z,v)), \
philpem@5 10685 (I[28] = I[29] = I[30] = I[31] = (img)(0,_n1##y,_p3##z,v)), \
philpem@5 10686 (I[35] = I[36] = I[37] = I[38] = (img)(0,_n2##y,_p3##z,v)), \
philpem@5 10687 (I[42] = I[43] = I[44] = I[45] = (img)(0,_n3##y,_p3##z,v)), \
philpem@5 10688 (I[49] = I[50] = I[51] = I[52] = (img)(0,_p3##y,_p2##z,v)), \
philpem@5 10689 (I[56] = I[57] = I[58] = I[59] = (img)(0,_p2##y,_p2##z,v)), \
philpem@5 10690 (I[63] = I[64] = I[65] = I[66] = (img)(0,_p1##y,_p2##z,v)), \
philpem@5 10691 (I[70] = I[71] = I[72] = I[73] = (img)(0,y,_p2##z,v)), \
philpem@5 10692 (I[77] = I[78] = I[79] = I[80] = (img)(0,_n1##y,_p2##z,v)), \
philpem@5 10693 (I[84] = I[85] = I[86] = I[87] = (img)(0,_n2##y,_p2##z,v)), \
philpem@5 10694 (I[91] = I[92] = I[93] = I[94] = (img)(0,_n3##y,_p2##z,v)), \
philpem@5 10695 (I[98] = I[99] = I[100] = I[101] = (img)(0,_p3##y,_p1##z,v)), \
philpem@5 10696 (I[105] = I[106] = I[107] = I[108] = (img)(0,_p2##y,_p1##z,v)), \
philpem@5 10697 (I[112] = I[113] = I[114] = I[115] = (img)(0,_p1##y,_p1##z,v)), \
philpem@5 10698 (I[119] = I[120] = I[121] = I[122] = (img)(0,y,_p1##z,v)), \
philpem@5 10699 (I[126] = I[127] = I[128] = I[129] = (img)(0,_n1##y,_p1##z,v)), \
philpem@5 10700 (I[133] = I[134] = I[135] = I[136] = (img)(0,_n2##y,_p1##z,v)), \
philpem@5 10701 (I[140] = I[141] = I[142] = I[143] = (img)(0,_n3##y,_p1##z,v)), \
philpem@5 10702 (I[147] = I[148] = I[149] = I[150] = (img)(0,_p3##y,z,v)), \
philpem@5 10703 (I[154] = I[155] = I[156] = I[157] = (img)(0,_p2##y,z,v)), \
philpem@5 10704 (I[161] = I[162] = I[163] = I[164] = (img)(0,_p1##y,z,v)), \
philpem@5 10705 (I[168] = I[169] = I[170] = I[171] = (img)(0,y,z,v)), \
philpem@5 10706 (I[175] = I[176] = I[177] = I[178] = (img)(0,_n1##y,z,v)), \
philpem@5 10707 (I[182] = I[183] = I[184] = I[185] = (img)(0,_n2##y,z,v)), \
philpem@5 10708 (I[189] = I[190] = I[191] = I[192] = (img)(0,_n3##y,z,v)), \
philpem@5 10709 (I[196] = I[197] = I[198] = I[199] = (img)(0,_p3##y,_n1##z,v)), \
philpem@5 10710 (I[203] = I[204] = I[205] = I[206] = (img)(0,_p2##y,_n1##z,v)), \
philpem@5 10711 (I[210] = I[211] = I[212] = I[213] = (img)(0,_p1##y,_n1##z,v)), \
philpem@5 10712 (I[217] = I[218] = I[219] = I[220] = (img)(0,y,_n1##z,v)), \
philpem@5 10713 (I[224] = I[225] = I[226] = I[227] = (img)(0,_n1##y,_n1##z,v)), \
philpem@5 10714 (I[231] = I[232] = I[233] = I[234] = (img)(0,_n2##y,_n1##z,v)), \
philpem@5 10715 (I[238] = I[239] = I[240] = I[241] = (img)(0,_n3##y,_n1##z,v)), \
philpem@5 10716 (I[245] = I[246] = I[247] = I[248] = (img)(0,_p3##y,_n2##z,v)), \
philpem@5 10717 (I[252] = I[253] = I[254] = I[255] = (img)(0,_p2##y,_n2##z,v)), \
philpem@5 10718 (I[259] = I[260] = I[261] = I[262] = (img)(0,_p1##y,_n2##z,v)), \
philpem@5 10719 (I[266] = I[267] = I[268] = I[269] = (img)(0,y,_n2##z,v)), \
philpem@5 10720 (I[273] = I[274] = I[275] = I[276] = (img)(0,_n1##y,_n2##z,v)), \
philpem@5 10721 (I[280] = I[281] = I[282] = I[283] = (img)(0,_n2##y,_n2##z,v)), \
philpem@5 10722 (I[287] = I[288] = I[289] = I[290] = (img)(0,_n3##y,_n2##z,v)), \
philpem@5 10723 (I[294] = I[295] = I[296] = I[297] = (img)(0,_p3##y,_n3##z,v)), \
philpem@5 10724 (I[301] = I[302] = I[303] = I[304] = (img)(0,_p2##y,_n3##z,v)), \
philpem@5 10725 (I[308] = I[309] = I[310] = I[311] = (img)(0,_p1##y,_n3##z,v)), \
philpem@5 10726 (I[315] = I[316] = I[317] = I[318] = (img)(0,y,_n3##z,v)), \
philpem@5 10727 (I[322] = I[323] = I[324] = I[325] = (img)(0,_n1##y,_n3##z,v)), \
philpem@5 10728 (I[329] = I[330] = I[331] = I[332] = (img)(0,_n2##y,_n3##z,v)), \
philpem@5 10729 (I[336] = I[337] = I[338] = I[339] = (img)(0,_n3##y,_n3##z,v)), \
philpem@5 10730 (I[4] = (img)(_n1##x,_p3##y,_p3##z,v)), \
philpem@5 10731 (I[11] = (img)(_n1##x,_p2##y,_p3##z,v)), \
philpem@5 10732 (I[18] = (img)(_n1##x,_p1##y,_p3##z,v)), \
philpem@5 10733 (I[25] = (img)(_n1##x,y,_p3##z,v)), \
philpem@5 10734 (I[32] = (img)(_n1##x,_n1##y,_p3##z,v)), \
philpem@5 10735 (I[39] = (img)(_n1##x,_n2##y,_p3##z,v)), \
philpem@5 10736 (I[46] = (img)(_n1##x,_n3##y,_p3##z,v)), \
philpem@5 10737 (I[53] = (img)(_n1##x,_p3##y,_p2##z,v)), \
philpem@5 10738 (I[60] = (img)(_n1##x,_p2##y,_p2##z,v)), \
philpem@5 10739 (I[67] = (img)(_n1##x,_p1##y,_p2##z,v)), \
philpem@5 10740 (I[74] = (img)(_n1##x,y,_p2##z,v)), \
philpem@5 10741 (I[81] = (img)(_n1##x,_n1##y,_p2##z,v)), \
philpem@5 10742 (I[88] = (img)(_n1##x,_n2##y,_p2##z,v)), \
philpem@5 10743 (I[95] = (img)(_n1##x,_n3##y,_p2##z,v)), \
philpem@5 10744 (I[102] = (img)(_n1##x,_p3##y,_p1##z,v)), \
philpem@5 10745 (I[109] = (img)(_n1##x,_p2##y,_p1##z,v)), \
philpem@5 10746 (I[116] = (img)(_n1##x,_p1##y,_p1##z,v)), \
philpem@5 10747 (I[123] = (img)(_n1##x,y,_p1##z,v)), \
philpem@5 10748 (I[130] = (img)(_n1##x,_n1##y,_p1##z,v)), \
philpem@5 10749 (I[137] = (img)(_n1##x,_n2##y,_p1##z,v)), \
philpem@5 10750 (I[144] = (img)(_n1##x,_n3##y,_p1##z,v)), \
philpem@5 10751 (I[151] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 10752 (I[158] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 10753 (I[165] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 10754 (I[172] = (img)(_n1##x,y,z,v)), \
philpem@5 10755 (I[179] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 10756 (I[186] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 10757 (I[193] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 10758 (I[200] = (img)(_n1##x,_p3##y,_n1##z,v)), \
philpem@5 10759 (I[207] = (img)(_n1##x,_p2##y,_n1##z,v)), \
philpem@5 10760 (I[214] = (img)(_n1##x,_p1##y,_n1##z,v)), \
philpem@5 10761 (I[221] = (img)(_n1##x,y,_n1##z,v)), \
philpem@5 10762 (I[228] = (img)(_n1##x,_n1##y,_n1##z,v)), \
philpem@5 10763 (I[235] = (img)(_n1##x,_n2##y,_n1##z,v)), \
philpem@5 10764 (I[242] = (img)(_n1##x,_n3##y,_n1##z,v)), \
philpem@5 10765 (I[249] = (img)(_n1##x,_p3##y,_n2##z,v)), \
philpem@5 10766 (I[256] = (img)(_n1##x,_p2##y,_n2##z,v)), \
philpem@5 10767 (I[263] = (img)(_n1##x,_p1##y,_n2##z,v)), \
philpem@5 10768 (I[270] = (img)(_n1##x,y,_n2##z,v)), \
philpem@5 10769 (I[277] = (img)(_n1##x,_n1##y,_n2##z,v)), \
philpem@5 10770 (I[284] = (img)(_n1##x,_n2##y,_n2##z,v)), \
philpem@5 10771 (I[291] = (img)(_n1##x,_n3##y,_n2##z,v)), \
philpem@5 10772 (I[298] = (img)(_n1##x,_p3##y,_n3##z,v)), \
philpem@5 10773 (I[305] = (img)(_n1##x,_p2##y,_n3##z,v)), \
philpem@5 10774 (I[312] = (img)(_n1##x,_p1##y,_n3##z,v)), \
philpem@5 10775 (I[319] = (img)(_n1##x,y,_n3##z,v)), \
philpem@5 10776 (I[326] = (img)(_n1##x,_n1##y,_n3##z,v)), \
philpem@5 10777 (I[333] = (img)(_n1##x,_n2##y,_n3##z,v)), \
philpem@5 10778 (I[340] = (img)(_n1##x,_n3##y,_n3##z,v)), \
philpem@5 10779 (I[5] = (img)(_n2##x,_p3##y,_p3##z,v)), \
philpem@5 10780 (I[12] = (img)(_n2##x,_p2##y,_p3##z,v)), \
philpem@5 10781 (I[19] = (img)(_n2##x,_p1##y,_p3##z,v)), \
philpem@5 10782 (I[26] = (img)(_n2##x,y,_p3##z,v)), \
philpem@5 10783 (I[33] = (img)(_n2##x,_n1##y,_p3##z,v)), \
philpem@5 10784 (I[40] = (img)(_n2##x,_n2##y,_p3##z,v)), \
philpem@5 10785 (I[47] = (img)(_n2##x,_n3##y,_p3##z,v)), \
philpem@5 10786 (I[54] = (img)(_n2##x,_p3##y,_p2##z,v)), \
philpem@5 10787 (I[61] = (img)(_n2##x,_p2##y,_p2##z,v)), \
philpem@5 10788 (I[68] = (img)(_n2##x,_p1##y,_p2##z,v)), \
philpem@5 10789 (I[75] = (img)(_n2##x,y,_p2##z,v)), \
philpem@5 10790 (I[82] = (img)(_n2##x,_n1##y,_p2##z,v)), \
philpem@5 10791 (I[89] = (img)(_n2##x,_n2##y,_p2##z,v)), \
philpem@5 10792 (I[96] = (img)(_n2##x,_n3##y,_p2##z,v)), \
philpem@5 10793 (I[103] = (img)(_n2##x,_p3##y,_p1##z,v)), \
philpem@5 10794 (I[110] = (img)(_n2##x,_p2##y,_p1##z,v)), \
philpem@5 10795 (I[117] = (img)(_n2##x,_p1##y,_p1##z,v)), \
philpem@5 10796 (I[124] = (img)(_n2##x,y,_p1##z,v)), \
philpem@5 10797 (I[131] = (img)(_n2##x,_n1##y,_p1##z,v)), \
philpem@5 10798 (I[138] = (img)(_n2##x,_n2##y,_p1##z,v)), \
philpem@5 10799 (I[145] = (img)(_n2##x,_n3##y,_p1##z,v)), \
philpem@5 10800 (I[152] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 10801 (I[159] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 10802 (I[166] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 10803 (I[173] = (img)(_n2##x,y,z,v)), \
philpem@5 10804 (I[180] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 10805 (I[187] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 10806 (I[194] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 10807 (I[201] = (img)(_n2##x,_p3##y,_n1##z,v)), \
philpem@5 10808 (I[208] = (img)(_n2##x,_p2##y,_n1##z,v)), \
philpem@5 10809 (I[215] = (img)(_n2##x,_p1##y,_n1##z,v)), \
philpem@5 10810 (I[222] = (img)(_n2##x,y,_n1##z,v)), \
philpem@5 10811 (I[229] = (img)(_n2##x,_n1##y,_n1##z,v)), \
philpem@5 10812 (I[236] = (img)(_n2##x,_n2##y,_n1##z,v)), \
philpem@5 10813 (I[243] = (img)(_n2##x,_n3##y,_n1##z,v)), \
philpem@5 10814 (I[250] = (img)(_n2##x,_p3##y,_n2##z,v)), \
philpem@5 10815 (I[257] = (img)(_n2##x,_p2##y,_n2##z,v)), \
philpem@5 10816 (I[264] = (img)(_n2##x,_p1##y,_n2##z,v)), \
philpem@5 10817 (I[271] = (img)(_n2##x,y,_n2##z,v)), \
philpem@5 10818 (I[278] = (img)(_n2##x,_n1##y,_n2##z,v)), \
philpem@5 10819 (I[285] = (img)(_n2##x,_n2##y,_n2##z,v)), \
philpem@5 10820 (I[292] = (img)(_n2##x,_n3##y,_n2##z,v)), \
philpem@5 10821 (I[299] = (img)(_n2##x,_p3##y,_n3##z,v)), \
philpem@5 10822 (I[306] = (img)(_n2##x,_p2##y,_n3##z,v)), \
philpem@5 10823 (I[313] = (img)(_n2##x,_p1##y,_n3##z,v)), \
philpem@5 10824 (I[320] = (img)(_n2##x,y,_n3##z,v)), \
philpem@5 10825 (I[327] = (img)(_n2##x,_n1##y,_n3##z,v)), \
philpem@5 10826 (I[334] = (img)(_n2##x,_n2##y,_n3##z,v)), \
philpem@5 10827 (I[341] = (img)(_n2##x,_n3##y,_n3##z,v)), \
philpem@5 10828 3>=((img).width)?(int)((img).width)-1:3); \
philpem@5 10829 (_n3##x<(int)((img).width) && ( \
philpem@5 10830 (I[6] = (img)(_n3##x,_p3##y,_p3##z,v)), \
philpem@5 10831 (I[13] = (img)(_n3##x,_p2##y,_p3##z,v)), \
philpem@5 10832 (I[20] = (img)(_n3##x,_p1##y,_p3##z,v)), \
philpem@5 10833 (I[27] = (img)(_n3##x,y,_p3##z,v)), \
philpem@5 10834 (I[34] = (img)(_n3##x,_n1##y,_p3##z,v)), \
philpem@5 10835 (I[41] = (img)(_n3##x,_n2##y,_p3##z,v)), \
philpem@5 10836 (I[48] = (img)(_n3##x,_n3##y,_p3##z,v)), \
philpem@5 10837 (I[55] = (img)(_n3##x,_p3##y,_p2##z,v)), \
philpem@5 10838 (I[62] = (img)(_n3##x,_p2##y,_p2##z,v)), \
philpem@5 10839 (I[69] = (img)(_n3##x,_p1##y,_p2##z,v)), \
philpem@5 10840 (I[76] = (img)(_n3##x,y,_p2##z,v)), \
philpem@5 10841 (I[83] = (img)(_n3##x,_n1##y,_p2##z,v)), \
philpem@5 10842 (I[90] = (img)(_n3##x,_n2##y,_p2##z,v)), \
philpem@5 10843 (I[97] = (img)(_n3##x,_n3##y,_p2##z,v)), \
philpem@5 10844 (I[104] = (img)(_n3##x,_p3##y,_p1##z,v)), \
philpem@5 10845 (I[111] = (img)(_n3##x,_p2##y,_p1##z,v)), \
philpem@5 10846 (I[118] = (img)(_n3##x,_p1##y,_p1##z,v)), \
philpem@5 10847 (I[125] = (img)(_n3##x,y,_p1##z,v)), \
philpem@5 10848 (I[132] = (img)(_n3##x,_n1##y,_p1##z,v)), \
philpem@5 10849 (I[139] = (img)(_n3##x,_n2##y,_p1##z,v)), \
philpem@5 10850 (I[146] = (img)(_n3##x,_n3##y,_p1##z,v)), \
philpem@5 10851 (I[153] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 10852 (I[160] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 10853 (I[167] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 10854 (I[174] = (img)(_n3##x,y,z,v)), \
philpem@5 10855 (I[181] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 10856 (I[188] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 10857 (I[195] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 10858 (I[202] = (img)(_n3##x,_p3##y,_n1##z,v)), \
philpem@5 10859 (I[209] = (img)(_n3##x,_p2##y,_n1##z,v)), \
philpem@5 10860 (I[216] = (img)(_n3##x,_p1##y,_n1##z,v)), \
philpem@5 10861 (I[223] = (img)(_n3##x,y,_n1##z,v)), \
philpem@5 10862 (I[230] = (img)(_n3##x,_n1##y,_n1##z,v)), \
philpem@5 10863 (I[237] = (img)(_n3##x,_n2##y,_n1##z,v)), \
philpem@5 10864 (I[244] = (img)(_n3##x,_n3##y,_n1##z,v)), \
philpem@5 10865 (I[251] = (img)(_n3##x,_p3##y,_n2##z,v)), \
philpem@5 10866 (I[258] = (img)(_n3##x,_p2##y,_n2##z,v)), \
philpem@5 10867 (I[265] = (img)(_n3##x,_p1##y,_n2##z,v)), \
philpem@5 10868 (I[272] = (img)(_n3##x,y,_n2##z,v)), \
philpem@5 10869 (I[279] = (img)(_n3##x,_n1##y,_n2##z,v)), \
philpem@5 10870 (I[286] = (img)(_n3##x,_n2##y,_n2##z,v)), \
philpem@5 10871 (I[293] = (img)(_n3##x,_n3##y,_n2##z,v)), \
philpem@5 10872 (I[300] = (img)(_n3##x,_p3##y,_n3##z,v)), \
philpem@5 10873 (I[307] = (img)(_n3##x,_p2##y,_n3##z,v)), \
philpem@5 10874 (I[314] = (img)(_n3##x,_p1##y,_n3##z,v)), \
philpem@5 10875 (I[321] = (img)(_n3##x,y,_n3##z,v)), \
philpem@5 10876 (I[328] = (img)(_n3##x,_n1##y,_n3##z,v)), \
philpem@5 10877 (I[335] = (img)(_n3##x,_n2##y,_n3##z,v)), \
philpem@5 10878 (I[342] = (img)(_n3##x,_n3##y,_n3##z,v)),1)) || \
philpem@5 10879 _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3##x = _n2##x = --_n1##x); \
philpem@5 10880 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], \
philpem@5 10881 I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \
philpem@5 10882 I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], \
philpem@5 10883 I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \
philpem@5 10884 I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], \
philpem@5 10885 I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
philpem@5 10886 I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], \
philpem@5 10887 I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \
philpem@5 10888 I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], \
philpem@5 10889 I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \
philpem@5 10890 I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], \
philpem@5 10891 I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
philpem@5 10892 I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], \
philpem@5 10893 I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], \
philpem@5 10894 I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \
philpem@5 10895 I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
philpem@5 10896 I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], \
philpem@5 10897 I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
philpem@5 10898 I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], \
philpem@5 10899 I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \
philpem@5 10900 I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], \
philpem@5 10901 I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], \
philpem@5 10902 I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], \
philpem@5 10903 I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
philpem@5 10904 I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], \
philpem@5 10905 I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], \
philpem@5 10906 I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], \
philpem@5 10907 I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], \
philpem@5 10908 I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], \
philpem@5 10909 I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
philpem@5 10910 I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], \
philpem@5 10911 I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
philpem@5 10912 I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], \
philpem@5 10913 I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], \
philpem@5 10914 I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], \
philpem@5 10915 I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \
philpem@5 10916 I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], \
philpem@5 10917 I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], \
philpem@5 10918 I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], \
philpem@5 10919 I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \
philpem@5 10920 I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], \
philpem@5 10921 I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], \
philpem@5 10922 I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], \
philpem@5 10923 I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], \
philpem@5 10924 I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], \
philpem@5 10925 I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], \
philpem@5 10926 I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], \
philpem@5 10927 I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
philpem@5 10928 I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], \
philpem@5 10929 _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x)
philpem@5 10930
philpem@5 10931 #define cimg_for_in7x7x7(img,x0,y0,z0,x1,y1,z1,x,y,z,v,I) \
philpem@5 10932 cimg_for_in7((img).depth,z0,z1,z) cimg_for_in7((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
philpem@5 10933 _p3##x = x-3<0?0:x-3, \
philpem@5 10934 _p2##x = x-2<0?0:x-2, \
philpem@5 10935 _p1##x = x-1<0?0:x-1, \
philpem@5 10936 _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \
philpem@5 10937 _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \
philpem@5 10938 _n3##x = (int)( \
philpem@5 10939 (I[0] = (img)(_p3##x,_p3##y,_p3##z,v)), \
philpem@5 10940 (I[7] = (img)(_p3##x,_p2##y,_p3##z,v)), \
philpem@5 10941 (I[14] = (img)(_p3##x,_p1##y,_p3##z,v)), \
philpem@5 10942 (I[21] = (img)(_p3##x,y,_p3##z,v)), \
philpem@5 10943 (I[28] = (img)(_p3##x,_n1##y,_p3##z,v)), \
philpem@5 10944 (I[35] = (img)(_p3##x,_n2##y,_p3##z,v)), \
philpem@5 10945 (I[42] = (img)(_p3##x,_n3##y,_p3##z,v)), \
philpem@5 10946 (I[49] = (img)(_p3##x,_p3##y,_p2##z,v)), \
philpem@5 10947 (I[56] = (img)(_p3##x,_p2##y,_p2##z,v)), \
philpem@5 10948 (I[63] = (img)(_p3##x,_p1##y,_p2##z,v)), \
philpem@5 10949 (I[70] = (img)(_p3##x,y,_p2##z,v)), \
philpem@5 10950 (I[77] = (img)(_p3##x,_n1##y,_p2##z,v)), \
philpem@5 10951 (I[84] = (img)(_p3##x,_n2##y,_p2##z,v)), \
philpem@5 10952 (I[91] = (img)(_p3##x,_n3##y,_p2##z,v)), \
philpem@5 10953 (I[98] = (img)(_p3##x,_p3##y,_p1##z,v)), \
philpem@5 10954 (I[105] = (img)(_p3##x,_p2##y,_p1##z,v)), \
philpem@5 10955 (I[112] = (img)(_p3##x,_p1##y,_p1##z,v)), \
philpem@5 10956 (I[119] = (img)(_p3##x,y,_p1##z,v)), \
philpem@5 10957 (I[126] = (img)(_p3##x,_n1##y,_p1##z,v)), \
philpem@5 10958 (I[133] = (img)(_p3##x,_n2##y,_p1##z,v)), \
philpem@5 10959 (I[140] = (img)(_p3##x,_n3##y,_p1##z,v)), \
philpem@5 10960 (I[147] = (img)(_p3##x,_p3##y,z,v)), \
philpem@5 10961 (I[154] = (img)(_p3##x,_p2##y,z,v)), \
philpem@5 10962 (I[161] = (img)(_p3##x,_p1##y,z,v)), \
philpem@5 10963 (I[168] = (img)(_p3##x,y,z,v)), \
philpem@5 10964 (I[175] = (img)(_p3##x,_n1##y,z,v)), \
philpem@5 10965 (I[182] = (img)(_p3##x,_n2##y,z,v)), \
philpem@5 10966 (I[189] = (img)(_p3##x,_n3##y,z,v)), \
philpem@5 10967 (I[196] = (img)(_p3##x,_p3##y,_n1##z,v)), \
philpem@5 10968 (I[203] = (img)(_p3##x,_p2##y,_n1##z,v)), \
philpem@5 10969 (I[210] = (img)(_p3##x,_p1##y,_n1##z,v)), \
philpem@5 10970 (I[217] = (img)(_p3##x,y,_n1##z,v)), \
philpem@5 10971 (I[224] = (img)(_p3##x,_n1##y,_n1##z,v)), \
philpem@5 10972 (I[231] = (img)(_p3##x,_n2##y,_n1##z,v)), \
philpem@5 10973 (I[238] = (img)(_p3##x,_n3##y,_n1##z,v)), \
philpem@5 10974 (I[245] = (img)(_p3##x,_p3##y,_n2##z,v)), \
philpem@5 10975 (I[252] = (img)(_p3##x,_p2##y,_n2##z,v)), \
philpem@5 10976 (I[259] = (img)(_p3##x,_p1##y,_n2##z,v)), \
philpem@5 10977 (I[266] = (img)(_p3##x,y,_n2##z,v)), \
philpem@5 10978 (I[273] = (img)(_p3##x,_n1##y,_n2##z,v)), \
philpem@5 10979 (I[280] = (img)(_p3##x,_n2##y,_n2##z,v)), \
philpem@5 10980 (I[287] = (img)(_p3##x,_n3##y,_n2##z,v)), \
philpem@5 10981 (I[294] = (img)(_p3##x,_p3##y,_n3##z,v)), \
philpem@5 10982 (I[301] = (img)(_p3##x,_p2##y,_n3##z,v)), \
philpem@5 10983 (I[308] = (img)(_p3##x,_p1##y,_n3##z,v)), \
philpem@5 10984 (I[315] = (img)(_p3##x,y,_n3##z,v)), \
philpem@5 10985 (I[322] = (img)(_p3##x,_n1##y,_n3##z,v)), \
philpem@5 10986 (I[329] = (img)(_p3##x,_n2##y,_n3##z,v)), \
philpem@5 10987 (I[336] = (img)(_p3##x,_n3##y,_n3##z,v)), \
philpem@5 10988 (I[1] = (img)(_p2##x,_p3##y,_p3##z,v)), \
philpem@5 10989 (I[8] = (img)(_p2##x,_p2##y,_p3##z,v)), \
philpem@5 10990 (I[15] = (img)(_p2##x,_p1##y,_p3##z,v)), \
philpem@5 10991 (I[22] = (img)(_p2##x,y,_p3##z,v)), \
philpem@5 10992 (I[29] = (img)(_p2##x,_n1##y,_p3##z,v)), \
philpem@5 10993 (I[36] = (img)(_p2##x,_n2##y,_p3##z,v)), \
philpem@5 10994 (I[43] = (img)(_p2##x,_n3##y,_p3##z,v)), \
philpem@5 10995 (I[50] = (img)(_p2##x,_p3##y,_p2##z,v)), \
philpem@5 10996 (I[57] = (img)(_p2##x,_p2##y,_p2##z,v)), \
philpem@5 10997 (I[64] = (img)(_p2##x,_p1##y,_p2##z,v)), \
philpem@5 10998 (I[71] = (img)(_p2##x,y,_p2##z,v)), \
philpem@5 10999 (I[78] = (img)(_p2##x,_n1##y,_p2##z,v)), \
philpem@5 11000 (I[85] = (img)(_p2##x,_n2##y,_p2##z,v)), \
philpem@5 11001 (I[92] = (img)(_p2##x,_n3##y,_p2##z,v)), \
philpem@5 11002 (I[99] = (img)(_p2##x,_p3##y,_p1##z,v)), \
philpem@5 11003 (I[106] = (img)(_p2##x,_p2##y,_p1##z,v)), \
philpem@5 11004 (I[113] = (img)(_p2##x,_p1##y,_p1##z,v)), \
philpem@5 11005 (I[120] = (img)(_p2##x,y,_p1##z,v)), \
philpem@5 11006 (I[127] = (img)(_p2##x,_n1##y,_p1##z,v)), \
philpem@5 11007 (I[134] = (img)(_p2##x,_n2##y,_p1##z,v)), \
philpem@5 11008 (I[141] = (img)(_p2##x,_n3##y,_p1##z,v)), \
philpem@5 11009 (I[148] = (img)(_p2##x,_p3##y,z,v)), \
philpem@5 11010 (I[155] = (img)(_p2##x,_p2##y,z,v)), \
philpem@5 11011 (I[162] = (img)(_p2##x,_p1##y,z,v)), \
philpem@5 11012 (I[169] = (img)(_p2##x,y,z,v)), \
philpem@5 11013 (I[176] = (img)(_p2##x,_n1##y,z,v)), \
philpem@5 11014 (I[183] = (img)(_p2##x,_n2##y,z,v)), \
philpem@5 11015 (I[190] = (img)(_p2##x,_n3##y,z,v)), \
philpem@5 11016 (I[197] = (img)(_p2##x,_p3##y,_n1##z,v)), \
philpem@5 11017 (I[204] = (img)(_p2##x,_p2##y,_n1##z,v)), \
philpem@5 11018 (I[211] = (img)(_p2##x,_p1##y,_n1##z,v)), \
philpem@5 11019 (I[218] = (img)(_p2##x,y,_n1##z,v)), \
philpem@5 11020 (I[225] = (img)(_p2##x,_n1##y,_n1##z,v)), \
philpem@5 11021 (I[232] = (img)(_p2##x,_n2##y,_n1##z,v)), \
philpem@5 11022 (I[239] = (img)(_p2##x,_n3##y,_n1##z,v)), \
philpem@5 11023 (I[246] = (img)(_p2##x,_p3##y,_n2##z,v)), \
philpem@5 11024 (I[253] = (img)(_p2##x,_p2##y,_n2##z,v)), \
philpem@5 11025 (I[260] = (img)(_p2##x,_p1##y,_n2##z,v)), \
philpem@5 11026 (I[267] = (img)(_p2##x,y,_n2##z,v)), \
philpem@5 11027 (I[274] = (img)(_p2##x,_n1##y,_n2##z,v)), \
philpem@5 11028 (I[281] = (img)(_p2##x,_n2##y,_n2##z,v)), \
philpem@5 11029 (I[288] = (img)(_p2##x,_n3##y,_n2##z,v)), \
philpem@5 11030 (I[295] = (img)(_p2##x,_p3##y,_n3##z,v)), \
philpem@5 11031 (I[302] = (img)(_p2##x,_p2##y,_n3##z,v)), \
philpem@5 11032 (I[309] = (img)(_p2##x,_p1##y,_n3##z,v)), \
philpem@5 11033 (I[316] = (img)(_p2##x,y,_n3##z,v)), \
philpem@5 11034 (I[323] = (img)(_p2##x,_n1##y,_n3##z,v)), \
philpem@5 11035 (I[330] = (img)(_p2##x,_n2##y,_n3##z,v)), \
philpem@5 11036 (I[337] = (img)(_p2##x,_n3##y,_n3##z,v)), \
philpem@5 11037 (I[2] = (img)(_p1##x,_p3##y,_p3##z,v)), \
philpem@5 11038 (I[9] = (img)(_p1##x,_p2##y,_p3##z,v)), \
philpem@5 11039 (I[16] = (img)(_p1##x,_p1##y,_p3##z,v)), \
philpem@5 11040 (I[23] = (img)(_p1##x,y,_p3##z,v)), \
philpem@5 11041 (I[30] = (img)(_p1##x,_n1##y,_p3##z,v)), \
philpem@5 11042 (I[37] = (img)(_p1##x,_n2##y,_p3##z,v)), \
philpem@5 11043 (I[44] = (img)(_p1##x,_n3##y,_p3##z,v)), \
philpem@5 11044 (I[51] = (img)(_p1##x,_p3##y,_p2##z,v)), \
philpem@5 11045 (I[58] = (img)(_p1##x,_p2##y,_p2##z,v)), \
philpem@5 11046 (I[65] = (img)(_p1##x,_p1##y,_p2##z,v)), \
philpem@5 11047 (I[72] = (img)(_p1##x,y,_p2##z,v)), \
philpem@5 11048 (I[79] = (img)(_p1##x,_n1##y,_p2##z,v)), \
philpem@5 11049 (I[86] = (img)(_p1##x,_n2##y,_p2##z,v)), \
philpem@5 11050 (I[93] = (img)(_p1##x,_n3##y,_p2##z,v)), \
philpem@5 11051 (I[100] = (img)(_p1##x,_p3##y,_p1##z,v)), \
philpem@5 11052 (I[107] = (img)(_p1##x,_p2##y,_p1##z,v)), \
philpem@5 11053 (I[114] = (img)(_p1##x,_p1##y,_p1##z,v)), \
philpem@5 11054 (I[121] = (img)(_p1##x,y,_p1##z,v)), \
philpem@5 11055 (I[128] = (img)(_p1##x,_n1##y,_p1##z,v)), \
philpem@5 11056 (I[135] = (img)(_p1##x,_n2##y,_p1##z,v)), \
philpem@5 11057 (I[142] = (img)(_p1##x,_n3##y,_p1##z,v)), \
philpem@5 11058 (I[149] = (img)(_p1##x,_p3##y,z,v)), \
philpem@5 11059 (I[156] = (img)(_p1##x,_p2##y,z,v)), \
philpem@5 11060 (I[163] = (img)(_p1##x,_p1##y,z,v)), \
philpem@5 11061 (I[170] = (img)(_p1##x,y,z,v)), \
philpem@5 11062 (I[177] = (img)(_p1##x,_n1##y,z,v)), \
philpem@5 11063 (I[184] = (img)(_p1##x,_n2##y,z,v)), \
philpem@5 11064 (I[191] = (img)(_p1##x,_n3##y,z,v)), \
philpem@5 11065 (I[198] = (img)(_p1##x,_p3##y,_n1##z,v)), \
philpem@5 11066 (I[205] = (img)(_p1##x,_p2##y,_n1##z,v)), \
philpem@5 11067 (I[212] = (img)(_p1##x,_p1##y,_n1##z,v)), \
philpem@5 11068 (I[219] = (img)(_p1##x,y,_n1##z,v)), \
philpem@5 11069 (I[226] = (img)(_p1##x,_n1##y,_n1##z,v)), \
philpem@5 11070 (I[233] = (img)(_p1##x,_n2##y,_n1##z,v)), \
philpem@5 11071 (I[240] = (img)(_p1##x,_n3##y,_n1##z,v)), \
philpem@5 11072 (I[247] = (img)(_p1##x,_p3##y,_n2##z,v)), \
philpem@5 11073 (I[254] = (img)(_p1##x,_p2##y,_n2##z,v)), \
philpem@5 11074 (I[261] = (img)(_p1##x,_p1##y,_n2##z,v)), \
philpem@5 11075 (I[268] = (img)(_p1##x,y,_n2##z,v)), \
philpem@5 11076 (I[275] = (img)(_p1##x,_n1##y,_n2##z,v)), \
philpem@5 11077 (I[282] = (img)(_p1##x,_n2##y,_n2##z,v)), \
philpem@5 11078 (I[289] = (img)(_p1##x,_n3##y,_n2##z,v)), \
philpem@5 11079 (I[296] = (img)(_p1##x,_p3##y,_n3##z,v)), \
philpem@5 11080 (I[303] = (img)(_p1##x,_p2##y,_n3##z,v)), \
philpem@5 11081 (I[310] = (img)(_p1##x,_p1##y,_n3##z,v)), \
philpem@5 11082 (I[317] = (img)(_p1##x,y,_n3##z,v)), \
philpem@5 11083 (I[324] = (img)(_p1##x,_n1##y,_n3##z,v)), \
philpem@5 11084 (I[331] = (img)(_p1##x,_n2##y,_n3##z,v)), \
philpem@5 11085 (I[338] = (img)(_p1##x,_n3##y,_n3##z,v)), \
philpem@5 11086 (I[3] = (img)(x,_p3##y,_p3##z,v)), \
philpem@5 11087 (I[10] = (img)(x,_p2##y,_p3##z,v)), \
philpem@5 11088 (I[17] = (img)(x,_p1##y,_p3##z,v)), \
philpem@5 11089 (I[24] = (img)(x,y,_p3##z,v)), \
philpem@5 11090 (I[31] = (img)(x,_n1##y,_p3##z,v)), \
philpem@5 11091 (I[38] = (img)(x,_n2##y,_p3##z,v)), \
philpem@5 11092 (I[45] = (img)(x,_n3##y,_p3##z,v)), \
philpem@5 11093 (I[52] = (img)(x,_p3##y,_p2##z,v)), \
philpem@5 11094 (I[59] = (img)(x,_p2##y,_p2##z,v)), \
philpem@5 11095 (I[66] = (img)(x,_p1##y,_p2##z,v)), \
philpem@5 11096 (I[73] = (img)(x,y,_p2##z,v)), \
philpem@5 11097 (I[80] = (img)(x,_n1##y,_p2##z,v)), \
philpem@5 11098 (I[87] = (img)(x,_n2##y,_p2##z,v)), \
philpem@5 11099 (I[94] = (img)(x,_n3##y,_p2##z,v)), \
philpem@5 11100 (I[101] = (img)(x,_p3##y,_p1##z,v)), \
philpem@5 11101 (I[108] = (img)(x,_p2##y,_p1##z,v)), \
philpem@5 11102 (I[115] = (img)(x,_p1##y,_p1##z,v)), \
philpem@5 11103 (I[122] = (img)(x,y,_p1##z,v)), \
philpem@5 11104 (I[129] = (img)(x,_n1##y,_p1##z,v)), \
philpem@5 11105 (I[136] = (img)(x,_n2##y,_p1##z,v)), \
philpem@5 11106 (I[143] = (img)(x,_n3##y,_p1##z,v)), \
philpem@5 11107 (I[150] = (img)(x,_p3##y,z,v)), \
philpem@5 11108 (I[157] = (img)(x,_p2##y,z,v)), \
philpem@5 11109 (I[164] = (img)(x,_p1##y,z,v)), \
philpem@5 11110 (I[171] = (img)(x,y,z,v)), \
philpem@5 11111 (I[178] = (img)(x,_n1##y,z,v)), \
philpem@5 11112 (I[185] = (img)(x,_n2##y,z,v)), \
philpem@5 11113 (I[192] = (img)(x,_n3##y,z,v)), \
philpem@5 11114 (I[199] = (img)(x,_p3##y,_n1##z,v)), \
philpem@5 11115 (I[206] = (img)(x,_p2##y,_n1##z,v)), \
philpem@5 11116 (I[213] = (img)(x,_p1##y,_n1##z,v)), \
philpem@5 11117 (I[220] = (img)(x,y,_n1##z,v)), \
philpem@5 11118 (I[227] = (img)(x,_n1##y,_n1##z,v)), \
philpem@5 11119 (I[234] = (img)(x,_n2##y,_n1##z,v)), \
philpem@5 11120 (I[241] = (img)(x,_n3##y,_n1##z,v)), \
philpem@5 11121 (I[248] = (img)(x,_p3##y,_n2##z,v)), \
philpem@5 11122 (I[255] = (img)(x,_p2##y,_n2##z,v)), \
philpem@5 11123 (I[262] = (img)(x,_p1##y,_n2##z,v)), \
philpem@5 11124 (I[269] = (img)(x,y,_n2##z,v)), \
philpem@5 11125 (I[276] = (img)(x,_n1##y,_n2##z,v)), \
philpem@5 11126 (I[283] = (img)(x,_n2##y,_n2##z,v)), \
philpem@5 11127 (I[290] = (img)(x,_n3##y,_n2##z,v)), \
philpem@5 11128 (I[297] = (img)(x,_p3##y,_n3##z,v)), \
philpem@5 11129 (I[304] = (img)(x,_p2##y,_n3##z,v)), \
philpem@5 11130 (I[311] = (img)(x,_p1##y,_n3##z,v)), \
philpem@5 11131 (I[318] = (img)(x,y,_n3##z,v)), \
philpem@5 11132 (I[325] = (img)(x,_n1##y,_n3##z,v)), \
philpem@5 11133 (I[332] = (img)(x,_n2##y,_n3##z,v)), \
philpem@5 11134 (I[339] = (img)(x,_n3##y,_n3##z,v)), \
philpem@5 11135 (I[4] = (img)(_n1##x,_p3##y,_p3##z,v)), \
philpem@5 11136 (I[11] = (img)(_n1##x,_p2##y,_p3##z,v)), \
philpem@5 11137 (I[18] = (img)(_n1##x,_p1##y,_p3##z,v)), \
philpem@5 11138 (I[25] = (img)(_n1##x,y,_p3##z,v)), \
philpem@5 11139 (I[32] = (img)(_n1##x,_n1##y,_p3##z,v)), \
philpem@5 11140 (I[39] = (img)(_n1##x,_n2##y,_p3##z,v)), \
philpem@5 11141 (I[46] = (img)(_n1##x,_n3##y,_p3##z,v)), \
philpem@5 11142 (I[53] = (img)(_n1##x,_p3##y,_p2##z,v)), \
philpem@5 11143 (I[60] = (img)(_n1##x,_p2##y,_p2##z,v)), \
philpem@5 11144 (I[67] = (img)(_n1##x,_p1##y,_p2##z,v)), \
philpem@5 11145 (I[74] = (img)(_n1##x,y,_p2##z,v)), \
philpem@5 11146 (I[81] = (img)(_n1##x,_n1##y,_p2##z,v)), \
philpem@5 11147 (I[88] = (img)(_n1##x,_n2##y,_p2##z,v)), \
philpem@5 11148 (I[95] = (img)(_n1##x,_n3##y,_p2##z,v)), \
philpem@5 11149 (I[102] = (img)(_n1##x,_p3##y,_p1##z,v)), \
philpem@5 11150 (I[109] = (img)(_n1##x,_p2##y,_p1##z,v)), \
philpem@5 11151 (I[116] = (img)(_n1##x,_p1##y,_p1##z,v)), \
philpem@5 11152 (I[123] = (img)(_n1##x,y,_p1##z,v)), \
philpem@5 11153 (I[130] = (img)(_n1##x,_n1##y,_p1##z,v)), \
philpem@5 11154 (I[137] = (img)(_n1##x,_n2##y,_p1##z,v)), \
philpem@5 11155 (I[144] = (img)(_n1##x,_n3##y,_p1##z,v)), \
philpem@5 11156 (I[151] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 11157 (I[158] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 11158 (I[165] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 11159 (I[172] = (img)(_n1##x,y,z,v)), \
philpem@5 11160 (I[179] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 11161 (I[186] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 11162 (I[193] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 11163 (I[200] = (img)(_n1##x,_p3##y,_n1##z,v)), \
philpem@5 11164 (I[207] = (img)(_n1##x,_p2##y,_n1##z,v)), \
philpem@5 11165 (I[214] = (img)(_n1##x,_p1##y,_n1##z,v)), \
philpem@5 11166 (I[221] = (img)(_n1##x,y,_n1##z,v)), \
philpem@5 11167 (I[228] = (img)(_n1##x,_n1##y,_n1##z,v)), \
philpem@5 11168 (I[235] = (img)(_n1##x,_n2##y,_n1##z,v)), \
philpem@5 11169 (I[242] = (img)(_n1##x,_n3##y,_n1##z,v)), \
philpem@5 11170 (I[249] = (img)(_n1##x,_p3##y,_n2##z,v)), \
philpem@5 11171 (I[256] = (img)(_n1##x,_p2##y,_n2##z,v)), \
philpem@5 11172 (I[263] = (img)(_n1##x,_p1##y,_n2##z,v)), \
philpem@5 11173 (I[270] = (img)(_n1##x,y,_n2##z,v)), \
philpem@5 11174 (I[277] = (img)(_n1##x,_n1##y,_n2##z,v)), \
philpem@5 11175 (I[284] = (img)(_n1##x,_n2##y,_n2##z,v)), \
philpem@5 11176 (I[291] = (img)(_n1##x,_n3##y,_n2##z,v)), \
philpem@5 11177 (I[298] = (img)(_n1##x,_p3##y,_n3##z,v)), \
philpem@5 11178 (I[305] = (img)(_n1##x,_p2##y,_n3##z,v)), \
philpem@5 11179 (I[312] = (img)(_n1##x,_p1##y,_n3##z,v)), \
philpem@5 11180 (I[319] = (img)(_n1##x,y,_n3##z,v)), \
philpem@5 11181 (I[326] = (img)(_n1##x,_n1##y,_n3##z,v)), \
philpem@5 11182 (I[333] = (img)(_n1##x,_n2##y,_n3##z,v)), \
philpem@5 11183 (I[340] = (img)(_n1##x,_n3##y,_n3##z,v)), \
philpem@5 11184 (I[5] = (img)(_n2##x,_p3##y,_p3##z,v)), \
philpem@5 11185 (I[12] = (img)(_n2##x,_p2##y,_p3##z,v)), \
philpem@5 11186 (I[19] = (img)(_n2##x,_p1##y,_p3##z,v)), \
philpem@5 11187 (I[26] = (img)(_n2##x,y,_p3##z,v)), \
philpem@5 11188 (I[33] = (img)(_n2##x,_n1##y,_p3##z,v)), \
philpem@5 11189 (I[40] = (img)(_n2##x,_n2##y,_p3##z,v)), \
philpem@5 11190 (I[47] = (img)(_n2##x,_n3##y,_p3##z,v)), \
philpem@5 11191 (I[54] = (img)(_n2##x,_p3##y,_p2##z,v)), \
philpem@5 11192 (I[61] = (img)(_n2##x,_p2##y,_p2##z,v)), \
philpem@5 11193 (I[68] = (img)(_n2##x,_p1##y,_p2##z,v)), \
philpem@5 11194 (I[75] = (img)(_n2##x,y,_p2##z,v)), \
philpem@5 11195 (I[82] = (img)(_n2##x,_n1##y,_p2##z,v)), \
philpem@5 11196 (I[89] = (img)(_n2##x,_n2##y,_p2##z,v)), \
philpem@5 11197 (I[96] = (img)(_n2##x,_n3##y,_p2##z,v)), \
philpem@5 11198 (I[103] = (img)(_n2##x,_p3##y,_p1##z,v)), \
philpem@5 11199 (I[110] = (img)(_n2##x,_p2##y,_p1##z,v)), \
philpem@5 11200 (I[117] = (img)(_n2##x,_p1##y,_p1##z,v)), \
philpem@5 11201 (I[124] = (img)(_n2##x,y,_p1##z,v)), \
philpem@5 11202 (I[131] = (img)(_n2##x,_n1##y,_p1##z,v)), \
philpem@5 11203 (I[138] = (img)(_n2##x,_n2##y,_p1##z,v)), \
philpem@5 11204 (I[145] = (img)(_n2##x,_n3##y,_p1##z,v)), \
philpem@5 11205 (I[152] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 11206 (I[159] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 11207 (I[166] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 11208 (I[173] = (img)(_n2##x,y,z,v)), \
philpem@5 11209 (I[180] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 11210 (I[187] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 11211 (I[194] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 11212 (I[201] = (img)(_n2##x,_p3##y,_n1##z,v)), \
philpem@5 11213 (I[208] = (img)(_n2##x,_p2##y,_n1##z,v)), \
philpem@5 11214 (I[215] = (img)(_n2##x,_p1##y,_n1##z,v)), \
philpem@5 11215 (I[222] = (img)(_n2##x,y,_n1##z,v)), \
philpem@5 11216 (I[229] = (img)(_n2##x,_n1##y,_n1##z,v)), \
philpem@5 11217 (I[236] = (img)(_n2##x,_n2##y,_n1##z,v)), \
philpem@5 11218 (I[243] = (img)(_n2##x,_n3##y,_n1##z,v)), \
philpem@5 11219 (I[250] = (img)(_n2##x,_p3##y,_n2##z,v)), \
philpem@5 11220 (I[257] = (img)(_n2##x,_p2##y,_n2##z,v)), \
philpem@5 11221 (I[264] = (img)(_n2##x,_p1##y,_n2##z,v)), \
philpem@5 11222 (I[271] = (img)(_n2##x,y,_n2##z,v)), \
philpem@5 11223 (I[278] = (img)(_n2##x,_n1##y,_n2##z,v)), \
philpem@5 11224 (I[285] = (img)(_n2##x,_n2##y,_n2##z,v)), \
philpem@5 11225 (I[292] = (img)(_n2##x,_n3##y,_n2##z,v)), \
philpem@5 11226 (I[299] = (img)(_n2##x,_p3##y,_n3##z,v)), \
philpem@5 11227 (I[306] = (img)(_n2##x,_p2##y,_n3##z,v)), \
philpem@5 11228 (I[313] = (img)(_n2##x,_p1##y,_n3##z,v)), \
philpem@5 11229 (I[320] = (img)(_n2##x,y,_n3##z,v)), \
philpem@5 11230 (I[327] = (img)(_n2##x,_n1##y,_n3##z,v)), \
philpem@5 11231 (I[334] = (img)(_n2##x,_n2##y,_n3##z,v)), \
philpem@5 11232 (I[341] = (img)(_n2##x,_n3##y,_n3##z,v)), \
philpem@5 11233 x+3>=(int)((img).width)?(int)((img).width)-1:x+3); \
philpem@5 11234 x<=(int)(x1) && ((_n3##x<(int)((img).width) && ( \
philpem@5 11235 (I[6] = (img)(_n3##x,_p3##y,_p3##z,v)), \
philpem@5 11236 (I[13] = (img)(_n3##x,_p2##y,_p3##z,v)), \
philpem@5 11237 (I[20] = (img)(_n3##x,_p1##y,_p3##z,v)), \
philpem@5 11238 (I[27] = (img)(_n3##x,y,_p3##z,v)), \
philpem@5 11239 (I[34] = (img)(_n3##x,_n1##y,_p3##z,v)), \
philpem@5 11240 (I[41] = (img)(_n3##x,_n2##y,_p3##z,v)), \
philpem@5 11241 (I[48] = (img)(_n3##x,_n3##y,_p3##z,v)), \
philpem@5 11242 (I[55] = (img)(_n3##x,_p3##y,_p2##z,v)), \
philpem@5 11243 (I[62] = (img)(_n3##x,_p2##y,_p2##z,v)), \
philpem@5 11244 (I[69] = (img)(_n3##x,_p1##y,_p2##z,v)), \
philpem@5 11245 (I[76] = (img)(_n3##x,y,_p2##z,v)), \
philpem@5 11246 (I[83] = (img)(_n3##x,_n1##y,_p2##z,v)), \
philpem@5 11247 (I[90] = (img)(_n3##x,_n2##y,_p2##z,v)), \
philpem@5 11248 (I[97] = (img)(_n3##x,_n3##y,_p2##z,v)), \
philpem@5 11249 (I[104] = (img)(_n3##x,_p3##y,_p1##z,v)), \
philpem@5 11250 (I[111] = (img)(_n3##x,_p2##y,_p1##z,v)), \
philpem@5 11251 (I[118] = (img)(_n3##x,_p1##y,_p1##z,v)), \
philpem@5 11252 (I[125] = (img)(_n3##x,y,_p1##z,v)), \
philpem@5 11253 (I[132] = (img)(_n3##x,_n1##y,_p1##z,v)), \
philpem@5 11254 (I[139] = (img)(_n3##x,_n2##y,_p1##z,v)), \
philpem@5 11255 (I[146] = (img)(_n3##x,_n3##y,_p1##z,v)), \
philpem@5 11256 (I[153] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 11257 (I[160] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 11258 (I[167] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 11259 (I[174] = (img)(_n3##x,y,z,v)), \
philpem@5 11260 (I[181] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 11261 (I[188] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 11262 (I[195] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 11263 (I[202] = (img)(_n3##x,_p3##y,_n1##z,v)), \
philpem@5 11264 (I[209] = (img)(_n3##x,_p2##y,_n1##z,v)), \
philpem@5 11265 (I[216] = (img)(_n3##x,_p1##y,_n1##z,v)), \
philpem@5 11266 (I[223] = (img)(_n3##x,y,_n1##z,v)), \
philpem@5 11267 (I[230] = (img)(_n3##x,_n1##y,_n1##z,v)), \
philpem@5 11268 (I[237] = (img)(_n3##x,_n2##y,_n1##z,v)), \
philpem@5 11269 (I[244] = (img)(_n3##x,_n3##y,_n1##z,v)), \
philpem@5 11270 (I[251] = (img)(_n3##x,_p3##y,_n2##z,v)), \
philpem@5 11271 (I[258] = (img)(_n3##x,_p2##y,_n2##z,v)), \
philpem@5 11272 (I[265] = (img)(_n3##x,_p1##y,_n2##z,v)), \
philpem@5 11273 (I[272] = (img)(_n3##x,y,_n2##z,v)), \
philpem@5 11274 (I[279] = (img)(_n3##x,_n1##y,_n2##z,v)), \
philpem@5 11275 (I[286] = (img)(_n3##x,_n2##y,_n2##z,v)), \
philpem@5 11276 (I[293] = (img)(_n3##x,_n3##y,_n2##z,v)), \
philpem@5 11277 (I[300] = (img)(_n3##x,_p3##y,_n3##z,v)), \
philpem@5 11278 (I[307] = (img)(_n3##x,_p2##y,_n3##z,v)), \
philpem@5 11279 (I[314] = (img)(_n3##x,_p1##y,_n3##z,v)), \
philpem@5 11280 (I[321] = (img)(_n3##x,y,_n3##z,v)), \
philpem@5 11281 (I[328] = (img)(_n3##x,_n1##y,_n3##z,v)), \
philpem@5 11282 (I[335] = (img)(_n3##x,_n2##y,_n3##z,v)), \
philpem@5 11283 (I[342] = (img)(_n3##x,_n3##y,_n3##z,v)),1)) || \
philpem@5 11284 _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3##x = _n2##x = --_n1##x)); \
philpem@5 11285 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], \
philpem@5 11286 I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \
philpem@5 11287 I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], \
philpem@5 11288 I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \
philpem@5 11289 I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], \
philpem@5 11290 I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
philpem@5 11291 I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], \
philpem@5 11292 I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \
philpem@5 11293 I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], \
philpem@5 11294 I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \
philpem@5 11295 I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], \
philpem@5 11296 I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
philpem@5 11297 I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], \
philpem@5 11298 I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], \
philpem@5 11299 I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \
philpem@5 11300 I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
philpem@5 11301 I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], \
philpem@5 11302 I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
philpem@5 11303 I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], \
philpem@5 11304 I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \
philpem@5 11305 I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], \
philpem@5 11306 I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], \
philpem@5 11307 I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], \
philpem@5 11308 I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
philpem@5 11309 I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], \
philpem@5 11310 I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], \
philpem@5 11311 I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], \
philpem@5 11312 I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], \
philpem@5 11313 I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], \
philpem@5 11314 I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
philpem@5 11315 I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], \
philpem@5 11316 I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
philpem@5 11317 I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], \
philpem@5 11318 I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], \
philpem@5 11319 I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], \
philpem@5 11320 I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \
philpem@5 11321 I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], \
philpem@5 11322 I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], \
philpem@5 11323 I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], \
philpem@5 11324 I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \
philpem@5 11325 I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], \
philpem@5 11326 I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], \
philpem@5 11327 I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], \
philpem@5 11328 I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], \
philpem@5 11329 I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], \
philpem@5 11330 I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], \
philpem@5 11331 I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], \
philpem@5 11332 I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
philpem@5 11333 I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], \
philpem@5 11334 _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x)
philpem@5 11335
philpem@5 11336 #define cimg_get7x7x7(img,x,y,z,v,I) \
philpem@5 11337 I[0] = (img)(_p3##x,_p3##y,_p3##z,v), I[1] = (img)(_p2##x,_p3##y,_p3##z,v), I[2] = (img)(_p1##x,_p3##y,_p3##z,v), I[3] = (img)(x,_p3##y,_p3##z,v), I[4] = (img)(_n1##x,_p3##y,_p3##z,v), I[5] = (img)(_n2##x,_p3##y,_p3##z,v), I[6] = (img)(_n3##x,_p3##y,_p3##z,v), \
philpem@5 11338 I[7] = (img)(_p3##x,_p2##y,_p3##z,v), I[8] = (img)(_p2##x,_p2##y,_p3##z,v), I[9] = (img)(_p1##x,_p2##y,_p3##z,v), I[10] = (img)(x,_p2##y,_p3##z,v), I[11] = (img)(_n1##x,_p2##y,_p3##z,v), I[12] = (img)(_n2##x,_p2##y,_p3##z,v), I[13] = (img)(_n3##x,_p2##y,_p3##z,v), \
philpem@5 11339 I[14] = (img)(_p3##x,_p1##y,_p3##z,v), I[15] = (img)(_p2##x,_p1##y,_p3##z,v), I[16] = (img)(_p1##x,_p1##y,_p3##z,v), I[17] = (img)(x,_p1##y,_p3##z,v), I[18] = (img)(_n1##x,_p1##y,_p3##z,v), I[19] = (img)(_n2##x,_p1##y,_p3##z,v), I[20] = (img)(_n3##x,_p1##y,_p3##z,v), \
philpem@5 11340 I[21] = (img)(_p3##x,y,_p3##z,v), I[22] = (img)(_p2##x,y,_p3##z,v), I[23] = (img)(_p1##x,y,_p3##z,v), I[24] = (img)(x,y,_p3##z,v), I[25] = (img)(_n1##x,y,_p3##z,v), I[26] = (img)(_n2##x,y,_p3##z,v), I[27] = (img)(_n3##x,y,_p3##z,v), \
philpem@5 11341 I[28] = (img)(_p3##x,_n1##y,_p3##z,v), I[29] = (img)(_p2##x,_n1##y,_p3##z,v), I[30] = (img)(_p1##x,_n1##y,_p3##z,v), I[31] = (img)(x,_n1##y,_p3##z,v), I[32] = (img)(_n1##x,_n1##y,_p3##z,v), I[33] = (img)(_n2##x,_n1##y,_p3##z,v), I[34] = (img)(_n3##x,_n1##y,_p3##z,v), \
philpem@5 11342 I[35] = (img)(_p3##x,_n2##y,_p3##z,v), I[36] = (img)(_p2##x,_n2##y,_p3##z,v), I[37] = (img)(_p1##x,_n2##y,_p3##z,v), I[38] = (img)(x,_n2##y,_p3##z,v), I[39] = (img)(_n1##x,_n2##y,_p3##z,v), I[40] = (img)(_n2##x,_n2##y,_p3##z,v), I[41] = (img)(_n3##x,_n2##y,_p3##z,v), \
philpem@5 11343 I[42] = (img)(_p3##x,_n3##y,_p3##z,v), I[43] = (img)(_p2##x,_n3##y,_p3##z,v), I[44] = (img)(_p1##x,_n3##y,_p3##z,v), I[45] = (img)(x,_n3##y,_p3##z,v), I[46] = (img)(_n1##x,_n3##y,_p3##z,v), I[47] = (img)(_n2##x,_n3##y,_p3##z,v), I[48] = (img)(_n3##x,_n3##y,_p3##z,v), \
philpem@5 11344 I[49] = (img)(_p3##x,_p3##y,_p2##z,v), I[50] = (img)(_p2##x,_p3##y,_p2##z,v), I[51] = (img)(_p1##x,_p3##y,_p2##z,v), I[52] = (img)(x,_p3##y,_p2##z,v), I[53] = (img)(_n1##x,_p3##y,_p2##z,v), I[54] = (img)(_n2##x,_p3##y,_p2##z,v), I[55] = (img)(_n3##x,_p3##y,_p2##z,v), \
philpem@5 11345 I[56] = (img)(_p3##x,_p2##y,_p2##z,v), I[57] = (img)(_p2##x,_p2##y,_p2##z,v), I[58] = (img)(_p1##x,_p2##y,_p2##z,v), I[59] = (img)(x,_p2##y,_p2##z,v), I[60] = (img)(_n1##x,_p2##y,_p2##z,v), I[61] = (img)(_n2##x,_p2##y,_p2##z,v), I[62] = (img)(_n3##x,_p2##y,_p2##z,v), \
philpem@5 11346 I[63] = (img)(_p3##x,_p1##y,_p2##z,v), I[64] = (img)(_p2##x,_p1##y,_p2##z,v), I[65] = (img)(_p1##x,_p1##y,_p2##z,v), I[66] = (img)(x,_p1##y,_p2##z,v), I[67] = (img)(_n1##x,_p1##y,_p2##z,v), I[68] = (img)(_n2##x,_p1##y,_p2##z,v), I[69] = (img)(_n3##x,_p1##y,_p2##z,v), \
philpem@5 11347 I[70] = (img)(_p3##x,y,_p2##z,v), I[71] = (img)(_p2##x,y,_p2##z,v), I[72] = (img)(_p1##x,y,_p2##z,v), I[73] = (img)(x,y,_p2##z,v), I[74] = (img)(_n1##x,y,_p2##z,v), I[75] = (img)(_n2##x,y,_p2##z,v), I[76] = (img)(_n3##x,y,_p2##z,v), \
philpem@5 11348 I[77] = (img)(_p3##x,_n1##y,_p2##z,v), I[78] = (img)(_p2##x,_n1##y,_p2##z,v), I[79] = (img)(_p1##x,_n1##y,_p2##z,v), I[80] = (img)(x,_n1##y,_p2##z,v), I[81] = (img)(_n1##x,_n1##y,_p2##z,v), I[82] = (img)(_n2##x,_n1##y,_p2##z,v), I[83] = (img)(_n3##x,_n1##y,_p2##z,v), \
philpem@5 11349 I[84] = (img)(_p3##x,_n2##y,_p2##z,v), I[85] = (img)(_p2##x,_n2##y,_p2##z,v), I[86] = (img)(_p1##x,_n2##y,_p2##z,v), I[87] = (img)(x,_n2##y,_p2##z,v), I[88] = (img)(_n1##x,_n2##y,_p2##z,v), I[89] = (img)(_n2##x,_n2##y,_p2##z,v), I[90] = (img)(_n3##x,_n2##y,_p2##z,v), \
philpem@5 11350 I[91] = (img)(_p3##x,_n3##y,_p2##z,v), I[92] = (img)(_p2##x,_n3##y,_p2##z,v), I[93] = (img)(_p1##x,_n3##y,_p2##z,v), I[94] = (img)(x,_n3##y,_p2##z,v), I[95] = (img)(_n1##x,_n3##y,_p2##z,v), I[96] = (img)(_n2##x,_n3##y,_p2##z,v), I[97] = (img)(_n3##x,_n3##y,_p2##z,v), \
philpem@5 11351 I[98] = (img)(_p3##x,_p3##y,_p1##z,v), I[99] = (img)(_p2##x,_p3##y,_p1##z,v), I[100] = (img)(_p1##x,_p3##y,_p1##z,v), I[101] = (img)(x,_p3##y,_p1##z,v), I[102] = (img)(_n1##x,_p3##y,_p1##z,v), I[103] = (img)(_n2##x,_p3##y,_p1##z,v), I[104] = (img)(_n3##x,_p3##y,_p1##z,v), \
philpem@5 11352 I[105] = (img)(_p3##x,_p2##y,_p1##z,v), I[106] = (img)(_p2##x,_p2##y,_p1##z,v), I[107] = (img)(_p1##x,_p2##y,_p1##z,v), I[108] = (img)(x,_p2##y,_p1##z,v), I[109] = (img)(_n1##x,_p2##y,_p1##z,v), I[110] = (img)(_n2##x,_p2##y,_p1##z,v), I[111] = (img)(_n3##x,_p2##y,_p1##z,v), \
philpem@5 11353 I[112] = (img)(_p3##x,_p1##y,_p1##z,v), I[113] = (img)(_p2##x,_p1##y,_p1##z,v), I[114] = (img)(_p1##x,_p1##y,_p1##z,v), I[115] = (img)(x,_p1##y,_p1##z,v), I[116] = (img)(_n1##x,_p1##y,_p1##z,v), I[117] = (img)(_n2##x,_p1##y,_p1##z,v), I[118] = (img)(_n3##x,_p1##y,_p1##z,v), \
philpem@5 11354 I[119] = (img)(_p3##x,y,_p1##z,v), I[120] = (img)(_p2##x,y,_p1##z,v), I[121] = (img)(_p1##x,y,_p1##z,v), I[122] = (img)(x,y,_p1##z,v), I[123] = (img)(_n1##x,y,_p1##z,v), I[124] = (img)(_n2##x,y,_p1##z,v), I[125] = (img)(_n3##x,y,_p1##z,v), \
philpem@5 11355 I[126] = (img)(_p3##x,_n1##y,_p1##z,v), I[127] = (img)(_p2##x,_n1##y,_p1##z,v), I[128] = (img)(_p1##x,_n1##y,_p1##z,v), I[129] = (img)(x,_n1##y,_p1##z,v), I[130] = (img)(_n1##x,_n1##y,_p1##z,v), I[131] = (img)(_n2##x,_n1##y,_p1##z,v), I[132] = (img)(_n3##x,_n1##y,_p1##z,v), \
philpem@5 11356 I[133] = (img)(_p3##x,_n2##y,_p1##z,v), I[134] = (img)(_p2##x,_n2##y,_p1##z,v), I[135] = (img)(_p1##x,_n2##y,_p1##z,v), I[136] = (img)(x,_n2##y,_p1##z,v), I[137] = (img)(_n1##x,_n2##y,_p1##z,v), I[138] = (img)(_n2##x,_n2##y,_p1##z,v), I[139] = (img)(_n3##x,_n2##y,_p1##z,v), \
philpem@5 11357 I[140] = (img)(_p3##x,_n3##y,_p1##z,v), I[141] = (img)(_p2##x,_n3##y,_p1##z,v), I[142] = (img)(_p1##x,_n3##y,_p1##z,v), I[143] = (img)(x,_n3##y,_p1##z,v), I[144] = (img)(_n1##x,_n3##y,_p1##z,v), I[145] = (img)(_n2##x,_n3##y,_p1##z,v), I[146] = (img)(_n3##x,_n3##y,_p1##z,v), \
philpem@5 11358 I[147] = (img)(_p3##x,_p3##y,z,v), I[148] = (img)(_p2##x,_p3##y,z,v), I[149] = (img)(_p1##x,_p3##y,z,v), I[150] = (img)(x,_p3##y,z,v), I[151] = (img)(_n1##x,_p3##y,z,v), I[152] = (img)(_n2##x,_p3##y,z,v), I[153] = (img)(_n3##x,_p3##y,z,v), \
philpem@5 11359 I[154] = (img)(_p3##x,_p2##y,z,v), I[155] = (img)(_p2##x,_p2##y,z,v), I[156] = (img)(_p1##x,_p2##y,z,v), I[157] = (img)(x,_p2##y,z,v), I[158] = (img)(_n1##x,_p2##y,z,v), I[159] = (img)(_n2##x,_p2##y,z,v), I[160] = (img)(_n3##x,_p2##y,z,v), \
philpem@5 11360 I[161] = (img)(_p3##x,_p1##y,z,v), I[162] = (img)(_p2##x,_p1##y,z,v), I[163] = (img)(_p1##x,_p1##y,z,v), I[164] = (img)(x,_p1##y,z,v), I[165] = (img)(_n1##x,_p1##y,z,v), I[166] = (img)(_n2##x,_p1##y,z,v), I[167] = (img)(_n3##x,_p1##y,z,v), \
philpem@5 11361 I[168] = (img)(_p3##x,y,z,v), I[169] = (img)(_p2##x,y,z,v), I[170] = (img)(_p1##x,y,z,v), I[171] = (img)(x,y,z,v), I[172] = (img)(_n1##x,y,z,v), I[173] = (img)(_n2##x,y,z,v), I[174] = (img)(_n3##x,y,z,v), \
philpem@5 11362 I[175] = (img)(_p3##x,_n1##y,z,v), I[176] = (img)(_p2##x,_n1##y,z,v), I[177] = (img)(_p1##x,_n1##y,z,v), I[178] = (img)(x,_n1##y,z,v), I[179] = (img)(_n1##x,_n1##y,z,v), I[180] = (img)(_n2##x,_n1##y,z,v), I[181] = (img)(_n3##x,_n1##y,z,v), \
philpem@5 11363 I[182] = (img)(_p3##x,_n2##y,z,v), I[183] = (img)(_p2##x,_n2##y,z,v), I[184] = (img)(_p1##x,_n2##y,z,v), I[185] = (img)(x,_n2##y,z,v), I[186] = (img)(_n1##x,_n2##y,z,v), I[187] = (img)(_n2##x,_n2##y,z,v), I[188] = (img)(_n3##x,_n2##y,z,v), \
philpem@5 11364 I[189] = (img)(_p3##x,_n3##y,z,v), I[190] = (img)(_p2##x,_n3##y,z,v), I[191] = (img)(_p1##x,_n3##y,z,v), I[192] = (img)(x,_n3##y,z,v), I[193] = (img)(_n1##x,_n3##y,z,v), I[194] = (img)(_n2##x,_n3##y,z,v), I[195] = (img)(_n3##x,_n3##y,z,v), \
philpem@5 11365 I[196] = (img)(_p3##x,_p3##y,_n1##z,v), I[197] = (img)(_p2##x,_p3##y,_n1##z,v), I[198] = (img)(_p1##x,_p3##y,_n1##z,v), I[199] = (img)(x,_p3##y,_n1##z,v), I[200] = (img)(_n1##x,_p3##y,_n1##z,v), I[201] = (img)(_n2##x,_p3##y,_n1##z,v), I[202] = (img)(_n3##x,_p3##y,_n1##z,v), \
philpem@5 11366 I[203] = (img)(_p3##x,_p2##y,_n1##z,v), I[204] = (img)(_p2##x,_p2##y,_n1##z,v), I[205] = (img)(_p1##x,_p2##y,_n1##z,v), I[206] = (img)(x,_p2##y,_n1##z,v), I[207] = (img)(_n1##x,_p2##y,_n1##z,v), I[208] = (img)(_n2##x,_p2##y,_n1##z,v), I[209] = (img)(_n3##x,_p2##y,_n1##z,v), \
philpem@5 11367 I[210] = (img)(_p3##x,_p1##y,_n1##z,v), I[211] = (img)(_p2##x,_p1##y,_n1##z,v), I[212] = (img)(_p1##x,_p1##y,_n1##z,v), I[213] = (img)(x,_p1##y,_n1##z,v), I[214] = (img)(_n1##x,_p1##y,_n1##z,v), I[215] = (img)(_n2##x,_p1##y,_n1##z,v), I[216] = (img)(_n3##x,_p1##y,_n1##z,v), \
philpem@5 11368 I[217] = (img)(_p3##x,y,_n1##z,v), I[218] = (img)(_p2##x,y,_n1##z,v), I[219] = (img)(_p1##x,y,_n1##z,v), I[220] = (img)(x,y,_n1##z,v), I[221] = (img)(_n1##x,y,_n1##z,v), I[222] = (img)(_n2##x,y,_n1##z,v), I[223] = (img)(_n3##x,y,_n1##z,v), \
philpem@5 11369 I[224] = (img)(_p3##x,_n1##y,_n1##z,v), I[225] = (img)(_p2##x,_n1##y,_n1##z,v), I[226] = (img)(_p1##x,_n1##y,_n1##z,v), I[227] = (img)(x,_n1##y,_n1##z,v), I[228] = (img)(_n1##x,_n1##y,_n1##z,v), I[229] = (img)(_n2##x,_n1##y,_n1##z,v), I[230] = (img)(_n3##x,_n1##y,_n1##z,v), \
philpem@5 11370 I[231] = (img)(_p3##x,_n2##y,_n1##z,v), I[232] = (img)(_p2##x,_n2##y,_n1##z,v), I[233] = (img)(_p1##x,_n2##y,_n1##z,v), I[234] = (img)(x,_n2##y,_n1##z,v), I[235] = (img)(_n1##x,_n2##y,_n1##z,v), I[236] = (img)(_n2##x,_n2##y,_n1##z,v), I[237] = (img)(_n3##x,_n2##y,_n1##z,v), \
philpem@5 11371 I[238] = (img)(_p3##x,_n3##y,_n1##z,v), I[239] = (img)(_p2##x,_n3##y,_n1##z,v), I[240] = (img)(_p1##x,_n3##y,_n1##z,v), I[241] = (img)(x,_n3##y,_n1##z,v), I[242] = (img)(_n1##x,_n3##y,_n1##z,v), I[243] = (img)(_n2##x,_n3##y,_n1##z,v), I[244] = (img)(_n3##x,_n3##y,_n1##z,v), \
philpem@5 11372 I[245] = (img)(_p3##x,_p3##y,_n2##z,v), I[246] = (img)(_p2##x,_p3##y,_n2##z,v), I[247] = (img)(_p1##x,_p3##y,_n2##z,v), I[248] = (img)(x,_p3##y,_n2##z,v), I[249] = (img)(_n1##x,_p3##y,_n2##z,v), I[250] = (img)(_n2##x,_p3##y,_n2##z,v), I[251] = (img)(_n3##x,_p3##y,_n2##z,v), \
philpem@5 11373 I[252] = (img)(_p3##x,_p2##y,_n2##z,v), I[253] = (img)(_p2##x,_p2##y,_n2##z,v), I[254] = (img)(_p1##x,_p2##y,_n2##z,v), I[255] = (img)(x,_p2##y,_n2##z,v), I[256] = (img)(_n1##x,_p2##y,_n2##z,v), I[257] = (img)(_n2##x,_p2##y,_n2##z,v), I[258] = (img)(_n3##x,_p2##y,_n2##z,v), \
philpem@5 11374 I[259] = (img)(_p3##x,_p1##y,_n2##z,v), I[260] = (img)(_p2##x,_p1##y,_n2##z,v), I[261] = (img)(_p1##x,_p1##y,_n2##z,v), I[262] = (img)(x,_p1##y,_n2##z,v), I[263] = (img)(_n1##x,_p1##y,_n2##z,v), I[264] = (img)(_n2##x,_p1##y,_n2##z,v), I[265] = (img)(_n3##x,_p1##y,_n2##z,v), \
philpem@5 11375 I[266] = (img)(_p3##x,y,_n2##z,v), I[267] = (img)(_p2##x,y,_n2##z,v), I[268] = (img)(_p1##x,y,_n2##z,v), I[269] = (img)(x,y,_n2##z,v), I[270] = (img)(_n1##x,y,_n2##z,v), I[271] = (img)(_n2##x,y,_n2##z,v), I[272] = (img)(_n3##x,y,_n2##z,v), \
philpem@5 11376 I[273] = (img)(_p3##x,_n1##y,_n2##z,v), I[274] = (img)(_p2##x,_n1##y,_n2##z,v), I[275] = (img)(_p1##x,_n1##y,_n2##z,v), I[276] = (img)(x,_n1##y,_n2##z,v), I[277] = (img)(_n1##x,_n1##y,_n2##z,v), I[278] = (img)(_n2##x,_n1##y,_n2##z,v), I[279] = (img)(_n3##x,_n1##y,_n2##z,v), \
philpem@5 11377 I[280] = (img)(_p3##x,_n2##y,_n2##z,v), I[281] = (img)(_p2##x,_n2##y,_n2##z,v), I[282] = (img)(_p1##x,_n2##y,_n2##z,v), I[283] = (img)(x,_n2##y,_n2##z,v), I[284] = (img)(_n1##x,_n2##y,_n2##z,v), I[285] = (img)(_n2##x,_n2##y,_n2##z,v), I[286] = (img)(_n3##x,_n2##y,_n2##z,v), \
philpem@5 11378 I[287] = (img)(_p3##x,_n3##y,_n2##z,v), I[288] = (img)(_p2##x,_n3##y,_n2##z,v), I[289] = (img)(_p1##x,_n3##y,_n2##z,v), I[290] = (img)(x,_n3##y,_n2##z,v), I[291] = (img)(_n1##x,_n3##y,_n2##z,v), I[292] = (img)(_n2##x,_n3##y,_n2##z,v), I[293] = (img)(_n3##x,_n3##y,_n2##z,v), \
philpem@5 11379 I[294] = (img)(_p3##x,_p3##y,_n3##z,v), I[295] = (img)(_p2##x,_p3##y,_n3##z,v), I[296] = (img)(_p1##x,_p3##y,_n3##z,v), I[297] = (img)(x,_p3##y,_n3##z,v), I[298] = (img)(_n1##x,_p3##y,_n3##z,v), I[299] = (img)(_n2##x,_p3##y,_n3##z,v), I[300] = (img)(_n3##x,_p3##y,_n3##z,v), \
philpem@5 11380 I[301] = (img)(_p3##x,_p2##y,_n3##z,v), I[302] = (img)(_p2##x,_p2##y,_n3##z,v), I[303] = (img)(_p1##x,_p2##y,_n3##z,v), I[304] = (img)(x,_p2##y,_n3##z,v), I[305] = (img)(_n1##x,_p2##y,_n3##z,v), I[306] = (img)(_n2##x,_p2##y,_n3##z,v), I[307] = (img)(_n3##x,_p2##y,_n3##z,v), \
philpem@5 11381 I[308] = (img)(_p3##x,_p1##y,_n3##z,v), I[309] = (img)(_p2##x,_p1##y,_n3##z,v), I[310] = (img)(_p1##x,_p1##y,_n3##z,v), I[311] = (img)(x,_p1##y,_n3##z,v), I[312] = (img)(_n1##x,_p1##y,_n3##z,v), I[313] = (img)(_n2##x,_p1##y,_n3##z,v), I[314] = (img)(_n3##x,_p1##y,_n3##z,v), \
philpem@5 11382 I[315] = (img)(_p3##x,y,_n3##z,v), I[316] = (img)(_p2##x,y,_n3##z,v), I[317] = (img)(_p1##x,y,_n3##z,v), I[318] = (img)(x,y,_n3##z,v), I[319] = (img)(_n1##x,y,_n3##z,v), I[320] = (img)(_n2##x,y,_n3##z,v), I[321] = (img)(_n3##x,y,_n3##z,v), \
philpem@5 11383 I[322] = (img)(_p3##x,_n1##y,_n3##z,v), I[323] = (img)(_p2##x,_n1##y,_n3##z,v), I[324] = (img)(_p1##x,_n1##y,_n3##z,v), I[325] = (img)(x,_n1##y,_n3##z,v), I[326] = (img)(_n1##x,_n1##y,_n3##z,v), I[327] = (img)(_n2##x,_n1##y,_n3##z,v), I[328] = (img)(_n3##x,_n1##y,_n3##z,v), \
philpem@5 11384 I[329] = (img)(_p3##x,_n2##y,_n3##z,v), I[330] = (img)(_p2##x,_n2##y,_n3##z,v), I[331] = (img)(_p1##x,_n2##y,_n3##z,v), I[332] = (img)(x,_n2##y,_n3##z,v), I[333] = (img)(_n1##x,_n2##y,_n3##z,v), I[334] = (img)(_n2##x,_n2##y,_n3##z,v), I[335] = (img)(_n3##x,_n2##y,_n3##z,v), \
philpem@5 11385 I[336] = (img)(_p3##x,_n3##y,_n3##z,v), I[337] = (img)(_p2##x,_n3##y,_n3##z,v), I[338] = (img)(_p1##x,_n3##y,_n3##z,v), I[339] = (img)(x,_n3##y,_n3##z,v), I[340] = (img)(_n1##x,_n3##y,_n3##z,v), I[341] = (img)(_n2##x,_n3##y,_n3##z,v), I[342] = (img)(_n3##x,_n3##y,_n3##z,v);
philpem@5 11386
philpem@5 11387 // Define 8x8x8 loop macros for CImg
philpem@5 11388 //-------------------------------------
philpem@5 11389 #define cimg_for_in8(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
philpem@5 11390 _p3##i = i-3<0?0:i-3, \
philpem@5 11391 _p2##i = i-2<0?0:i-2, \
philpem@5 11392 _p1##i = i-1<0?0:i-1, \
philpem@5 11393 _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \
philpem@5 11394 _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \
philpem@5 11395 _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \
philpem@5 11396 _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4; \
philpem@5 11397 i<=(int)(i1) && (_n4##i<(int)(bound) || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
philpem@5 11398 i==(_n4##i = _n3##i = _n2##i = --_n1##i)); \
philpem@5 11399 _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
philpem@5 11400 ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i)
philpem@5 11401
philpem@5 11402 #define cimg_for_in8X(img,x0,x1,x) cimg_for_in8((img).width,x0,x1,x)
philpem@5 11403 #define cimg_for_in8Y(img,y0,y1,y) cimg_for_in8((img).height,y0,y1,y)
philpem@5 11404 #define cimg_for_in8Z(img,z0,z1,z) cimg_for_in8((img).depth,z0,z1,z)
philpem@5 11405 #define cimg_for_in8V(img,v0,v1,v) cimg_for_in8((img).dim,v0,v1,v)
philpem@5 11406 #define cimg_for_in8XY(img,x0,y0,x1,y1,x,y) cimg_for_in8Y(img,y0,y1,y) cimg_for_in8X(img,x0,x1,x)
philpem@5 11407 #define cimg_for_in8XZ(img,x0,z0,x1,z1,x,z) cimg_for_in8Z(img,z0,z1,z) cimg_for_in8X(img,x0,x1,x)
philpem@5 11408 #define cimg_for_in8XV(img,x0,v0,x1,v1,x,v) cimg_for_in8V(img,v0,v1,v) cimg_for_in8X(img,x0,x1,x)
philpem@5 11409 #define cimg_for_in8YZ(img,y0,z0,y1,z1,y,z) cimg_for_in8Z(img,z0,z1,z) cimg_for_in8Y(img,y0,y1,y)
philpem@5 11410 #define cimg_for_in8YV(img,y0,v0,y1,v1,y,v) cimg_for_in8V(img,v0,v1,v) cimg_for_in8Y(img,y0,y1,y)
philpem@5 11411 #define cimg_for_in8ZV(img,z0,v0,z1,v1,z,v) cimg_for_in8V(img,v0,v1,v) cimg_for_in8Z(img,z0,z1,z)
philpem@5 11412 #define cimg_for_in8XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in8Z(img,z0,z1,z) cimg_for_in8XY(img,x0,y0,x1,y1,x,y)
philpem@5 11413 #define cimg_for_in8XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in8V(img,v0,v1,v) cimg_for_in8XZ(img,x0,y0,x1,y1,x,z)
philpem@5 11414 #define cimg_for_in8YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in8V(img,v0,v1,v) cimg_for_in8YZ(img,y0,z0,y1,z1,y,z)
philpem@5 11415 #define cimg_for_in8XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in8V(img,v0,v1,v) cimg_for_in8XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
philpem@5 11416
philpem@5 11417 #define cimg_for8x8x8(img,x,y,z,v,I) \
philpem@5 11418 cimg_for8((img).depth,z) cimg_for8((img).height,y) for (int x = 0, \
philpem@5 11419 _p3##x = 0, _p2##x = 0, _p1##x = 0, \
philpem@5 11420 _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \
philpem@5 11421 _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \
philpem@5 11422 _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \
philpem@5 11423 _n4##x = (int)( \
philpem@5 11424 (I[0] = I[1] = I[2] = I[3] = (img)(0,_p3##y,_p3##z,v)), \
philpem@5 11425 (I[8] = I[9] = I[10] = I[11] = (img)(0,_p2##y,_p3##z,v)), \
philpem@5 11426 (I[16] = I[17] = I[18] = I[19] = (img)(0,_p1##y,_p3##z,v)), \
philpem@5 11427 (I[24] = I[25] = I[26] = I[27] = (img)(0,y,_p3##z,v)), \
philpem@5 11428 (I[32] = I[33] = I[34] = I[35] = (img)(0,_n1##y,_p3##z,v)), \
philpem@5 11429 (I[40] = I[41] = I[42] = I[43] = (img)(0,_n2##y,_p3##z,v)), \
philpem@5 11430 (I[48] = I[49] = I[50] = I[51] = (img)(0,_n3##y,_p3##z,v)), \
philpem@5 11431 (I[56] = I[57] = I[58] = I[59] = (img)(0,_n4##y,_p3##z,v)), \
philpem@5 11432 (I[64] = I[65] = I[66] = I[67] = (img)(0,_p3##y,_p2##z,v)), \
philpem@5 11433 (I[72] = I[73] = I[74] = I[75] = (img)(0,_p2##y,_p2##z,v)), \
philpem@5 11434 (I[80] = I[81] = I[82] = I[83] = (img)(0,_p1##y,_p2##z,v)), \
philpem@5 11435 (I[88] = I[89] = I[90] = I[91] = (img)(0,y,_p2##z,v)), \
philpem@5 11436 (I[96] = I[97] = I[98] = I[99] = (img)(0,_n1##y,_p2##z,v)), \
philpem@5 11437 (I[104] = I[105] = I[106] = I[107] = (img)(0,_n2##y,_p2##z,v)), \
philpem@5 11438 (I[112] = I[113] = I[114] = I[115] = (img)(0,_n3##y,_p2##z,v)), \
philpem@5 11439 (I[120] = I[121] = I[122] = I[123] = (img)(0,_n4##y,_p2##z,v)), \
philpem@5 11440 (I[128] = I[129] = I[130] = I[131] = (img)(0,_p3##y,_p1##z,v)), \
philpem@5 11441 (I[136] = I[137] = I[138] = I[139] = (img)(0,_p2##y,_p1##z,v)), \
philpem@5 11442 (I[144] = I[145] = I[146] = I[147] = (img)(0,_p1##y,_p1##z,v)), \
philpem@5 11443 (I[152] = I[153] = I[154] = I[155] = (img)(0,y,_p1##z,v)), \
philpem@5 11444 (I[160] = I[161] = I[162] = I[163] = (img)(0,_n1##y,_p1##z,v)), \
philpem@5 11445 (I[168] = I[169] = I[170] = I[171] = (img)(0,_n2##y,_p1##z,v)), \
philpem@5 11446 (I[176] = I[177] = I[178] = I[179] = (img)(0,_n3##y,_p1##z,v)), \
philpem@5 11447 (I[184] = I[185] = I[186] = I[187] = (img)(0,_n4##y,_p1##z,v)), \
philpem@5 11448 (I[192] = I[193] = I[194] = I[195] = (img)(0,_p3##y,z,v)), \
philpem@5 11449 (I[200] = I[201] = I[202] = I[203] = (img)(0,_p2##y,z,v)), \
philpem@5 11450 (I[208] = I[209] = I[210] = I[211] = (img)(0,_p1##y,z,v)), \
philpem@5 11451 (I[216] = I[217] = I[218] = I[219] = (img)(0,y,z,v)), \
philpem@5 11452 (I[224] = I[225] = I[226] = I[227] = (img)(0,_n1##y,z,v)), \
philpem@5 11453 (I[232] = I[233] = I[234] = I[235] = (img)(0,_n2##y,z,v)), \
philpem@5 11454 (I[240] = I[241] = I[242] = I[243] = (img)(0,_n3##y,z,v)), \
philpem@5 11455 (I[248] = I[249] = I[250] = I[251] = (img)(0,_n4##y,z,v)), \
philpem@5 11456 (I[256] = I[257] = I[258] = I[259] = (img)(0,_p3##y,_n1##z,v)), \
philpem@5 11457 (I[264] = I[265] = I[266] = I[267] = (img)(0,_p2##y,_n1##z,v)), \
philpem@5 11458 (I[272] = I[273] = I[274] = I[275] = (img)(0,_p1##y,_n1##z,v)), \
philpem@5 11459 (I[280] = I[281] = I[282] = I[283] = (img)(0,y,_n1##z,v)), \
philpem@5 11460 (I[288] = I[289] = I[290] = I[291] = (img)(0,_n1##y,_n1##z,v)), \
philpem@5 11461 (I[296] = I[297] = I[298] = I[299] = (img)(0,_n2##y,_n1##z,v)), \
philpem@5 11462 (I[304] = I[305] = I[306] = I[307] = (img)(0,_n3##y,_n1##z,v)), \
philpem@5 11463 (I[312] = I[313] = I[314] = I[315] = (img)(0,_n4##y,_n1##z,v)), \
philpem@5 11464 (I[320] = I[321] = I[322] = I[323] = (img)(0,_p3##y,_n2##z,v)), \
philpem@5 11465 (I[328] = I[329] = I[330] = I[331] = (img)(0,_p2##y,_n2##z,v)), \
philpem@5 11466 (I[336] = I[337] = I[338] = I[339] = (img)(0,_p1##y,_n2##z,v)), \
philpem@5 11467 (I[344] = I[345] = I[346] = I[347] = (img)(0,y,_n2##z,v)), \
philpem@5 11468 (I[352] = I[353] = I[354] = I[355] = (img)(0,_n1##y,_n2##z,v)), \
philpem@5 11469 (I[360] = I[361] = I[362] = I[363] = (img)(0,_n2##y,_n2##z,v)), \
philpem@5 11470 (I[368] = I[369] = I[370] = I[371] = (img)(0,_n3##y,_n2##z,v)), \
philpem@5 11471 (I[376] = I[377] = I[378] = I[379] = (img)(0,_n4##y,_n2##z,v)), \
philpem@5 11472 (I[384] = I[385] = I[386] = I[387] = (img)(0,_p3##y,_n3##z,v)), \
philpem@5 11473 (I[392] = I[393] = I[394] = I[395] = (img)(0,_p2##y,_n3##z,v)), \
philpem@5 11474 (I[400] = I[401] = I[402] = I[403] = (img)(0,_p1##y,_n3##z,v)), \
philpem@5 11475 (I[408] = I[409] = I[410] = I[411] = (img)(0,y,_n3##z,v)), \
philpem@5 11476 (I[416] = I[417] = I[418] = I[419] = (img)(0,_n1##y,_n3##z,v)), \
philpem@5 11477 (I[424] = I[425] = I[426] = I[427] = (img)(0,_n2##y,_n3##z,v)), \
philpem@5 11478 (I[432] = I[433] = I[434] = I[435] = (img)(0,_n3##y,_n3##z,v)), \
philpem@5 11479 (I[440] = I[441] = I[442] = I[443] = (img)(0,_n4##y,_n3##z,v)), \
philpem@5 11480 (I[448] = I[449] = I[450] = I[451] = (img)(0,_p3##y,_n4##z,v)), \
philpem@5 11481 (I[456] = I[457] = I[458] = I[459] = (img)(0,_p2##y,_n4##z,v)), \
philpem@5 11482 (I[464] = I[465] = I[466] = I[467] = (img)(0,_p1##y,_n4##z,v)), \
philpem@5 11483 (I[472] = I[473] = I[474] = I[475] = (img)(0,y,_n4##z,v)), \
philpem@5 11484 (I[480] = I[481] = I[482] = I[483] = (img)(0,_n1##y,_n4##z,v)), \
philpem@5 11485 (I[488] = I[489] = I[490] = I[491] = (img)(0,_n2##y,_n4##z,v)), \
philpem@5 11486 (I[496] = I[497] = I[498] = I[499] = (img)(0,_n3##y,_n4##z,v)), \
philpem@5 11487 (I[504] = I[505] = I[506] = I[507] = (img)(0,_n4##y,_n4##z,v)), \
philpem@5 11488 (I[4] = (img)(_n1##x,_p3##y,_p3##z,v)), \
philpem@5 11489 (I[12] = (img)(_n1##x,_p2##y,_p3##z,v)), \
philpem@5 11490 (I[20] = (img)(_n1##x,_p1##y,_p3##z,v)), \
philpem@5 11491 (I[28] = (img)(_n1##x,y,_p3##z,v)), \
philpem@5 11492 (I[36] = (img)(_n1##x,_n1##y,_p3##z,v)), \
philpem@5 11493 (I[44] = (img)(_n1##x,_n2##y,_p3##z,v)), \
philpem@5 11494 (I[52] = (img)(_n1##x,_n3##y,_p3##z,v)), \
philpem@5 11495 (I[60] = (img)(_n1##x,_n4##y,_p3##z,v)), \
philpem@5 11496 (I[68] = (img)(_n1##x,_p3##y,_p2##z,v)), \
philpem@5 11497 (I[76] = (img)(_n1##x,_p2##y,_p2##z,v)), \
philpem@5 11498 (I[84] = (img)(_n1##x,_p1##y,_p2##z,v)), \
philpem@5 11499 (I[92] = (img)(_n1##x,y,_p2##z,v)), \
philpem@5 11500 (I[100] = (img)(_n1##x,_n1##y,_p2##z,v)), \
philpem@5 11501 (I[108] = (img)(_n1##x,_n2##y,_p2##z,v)), \
philpem@5 11502 (I[116] = (img)(_n1##x,_n3##y,_p2##z,v)), \
philpem@5 11503 (I[124] = (img)(_n1##x,_n4##y,_p2##z,v)), \
philpem@5 11504 (I[132] = (img)(_n1##x,_p3##y,_p1##z,v)), \
philpem@5 11505 (I[140] = (img)(_n1##x,_p2##y,_p1##z,v)), \
philpem@5 11506 (I[148] = (img)(_n1##x,_p1##y,_p1##z,v)), \
philpem@5 11507 (I[156] = (img)(_n1##x,y,_p1##z,v)), \
philpem@5 11508 (I[164] = (img)(_n1##x,_n1##y,_p1##z,v)), \
philpem@5 11509 (I[172] = (img)(_n1##x,_n2##y,_p1##z,v)), \
philpem@5 11510 (I[180] = (img)(_n1##x,_n3##y,_p1##z,v)), \
philpem@5 11511 (I[188] = (img)(_n1##x,_n4##y,_p1##z,v)), \
philpem@5 11512 (I[196] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 11513 (I[204] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 11514 (I[212] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 11515 (I[220] = (img)(_n1##x,y,z,v)), \
philpem@5 11516 (I[228] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 11517 (I[236] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 11518 (I[244] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 11519 (I[252] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 11520 (I[260] = (img)(_n1##x,_p3##y,_n1##z,v)), \
philpem@5 11521 (I[268] = (img)(_n1##x,_p2##y,_n1##z,v)), \
philpem@5 11522 (I[276] = (img)(_n1##x,_p1##y,_n1##z,v)), \
philpem@5 11523 (I[284] = (img)(_n1##x,y,_n1##z,v)), \
philpem@5 11524 (I[292] = (img)(_n1##x,_n1##y,_n1##z,v)), \
philpem@5 11525 (I[300] = (img)(_n1##x,_n2##y,_n1##z,v)), \
philpem@5 11526 (I[308] = (img)(_n1##x,_n3##y,_n1##z,v)), \
philpem@5 11527 (I[316] = (img)(_n1##x,_n4##y,_n1##z,v)), \
philpem@5 11528 (I[324] = (img)(_n1##x,_p3##y,_n2##z,v)), \
philpem@5 11529 (I[332] = (img)(_n1##x,_p2##y,_n2##z,v)), \
philpem@5 11530 (I[340] = (img)(_n1##x,_p1##y,_n2##z,v)), \
philpem@5 11531 (I[348] = (img)(_n1##x,y,_n2##z,v)), \
philpem@5 11532 (I[356] = (img)(_n1##x,_n1##y,_n2##z,v)), \
philpem@5 11533 (I[364] = (img)(_n1##x,_n2##y,_n2##z,v)), \
philpem@5 11534 (I[372] = (img)(_n1##x,_n3##y,_n2##z,v)), \
philpem@5 11535 (I[380] = (img)(_n1##x,_n4##y,_n2##z,v)), \
philpem@5 11536 (I[388] = (img)(_n1##x,_p3##y,_n3##z,v)), \
philpem@5 11537 (I[396] = (img)(_n1##x,_p2##y,_n3##z,v)), \
philpem@5 11538 (I[404] = (img)(_n1##x,_p1##y,_n3##z,v)), \
philpem@5 11539 (I[412] = (img)(_n1##x,y,_n3##z,v)), \
philpem@5 11540 (I[420] = (img)(_n1##x,_n1##y,_n3##z,v)), \
philpem@5 11541 (I[428] = (img)(_n1##x,_n2##y,_n3##z,v)), \
philpem@5 11542 (I[436] = (img)(_n1##x,_n3##y,_n3##z,v)), \
philpem@5 11543 (I[444] = (img)(_n1##x,_n4##y,_n3##z,v)), \
philpem@5 11544 (I[452] = (img)(_n1##x,_p3##y,_n4##z,v)), \
philpem@5 11545 (I[460] = (img)(_n1##x,_p2##y,_n4##z,v)), \
philpem@5 11546 (I[468] = (img)(_n1##x,_p1##y,_n4##z,v)), \
philpem@5 11547 (I[476] = (img)(_n1##x,y,_n4##z,v)), \
philpem@5 11548 (I[484] = (img)(_n1##x,_n1##y,_n4##z,v)), \
philpem@5 11549 (I[492] = (img)(_n1##x,_n2##y,_n4##z,v)), \
philpem@5 11550 (I[500] = (img)(_n1##x,_n3##y,_n4##z,v)), \
philpem@5 11551 (I[508] = (img)(_n1##x,_n4##y,_n4##z,v)), \
philpem@5 11552 (I[5] = (img)(_n2##x,_p3##y,_p3##z,v)), \
philpem@5 11553 (I[13] = (img)(_n2##x,_p2##y,_p3##z,v)), \
philpem@5 11554 (I[21] = (img)(_n2##x,_p1##y,_p3##z,v)), \
philpem@5 11555 (I[29] = (img)(_n2##x,y,_p3##z,v)), \
philpem@5 11556 (I[37] = (img)(_n2##x,_n1##y,_p3##z,v)), \
philpem@5 11557 (I[45] = (img)(_n2##x,_n2##y,_p3##z,v)), \
philpem@5 11558 (I[53] = (img)(_n2##x,_n3##y,_p3##z,v)), \
philpem@5 11559 (I[61] = (img)(_n2##x,_n4##y,_p3##z,v)), \
philpem@5 11560 (I[69] = (img)(_n2##x,_p3##y,_p2##z,v)), \
philpem@5 11561 (I[77] = (img)(_n2##x,_p2##y,_p2##z,v)), \
philpem@5 11562 (I[85] = (img)(_n2##x,_p1##y,_p2##z,v)), \
philpem@5 11563 (I[93] = (img)(_n2##x,y,_p2##z,v)), \
philpem@5 11564 (I[101] = (img)(_n2##x,_n1##y,_p2##z,v)), \
philpem@5 11565 (I[109] = (img)(_n2##x,_n2##y,_p2##z,v)), \
philpem@5 11566 (I[117] = (img)(_n2##x,_n3##y,_p2##z,v)), \
philpem@5 11567 (I[125] = (img)(_n2##x,_n4##y,_p2##z,v)), \
philpem@5 11568 (I[133] = (img)(_n2##x,_p3##y,_p1##z,v)), \
philpem@5 11569 (I[141] = (img)(_n2##x,_p2##y,_p1##z,v)), \
philpem@5 11570 (I[149] = (img)(_n2##x,_p1##y,_p1##z,v)), \
philpem@5 11571 (I[157] = (img)(_n2##x,y,_p1##z,v)), \
philpem@5 11572 (I[165] = (img)(_n2##x,_n1##y,_p1##z,v)), \
philpem@5 11573 (I[173] = (img)(_n2##x,_n2##y,_p1##z,v)), \
philpem@5 11574 (I[181] = (img)(_n2##x,_n3##y,_p1##z,v)), \
philpem@5 11575 (I[189] = (img)(_n2##x,_n4##y,_p1##z,v)), \
philpem@5 11576 (I[197] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 11577 (I[205] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 11578 (I[213] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 11579 (I[221] = (img)(_n2##x,y,z,v)), \
philpem@5 11580 (I[229] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 11581 (I[237] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 11582 (I[245] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 11583 (I[253] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 11584 (I[261] = (img)(_n2##x,_p3##y,_n1##z,v)), \
philpem@5 11585 (I[269] = (img)(_n2##x,_p2##y,_n1##z,v)), \
philpem@5 11586 (I[277] = (img)(_n2##x,_p1##y,_n1##z,v)), \
philpem@5 11587 (I[285] = (img)(_n2##x,y,_n1##z,v)), \
philpem@5 11588 (I[293] = (img)(_n2##x,_n1##y,_n1##z,v)), \
philpem@5 11589 (I[301] = (img)(_n2##x,_n2##y,_n1##z,v)), \
philpem@5 11590 (I[309] = (img)(_n2##x,_n3##y,_n1##z,v)), \
philpem@5 11591 (I[317] = (img)(_n2##x,_n4##y,_n1##z,v)), \
philpem@5 11592 (I[325] = (img)(_n2##x,_p3##y,_n2##z,v)), \
philpem@5 11593 (I[333] = (img)(_n2##x,_p2##y,_n2##z,v)), \
philpem@5 11594 (I[341] = (img)(_n2##x,_p1##y,_n2##z,v)), \
philpem@5 11595 (I[349] = (img)(_n2##x,y,_n2##z,v)), \
philpem@5 11596 (I[357] = (img)(_n2##x,_n1##y,_n2##z,v)), \
philpem@5 11597 (I[365] = (img)(_n2##x,_n2##y,_n2##z,v)), \
philpem@5 11598 (I[373] = (img)(_n2##x,_n3##y,_n2##z,v)), \
philpem@5 11599 (I[381] = (img)(_n2##x,_n4##y,_n2##z,v)), \
philpem@5 11600 (I[389] = (img)(_n2##x,_p3##y,_n3##z,v)), \
philpem@5 11601 (I[397] = (img)(_n2##x,_p2##y,_n3##z,v)), \
philpem@5 11602 (I[405] = (img)(_n2##x,_p1##y,_n3##z,v)), \
philpem@5 11603 (I[413] = (img)(_n2##x,y,_n3##z,v)), \
philpem@5 11604 (I[421] = (img)(_n2##x,_n1##y,_n3##z,v)), \
philpem@5 11605 (I[429] = (img)(_n2##x,_n2##y,_n3##z,v)), \
philpem@5 11606 (I[437] = (img)(_n2##x,_n3##y,_n3##z,v)), \
philpem@5 11607 (I[445] = (img)(_n2##x,_n4##y,_n3##z,v)), \
philpem@5 11608 (I[453] = (img)(_n2##x,_p3##y,_n4##z,v)), \
philpem@5 11609 (I[461] = (img)(_n2##x,_p2##y,_n4##z,v)), \
philpem@5 11610 (I[469] = (img)(_n2##x,_p1##y,_n4##z,v)), \
philpem@5 11611 (I[477] = (img)(_n2##x,y,_n4##z,v)), \
philpem@5 11612 (I[485] = (img)(_n2##x,_n1##y,_n4##z,v)), \
philpem@5 11613 (I[493] = (img)(_n2##x,_n2##y,_n4##z,v)), \
philpem@5 11614 (I[501] = (img)(_n2##x,_n3##y,_n4##z,v)), \
philpem@5 11615 (I[509] = (img)(_n2##x,_n4##y,_n4##z,v)), \
philpem@5 11616 (I[6] = (img)(_n3##x,_p3##y,_p3##z,v)), \
philpem@5 11617 (I[14] = (img)(_n3##x,_p2##y,_p3##z,v)), \
philpem@5 11618 (I[22] = (img)(_n3##x,_p1##y,_p3##z,v)), \
philpem@5 11619 (I[30] = (img)(_n3##x,y,_p3##z,v)), \
philpem@5 11620 (I[38] = (img)(_n3##x,_n1##y,_p3##z,v)), \
philpem@5 11621 (I[46] = (img)(_n3##x,_n2##y,_p3##z,v)), \
philpem@5 11622 (I[54] = (img)(_n3##x,_n3##y,_p3##z,v)), \
philpem@5 11623 (I[62] = (img)(_n3##x,_n4##y,_p3##z,v)), \
philpem@5 11624 (I[70] = (img)(_n3##x,_p3##y,_p2##z,v)), \
philpem@5 11625 (I[78] = (img)(_n3##x,_p2##y,_p2##z,v)), \
philpem@5 11626 (I[86] = (img)(_n3##x,_p1##y,_p2##z,v)), \
philpem@5 11627 (I[94] = (img)(_n3##x,y,_p2##z,v)), \
philpem@5 11628 (I[102] = (img)(_n3##x,_n1##y,_p2##z,v)), \
philpem@5 11629 (I[110] = (img)(_n3##x,_n2##y,_p2##z,v)), \
philpem@5 11630 (I[118] = (img)(_n3##x,_n3##y,_p2##z,v)), \
philpem@5 11631 (I[126] = (img)(_n3##x,_n4##y,_p2##z,v)), \
philpem@5 11632 (I[134] = (img)(_n3##x,_p3##y,_p1##z,v)), \
philpem@5 11633 (I[142] = (img)(_n3##x,_p2##y,_p1##z,v)), \
philpem@5 11634 (I[150] = (img)(_n3##x,_p1##y,_p1##z,v)), \
philpem@5 11635 (I[158] = (img)(_n3##x,y,_p1##z,v)), \
philpem@5 11636 (I[166] = (img)(_n3##x,_n1##y,_p1##z,v)), \
philpem@5 11637 (I[174] = (img)(_n3##x,_n2##y,_p1##z,v)), \
philpem@5 11638 (I[182] = (img)(_n3##x,_n3##y,_p1##z,v)), \
philpem@5 11639 (I[190] = (img)(_n3##x,_n4##y,_p1##z,v)), \
philpem@5 11640 (I[198] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 11641 (I[206] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 11642 (I[214] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 11643 (I[222] = (img)(_n3##x,y,z,v)), \
philpem@5 11644 (I[230] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 11645 (I[238] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 11646 (I[246] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 11647 (I[254] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 11648 (I[262] = (img)(_n3##x,_p3##y,_n1##z,v)), \
philpem@5 11649 (I[270] = (img)(_n3##x,_p2##y,_n1##z,v)), \
philpem@5 11650 (I[278] = (img)(_n3##x,_p1##y,_n1##z,v)), \
philpem@5 11651 (I[286] = (img)(_n3##x,y,_n1##z,v)), \
philpem@5 11652 (I[294] = (img)(_n3##x,_n1##y,_n1##z,v)), \
philpem@5 11653 (I[302] = (img)(_n3##x,_n2##y,_n1##z,v)), \
philpem@5 11654 (I[310] = (img)(_n3##x,_n3##y,_n1##z,v)), \
philpem@5 11655 (I[318] = (img)(_n3##x,_n4##y,_n1##z,v)), \
philpem@5 11656 (I[326] = (img)(_n3##x,_p3##y,_n2##z,v)), \
philpem@5 11657 (I[334] = (img)(_n3##x,_p2##y,_n2##z,v)), \
philpem@5 11658 (I[342] = (img)(_n3##x,_p1##y,_n2##z,v)), \
philpem@5 11659 (I[350] = (img)(_n3##x,y,_n2##z,v)), \
philpem@5 11660 (I[358] = (img)(_n3##x,_n1##y,_n2##z,v)), \
philpem@5 11661 (I[366] = (img)(_n3##x,_n2##y,_n2##z,v)), \
philpem@5 11662 (I[374] = (img)(_n3##x,_n3##y,_n2##z,v)), \
philpem@5 11663 (I[382] = (img)(_n3##x,_n4##y,_n2##z,v)), \
philpem@5 11664 (I[390] = (img)(_n3##x,_p3##y,_n3##z,v)), \
philpem@5 11665 (I[398] = (img)(_n3##x,_p2##y,_n3##z,v)), \
philpem@5 11666 (I[406] = (img)(_n3##x,_p1##y,_n3##z,v)), \
philpem@5 11667 (I[414] = (img)(_n3##x,y,_n3##z,v)), \
philpem@5 11668 (I[422] = (img)(_n3##x,_n1##y,_n3##z,v)), \
philpem@5 11669 (I[430] = (img)(_n3##x,_n2##y,_n3##z,v)), \
philpem@5 11670 (I[438] = (img)(_n3##x,_n3##y,_n3##z,v)), \
philpem@5 11671 (I[446] = (img)(_n3##x,_n4##y,_n3##z,v)), \
philpem@5 11672 (I[454] = (img)(_n3##x,_p3##y,_n4##z,v)), \
philpem@5 11673 (I[462] = (img)(_n3##x,_p2##y,_n4##z,v)), \
philpem@5 11674 (I[470] = (img)(_n3##x,_p1##y,_n4##z,v)), \
philpem@5 11675 (I[478] = (img)(_n3##x,y,_n4##z,v)), \
philpem@5 11676 (I[486] = (img)(_n3##x,_n1##y,_n4##z,v)), \
philpem@5 11677 (I[494] = (img)(_n3##x,_n2##y,_n4##z,v)), \
philpem@5 11678 (I[502] = (img)(_n3##x,_n3##y,_n4##z,v)), \
philpem@5 11679 (I[510] = (img)(_n3##x,_n4##y,_n4##z,v)), \
philpem@5 11680 4>=((img).width)?(int)((img).width)-1:4); \
philpem@5 11681 (_n4##x<(int)((img).width) && ( \
philpem@5 11682 (I[7] = (img)(_n4##x,_p3##y,_p3##z,v)), \
philpem@5 11683 (I[15] = (img)(_n4##x,_p2##y,_p3##z,v)), \
philpem@5 11684 (I[23] = (img)(_n4##x,_p1##y,_p3##z,v)), \
philpem@5 11685 (I[31] = (img)(_n4##x,y,_p3##z,v)), \
philpem@5 11686 (I[39] = (img)(_n4##x,_n1##y,_p3##z,v)), \
philpem@5 11687 (I[47] = (img)(_n4##x,_n2##y,_p3##z,v)), \
philpem@5 11688 (I[55] = (img)(_n4##x,_n3##y,_p3##z,v)), \
philpem@5 11689 (I[63] = (img)(_n4##x,_n4##y,_p3##z,v)), \
philpem@5 11690 (I[71] = (img)(_n4##x,_p3##y,_p2##z,v)), \
philpem@5 11691 (I[79] = (img)(_n4##x,_p2##y,_p2##z,v)), \
philpem@5 11692 (I[87] = (img)(_n4##x,_p1##y,_p2##z,v)), \
philpem@5 11693 (I[95] = (img)(_n4##x,y,_p2##z,v)), \
philpem@5 11694 (I[103] = (img)(_n4##x,_n1##y,_p2##z,v)), \
philpem@5 11695 (I[111] = (img)(_n4##x,_n2##y,_p2##z,v)), \
philpem@5 11696 (I[119] = (img)(_n4##x,_n3##y,_p2##z,v)), \
philpem@5 11697 (I[127] = (img)(_n4##x,_n4##y,_p2##z,v)), \
philpem@5 11698 (I[135] = (img)(_n4##x,_p3##y,_p1##z,v)), \
philpem@5 11699 (I[143] = (img)(_n4##x,_p2##y,_p1##z,v)), \
philpem@5 11700 (I[151] = (img)(_n4##x,_p1##y,_p1##z,v)), \
philpem@5 11701 (I[159] = (img)(_n4##x,y,_p1##z,v)), \
philpem@5 11702 (I[167] = (img)(_n4##x,_n1##y,_p1##z,v)), \
philpem@5 11703 (I[175] = (img)(_n4##x,_n2##y,_p1##z,v)), \
philpem@5 11704 (I[183] = (img)(_n4##x,_n3##y,_p1##z,v)), \
philpem@5 11705 (I[191] = (img)(_n4##x,_n4##y,_p1##z,v)), \
philpem@5 11706 (I[199] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 11707 (I[207] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 11708 (I[215] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 11709 (I[223] = (img)(_n4##x,y,z,v)), \
philpem@5 11710 (I[231] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 11711 (I[239] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 11712 (I[247] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 11713 (I[255] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 11714 (I[263] = (img)(_n4##x,_p3##y,_n1##z,v)), \
philpem@5 11715 (I[271] = (img)(_n4##x,_p2##y,_n1##z,v)), \
philpem@5 11716 (I[279] = (img)(_n4##x,_p1##y,_n1##z,v)), \
philpem@5 11717 (I[287] = (img)(_n4##x,y,_n1##z,v)), \
philpem@5 11718 (I[295] = (img)(_n4##x,_n1##y,_n1##z,v)), \
philpem@5 11719 (I[303] = (img)(_n4##x,_n2##y,_n1##z,v)), \
philpem@5 11720 (I[311] = (img)(_n4##x,_n3##y,_n1##z,v)), \
philpem@5 11721 (I[319] = (img)(_n4##x,_n4##y,_n1##z,v)), \
philpem@5 11722 (I[327] = (img)(_n4##x,_p3##y,_n2##z,v)), \
philpem@5 11723 (I[335] = (img)(_n4##x,_p2##y,_n2##z,v)), \
philpem@5 11724 (I[343] = (img)(_n4##x,_p1##y,_n2##z,v)), \
philpem@5 11725 (I[351] = (img)(_n4##x,y,_n2##z,v)), \
philpem@5 11726 (I[359] = (img)(_n4##x,_n1##y,_n2##z,v)), \
philpem@5 11727 (I[367] = (img)(_n4##x,_n2##y,_n2##z,v)), \
philpem@5 11728 (I[375] = (img)(_n4##x,_n3##y,_n2##z,v)), \
philpem@5 11729 (I[383] = (img)(_n4##x,_n4##y,_n2##z,v)), \
philpem@5 11730 (I[391] = (img)(_n4##x,_p3##y,_n3##z,v)), \
philpem@5 11731 (I[399] = (img)(_n4##x,_p2##y,_n3##z,v)), \
philpem@5 11732 (I[407] = (img)(_n4##x,_p1##y,_n3##z,v)), \
philpem@5 11733 (I[415] = (img)(_n4##x,y,_n3##z,v)), \
philpem@5 11734 (I[423] = (img)(_n4##x,_n1##y,_n3##z,v)), \
philpem@5 11735 (I[431] = (img)(_n4##x,_n2##y,_n3##z,v)), \
philpem@5 11736 (I[439] = (img)(_n4##x,_n3##y,_n3##z,v)), \
philpem@5 11737 (I[447] = (img)(_n4##x,_n4##y,_n3##z,v)), \
philpem@5 11738 (I[455] = (img)(_n4##x,_p3##y,_n4##z,v)), \
philpem@5 11739 (I[463] = (img)(_n4##x,_p2##y,_n4##z,v)), \
philpem@5 11740 (I[471] = (img)(_n4##x,_p1##y,_n4##z,v)), \
philpem@5 11741 (I[479] = (img)(_n4##x,y,_n4##z,v)), \
philpem@5 11742 (I[487] = (img)(_n4##x,_n1##y,_n4##z,v)), \
philpem@5 11743 (I[495] = (img)(_n4##x,_n2##y,_n4##z,v)), \
philpem@5 11744 (I[503] = (img)(_n4##x,_n3##y,_n4##z,v)), \
philpem@5 11745 (I[511] = (img)(_n4##x,_n4##y,_n4##z,v)),1)) || \
philpem@5 11746 _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n4##x = _n3##x = _n2##x = --_n1##x); \
philpem@5 11747 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], \
philpem@5 11748 I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], \
philpem@5 11749 I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
philpem@5 11750 I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \
philpem@5 11751 I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
philpem@5 11752 I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
philpem@5 11753 I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \
philpem@5 11754 I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \
philpem@5 11755 I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
philpem@5 11756 I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
philpem@5 11757 I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], \
philpem@5 11758 I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
philpem@5 11759 I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], \
philpem@5 11760 I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
philpem@5 11761 I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
philpem@5 11762 I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], \
philpem@5 11763 I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], \
philpem@5 11764 I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
philpem@5 11765 I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], \
philpem@5 11766 I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \
philpem@5 11767 I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
philpem@5 11768 I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], \
philpem@5 11769 I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], \
philpem@5 11770 I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
philpem@5 11771 I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], \
philpem@5 11772 I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], \
philpem@5 11773 I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
philpem@5 11774 I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
philpem@5 11775 I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], \
philpem@5 11776 I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
philpem@5 11777 I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], \
philpem@5 11778 I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], \
philpem@5 11779 I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], \
philpem@5 11780 I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], \
philpem@5 11781 I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \
philpem@5 11782 I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \
philpem@5 11783 I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], \
philpem@5 11784 I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], \
philpem@5 11785 I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], \
philpem@5 11786 I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], \
philpem@5 11787 I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], \
philpem@5 11788 I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
philpem@5 11789 I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], \
philpem@5 11790 I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], \
philpem@5 11791 I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \
philpem@5 11792 I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], \
philpem@5 11793 I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], \
philpem@5 11794 I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], \
philpem@5 11795 I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], \
philpem@5 11796 I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], \
philpem@5 11797 I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], \
philpem@5 11798 I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], \
philpem@5 11799 I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], \
philpem@5 11800 I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], \
philpem@5 11801 I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], \
philpem@5 11802 I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], \
philpem@5 11803 I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], \
philpem@5 11804 I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], \
philpem@5 11805 I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], \
philpem@5 11806 I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], \
philpem@5 11807 I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], \
philpem@5 11808 I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], \
philpem@5 11809 I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], \
philpem@5 11810 I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], \
philpem@5 11811 _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x)
philpem@5 11812
philpem@5 11813 #define cimg_for_in8x8x8(img,x0,y0,z0,x1,y1,z1,x,y,z,v,I) \
philpem@5 11814 cimg_for_in8((img).depth,z0,z1,z) cimg_for_in8((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
philpem@5 11815 _p3##x = x-3<0?0:x-3, \
philpem@5 11816 _p2##x = x-2<0?0:x-2, \
philpem@5 11817 _p1##x = x-1<0?0:x-1, \
philpem@5 11818 _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \
philpem@5 11819 _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \
philpem@5 11820 _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \
philpem@5 11821 _n4##x = (int)( \
philpem@5 11822 (I[0] = (img)(_p3##x,_p3##y,_p3##z,v)), \
philpem@5 11823 (I[8] = (img)(_p3##x,_p2##y,_p3##z,v)), \
philpem@5 11824 (I[16] = (img)(_p3##x,_p1##y,_p3##z,v)), \
philpem@5 11825 (I[24] = (img)(_p3##x,y,_p3##z,v)), \
philpem@5 11826 (I[32] = (img)(_p3##x,_n1##y,_p3##z,v)), \
philpem@5 11827 (I[40] = (img)(_p3##x,_n2##y,_p3##z,v)), \
philpem@5 11828 (I[48] = (img)(_p3##x,_n3##y,_p3##z,v)), \
philpem@5 11829 (I[56] = (img)(_p3##x,_n4##y,_p3##z,v)), \
philpem@5 11830 (I[64] = (img)(_p3##x,_p3##y,_p2##z,v)), \
philpem@5 11831 (I[72] = (img)(_p3##x,_p2##y,_p2##z,v)), \
philpem@5 11832 (I[80] = (img)(_p3##x,_p1##y,_p2##z,v)), \
philpem@5 11833 (I[88] = (img)(_p3##x,y,_p2##z,v)), \
philpem@5 11834 (I[96] = (img)(_p3##x,_n1##y,_p2##z,v)), \
philpem@5 11835 (I[104] = (img)(_p3##x,_n2##y,_p2##z,v)), \
philpem@5 11836 (I[112] = (img)(_p3##x,_n3##y,_p2##z,v)), \
philpem@5 11837 (I[120] = (img)(_p3##x,_n4##y,_p2##z,v)), \
philpem@5 11838 (I[128] = (img)(_p3##x,_p3##y,_p1##z,v)), \
philpem@5 11839 (I[136] = (img)(_p3##x,_p2##y,_p1##z,v)), \
philpem@5 11840 (I[144] = (img)(_p3##x,_p1##y,_p1##z,v)), \
philpem@5 11841 (I[152] = (img)(_p3##x,y,_p1##z,v)), \
philpem@5 11842 (I[160] = (img)(_p3##x,_n1##y,_p1##z,v)), \
philpem@5 11843 (I[168] = (img)(_p3##x,_n2##y,_p1##z,v)), \
philpem@5 11844 (I[176] = (img)(_p3##x,_n3##y,_p1##z,v)), \
philpem@5 11845 (I[184] = (img)(_p3##x,_n4##y,_p1##z,v)), \
philpem@5 11846 (I[192] = (img)(_p3##x,_p3##y,z,v)), \
philpem@5 11847 (I[200] = (img)(_p3##x,_p2##y,z,v)), \
philpem@5 11848 (I[208] = (img)(_p3##x,_p1##y,z,v)), \
philpem@5 11849 (I[216] = (img)(_p3##x,y,z,v)), \
philpem@5 11850 (I[224] = (img)(_p3##x,_n1##y,z,v)), \
philpem@5 11851 (I[232] = (img)(_p3##x,_n2##y,z,v)), \
philpem@5 11852 (I[240] = (img)(_p3##x,_n3##y,z,v)), \
philpem@5 11853 (I[248] = (img)(_p3##x,_n4##y,z,v)), \
philpem@5 11854 (I[256] = (img)(_p3##x,_p3##y,_n1##z,v)), \
philpem@5 11855 (I[264] = (img)(_p3##x,_p2##y,_n1##z,v)), \
philpem@5 11856 (I[272] = (img)(_p3##x,_p1##y,_n1##z,v)), \
philpem@5 11857 (I[280] = (img)(_p3##x,y,_n1##z,v)), \
philpem@5 11858 (I[288] = (img)(_p3##x,_n1##y,_n1##z,v)), \
philpem@5 11859 (I[296] = (img)(_p3##x,_n2##y,_n1##z,v)), \
philpem@5 11860 (I[304] = (img)(_p3##x,_n3##y,_n1##z,v)), \
philpem@5 11861 (I[312] = (img)(_p3##x,_n4##y,_n1##z,v)), \
philpem@5 11862 (I[320] = (img)(_p3##x,_p3##y,_n2##z,v)), \
philpem@5 11863 (I[328] = (img)(_p3##x,_p2##y,_n2##z,v)), \
philpem@5 11864 (I[336] = (img)(_p3##x,_p1##y,_n2##z,v)), \
philpem@5 11865 (I[344] = (img)(_p3##x,y,_n2##z,v)), \
philpem@5 11866 (I[352] = (img)(_p3##x,_n1##y,_n2##z,v)), \
philpem@5 11867 (I[360] = (img)(_p3##x,_n2##y,_n2##z,v)), \
philpem@5 11868 (I[368] = (img)(_p3##x,_n3##y,_n2##z,v)), \
philpem@5 11869 (I[376] = (img)(_p3##x,_n4##y,_n2##z,v)), \
philpem@5 11870 (I[384] = (img)(_p3##x,_p3##y,_n3##z,v)), \
philpem@5 11871 (I[392] = (img)(_p3##x,_p2##y,_n3##z,v)), \
philpem@5 11872 (I[400] = (img)(_p3##x,_p1##y,_n3##z,v)), \
philpem@5 11873 (I[408] = (img)(_p3##x,y,_n3##z,v)), \
philpem@5 11874 (I[416] = (img)(_p3##x,_n1##y,_n3##z,v)), \
philpem@5 11875 (I[424] = (img)(_p3##x,_n2##y,_n3##z,v)), \
philpem@5 11876 (I[432] = (img)(_p3##x,_n3##y,_n3##z,v)), \
philpem@5 11877 (I[440] = (img)(_p3##x,_n4##y,_n3##z,v)), \
philpem@5 11878 (I[448] = (img)(_p3##x,_p3##y,_n4##z,v)), \
philpem@5 11879 (I[456] = (img)(_p3##x,_p2##y,_n4##z,v)), \
philpem@5 11880 (I[464] = (img)(_p3##x,_p1##y,_n4##z,v)), \
philpem@5 11881 (I[472] = (img)(_p3##x,y,_n4##z,v)), \
philpem@5 11882 (I[480] = (img)(_p3##x,_n1##y,_n4##z,v)), \
philpem@5 11883 (I[488] = (img)(_p3##x,_n2##y,_n4##z,v)), \
philpem@5 11884 (I[496] = (img)(_p3##x,_n3##y,_n4##z,v)), \
philpem@5 11885 (I[504] = (img)(_p3##x,_n4##y,_n4##z,v)), \
philpem@5 11886 (I[1] = (img)(_p2##x,_p3##y,_p3##z,v)), \
philpem@5 11887 (I[9] = (img)(_p2##x,_p2##y,_p3##z,v)), \
philpem@5 11888 (I[17] = (img)(_p2##x,_p1##y,_p3##z,v)), \
philpem@5 11889 (I[25] = (img)(_p2##x,y,_p3##z,v)), \
philpem@5 11890 (I[33] = (img)(_p2##x,_n1##y,_p3##z,v)), \
philpem@5 11891 (I[41] = (img)(_p2##x,_n2##y,_p3##z,v)), \
philpem@5 11892 (I[49] = (img)(_p2##x,_n3##y,_p3##z,v)), \
philpem@5 11893 (I[57] = (img)(_p2##x,_n4##y,_p3##z,v)), \
philpem@5 11894 (I[65] = (img)(_p2##x,_p3##y,_p2##z,v)), \
philpem@5 11895 (I[73] = (img)(_p2##x,_p2##y,_p2##z,v)), \
philpem@5 11896 (I[81] = (img)(_p2##x,_p1##y,_p2##z,v)), \
philpem@5 11897 (I[89] = (img)(_p2##x,y,_p2##z,v)), \
philpem@5 11898 (I[97] = (img)(_p2##x,_n1##y,_p2##z,v)), \
philpem@5 11899 (I[105] = (img)(_p2##x,_n2##y,_p2##z,v)), \
philpem@5 11900 (I[113] = (img)(_p2##x,_n3##y,_p2##z,v)), \
philpem@5 11901 (I[121] = (img)(_p2##x,_n4##y,_p2##z,v)), \
philpem@5 11902 (I[129] = (img)(_p2##x,_p3##y,_p1##z,v)), \
philpem@5 11903 (I[137] = (img)(_p2##x,_p2##y,_p1##z,v)), \
philpem@5 11904 (I[145] = (img)(_p2##x,_p1##y,_p1##z,v)), \
philpem@5 11905 (I[153] = (img)(_p2##x,y,_p1##z,v)), \
philpem@5 11906 (I[161] = (img)(_p2##x,_n1##y,_p1##z,v)), \
philpem@5 11907 (I[169] = (img)(_p2##x,_n2##y,_p1##z,v)), \
philpem@5 11908 (I[177] = (img)(_p2##x,_n3##y,_p1##z,v)), \
philpem@5 11909 (I[185] = (img)(_p2##x,_n4##y,_p1##z,v)), \
philpem@5 11910 (I[193] = (img)(_p2##x,_p3##y,z,v)), \
philpem@5 11911 (I[201] = (img)(_p2##x,_p2##y,z,v)), \
philpem@5 11912 (I[209] = (img)(_p2##x,_p1##y,z,v)), \
philpem@5 11913 (I[217] = (img)(_p2##x,y,z,v)), \
philpem@5 11914 (I[225] = (img)(_p2##x,_n1##y,z,v)), \
philpem@5 11915 (I[233] = (img)(_p2##x,_n2##y,z,v)), \
philpem@5 11916 (I[241] = (img)(_p2##x,_n3##y,z,v)), \
philpem@5 11917 (I[249] = (img)(_p2##x,_n4##y,z,v)), \
philpem@5 11918 (I[257] = (img)(_p2##x,_p3##y,_n1##z,v)), \
philpem@5 11919 (I[265] = (img)(_p2##x,_p2##y,_n1##z,v)), \
philpem@5 11920 (I[273] = (img)(_p2##x,_p1##y,_n1##z,v)), \
philpem@5 11921 (I[281] = (img)(_p2##x,y,_n1##z,v)), \
philpem@5 11922 (I[289] = (img)(_p2##x,_n1##y,_n1##z,v)), \
philpem@5 11923 (I[297] = (img)(_p2##x,_n2##y,_n1##z,v)), \
philpem@5 11924 (I[305] = (img)(_p2##x,_n3##y,_n1##z,v)), \
philpem@5 11925 (I[313] = (img)(_p2##x,_n4##y,_n1##z,v)), \
philpem@5 11926 (I[321] = (img)(_p2##x,_p3##y,_n2##z,v)), \
philpem@5 11927 (I[329] = (img)(_p2##x,_p2##y,_n2##z,v)), \
philpem@5 11928 (I[337] = (img)(_p2##x,_p1##y,_n2##z,v)), \
philpem@5 11929 (I[345] = (img)(_p2##x,y,_n2##z,v)), \
philpem@5 11930 (I[353] = (img)(_p2##x,_n1##y,_n2##z,v)), \
philpem@5 11931 (I[361] = (img)(_p2##x,_n2##y,_n2##z,v)), \
philpem@5 11932 (I[369] = (img)(_p2##x,_n3##y,_n2##z,v)), \
philpem@5 11933 (I[377] = (img)(_p2##x,_n4##y,_n2##z,v)), \
philpem@5 11934 (I[385] = (img)(_p2##x,_p3##y,_n3##z,v)), \
philpem@5 11935 (I[393] = (img)(_p2##x,_p2##y,_n3##z,v)), \
philpem@5 11936 (I[401] = (img)(_p2##x,_p1##y,_n3##z,v)), \
philpem@5 11937 (I[409] = (img)(_p2##x,y,_n3##z,v)), \
philpem@5 11938 (I[417] = (img)(_p2##x,_n1##y,_n3##z,v)), \
philpem@5 11939 (I[425] = (img)(_p2##x,_n2##y,_n3##z,v)), \
philpem@5 11940 (I[433] = (img)(_p2##x,_n3##y,_n3##z,v)), \
philpem@5 11941 (I[441] = (img)(_p2##x,_n4##y,_n3##z,v)), \
philpem@5 11942 (I[449] = (img)(_p2##x,_p3##y,_n4##z,v)), \
philpem@5 11943 (I[457] = (img)(_p2##x,_p2##y,_n4##z,v)), \
philpem@5 11944 (I[465] = (img)(_p2##x,_p1##y,_n4##z,v)), \
philpem@5 11945 (I[473] = (img)(_p2##x,y,_n4##z,v)), \
philpem@5 11946 (I[481] = (img)(_p2##x,_n1##y,_n4##z,v)), \
philpem@5 11947 (I[489] = (img)(_p2##x,_n2##y,_n4##z,v)), \
philpem@5 11948 (I[497] = (img)(_p2##x,_n3##y,_n4##z,v)), \
philpem@5 11949 (I[505] = (img)(_p2##x,_n4##y,_n4##z,v)), \
philpem@5 11950 (I[2] = (img)(_p1##x,_p3##y,_p3##z,v)), \
philpem@5 11951 (I[10] = (img)(_p1##x,_p2##y,_p3##z,v)), \
philpem@5 11952 (I[18] = (img)(_p1##x,_p1##y,_p3##z,v)), \
philpem@5 11953 (I[26] = (img)(_p1##x,y,_p3##z,v)), \
philpem@5 11954 (I[34] = (img)(_p1##x,_n1##y,_p3##z,v)), \
philpem@5 11955 (I[42] = (img)(_p1##x,_n2##y,_p3##z,v)), \
philpem@5 11956 (I[50] = (img)(_p1##x,_n3##y,_p3##z,v)), \
philpem@5 11957 (I[58] = (img)(_p1##x,_n4##y,_p3##z,v)), \
philpem@5 11958 (I[66] = (img)(_p1##x,_p3##y,_p2##z,v)), \
philpem@5 11959 (I[74] = (img)(_p1##x,_p2##y,_p2##z,v)), \
philpem@5 11960 (I[82] = (img)(_p1##x,_p1##y,_p2##z,v)), \
philpem@5 11961 (I[90] = (img)(_p1##x,y,_p2##z,v)), \
philpem@5 11962 (I[98] = (img)(_p1##x,_n1##y,_p2##z,v)), \
philpem@5 11963 (I[106] = (img)(_p1##x,_n2##y,_p2##z,v)), \
philpem@5 11964 (I[114] = (img)(_p1##x,_n3##y,_p2##z,v)), \
philpem@5 11965 (I[122] = (img)(_p1##x,_n4##y,_p2##z,v)), \
philpem@5 11966 (I[130] = (img)(_p1##x,_p3##y,_p1##z,v)), \
philpem@5 11967 (I[138] = (img)(_p1##x,_p2##y,_p1##z,v)), \
philpem@5 11968 (I[146] = (img)(_p1##x,_p1##y,_p1##z,v)), \
philpem@5 11969 (I[154] = (img)(_p1##x,y,_p1##z,v)), \
philpem@5 11970 (I[162] = (img)(_p1##x,_n1##y,_p1##z,v)), \
philpem@5 11971 (I[170] = (img)(_p1##x,_n2##y,_p1##z,v)), \
philpem@5 11972 (I[178] = (img)(_p1##x,_n3##y,_p1##z,v)), \
philpem@5 11973 (I[186] = (img)(_p1##x,_n4##y,_p1##z,v)), \
philpem@5 11974 (I[194] = (img)(_p1##x,_p3##y,z,v)), \
philpem@5 11975 (I[202] = (img)(_p1##x,_p2##y,z,v)), \
philpem@5 11976 (I[210] = (img)(_p1##x,_p1##y,z,v)), \
philpem@5 11977 (I[218] = (img)(_p1##x,y,z,v)), \
philpem@5 11978 (I[226] = (img)(_p1##x,_n1##y,z,v)), \
philpem@5 11979 (I[234] = (img)(_p1##x,_n2##y,z,v)), \
philpem@5 11980 (I[242] = (img)(_p1##x,_n3##y,z,v)), \
philpem@5 11981 (I[250] = (img)(_p1##x,_n4##y,z,v)), \
philpem@5 11982 (I[258] = (img)(_p1##x,_p3##y,_n1##z,v)), \
philpem@5 11983 (I[266] = (img)(_p1##x,_p2##y,_n1##z,v)), \
philpem@5 11984 (I[274] = (img)(_p1##x,_p1##y,_n1##z,v)), \
philpem@5 11985 (I[282] = (img)(_p1##x,y,_n1##z,v)), \
philpem@5 11986 (I[290] = (img)(_p1##x,_n1##y,_n1##z,v)), \
philpem@5 11987 (I[298] = (img)(_p1##x,_n2##y,_n1##z,v)), \
philpem@5 11988 (I[306] = (img)(_p1##x,_n3##y,_n1##z,v)), \
philpem@5 11989 (I[314] = (img)(_p1##x,_n4##y,_n1##z,v)), \
philpem@5 11990 (I[322] = (img)(_p1##x,_p3##y,_n2##z,v)), \
philpem@5 11991 (I[330] = (img)(_p1##x,_p2##y,_n2##z,v)), \
philpem@5 11992 (I[338] = (img)(_p1##x,_p1##y,_n2##z,v)), \
philpem@5 11993 (I[346] = (img)(_p1##x,y,_n2##z,v)), \
philpem@5 11994 (I[354] = (img)(_p1##x,_n1##y,_n2##z,v)), \
philpem@5 11995 (I[362] = (img)(_p1##x,_n2##y,_n2##z,v)), \
philpem@5 11996 (I[370] = (img)(_p1##x,_n3##y,_n2##z,v)), \
philpem@5 11997 (I[378] = (img)(_p1##x,_n4##y,_n2##z,v)), \
philpem@5 11998 (I[386] = (img)(_p1##x,_p3##y,_n3##z,v)), \
philpem@5 11999 (I[394] = (img)(_p1##x,_p2##y,_n3##z,v)), \
philpem@5 12000 (I[402] = (img)(_p1##x,_p1##y,_n3##z,v)), \
philpem@5 12001 (I[410] = (img)(_p1##x,y,_n3##z,v)), \
philpem@5 12002 (I[418] = (img)(_p1##x,_n1##y,_n3##z,v)), \
philpem@5 12003 (I[426] = (img)(_p1##x,_n2##y,_n3##z,v)), \
philpem@5 12004 (I[434] = (img)(_p1##x,_n3##y,_n3##z,v)), \
philpem@5 12005 (I[442] = (img)(_p1##x,_n4##y,_n3##z,v)), \
philpem@5 12006 (I[450] = (img)(_p1##x,_p3##y,_n4##z,v)), \
philpem@5 12007 (I[458] = (img)(_p1##x,_p2##y,_n4##z,v)), \
philpem@5 12008 (I[466] = (img)(_p1##x,_p1##y,_n4##z,v)), \
philpem@5 12009 (I[474] = (img)(_p1##x,y,_n4##z,v)), \
philpem@5 12010 (I[482] = (img)(_p1##x,_n1##y,_n4##z,v)), \
philpem@5 12011 (I[490] = (img)(_p1##x,_n2##y,_n4##z,v)), \
philpem@5 12012 (I[498] = (img)(_p1##x,_n3##y,_n4##z,v)), \
philpem@5 12013 (I[506] = (img)(_p1##x,_n4##y,_n4##z,v)), \
philpem@5 12014 (I[3] = (img)(x,_p3##y,_p3##z,v)), \
philpem@5 12015 (I[11] = (img)(x,_p2##y,_p3##z,v)), \
philpem@5 12016 (I[19] = (img)(x,_p1##y,_p3##z,v)), \
philpem@5 12017 (I[27] = (img)(x,y,_p3##z,v)), \
philpem@5 12018 (I[35] = (img)(x,_n1##y,_p3##z,v)), \
philpem@5 12019 (I[43] = (img)(x,_n2##y,_p3##z,v)), \
philpem@5 12020 (I[51] = (img)(x,_n3##y,_p3##z,v)), \
philpem@5 12021 (I[59] = (img)(x,_n4##y,_p3##z,v)), \
philpem@5 12022 (I[67] = (img)(x,_p3##y,_p2##z,v)), \
philpem@5 12023 (I[75] = (img)(x,_p2##y,_p2##z,v)), \
philpem@5 12024 (I[83] = (img)(x,_p1##y,_p2##z,v)), \
philpem@5 12025 (I[91] = (img)(x,y,_p2##z,v)), \
philpem@5 12026 (I[99] = (img)(x,_n1##y,_p2##z,v)), \
philpem@5 12027 (I[107] = (img)(x,_n2##y,_p2##z,v)), \
philpem@5 12028 (I[115] = (img)(x,_n3##y,_p2##z,v)), \
philpem@5 12029 (I[123] = (img)(x,_n4##y,_p2##z,v)), \
philpem@5 12030 (I[131] = (img)(x,_p3##y,_p1##z,v)), \
philpem@5 12031 (I[139] = (img)(x,_p2##y,_p1##z,v)), \
philpem@5 12032 (I[147] = (img)(x,_p1##y,_p1##z,v)), \
philpem@5 12033 (I[155] = (img)(x,y,_p1##z,v)), \
philpem@5 12034 (I[163] = (img)(x,_n1##y,_p1##z,v)), \
philpem@5 12035 (I[171] = (img)(x,_n2##y,_p1##z,v)), \
philpem@5 12036 (I[179] = (img)(x,_n3##y,_p1##z,v)), \
philpem@5 12037 (I[187] = (img)(x,_n4##y,_p1##z,v)), \
philpem@5 12038 (I[195] = (img)(x,_p3##y,z,v)), \
philpem@5 12039 (I[203] = (img)(x,_p2##y,z,v)), \
philpem@5 12040 (I[211] = (img)(x,_p1##y,z,v)), \
philpem@5 12041 (I[219] = (img)(x,y,z,v)), \
philpem@5 12042 (I[227] = (img)(x,_n1##y,z,v)), \
philpem@5 12043 (I[235] = (img)(x,_n2##y,z,v)), \
philpem@5 12044 (I[243] = (img)(x,_n3##y,z,v)), \
philpem@5 12045 (I[251] = (img)(x,_n4##y,z,v)), \
philpem@5 12046 (I[259] = (img)(x,_p3##y,_n1##z,v)), \
philpem@5 12047 (I[267] = (img)(x,_p2##y,_n1##z,v)), \
philpem@5 12048 (I[275] = (img)(x,_p1##y,_n1##z,v)), \
philpem@5 12049 (I[283] = (img)(x,y,_n1##z,v)), \
philpem@5 12050 (I[291] = (img)(x,_n1##y,_n1##z,v)), \
philpem@5 12051 (I[299] = (img)(x,_n2##y,_n1##z,v)), \
philpem@5 12052 (I[307] = (img)(x,_n3##y,_n1##z,v)), \
philpem@5 12053 (I[315] = (img)(x,_n4##y,_n1##z,v)), \
philpem@5 12054 (I[323] = (img)(x,_p3##y,_n2##z,v)), \
philpem@5 12055 (I[331] = (img)(x,_p2##y,_n2##z,v)), \
philpem@5 12056 (I[339] = (img)(x,_p1##y,_n2##z,v)), \
philpem@5 12057 (I[347] = (img)(x,y,_n2##z,v)), \
philpem@5 12058 (I[355] = (img)(x,_n1##y,_n2##z,v)), \
philpem@5 12059 (I[363] = (img)(x,_n2##y,_n2##z,v)), \
philpem@5 12060 (I[371] = (img)(x,_n3##y,_n2##z,v)), \
philpem@5 12061 (I[379] = (img)(x,_n4##y,_n2##z,v)), \
philpem@5 12062 (I[387] = (img)(x,_p3##y,_n3##z,v)), \
philpem@5 12063 (I[395] = (img)(x,_p2##y,_n3##z,v)), \
philpem@5 12064 (I[403] = (img)(x,_p1##y,_n3##z,v)), \
philpem@5 12065 (I[411] = (img)(x,y,_n3##z,v)), \
philpem@5 12066 (I[419] = (img)(x,_n1##y,_n3##z,v)), \
philpem@5 12067 (I[427] = (img)(x,_n2##y,_n3##z,v)), \
philpem@5 12068 (I[435] = (img)(x,_n3##y,_n3##z,v)), \
philpem@5 12069 (I[443] = (img)(x,_n4##y,_n3##z,v)), \
philpem@5 12070 (I[451] = (img)(x,_p3##y,_n4##z,v)), \
philpem@5 12071 (I[459] = (img)(x,_p2##y,_n4##z,v)), \
philpem@5 12072 (I[467] = (img)(x,_p1##y,_n4##z,v)), \
philpem@5 12073 (I[475] = (img)(x,y,_n4##z,v)), \
philpem@5 12074 (I[483] = (img)(x,_n1##y,_n4##z,v)), \
philpem@5 12075 (I[491] = (img)(x,_n2##y,_n4##z,v)), \
philpem@5 12076 (I[499] = (img)(x,_n3##y,_n4##z,v)), \
philpem@5 12077 (I[507] = (img)(x,_n4##y,_n4##z,v)), \
philpem@5 12078 (I[4] = (img)(_n1##x,_p3##y,_p3##z,v)), \
philpem@5 12079 (I[12] = (img)(_n1##x,_p2##y,_p3##z,v)), \
philpem@5 12080 (I[20] = (img)(_n1##x,_p1##y,_p3##z,v)), \
philpem@5 12081 (I[28] = (img)(_n1##x,y,_p3##z,v)), \
philpem@5 12082 (I[36] = (img)(_n1##x,_n1##y,_p3##z,v)), \
philpem@5 12083 (I[44] = (img)(_n1##x,_n2##y,_p3##z,v)), \
philpem@5 12084 (I[52] = (img)(_n1##x,_n3##y,_p3##z,v)), \
philpem@5 12085 (I[60] = (img)(_n1##x,_n4##y,_p3##z,v)), \
philpem@5 12086 (I[68] = (img)(_n1##x,_p3##y,_p2##z,v)), \
philpem@5 12087 (I[76] = (img)(_n1##x,_p2##y,_p2##z,v)), \
philpem@5 12088 (I[84] = (img)(_n1##x,_p1##y,_p2##z,v)), \
philpem@5 12089 (I[92] = (img)(_n1##x,y,_p2##z,v)), \
philpem@5 12090 (I[100] = (img)(_n1##x,_n1##y,_p2##z,v)), \
philpem@5 12091 (I[108] = (img)(_n1##x,_n2##y,_p2##z,v)), \
philpem@5 12092 (I[116] = (img)(_n1##x,_n3##y,_p2##z,v)), \
philpem@5 12093 (I[124] = (img)(_n1##x,_n4##y,_p2##z,v)), \
philpem@5 12094 (I[132] = (img)(_n1##x,_p3##y,_p1##z,v)), \
philpem@5 12095 (I[140] = (img)(_n1##x,_p2##y,_p1##z,v)), \
philpem@5 12096 (I[148] = (img)(_n1##x,_p1##y,_p1##z,v)), \
philpem@5 12097 (I[156] = (img)(_n1##x,y,_p1##z,v)), \
philpem@5 12098 (I[164] = (img)(_n1##x,_n1##y,_p1##z,v)), \
philpem@5 12099 (I[172] = (img)(_n1##x,_n2##y,_p1##z,v)), \
philpem@5 12100 (I[180] = (img)(_n1##x,_n3##y,_p1##z,v)), \
philpem@5 12101 (I[188] = (img)(_n1##x,_n4##y,_p1##z,v)), \
philpem@5 12102 (I[196] = (img)(_n1##x,_p3##y,z,v)), \
philpem@5 12103 (I[204] = (img)(_n1##x,_p2##y,z,v)), \
philpem@5 12104 (I[212] = (img)(_n1##x,_p1##y,z,v)), \
philpem@5 12105 (I[220] = (img)(_n1##x,y,z,v)), \
philpem@5 12106 (I[228] = (img)(_n1##x,_n1##y,z,v)), \
philpem@5 12107 (I[236] = (img)(_n1##x,_n2##y,z,v)), \
philpem@5 12108 (I[244] = (img)(_n1##x,_n3##y,z,v)), \
philpem@5 12109 (I[252] = (img)(_n1##x,_n4##y,z,v)), \
philpem@5 12110 (I[260] = (img)(_n1##x,_p3##y,_n1##z,v)), \
philpem@5 12111 (I[268] = (img)(_n1##x,_p2##y,_n1##z,v)), \
philpem@5 12112 (I[276] = (img)(_n1##x,_p1##y,_n1##z,v)), \
philpem@5 12113 (I[284] = (img)(_n1##x,y,_n1##z,v)), \
philpem@5 12114 (I[292] = (img)(_n1##x,_n1##y,_n1##z,v)), \
philpem@5 12115 (I[300] = (img)(_n1##x,_n2##y,_n1##z,v)), \
philpem@5 12116 (I[308] = (img)(_n1##x,_n3##y,_n1##z,v)), \
philpem@5 12117 (I[316] = (img)(_n1##x,_n4##y,_n1##z,v)), \
philpem@5 12118 (I[324] = (img)(_n1##x,_p3##y,_n2##z,v)), \
philpem@5 12119 (I[332] = (img)(_n1##x,_p2##y,_n2##z,v)), \
philpem@5 12120 (I[340] = (img)(_n1##x,_p1##y,_n2##z,v)), \
philpem@5 12121 (I[348] = (img)(_n1##x,y,_n2##z,v)), \
philpem@5 12122 (I[356] = (img)(_n1##x,_n1##y,_n2##z,v)), \
philpem@5 12123 (I[364] = (img)(_n1##x,_n2##y,_n2##z,v)), \
philpem@5 12124 (I[372] = (img)(_n1##x,_n3##y,_n2##z,v)), \
philpem@5 12125 (I[380] = (img)(_n1##x,_n4##y,_n2##z,v)), \
philpem@5 12126 (I[388] = (img)(_n1##x,_p3##y,_n3##z,v)), \
philpem@5 12127 (I[396] = (img)(_n1##x,_p2##y,_n3##z,v)), \
philpem@5 12128 (I[404] = (img)(_n1##x,_p1##y,_n3##z,v)), \
philpem@5 12129 (I[412] = (img)(_n1##x,y,_n3##z,v)), \
philpem@5 12130 (I[420] = (img)(_n1##x,_n1##y,_n3##z,v)), \
philpem@5 12131 (I[428] = (img)(_n1##x,_n2##y,_n3##z,v)), \
philpem@5 12132 (I[436] = (img)(_n1##x,_n3##y,_n3##z,v)), \
philpem@5 12133 (I[444] = (img)(_n1##x,_n4##y,_n3##z,v)), \
philpem@5 12134 (I[452] = (img)(_n1##x,_p3##y,_n4##z,v)), \
philpem@5 12135 (I[460] = (img)(_n1##x,_p2##y,_n4##z,v)), \
philpem@5 12136 (I[468] = (img)(_n1##x,_p1##y,_n4##z,v)), \
philpem@5 12137 (I[476] = (img)(_n1##x,y,_n4##z,v)), \
philpem@5 12138 (I[484] = (img)(_n1##x,_n1##y,_n4##z,v)), \
philpem@5 12139 (I[492] = (img)(_n1##x,_n2##y,_n4##z,v)), \
philpem@5 12140 (I[500] = (img)(_n1##x,_n3##y,_n4##z,v)), \
philpem@5 12141 (I[508] = (img)(_n1##x,_n4##y,_n4##z,v)), \
philpem@5 12142 (I[5] = (img)(_n2##x,_p3##y,_p3##z,v)), \
philpem@5 12143 (I[13] = (img)(_n2##x,_p2##y,_p3##z,v)), \
philpem@5 12144 (I[21] = (img)(_n2##x,_p1##y,_p3##z,v)), \
philpem@5 12145 (I[29] = (img)(_n2##x,y,_p3##z,v)), \
philpem@5 12146 (I[37] = (img)(_n2##x,_n1##y,_p3##z,v)), \
philpem@5 12147 (I[45] = (img)(_n2##x,_n2##y,_p3##z,v)), \
philpem@5 12148 (I[53] = (img)(_n2##x,_n3##y,_p3##z,v)), \
philpem@5 12149 (I[61] = (img)(_n2##x,_n4##y,_p3##z,v)), \
philpem@5 12150 (I[69] = (img)(_n2##x,_p3##y,_p2##z,v)), \
philpem@5 12151 (I[77] = (img)(_n2##x,_p2##y,_p2##z,v)), \
philpem@5 12152 (I[85] = (img)(_n2##x,_p1##y,_p2##z,v)), \
philpem@5 12153 (I[93] = (img)(_n2##x,y,_p2##z,v)), \
philpem@5 12154 (I[101] = (img)(_n2##x,_n1##y,_p2##z,v)), \
philpem@5 12155 (I[109] = (img)(_n2##x,_n2##y,_p2##z,v)), \
philpem@5 12156 (I[117] = (img)(_n2##x,_n3##y,_p2##z,v)), \
philpem@5 12157 (I[125] = (img)(_n2##x,_n4##y,_p2##z,v)), \
philpem@5 12158 (I[133] = (img)(_n2##x,_p3##y,_p1##z,v)), \
philpem@5 12159 (I[141] = (img)(_n2##x,_p2##y,_p1##z,v)), \
philpem@5 12160 (I[149] = (img)(_n2##x,_p1##y,_p1##z,v)), \
philpem@5 12161 (I[157] = (img)(_n2##x,y,_p1##z,v)), \
philpem@5 12162 (I[165] = (img)(_n2##x,_n1##y,_p1##z,v)), \
philpem@5 12163 (I[173] = (img)(_n2##x,_n2##y,_p1##z,v)), \
philpem@5 12164 (I[181] = (img)(_n2##x,_n3##y,_p1##z,v)), \
philpem@5 12165 (I[189] = (img)(_n2##x,_n4##y,_p1##z,v)), \
philpem@5 12166 (I[197] = (img)(_n2##x,_p3##y,z,v)), \
philpem@5 12167 (I[205] = (img)(_n2##x,_p2##y,z,v)), \
philpem@5 12168 (I[213] = (img)(_n2##x,_p1##y,z,v)), \
philpem@5 12169 (I[221] = (img)(_n2##x,y,z,v)), \
philpem@5 12170 (I[229] = (img)(_n2##x,_n1##y,z,v)), \
philpem@5 12171 (I[237] = (img)(_n2##x,_n2##y,z,v)), \
philpem@5 12172 (I[245] = (img)(_n2##x,_n3##y,z,v)), \
philpem@5 12173 (I[253] = (img)(_n2##x,_n4##y,z,v)), \
philpem@5 12174 (I[261] = (img)(_n2##x,_p3##y,_n1##z,v)), \
philpem@5 12175 (I[269] = (img)(_n2##x,_p2##y,_n1##z,v)), \
philpem@5 12176 (I[277] = (img)(_n2##x,_p1##y,_n1##z,v)), \
philpem@5 12177 (I[285] = (img)(_n2##x,y,_n1##z,v)), \
philpem@5 12178 (I[293] = (img)(_n2##x,_n1##y,_n1##z,v)), \
philpem@5 12179 (I[301] = (img)(_n2##x,_n2##y,_n1##z,v)), \
philpem@5 12180 (I[309] = (img)(_n2##x,_n3##y,_n1##z,v)), \
philpem@5 12181 (I[317] = (img)(_n2##x,_n4##y,_n1##z,v)), \
philpem@5 12182 (I[325] = (img)(_n2##x,_p3##y,_n2##z,v)), \
philpem@5 12183 (I[333] = (img)(_n2##x,_p2##y,_n2##z,v)), \
philpem@5 12184 (I[341] = (img)(_n2##x,_p1##y,_n2##z,v)), \
philpem@5 12185 (I[349] = (img)(_n2##x,y,_n2##z,v)), \
philpem@5 12186 (I[357] = (img)(_n2##x,_n1##y,_n2##z,v)), \
philpem@5 12187 (I[365] = (img)(_n2##x,_n2##y,_n2##z,v)), \
philpem@5 12188 (I[373] = (img)(_n2##x,_n3##y,_n2##z,v)), \
philpem@5 12189 (I[381] = (img)(_n2##x,_n4##y,_n2##z,v)), \
philpem@5 12190 (I[389] = (img)(_n2##x,_p3##y,_n3##z,v)), \
philpem@5 12191 (I[397] = (img)(_n2##x,_p2##y,_n3##z,v)), \
philpem@5 12192 (I[405] = (img)(_n2##x,_p1##y,_n3##z,v)), \
philpem@5 12193 (I[413] = (img)(_n2##x,y,_n3##z,v)), \
philpem@5 12194 (I[421] = (img)(_n2##x,_n1##y,_n3##z,v)), \
philpem@5 12195 (I[429] = (img)(_n2##x,_n2##y,_n3##z,v)), \
philpem@5 12196 (I[437] = (img)(_n2##x,_n3##y,_n3##z,v)), \
philpem@5 12197 (I[445] = (img)(_n2##x,_n4##y,_n3##z,v)), \
philpem@5 12198 (I[453] = (img)(_n2##x,_p3##y,_n4##z,v)), \
philpem@5 12199 (I[461] = (img)(_n2##x,_p2##y,_n4##z,v)), \
philpem@5 12200 (I[469] = (img)(_n2##x,_p1##y,_n4##z,v)), \
philpem@5 12201 (I[477] = (img)(_n2##x,y,_n4##z,v)), \
philpem@5 12202 (I[485] = (img)(_n2##x,_n1##y,_n4##z,v)), \
philpem@5 12203 (I[493] = (img)(_n2##x,_n2##y,_n4##z,v)), \
philpem@5 12204 (I[501] = (img)(_n2##x,_n3##y,_n4##z,v)), \
philpem@5 12205 (I[509] = (img)(_n2##x,_n4##y,_n4##z,v)), \
philpem@5 12206 (I[6] = (img)(_n3##x,_p3##y,_p3##z,v)), \
philpem@5 12207 (I[14] = (img)(_n3##x,_p2##y,_p3##z,v)), \
philpem@5 12208 (I[22] = (img)(_n3##x,_p1##y,_p3##z,v)), \
philpem@5 12209 (I[30] = (img)(_n3##x,y,_p3##z,v)), \
philpem@5 12210 (I[38] = (img)(_n3##x,_n1##y,_p3##z,v)), \
philpem@5 12211 (I[46] = (img)(_n3##x,_n2##y,_p3##z,v)), \
philpem@5 12212 (I[54] = (img)(_n3##x,_n3##y,_p3##z,v)), \
philpem@5 12213 (I[62] = (img)(_n3##x,_n4##y,_p3##z,v)), \
philpem@5 12214 (I[70] = (img)(_n3##x,_p3##y,_p2##z,v)), \
philpem@5 12215 (I[78] = (img)(_n3##x,_p2##y,_p2##z,v)), \
philpem@5 12216 (I[86] = (img)(_n3##x,_p1##y,_p2##z,v)), \
philpem@5 12217 (I[94] = (img)(_n3##x,y,_p2##z,v)), \
philpem@5 12218 (I[102] = (img)(_n3##x,_n1##y,_p2##z,v)), \
philpem@5 12219 (I[110] = (img)(_n3##x,_n2##y,_p2##z,v)), \
philpem@5 12220 (I[118] = (img)(_n3##x,_n3##y,_p2##z,v)), \
philpem@5 12221 (I[126] = (img)(_n3##x,_n4##y,_p2##z,v)), \
philpem@5 12222 (I[134] = (img)(_n3##x,_p3##y,_p1##z,v)), \
philpem@5 12223 (I[142] = (img)(_n3##x,_p2##y,_p1##z,v)), \
philpem@5 12224 (I[150] = (img)(_n3##x,_p1##y,_p1##z,v)), \
philpem@5 12225 (I[158] = (img)(_n3##x,y,_p1##z,v)), \
philpem@5 12226 (I[166] = (img)(_n3##x,_n1##y,_p1##z,v)), \
philpem@5 12227 (I[174] = (img)(_n3##x,_n2##y,_p1##z,v)), \
philpem@5 12228 (I[182] = (img)(_n3##x,_n3##y,_p1##z,v)), \
philpem@5 12229 (I[190] = (img)(_n3##x,_n4##y,_p1##z,v)), \
philpem@5 12230 (I[198] = (img)(_n3##x,_p3##y,z,v)), \
philpem@5 12231 (I[206] = (img)(_n3##x,_p2##y,z,v)), \
philpem@5 12232 (I[214] = (img)(_n3##x,_p1##y,z,v)), \
philpem@5 12233 (I[222] = (img)(_n3##x,y,z,v)), \
philpem@5 12234 (I[230] = (img)(_n3##x,_n1##y,z,v)), \
philpem@5 12235 (I[238] = (img)(_n3##x,_n2##y,z,v)), \
philpem@5 12236 (I[246] = (img)(_n3##x,_n3##y,z,v)), \
philpem@5 12237 (I[254] = (img)(_n3##x,_n4##y,z,v)), \
philpem@5 12238 (I[262] = (img)(_n3##x,_p3##y,_n1##z,v)), \
philpem@5 12239 (I[270] = (img)(_n3##x,_p2##y,_n1##z,v)), \
philpem@5 12240 (I[278] = (img)(_n3##x,_p1##y,_n1##z,v)), \
philpem@5 12241 (I[286] = (img)(_n3##x,y,_n1##z,v)), \
philpem@5 12242 (I[294] = (img)(_n3##x,_n1##y,_n1##z,v)), \
philpem@5 12243 (I[302] = (img)(_n3##x,_n2##y,_n1##z,v)), \
philpem@5 12244 (I[310] = (img)(_n3##x,_n3##y,_n1##z,v)), \
philpem@5 12245 (I[318] = (img)(_n3##x,_n4##y,_n1##z,v)), \
philpem@5 12246 (I[326] = (img)(_n3##x,_p3##y,_n2##z,v)), \
philpem@5 12247 (I[334] = (img)(_n3##x,_p2##y,_n2##z,v)), \
philpem@5 12248 (I[342] = (img)(_n3##x,_p1##y,_n2##z,v)), \
philpem@5 12249 (I[350] = (img)(_n3##x,y,_n2##z,v)), \
philpem@5 12250 (I[358] = (img)(_n3##x,_n1##y,_n2##z,v)), \
philpem@5 12251 (I[366] = (img)(_n3##x,_n2##y,_n2##z,v)), \
philpem@5 12252 (I[374] = (img)(_n3##x,_n3##y,_n2##z,v)), \
philpem@5 12253 (I[382] = (img)(_n3##x,_n4##y,_n2##z,v)), \
philpem@5 12254 (I[390] = (img)(_n3##x,_p3##y,_n3##z,v)), \
philpem@5 12255 (I[398] = (img)(_n3##x,_p2##y,_n3##z,v)), \
philpem@5 12256 (I[406] = (img)(_n3##x,_p1##y,_n3##z,v)), \
philpem@5 12257 (I[414] = (img)(_n3##x,y,_n3##z,v)), \
philpem@5 12258 (I[422] = (img)(_n3##x,_n1##y,_n3##z,v)), \
philpem@5 12259 (I[430] = (img)(_n3##x,_n2##y,_n3##z,v)), \
philpem@5 12260 (I[438] = (img)(_n3##x,_n3##y,_n3##z,v)), \
philpem@5 12261 (I[446] = (img)(_n3##x,_n4##y,_n3##z,v)), \
philpem@5 12262 (I[454] = (img)(_n3##x,_p3##y,_n4##z,v)), \
philpem@5 12263 (I[462] = (img)(_n3##x,_p2##y,_n4##z,v)), \
philpem@5 12264 (I[470] = (img)(_n3##x,_p1##y,_n4##z,v)), \
philpem@5 12265 (I[478] = (img)(_n3##x,y,_n4##z,v)), \
philpem@5 12266 (I[486] = (img)(_n3##x,_n1##y,_n4##z,v)), \
philpem@5 12267 (I[494] = (img)(_n3##x,_n2##y,_n4##z,v)), \
philpem@5 12268 (I[502] = (img)(_n3##x,_n3##y,_n4##z,v)), \
philpem@5 12269 (I[510] = (img)(_n3##x,_n4##y,_n4##z,v)), \
philpem@5 12270 x+4>=(int)((img).width)?(int)((img).width)-1:x+4); \
philpem@5 12271 x<=(int)(x1) && ((_n4##x<(int)((img).width) && ( \
philpem@5 12272 (I[7] = (img)(_n4##x,_p3##y,_p3##z,v)), \
philpem@5 12273 (I[15] = (img)(_n4##x,_p2##y,_p3##z,v)), \
philpem@5 12274 (I[23] = (img)(_n4##x,_p1##y,_p3##z,v)), \
philpem@5 12275 (I[31] = (img)(_n4##x,y,_p3##z,v)), \
philpem@5 12276 (I[39] = (img)(_n4##x,_n1##y,_p3##z,v)), \
philpem@5 12277 (I[47] = (img)(_n4##x,_n2##y,_p3##z,v)), \
philpem@5 12278 (I[55] = (img)(_n4##x,_n3##y,_p3##z,v)), \
philpem@5 12279 (I[63] = (img)(_n4##x,_n4##y,_p3##z,v)), \
philpem@5 12280 (I[71] = (img)(_n4##x,_p3##y,_p2##z,v)), \
philpem@5 12281 (I[79] = (img)(_n4##x,_p2##y,_p2##z,v)), \
philpem@5 12282 (I[87] = (img)(_n4##x,_p1##y,_p2##z,v)), \
philpem@5 12283 (I[95] = (img)(_n4##x,y,_p2##z,v)), \
philpem@5 12284 (I[103] = (img)(_n4##x,_n1##y,_p2##z,v)), \
philpem@5 12285 (I[111] = (img)(_n4##x,_n2##y,_p2##z,v)), \
philpem@5 12286 (I[119] = (img)(_n4##x,_n3##y,_p2##z,v)), \
philpem@5 12287 (I[127] = (img)(_n4##x,_n4##y,_p2##z,v)), \
philpem@5 12288 (I[135] = (img)(_n4##x,_p3##y,_p1##z,v)), \
philpem@5 12289 (I[143] = (img)(_n4##x,_p2##y,_p1##z,v)), \
philpem@5 12290 (I[151] = (img)(_n4##x,_p1##y,_p1##z,v)), \
philpem@5 12291 (I[159] = (img)(_n4##x,y,_p1##z,v)), \
philpem@5 12292 (I[167] = (img)(_n4##x,_n1##y,_p1##z,v)), \
philpem@5 12293 (I[175] = (img)(_n4##x,_n2##y,_p1##z,v)), \
philpem@5 12294 (I[183] = (img)(_n4##x,_n3##y,_p1##z,v)), \
philpem@5 12295 (I[191] = (img)(_n4##x,_n4##y,_p1##z,v)), \
philpem@5 12296 (I[199] = (img)(_n4##x,_p3##y,z,v)), \
philpem@5 12297 (I[207] = (img)(_n4##x,_p2##y,z,v)), \
philpem@5 12298 (I[215] = (img)(_n4##x,_p1##y,z,v)), \
philpem@5 12299 (I[223] = (img)(_n4##x,y,z,v)), \
philpem@5 12300 (I[231] = (img)(_n4##x,_n1##y,z,v)), \
philpem@5 12301 (I[239] = (img)(_n4##x,_n2##y,z,v)), \
philpem@5 12302 (I[247] = (img)(_n4##x,_n3##y,z,v)), \
philpem@5 12303 (I[255] = (img)(_n4##x,_n4##y,z,v)), \
philpem@5 12304 (I[263] = (img)(_n4##x,_p3##y,_n1##z,v)), \
philpem@5 12305 (I[271] = (img)(_n4##x,_p2##y,_n1##z,v)), \
philpem@5 12306 (I[279] = (img)(_n4##x,_p1##y,_n1##z,v)), \
philpem@5 12307 (I[287] = (img)(_n4##x,y,_n1##z,v)), \
philpem@5 12308 (I[295] = (img)(_n4##x,_n1##y,_n1##z,v)), \
philpem@5 12309 (I[303] = (img)(_n4##x,_n2##y,_n1##z,v)), \
philpem@5 12310 (I[311] = (img)(_n4##x,_n3##y,_n1##z,v)), \
philpem@5 12311 (I[319] = (img)(_n4##x,_n4##y,_n1##z,v)), \
philpem@5 12312 (I[327] = (img)(_n4##x,_p3##y,_n2##z,v)), \
philpem@5 12313 (I[335] = (img)(_n4##x,_p2##y,_n2##z,v)), \
philpem@5 12314 (I[343] = (img)(_n4##x,_p1##y,_n2##z,v)), \
philpem@5 12315 (I[351] = (img)(_n4##x,y,_n2##z,v)), \
philpem@5 12316 (I[359] = (img)(_n4##x,_n1##y,_n2##z,v)), \
philpem@5 12317 (I[367] = (img)(_n4##x,_n2##y,_n2##z,v)), \
philpem@5 12318 (I[375] = (img)(_n4##x,_n3##y,_n2##z,v)), \
philpem@5 12319 (I[383] = (img)(_n4##x,_n4##y,_n2##z,v)), \
philpem@5 12320 (I[391] = (img)(_n4##x,_p3##y,_n3##z,v)), \
philpem@5 12321 (I[399] = (img)(_n4##x,_p2##y,_n3##z,v)), \
philpem@5 12322 (I[407] = (img)(_n4##x,_p1##y,_n3##z,v)), \
philpem@5 12323 (I[415] = (img)(_n4##x,y,_n3##z,v)), \
philpem@5 12324 (I[423] = (img)(_n4##x,_n1##y,_n3##z,v)), \
philpem@5 12325 (I[431] = (img)(_n4##x,_n2##y,_n3##z,v)), \
philpem@5 12326 (I[439] = (img)(_n4##x,_n3##y,_n3##z,v)), \
philpem@5 12327 (I[447] = (img)(_n4##x,_n4##y,_n3##z,v)), \
philpem@5 12328 (I[455] = (img)(_n4##x,_p3##y,_n4##z,v)), \
philpem@5 12329 (I[463] = (img)(_n4##x,_p2##y,_n4##z,v)), \
philpem@5 12330 (I[471] = (img)(_n4##x,_p1##y,_n4##z,v)), \
philpem@5 12331 (I[479] = (img)(_n4##x,y,_n4##z,v)), \
philpem@5 12332 (I[487] = (img)(_n4##x,_n1##y,_n4##z,v)), \
philpem@5 12333 (I[495] = (img)(_n4##x,_n2##y,_n4##z,v)), \
philpem@5 12334 (I[503] = (img)(_n4##x,_n3##y,_n4##z,v)), \
philpem@5 12335 (I[511] = (img)(_n4##x,_n4##y,_n4##z,v)),1)) || \
philpem@5 12336 _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n4##x = _n3##x = _n2##x = --_n1##x)); \
philpem@5 12337 I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], \
philpem@5 12338 I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], \
philpem@5 12339 I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
philpem@5 12340 I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \
philpem@5 12341 I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
philpem@5 12342 I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
philpem@5 12343 I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \
philpem@5 12344 I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \
philpem@5 12345 I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
philpem@5 12346 I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
philpem@5 12347 I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], \
philpem@5 12348 I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
philpem@5 12349 I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], \
philpem@5 12350 I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
philpem@5 12351 I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
philpem@5 12352 I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], \
philpem@5 12353 I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], \
philpem@5 12354 I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
philpem@5 12355 I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], \
philpem@5 12356 I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \
philpem@5 12357 I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
philpem@5 12358 I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], \
philpem@5 12359 I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], \
philpem@5 12360 I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
philpem@5 12361 I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], \
philpem@5 12362 I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], \
philpem@5 12363 I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
philpem@5 12364 I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
philpem@5 12365 I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], \
philpem@5 12366 I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
philpem@5 12367 I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], \
philpem@5 12368 I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], \
philpem@5 12369 I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], \
philpem@5 12370 I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], \
philpem@5 12371 I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \
philpem@5 12372 I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \
philpem@5 12373 I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], \
philpem@5 12374 I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], \
philpem@5 12375 I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], \
philpem@5 12376 I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], \
philpem@5 12377 I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], \
philpem@5 12378 I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
philpem@5 12379 I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], \
philpem@5 12380 I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], \
philpem@5 12381 I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \
philpem@5 12382 I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], \
philpem@5 12383 I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], \
philpem@5 12384 I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], \
philpem@5 12385 I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], \
philpem@5 12386 I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], \
philpem@5 12387 I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], \
philpem@5 12388 I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], \
philpem@5 12389 I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], \
philpem@5 12390 I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], \
philpem@5 12391 I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], \
philpem@5 12392 I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], \
philpem@5 12393 I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], \
philpem@5 12394 I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], \
philpem@5 12395 I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], \
philpem@5 12396 I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], \
philpem@5 12397 I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], \
philpem@5 12398 I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], \
philpem@5 12399 I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], \
philpem@5 12400 I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], \
philpem@5 12401 _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x)
philpem@5 12402
philpem@5 12403 #define cimg_get8x8x8(img,x,y,z,v,I) \
philpem@5 12404 I[0] = (img)(_p3##x,_p3##y,_p3##z,v), I[1] = (img)(_p2##x,_p3##y,_p3##z,v), I[2] = (img)(_p1##x,_p3##y,_p3##z,v), I[3] = (img)(x,_p3##y,_p3##z,v), I[4] = (img)(_n1##x,_p3##y,_p3##z,v), I[5] = (img)(_n2##x,_p3##y,_p3##z,v), I[6] = (img)(_n3##x,_p3##y,_p3##z,v), I[7] = (img)(_n4##x,_p3##y,_p3##z,v), \
philpem@5 12405 I[8] = (img)(_p3##x,_p2##y,_p3##z,v), I[9] = (img)(_p2##x,_p2##y,_p3##z,v), I[10] = (img)(_p1##x,_p2##y,_p3##z,v), I[11] = (img)(x,_p2##y,_p3##z,v), I[12] = (img)(_n1##x,_p2##y,_p3##z,v), I[13] = (img)(_n2##x,_p2##y,_p3##z,v), I[14] = (img)(_n3##x,_p2##y,_p3##z,v), I[15] = (img)(_n4##x,_p2##y,_p3##z,v), \
philpem@5 12406 I[16] = (img)(_p3##x,_p1##y,_p3##z,v), I[17] = (img)(_p2##x,_p1##y,_p3##z,v), I[18] = (img)(_p1##x,_p1##y,_p3##z,v), I[19] = (img)(x,_p1##y,_p3##z,v), I[20] = (img)(_n1##x,_p1##y,_p3##z,v), I[21] = (img)(_n2##x,_p1##y,_p3##z,v), I[22] = (img)(_n3##x,_p1##y,_p3##z,v), I[23] = (img)(_n4##x,_p1##y,_p3##z,v), \
philpem@5 12407 I[24] = (img)(_p3##x,y,_p3##z,v), I[25] = (img)(_p2##x,y,_p3##z,v), I[26] = (img)(_p1##x,y,_p3##z,v), I[27] = (img)(x,y,_p3##z,v), I[28] = (img)(_n1##x,y,_p3##z,v), I[29] = (img)(_n2##x,y,_p3##z,v), I[30] = (img)(_n3##x,y,_p3##z,v), I[31] = (img)(_n4##x,y,_p3##z,v), \
philpem@5 12408 I[32] = (img)(_p3##x,_n1##y,_p3##z,v), I[33] = (img)(_p2##x,_n1##y,_p3##z,v), I[34] = (img)(_p1##x,_n1##y,_p3##z,v), I[35] = (img)(x,_n1##y,_p3##z,v), I[36] = (img)(_n1##x,_n1##y,_p3##z,v), I[37] = (img)(_n2##x,_n1##y,_p3##z,v), I[38] = (img)(_n3##x,_n1##y,_p3##z,v), I[39] = (img)(_n4##x,_n1##y,_p3##z,v), \
philpem@5 12409 I[40] = (img)(_p3##x,_n2##y,_p3##z,v), I[41] = (img)(_p2##x,_n2##y,_p3##z,v), I[42] = (img)(_p1##x,_n2##y,_p3##z,v), I[43] = (img)(x,_n2##y,_p3##z,v), I[44] = (img)(_n1##x,_n2##y,_p3##z,v), I[45] = (img)(_n2##x,_n2##y,_p3##z,v), I[46] = (img)(_n3##x,_n2##y,_p3##z,v), I[47] = (img)(_n4##x,_n2##y,_p3##z,v), \
philpem@5 12410 I[48] = (img)(_p3##x,_n3##y,_p3##z,v), I[49] = (img)(_p2##x,_n3##y,_p3##z,v), I[50] = (img)(_p1##x,_n3##y,_p3##z,v), I[51] = (img)(x,_n3##y,_p3##z,v), I[52] = (img)(_n1##x,_n3##y,_p3##z,v), I[53] = (img)(_n2##x,_n3##y,_p3##z,v), I[54] = (img)(_n3##x,_n3##y,_p3##z,v), I[55] = (img)(_n4##x,_n3##y,_p3##z,v), \
philpem@5 12411 I[56] = (img)(_p3##x,_n4##y,_p3##z,v), I[57] = (img)(_p2##x,_n4##y,_p3##z,v), I[58] = (img)(_p1##x,_n4##y,_p3##z,v), I[59] = (img)(x,_n4##y,_p3##z,v), I[60] = (img)(_n1##x,_n4##y,_p3##z,v), I[61] = (img)(_n2##x,_n4##y,_p3##z,v), I[62] = (img)(_n3##x,_n4##y,_p3##z,v), I[63] = (img)(_n4##x,_n4##y,_p3##z,v), \
philpem@5 12412 I[64] = (img)(_p3##x,_p3##y,_p2##z,v), I[65] = (img)(_p2##x,_p3##y,_p2##z,v), I[66] = (img)(_p1##x,_p3##y,_p2##z,v), I[67] = (img)(x,_p3##y,_p2##z,v), I[68] = (img)(_n1##x,_p3##y,_p2##z,v), I[69] = (img)(_n2##x,_p3##y,_p2##z,v), I[70] = (img)(_n3##x,_p3##y,_p2##z,v), I[71] = (img)(_n4##x,_p3##y,_p2##z,v), \
philpem@5 12413 I[72] = (img)(_p3##x,_p2##y,_p2##z,v), I[73] = (img)(_p2##x,_p2##y,_p2##z,v), I[74] = (img)(_p1##x,_p2##y,_p2##z,v), I[75] = (img)(x,_p2##y,_p2##z,v), I[76] = (img)(_n1##x,_p2##y,_p2##z,v), I[77] = (img)(_n2##x,_p2##y,_p2##z,v), I[78] = (img)(_n3##x,_p2##y,_p2##z,v), I[79] = (img)(_n4##x,_p2##y,_p2##z,v), \
philpem@5 12414 I[80] = (img)(_p3##x,_p1##y,_p2##z,v), I[81] = (img)(_p2##x,_p1##y,_p2##z,v), I[82] = (img)(_p1##x,_p1##y,_p2##z,v), I[83] = (img)(x,_p1##y,_p2##z,v), I[84] = (img)(_n1##x,_p1##y,_p2##z,v), I[85] = (img)(_n2##x,_p1##y,_p2##z,v), I[86] = (img)(_n3##x,_p1##y,_p2##z,v), I[87] = (img)(_n4##x,_p1##y,_p2##z,v), \
philpem@5 12415 I[88] = (img)(_p3##x,y,_p2##z,v), I[89] = (img)(_p2##x,y,_p2##z,v), I[90] = (img)(_p1##x,y,_p2##z,v), I[91] = (img)(x,y,_p2##z,v), I[92] = (img)(_n1##x,y,_p2##z,v), I[93] = (img)(_n2##x,y,_p2##z,v), I[94] = (img)(_n3##x,y,_p2##z,v), I[95] = (img)(_n4##x,y,_p2##z,v), \
philpem@5 12416 I[96] = (img)(_p3##x,_n1##y,_p2##z,v), I[97] = (img)(_p2##x,_n1##y,_p2##z,v), I[98] = (img)(_p1##x,_n1##y,_p2##z,v), I[99] = (img)(x,_n1##y,_p2##z,v), I[100] = (img)(_n1##x,_n1##y,_p2##z,v), I[101] = (img)(_n2##x,_n1##y,_p2##z,v), I[102] = (img)(_n3##x,_n1##y,_p2##z,v), I[103] = (img)(_n4##x,_n1##y,_p2##z,v), \
philpem@5 12417 I[104] = (img)(_p3##x,_n2##y,_p2##z,v), I[105] = (img)(_p2##x,_n2##y,_p2##z,v), I[106] = (img)(_p1##x,_n2##y,_p2##z,v), I[107] = (img)(x,_n2##y,_p2##z,v), I[108] = (img)(_n1##x,_n2##y,_p2##z,v), I[109] = (img)(_n2##x,_n2##y,_p2##z,v), I[110] = (img)(_n3##x,_n2##y,_p2##z,v), I[111] = (img)(_n4##x,_n2##y,_p2##z,v), \
philpem@5 12418 I[112] = (img)(_p3##x,_n3##y,_p2##z,v), I[113] = (img)(_p2##x,_n3##y,_p2##z,v), I[114] = (img)(_p1##x,_n3##y,_p2##z,v), I[115] = (img)(x,_n3##y,_p2##z,v), I[116] = (img)(_n1##x,_n3##y,_p2##z,v), I[117] = (img)(_n2##x,_n3##y,_p2##z,v), I[118] = (img)(_n3##x,_n3##y,_p2##z,v), I[119] = (img)(_n4##x,_n3##y,_p2##z,v), \
philpem@5 12419 I[120] = (img)(_p3##x,_n4##y,_p2##z,v), I[121] = (img)(_p2##x,_n4##y,_p2##z,v), I[122] = (img)(_p1##x,_n4##y,_p2##z,v), I[123] = (img)(x,_n4##y,_p2##z,v), I[124] = (img)(_n1##x,_n4##y,_p2##z,v), I[125] = (img)(_n2##x,_n4##y,_p2##z,v), I[126] = (img)(_n3##x,_n4##y,_p2##z,v), I[127] = (img)(_n4##x,_n4##y,_p2##z,v), \
philpem@5 12420 I[128] = (img)(_p3##x,_p3##y,_p1##z,v), I[129] = (img)(_p2##x,_p3##y,_p1##z,v), I[130] = (img)(_p1##x,_p3##y,_p1##z,v), I[131] = (img)(x,_p3##y,_p1##z,v), I[132] = (img)(_n1##x,_p3##y,_p1##z,v), I[133] = (img)(_n2##x,_p3##y,_p1##z,v), I[134] = (img)(_n3##x,_p3##y,_p1##z,v), I[135] = (img)(_n4##x,_p3##y,_p1##z,v), \
philpem@5 12421 I[136] = (img)(_p3##x,_p2##y,_p1##z,v), I[137] = (img)(_p2##x,_p2##y,_p1##z,v), I[138] = (img)(_p1##x,_p2##y,_p1##z,v), I[139] = (img)(x,_p2##y,_p1##z,v), I[140] = (img)(_n1##x,_p2##y,_p1##z,v), I[141] = (img)(_n2##x,_p2##y,_p1##z,v), I[142] = (img)(_n3##x,_p2##y,_p1##z,v), I[143] = (img)(_n4##x,_p2##y,_p1##z,v), \
philpem@5 12422 I[144] = (img)(_p3##x,_p1##y,_p1##z,v), I[145] = (img)(_p2##x,_p1##y,_p1##z,v), I[146] = (img)(_p1##x,_p1##y,_p1##z,v), I[147] = (img)(x,_p1##y,_p1##z,v), I[148] = (img)(_n1##x,_p1##y,_p1##z,v), I[149] = (img)(_n2##x,_p1##y,_p1##z,v), I[150] = (img)(_n3##x,_p1##y,_p1##z,v), I[151] = (img)(_n4##x,_p1##y,_p1##z,v), \
philpem@5 12423 I[152] = (img)(_p3##x,y,_p1##z,v), I[153] = (img)(_p2##x,y,_p1##z,v), I[154] = (img)(_p1##x,y,_p1##z,v), I[155] = (img)(x,y,_p1##z,v), I[156] = (img)(_n1##x,y,_p1##z,v), I[157] = (img)(_n2##x,y,_p1##z,v), I[158] = (img)(_n3##x,y,_p1##z,v), I[159] = (img)(_n4##x,y,_p1##z,v), \
philpem@5 12424 I[160] = (img)(_p3##x,_n1##y,_p1##z,v), I[161] = (img)(_p2##x,_n1##y,_p1##z,v), I[162] = (img)(_p1##x,_n1##y,_p1##z,v), I[163] = (img)(x,_n1##y,_p1##z,v), I[164] = (img)(_n1##x,_n1##y,_p1##z,v), I[165] = (img)(_n2##x,_n1##y,_p1##z,v), I[166] = (img)(_n3##x,_n1##y,_p1##z,v), I[167] = (img)(_n4##x,_n1##y,_p1##z,v), \
philpem@5 12425 I[168] = (img)(_p3##x,_n2##y,_p1##z,v), I[169] = (img)(_p2##x,_n2##y,_p1##z,v), I[170] = (img)(_p1##x,_n2##y,_p1##z,v), I[171] = (img)(x,_n2##y,_p1##z,v), I[172] = (img)(_n1##x,_n2##y,_p1##z,v), I[173] = (img)(_n2##x,_n2##y,_p1##z,v), I[174] = (img)(_n3##x,_n2##y,_p1##z,v), I[175] = (img)(_n4##x,_n2##y,_p1##z,v), \
philpem@5 12426 I[176] = (img)(_p3##x,_n3##y,_p1##z,v), I[177] = (img)(_p2##x,_n3##y,_p1##z,v), I[178] = (img)(_p1##x,_n3##y,_p1##z,v), I[179] = (img)(x,_n3##y,_p1##z,v), I[180] = (img)(_n1##x,_n3##y,_p1##z,v), I[181] = (img)(_n2##x,_n3##y,_p1##z,v), I[182] = (img)(_n3##x,_n3##y,_p1##z,v), I[183] = (img)(_n4##x,_n3##y,_p1##z,v), \
philpem@5 12427 I[184] = (img)(_p3##x,_n4##y,_p1##z,v), I[185] = (img)(_p2##x,_n4##y,_p1##z,v), I[186] = (img)(_p1##x,_n4##y,_p1##z,v), I[187] = (img)(x,_n4##y,_p1##z,v), I[188] = (img)(_n1##x,_n4##y,_p1##z,v), I[189] = (img)(_n2##x,_n4##y,_p1##z,v), I[190] = (img)(_n3##x,_n4##y,_p1##z,v), I[191] = (img)(_n4##x,_n4##y,_p1##z,v), \
philpem@5 12428 I[192] = (img)(_p3##x,_p3##y,z,v), I[193] = (img)(_p2##x,_p3##y,z,v), I[194] = (img)(_p1##x,_p3##y,z,v), I[195] = (img)(x,_p3##y,z,v), I[196] = (img)(_n1##x,_p3##y,z,v), I[197] = (img)(_n2##x,_p3##y,z,v), I[198] = (img)(_n3##x,_p3##y,z,v), I[199] = (img)(_n4##x,_p3##y,z,v), \
philpem@5 12429 I[200] = (img)(_p3##x,_p2##y,z,v), I[201] = (img)(_p2##x,_p2##y,z,v), I[202] = (img)(_p1##x,_p2##y,z,v), I[203] = (img)(x,_p2##y,z,v), I[204] = (img)(_n1##x,_p2##y,z,v), I[205] = (img)(_n2##x,_p2##y,z,v), I[206] = (img)(_n3##x,_p2##y,z,v), I[207] = (img)(_n4##x,_p2##y,z,v), \
philpem@5 12430 I[208] = (img)(_p3##x,_p1##y,z,v), I[209] = (img)(_p2##x,_p1##y,z,v), I[210] = (img)(_p1##x,_p1##y,z,v), I[211] = (img)(x,_p1##y,z,v), I[212] = (img)(_n1##x,_p1##y,z,v), I[213] = (img)(_n2##x,_p1##y,z,v), I[214] = (img)(_n3##x,_p1##y,z,v), I[215] = (img)(_n4##x,_p1##y,z,v), \
philpem@5 12431 I[216] = (img)(_p3##x,y,z,v), I[217] = (img)(_p2##x,y,z,v), I[218] = (img)(_p1##x,y,z,v), I[219] = (img)(x,y,z,v), I[220] = (img)(_n1##x,y,z,v), I[221] = (img)(_n2##x,y,z,v), I[222] = (img)(_n3##x,y,z,v), I[223] = (img)(_n4##x,y,z,v), \
philpem@5 12432 I[224] = (img)(_p3##x,_n1##y,z,v), I[225] = (img)(_p2##x,_n1##y,z,v), I[226] = (img)(_p1##x,_n1##y,z,v), I[227] = (img)(x,_n1##y,z,v), I[228] = (img)(_n1##x,_n1##y,z,v), I[229] = (img)(_n2##x,_n1##y,z,v), I[230] = (img)(_n3##x,_n1##y,z,v), I[231] = (img)(_n4##x,_n1##y,z,v), \
philpem@5 12433 I[232] = (img)(_p3##x,_n2##y,z,v), I[233] = (img)(_p2##x,_n2##y,z,v), I[234] = (img)(_p1##x,_n2##y,z,v), I[235] = (img)(x,_n2##y,z,v), I[236] = (img)(_n1##x,_n2##y,z,v), I[237] = (img)(_n2##x,_n2##y,z,v), I[238] = (img)(_n3##x,_n2##y,z,v), I[239] = (img)(_n4##x,_n2##y,z,v), \
philpem@5 12434 I[240] = (img)(_p3##x,_n3##y,z,v), I[241] = (img)(_p2##x,_n3##y,z,v), I[242] = (img)(_p1##x,_n3##y,z,v), I[243] = (img)(x,_n3##y,z,v), I[244] = (img)(_n1##x,_n3##y,z,v), I[245] = (img)(_n2##x,_n3##y,z,v), I[246] = (img)(_n3##x,_n3##y,z,v), I[247] = (img)(_n4##x,_n3##y,z,v), \
philpem@5 12435 I[248] = (img)(_p3##x,_n4##y,z,v), I[249] = (img)(_p2##x,_n4##y,z,v), I[250] = (img)(_p1##x,_n4##y,z,v), I[251] = (img)(x,_n4##y,z,v), I[252] = (img)(_n1##x,_n4##y,z,v), I[253] = (img)(_n2##x,_n4##y,z,v), I[254] = (img)(_n3##x,_n4##y,z,v), I[255] = (img)(_n4##x,_n4##y,z,v), \
philpem@5 12436 I[256] = (img)(_p3##x,_p3##y,_n1##z,v), I[257] = (img)(_p2##x,_p3##y,_n1##z,v), I[258] = (img)(_p1##x,_p3##y,_n1##z,v), I[259] = (img)(x,_p3##y,_n1##z,v), I[260] = (img)(_n1##x,_p3##y,_n1##z,v), I[261] = (img)(_n2##x,_p3##y,_n1##z,v), I[262] = (img)(_n3##x,_p3##y,_n1##z,v), I[263] = (img)(_n4##x,_p3##y,_n1##z,v), \
philpem@5 12437 I[264] = (img)(_p3##x,_p2##y,_n1##z,v), I[265] = (img)(_p2##x,_p2##y,_n1##z,v), I[266] = (img)(_p1##x,_p2##y,_n1##z,v), I[267] = (img)(x,_p2##y,_n1##z,v), I[268] = (img)(_n1##x,_p2##y,_n1##z,v), I[269] = (img)(_n2##x,_p2##y,_n1##z,v), I[270] = (img)(_n3##x,_p2##y,_n1##z,v), I[271] = (img)(_n4##x,_p2##y,_n1##z,v), \
philpem@5 12438 I[272] = (img)(_p3##x,_p1##y,_n1##z,v), I[273] = (img)(_p2##x,_p1##y,_n1##z,v), I[274] = (img)(_p1##x,_p1##y,_n1##z,v), I[275] = (img)(x,_p1##y,_n1##z,v), I[276] = (img)(_n1##x,_p1##y,_n1##z,v), I[277] = (img)(_n2##x,_p1##y,_n1##z,v), I[278] = (img)(_n3##x,_p1##y,_n1##z,v), I[279] = (img)(_n4##x,_p1##y,_n1##z,v), \
philpem@5 12439 I[280] = (img)(_p3##x,y,_n1##z,v), I[281] = (img)(_p2##x,y,_n1##z,v), I[282] = (img)(_p1##x,y,_n1##z,v), I[283] = (img)(x,y,_n1##z,v), I[284] = (img)(_n1##x,y,_n1##z,v), I[285] = (img)(_n2##x,y,_n1##z,v), I[286] = (img)(_n3##x,y,_n1##z,v), I[287] = (img)(_n4##x,y,_n1##z,v), \
philpem@5 12440 I[288] = (img)(_p3##x,_n1##y,_n1##z,v), I[289] = (img)(_p2##x,_n1##y,_n1##z,v), I[290] = (img)(_p1##x,_n1##y,_n1##z,v), I[291] = (img)(x,_n1##y,_n1##z,v), I[292] = (img)(_n1##x,_n1##y,_n1##z,v), I[293] = (img)(_n2##x,_n1##y,_n1##z,v), I[294] = (img)(_n3##x,_n1##y,_n1##z,v), I[295] = (img)(_n4##x,_n1##y,_n1##z,v), \
philpem@5 12441 I[296] = (img)(_p3##x,_n2##y,_n1##z,v), I[297] = (img)(_p2##x,_n2##y,_n1##z,v), I[298] = (img)(_p1##x,_n2##y,_n1##z,v), I[299] = (img)(x,_n2##y,_n1##z,v), I[300] = (img)(_n1##x,_n2##y,_n1##z,v), I[301] = (img)(_n2##x,_n2##y,_n1##z,v), I[302] = (img)(_n3##x,_n2##y,_n1##z,v), I[303] = (img)(_n4##x,_n2##y,_n1##z,v), \
philpem@5 12442 I[304] = (img)(_p3##x,_n3##y,_n1##z,v), I[305] = (img)(_p2##x,_n3##y,_n1##z,v), I[306] = (img)(_p1##x,_n3##y,_n1##z,v), I[307] = (img)(x,_n3##y,_n1##z,v), I[308] = (img)(_n1##x,_n3##y,_n1##z,v), I[309] = (img)(_n2##x,_n3##y,_n1##z,v), I[310] = (img)(_n3##x,_n3##y,_n1##z,v), I[311] = (img)(_n4##x,_n3##y,_n1##z,v), \
philpem@5 12443 I[312] = (img)(_p3##x,_n4##y,_n1##z,v), I[313] = (img)(_p2##x,_n4##y,_n1##z,v), I[314] = (img)(_p1##x,_n4##y,_n1##z,v), I[315] = (img)(x,_n4##y,_n1##z,v), I[316] = (img)(_n1##x,_n4##y,_n1##z,v), I[317] = (img)(_n2##x,_n4##y,_n1##z,v), I[318] = (img)(_n3##x,_n4##y,_n1##z,v), I[319] = (img)(_n4##x,_n4##y,_n1##z,v), \
philpem@5 12444 I[320] = (img)(_p3##x,_p3##y,_n2##z,v), I[321] = (img)(_p2##x,_p3##y,_n2##z,v), I[322] = (img)(_p1##x,_p3##y,_n2##z,v), I[323] = (img)(x,_p3##y,_n2##z,v), I[324] = (img)(_n1##x,_p3##y,_n2##z,v), I[325] = (img)(_n2##x,_p3##y,_n2##z,v), I[326] = (img)(_n3##x,_p3##y,_n2##z,v), I[327] = (img)(_n4##x,_p3##y,_n2##z,v), \
philpem@5 12445 I[328] = (img)(_p3##x,_p2##y,_n2##z,v), I[329] = (img)(_p2##x,_p2##y,_n2##z,v), I[330] = (img)(_p1##x,_p2##y,_n2##z,v), I[331] = (img)(x,_p2##y,_n2##z,v), I[332] = (img)(_n1##x,_p2##y,_n2##z,v), I[333] = (img)(_n2##x,_p2##y,_n2##z,v), I[334] = (img)(_n3##x,_p2##y,_n2##z,v), I[335] = (img)(_n4##x,_p2##y,_n2##z,v), \
philpem@5 12446 I[336] = (img)(_p3##x,_p1##y,_n2##z,v), I[337] = (img)(_p2##x,_p1##y,_n2##z,v), I[338] = (img)(_p1##x,_p1##y,_n2##z,v), I[339] = (img)(x,_p1##y,_n2##z,v), I[340] = (img)(_n1##x,_p1##y,_n2##z,v), I[341] = (img)(_n2##x,_p1##y,_n2##z,v), I[342] = (img)(_n3##x,_p1##y,_n2##z,v), I[343] = (img)(_n4##x,_p1##y,_n2##z,v), \
philpem@5 12447 I[344] = (img)(_p3##x,y,_n2##z,v), I[345] = (img)(_p2##x,y,_n2##z,v), I[346] = (img)(_p1##x,y,_n2##z,v), I[347] = (img)(x,y,_n2##z,v), I[348] = (img)(_n1##x,y,_n2##z,v), I[349] = (img)(_n2##x,y,_n2##z,v), I[350] = (img)(_n3##x,y,_n2##z,v), I[351] = (img)(_n4##x,y,_n2##z,v), \
philpem@5 12448 I[352] = (img)(_p3##x,_n1##y,_n2##z,v), I[353] = (img)(_p2##x,_n1##y,_n2##z,v), I[354] = (img)(_p1##x,_n1##y,_n2##z,v), I[355] = (img)(x,_n1##y,_n2##z,v), I[356] = (img)(_n1##x,_n1##y,_n2##z,v), I[357] = (img)(_n2##x,_n1##y,_n2##z,v), I[358] = (img)(_n3##x,_n1##y,_n2##z,v), I[359] = (img)(_n4##x,_n1##y,_n2##z,v), \
philpem@5 12449 I[360] = (img)(_p3##x,_n2##y,_n2##z,v), I[361] = (img)(_p2##x,_n2##y,_n2##z,v), I[362] = (img)(_p1##x,_n2##y,_n2##z,v), I[363] = (img)(x,_n2##y,_n2##z,v), I[364] = (img)(_n1##x,_n2##y,_n2##z,v), I[365] = (img)(_n2##x,_n2##y,_n2##z,v), I[366] = (img)(_n3##x,_n2##y,_n2##z,v), I[367] = (img)(_n4##x,_n2##y,_n2##z,v), \
philpem@5 12450 I[368] = (img)(_p3##x,_n3##y,_n2##z,v), I[369] = (img)(_p2##x,_n3##y,_n2##z,v), I[370] = (img)(_p1##x,_n3##y,_n2##z,v), I[371] = (img)(x,_n3##y,_n2##z,v), I[372] = (img)(_n1##x,_n3##y,_n2##z,v), I[373] = (img)(_n2##x,_n3##y,_n2##z,v), I[374] = (img)(_n3##x,_n3##y,_n2##z,v), I[375] = (img)(_n4##x,_n3##y,_n2##z,v), \
philpem@5 12451 I[376] = (img)(_p3##x,_n4##y,_n2##z,v), I[377] = (img)(_p2##x,_n4##y,_n2##z,v), I[378] = (img)(_p1##x,_n4##y,_n2##z,v), I[379] = (img)(x,_n4##y,_n2##z,v), I[380] = (img)(_n1##x,_n4##y,_n2##z,v), I[381] = (img)(_n2##x,_n4##y,_n2##z,v), I[382] = (img)(_n3##x,_n4##y,_n2##z,v), I[383] = (img)(_n4##x,_n4##y,_n2##z,v), \
philpem@5 12452 I[384] = (img)(_p3##x,_p3##y,_n3##z,v), I[385] = (img)(_p2##x,_p3##y,_n3##z,v), I[386] = (img)(_p1##x,_p3##y,_n3##z,v), I[387] = (img)(x,_p3##y,_n3##z,v), I[388] = (img)(_n1##x,_p3##y,_n3##z,v), I[389] = (img)(_n2##x,_p3##y,_n3##z,v), I[390] = (img)(_n3##x,_p3##y,_n3##z,v), I[391] = (img)(_n4##x,_p3##y,_n3##z,v), \
philpem@5 12453 I[392] = (img)(_p3##x,_p2##y,_n3##z,v), I[393] = (img)(_p2##x,_p2##y,_n3##z,v), I[394] = (img)(_p1##x,_p2##y,_n3##z,v), I[395] = (img)(x,_p2##y,_n3##z,v), I[396] = (img)(_n1##x,_p2##y,_n3##z,v), I[397] = (img)(_n2##x,_p2##y,_n3##z,v), I[398] = (img)(_n3##x,_p2##y,_n3##z,v), I[399] = (img)(_n4##x,_p2##y,_n3##z,v), \
philpem@5 12454 I[400] = (img)(_p3##x,_p1##y,_n3##z,v), I[401] = (img)(_p2##x,_p1##y,_n3##z,v), I[402] = (img)(_p1##x,_p1##y,_n3##z,v), I[403] = (img)(x,_p1##y,_n3##z,v), I[404] = (img)(_n1##x,_p1##y,_n3##z,v), I[405] = (img)(_n2##x,_p1##y,_n3##z,v), I[406] = (img)(_n3##x,_p1##y,_n3##z,v), I[407] = (img)(_n4##x,_p1##y,_n3##z,v), \
philpem@5 12455 I[408] = (img)(_p3##x,y,_n3##z,v), I[409] = (img)(_p2##x,y,_n3##z,v), I[410] = (img)(_p1##x,y,_n3##z,v), I[411] = (img)(x,y,_n3##z,v), I[412] = (img)(_n1##x,y,_n3##z,v), I[413] = (img)(_n2##x,y,_n3##z,v), I[414] = (img)(_n3##x,y,_n3##z,v), I[415] = (img)(_n4##x,y,_n3##z,v), \
philpem@5 12456 I[416] = (img)(_p3##x,_n1##y,_n3##z,v), I[417] = (img)(_p2##x,_n1##y,_n3##z,v), I[418] = (img)(_p1##x,_n1##y,_n3##z,v), I[419] = (img)(x,_n1##y,_n3##z,v), I[420] = (img)(_n1##x,_n1##y,_n3##z,v), I[421] = (img)(_n2##x,_n1##y,_n3##z,v), I[422] = (img)(_n3##x,_n1##y,_n3##z,v), I[423] = (img)(_n4##x,_n1##y,_n3##z,v), \
philpem@5 12457 I[424] = (img)(_p3##x,_n2##y,_n3##z,v), I[425] = (img)(_p2##x,_n2##y,_n3##z,v), I[426] = (img)(_p1##x,_n2##y,_n3##z,v), I[427] = (img)(x,_n2##y,_n3##z,v), I[428] = (img)(_n1##x,_n2##y,_n3##z,v), I[429] = (img)(_n2##x,_n2##y,_n3##z,v), I[430] = (img)(_n3##x,_n2##y,_n3##z,v), I[431] = (img)(_n4##x,_n2##y,_n3##z,v), \
philpem@5 12458 I[432] = (img)(_p3##x,_n3##y,_n3##z,v), I[433] = (img)(_p2##x,_n3##y,_n3##z,v), I[434] = (img)(_p1##x,_n3##y,_n3##z,v), I[435] = (img)(x,_n3##y,_n3##z,v), I[436] = (img)(_n1##x,_n3##y,_n3##z,v), I[437] = (img)(_n2##x,_n3##y,_n3##z,v), I[438] = (img)(_n3##x,_n3##y,_n3##z,v), I[439] = (img)(_n4##x,_n3##y,_n3##z,v), \
philpem@5 12459 I[440] = (img)(_p3##x,_n4##y,_n3##z,v), I[441] = (img)(_p2##x,_n4##y,_n3##z,v), I[442] = (img)(_p1##x,_n4##y,_n3##z,v), I[443] = (img)(x,_n4##y,_n3##z,v), I[444] = (img)(_n1##x,_n4##y,_n3##z,v), I[445] = (img)(_n2##x,_n4##y,_n3##z,v), I[446] = (img)(_n3##x,_n4##y,_n3##z,v), I[447] = (img)(_n4##x,_n4##y,_n3##z,v), \
philpem@5 12460 I[448] = (img)(_p3##x,_p3##y,_n4##z,v), I[449] = (img)(_p2##x,_p3##y,_n4##z,v), I[450] = (img)(_p1##x,_p3##y,_n4##z,v), I[451] = (img)(x,_p3##y,_n4##z,v), I[452] = (img)(_n1##x,_p3##y,_n4##z,v), I[453] = (img)(_n2##x,_p3##y,_n4##z,v), I[454] = (img)(_n3##x,_p3##y,_n4##z,v), I[455] = (img)(_n4##x,_p3##y,_n4##z,v), \
philpem@5 12461 I[456] = (img)(_p3##x,_p2##y,_n4##z,v), I[457] = (img)(_p2##x,_p2##y,_n4##z,v), I[458] = (img)(_p1##x,_p2##y,_n4##z,v), I[459] = (img)(x,_p2##y,_n4##z,v), I[460] = (img)(_n1##x,_p2##y,_n4##z,v), I[461] = (img)(_n2##x,_p2##y,_n4##z,v), I[462] = (img)(_n3##x,_p2##y,_n4##z,v), I[463] = (img)(_n4##x,_p2##y,_n4##z,v), \
philpem@5 12462 I[464] = (img)(_p3##x,_p1##y,_n4##z,v), I[465] = (img)(_p2##x,_p1##y,_n4##z,v), I[466] = (img)(_p1##x,_p1##y,_n4##z,v), I[467] = (img)(x,_p1##y,_n4##z,v), I[468] = (img)(_n1##x,_p1##y,_n4##z,v), I[469] = (img)(_n2##x,_p1##y,_n4##z,v), I[470] = (img)(_n3##x,_p1##y,_n4##z,v), I[471] = (img)(_n4##x,_p1##y,_n4##z,v), \
philpem@5 12463 I[472] = (img)(_p3##x,y,_n4##z,v), I[473] = (img)(_p2##x,y,_n4##z,v), I[474] = (img)(_p1##x,y,_n4##z,v), I[475] = (img)(x,y,_n4##z,v), I[476] = (img)(_n1##x,y,_n4##z,v), I[477] = (img)(_n2##x,y,_n4##z,v), I[478] = (img)(_n3##x,y,_n4##z,v), I[479] = (img)(_n4##x,y,_n4##z,v), \
philpem@5 12464 I[480] = (img)(_p3##x,_n1##y,_n4##z,v), I[481] = (img)(_p2##x,_n1##y,_n4##z,v), I[482] = (img)(_p1##x,_n1##y,_n4##z,v), I[483] = (img)(x,_n1##y,_n4##z,v), I[484] = (img)(_n1##x,_n1##y,_n4##z,v), I[485] = (img)(_n2##x,_n1##y,_n4##z,v), I[486] = (img)(_n3##x,_n1##y,_n4##z,v), I[487] = (img)(_n4##x,_n1##y,_n4##z,v), \
philpem@5 12465 I[488] = (img)(_p3##x,_n2##y,_n4##z,v), I[489] = (img)(_p2##x,_n2##y,_n4##z,v), I[490] = (img)(_p1##x,_n2##y,_n4##z,v), I[491] = (img)(x,_n2##y,_n4##z,v), I[492] = (img)(_n1##x,_n2##y,_n4##z,v), I[493] = (img)(_n2##x,_n2##y,_n4##z,v), I[494] = (img)(_n3##x,_n2##y,_n4##z,v), I[495] = (img)(_n4##x,_n2##y,_n4##z,v), \
philpem@5 12466 I[496] = (img)(_p3##x,_n3##y,_n4##z,v), I[497] = (img)(_p2##x,_n3##y,_n4##z,v), I[498] = (img)(_p1##x,_n3##y,_n4##z,v), I[499] = (img)(x,_n3##y,_n4##z,v), I[500] = (img)(_n1##x,_n3##y,_n4##z,v), I[501] = (img)(_n2##x,_n3##y,_n4##z,v), I[502] = (img)(_n3##x,_n3##y,_n4##z,v), I[503] = (img)(_n4##x,_n3##y,_n4##z,v), \
philpem@5 12467 I[504] = (img)(_p3##x,_n4##y,_n4##z,v), I[505] = (img)(_p2##x,_n4##y,_n4##z,v), I[506] = (img)(_p1##x,_n4##y,_n4##z,v), I[507] = (img)(x,_n4##y,_n4##z,v), I[508] = (img)(_n1##x,_n4##y,_n4##z,v), I[509] = (img)(_n2##x,_n4##y,_n4##z,v), I[510] = (img)(_n3##x,_n4##y,_n4##z,v), I[511] = (img)(_n4##x,_n4##y,_n4##z,v);
philpem@5 12468
philpem@5 12469 #endif