Thu, 24 Sep 2009 17:18:28 +0100
Added support for separator ticks between labels
philpem@5 | 1 | /* |
philpem@5 | 2 | # |
philpem@5 | 3 | # File : loop_macros.h |
philpem@5 | 4 | # ( C++ header file - CImg plug-in ) |
philpem@5 | 5 | # |
philpem@5 | 6 | # Description : CImg plug-in adding useful loop macros in CImg, in order to |
philpem@5 | 7 | # deal with NxN neighborhoods (where N=10..32) |
philpem@5 | 8 | # and NxNxN neighborhoods (where N=4..8) |
philpem@5 | 9 | # This file has been automatically generated using the loop |
philpem@5 | 10 | # macro generator available in 'examples/generate_loop_macros.cpp' |
philpem@5 | 11 | # This file is a part of the CImg Library project. |
philpem@5 | 12 | # ( http://cimg.sourceforge.net ) |
philpem@5 | 13 | # |
philpem@5 | 14 | # Copyright : David Tschumperle |
philpem@5 | 15 | # ( http://www.greyc.ensicaen.fr/~dtschump/ ) |
philpem@5 | 16 | # |
philpem@5 | 17 | # License : CeCILL v2.0 |
philpem@5 | 18 | # ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html ) |
philpem@5 | 19 | # |
philpem@5 | 20 | # This software is governed by the CeCILL license under French law and |
philpem@5 | 21 | # abiding by the rules of distribution of free software. You can use, |
philpem@5 | 22 | # modify and/ or redistribute the software under the terms of the CeCILL |
philpem@5 | 23 | # license as circulated by CEA, CNRS and INRIA at the following URL |
philpem@5 | 24 | # "http://www.cecill.info". |
philpem@5 | 25 | # |
philpem@5 | 26 | # As a counterpart to the access to the source code and rights to copy, |
philpem@5 | 27 | # modify and redistribute granted by the license, users are provided only |
philpem@5 | 28 | # with a limited warranty and the software's author, the holder of the |
philpem@5 | 29 | # economic rights, and the successive licensors have only limited |
philpem@5 | 30 | # liability. |
philpem@5 | 31 | # |
philpem@5 | 32 | # In this respect, the user's attention is drawn to the risks associated |
philpem@5 | 33 | # with loading, using, modifying and/or developing or reproducing the |
philpem@5 | 34 | # software by the user in light of its specific status of free software, |
philpem@5 | 35 | # that may mean that it is complicated to manipulate, and that also |
philpem@5 | 36 | # therefore means that it is reserved for developers and experienced |
philpem@5 | 37 | # professionals having in-depth computer knowledge. Users are therefore |
philpem@5 | 38 | # encouraged to load and test the software's suitability as regards their |
philpem@5 | 39 | # requirements in conditions enabling the security of their systems and/or |
philpem@5 | 40 | # data to be ensured and, more generally, to use and operate it in the |
philpem@5 | 41 | # same conditions as regards security. |
philpem@5 | 42 | # |
philpem@5 | 43 | # The fact that you are presently reading this means that you have had |
philpem@5 | 44 | # knowledge of the CeCILL license and that you accept its terms. |
philpem@5 | 45 | # |
philpem@5 | 46 | */ |
philpem@5 | 47 | |
philpem@5 | 48 | #ifndef cimg_plugin_loopmacros |
philpem@5 | 49 | #define cimg_plugin_loopmacros |
philpem@5 | 50 | |
philpem@5 | 51 | // Define 10x10 loop macros for CImg |
philpem@5 | 52 | //---------------------------------- |
philpem@5 | 53 | #define cimg_for10(bound,i) for (int i = 0, \ |
philpem@5 | 54 | _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \ |
philpem@5 | 55 | _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \ |
philpem@5 | 56 | _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \ |
philpem@5 | 57 | _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \ |
philpem@5 | 58 | _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \ |
philpem@5 | 59 | _n5##i = 5>=(int)(bound)?(int)(bound)-1:5; \ |
philpem@5 | 60 | _n5##i<(int)(bound) || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 61 | i==(_n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \ |
philpem@5 | 62 | _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 63 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i) |
philpem@5 | 64 | |
philpem@5 | 65 | #define cimg_for10X(img,x) cimg_for10((img).width,x) |
philpem@5 | 66 | #define cimg_for10Y(img,y) cimg_for10((img).height,y) |
philpem@5 | 67 | #define cimg_for10Z(img,z) cimg_for10((img).depth,z) |
philpem@5 | 68 | #define cimg_for10V(img,v) cimg_for10((img).dim,v) |
philpem@5 | 69 | #define cimg_for10XY(img,x,y) cimg_for10Y(img,y) cimg_for10X(img,x) |
philpem@5 | 70 | #define cimg_for10XZ(img,x,z) cimg_for10Z(img,z) cimg_for10X(img,x) |
philpem@5 | 71 | #define cimg_for10XV(img,x,v) cimg_for10V(img,v) cimg_for10X(img,x) |
philpem@5 | 72 | #define cimg_for10YZ(img,y,z) cimg_for10Z(img,z) cimg_for10Y(img,y) |
philpem@5 | 73 | #define cimg_for10YV(img,y,v) cimg_for10V(img,v) cimg_for10Y(img,y) |
philpem@5 | 74 | #define cimg_for10ZV(img,z,v) cimg_for10V(img,v) cimg_for10Z(img,z) |
philpem@5 | 75 | #define cimg_for10XYZ(img,x,y,z) cimg_for10Z(img,z) cimg_for10XY(img,x,y) |
philpem@5 | 76 | #define cimg_for10XZV(img,x,z,v) cimg_for10V(img,v) cimg_for10XZ(img,x,z) |
philpem@5 | 77 | #define cimg_for10YZV(img,y,z,v) cimg_for10V(img,v) cimg_for10YZ(img,y,z) |
philpem@5 | 78 | #define cimg_for10XYZV(img,x,y,z,v) cimg_for10V(img,v) cimg_for10XYZ(img,x,y,z) |
philpem@5 | 79 | |
philpem@5 | 80 | #define cimg_for_in10(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \ |
philpem@5 | 81 | _p4##i = i-4<0?0:i-4, \ |
philpem@5 | 82 | _p3##i = i-3<0?0:i-3, \ |
philpem@5 | 83 | _p2##i = i-2<0?0:i-2, \ |
philpem@5 | 84 | _p1##i = i-1<0?0:i-1, \ |
philpem@5 | 85 | _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \ |
philpem@5 | 86 | _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \ |
philpem@5 | 87 | _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \ |
philpem@5 | 88 | _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \ |
philpem@5 | 89 | _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5; \ |
philpem@5 | 90 | i<=(int)(i1) && (_n5##i<(int)(bound) || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 91 | i==(_n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \ |
philpem@5 | 92 | _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 93 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i) |
philpem@5 | 94 | |
philpem@5 | 95 | #define cimg_for_in10X(img,x0,x1,x) cimg_for_in10((img).width,x0,x1,x) |
philpem@5 | 96 | #define cimg_for_in10Y(img,y0,y1,y) cimg_for_in10((img).height,y0,y1,y) |
philpem@5 | 97 | #define cimg_for_in10Z(img,z0,z1,z) cimg_for_in10((img).depth,z0,z1,z) |
philpem@5 | 98 | #define cimg_for_in10V(img,v0,v1,v) cimg_for_in10((img).dim,v0,v1,v) |
philpem@5 | 99 | #define cimg_for_in10XY(img,x0,y0,x1,y1,x,y) cimg_for_in10Y(img,y0,y1,y) cimg_for_in10X(img,x0,x1,x) |
philpem@5 | 100 | #define cimg_for_in10XZ(img,x0,z0,x1,z1,x,z) cimg_for_in10Z(img,z0,z1,z) cimg_for_in10X(img,x0,x1,x) |
philpem@5 | 101 | #define cimg_for_in10XV(img,x0,v0,x1,v1,x,v) cimg_for_in10V(img,v0,v1,v) cimg_for_in10X(img,x0,x1,x) |
philpem@5 | 102 | #define cimg_for_in10YZ(img,y0,z0,y1,z1,y,z) cimg_for_in10Z(img,z0,z1,z) cimg_for_in10Y(img,y0,y1,y) |
philpem@5 | 103 | #define cimg_for_in10YV(img,y0,v0,y1,v1,y,v) cimg_for_in10V(img,v0,v1,v) cimg_for_in10Y(img,y0,y1,y) |
philpem@5 | 104 | #define cimg_for_in10ZV(img,z0,v0,z1,v1,z,v) cimg_for_in10V(img,v0,v1,v) cimg_for_in10Z(img,z0,z1,z) |
philpem@5 | 105 | #define cimg_for_in10XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in10Z(img,z0,z1,z) cimg_for_in10XY(img,x0,y0,x1,y1,x,y) |
philpem@5 | 106 | #define cimg_for_in10XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in10V(img,v0,v1,v) cimg_for_in10XZ(img,x0,y0,x1,y1,x,z) |
philpem@5 | 107 | #define cimg_for_in10YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in10V(img,v0,v1,v) cimg_for_in10YZ(img,y0,z0,y1,z1,y,z) |
philpem@5 | 108 | #define cimg_for_in10XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in10V(img,v0,v1,v) cimg_for_in10XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) |
philpem@5 | 109 | |
philpem@5 | 110 | #define cimg_for10x10(img,x,y,z,v,I) \ |
philpem@5 | 111 | cimg_for10((img).height,y) for (int x = 0, \ |
philpem@5 | 112 | _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \ |
philpem@5 | 113 | _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \ |
philpem@5 | 114 | _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \ |
philpem@5 | 115 | _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \ |
philpem@5 | 116 | _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \ |
philpem@5 | 117 | _n5##x = (int)( \ |
philpem@5 | 118 | (I[0] = I[1] = I[2] = I[3] = I[4] = (img)(0,_p4##y,z,v)), \ |
philpem@5 | 119 | (I[10] = I[11] = I[12] = I[13] = I[14] = (img)(0,_p3##y,z,v)), \ |
philpem@5 | 120 | (I[20] = I[21] = I[22] = I[23] = I[24] = (img)(0,_p2##y,z,v)), \ |
philpem@5 | 121 | (I[30] = I[31] = I[32] = I[33] = I[34] = (img)(0,_p1##y,z,v)), \ |
philpem@5 | 122 | (I[40] = I[41] = I[42] = I[43] = I[44] = (img)(0,y,z,v)), \ |
philpem@5 | 123 | (I[50] = I[51] = I[52] = I[53] = I[54] = (img)(0,_n1##y,z,v)), \ |
philpem@5 | 124 | (I[60] = I[61] = I[62] = I[63] = I[64] = (img)(0,_n2##y,z,v)), \ |
philpem@5 | 125 | (I[70] = I[71] = I[72] = I[73] = I[74] = (img)(0,_n3##y,z,v)), \ |
philpem@5 | 126 | (I[80] = I[81] = I[82] = I[83] = I[84] = (img)(0,_n4##y,z,v)), \ |
philpem@5 | 127 | (I[90] = I[91] = I[92] = I[93] = I[94] = (img)(0,_n5##y,z,v)), \ |
philpem@5 | 128 | (I[5] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 129 | (I[15] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 130 | (I[25] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 131 | (I[35] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 132 | (I[45] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 133 | (I[55] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 134 | (I[65] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 135 | (I[75] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 136 | (I[85] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 137 | (I[95] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 138 | (I[6] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 139 | (I[16] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 140 | (I[26] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 141 | (I[36] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 142 | (I[46] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 143 | (I[56] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 144 | (I[66] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 145 | (I[76] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 146 | (I[86] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 147 | (I[96] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 148 | (I[7] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 149 | (I[17] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 150 | (I[27] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 151 | (I[37] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 152 | (I[47] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 153 | (I[57] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 154 | (I[67] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 155 | (I[77] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 156 | (I[87] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 157 | (I[97] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 158 | (I[8] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 159 | (I[18] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 160 | (I[28] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 161 | (I[38] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 162 | (I[48] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 163 | (I[58] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 164 | (I[68] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 165 | (I[78] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 166 | (I[88] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 167 | (I[98] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 168 | 5>=((img).width)?(int)((img).width)-1:5); \ |
philpem@5 | 169 | (_n5##x<(int)((img).width) && ( \ |
philpem@5 | 170 | (I[9] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 171 | (I[19] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 172 | (I[29] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 173 | (I[39] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 174 | (I[49] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 175 | (I[59] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 176 | (I[69] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 177 | (I[79] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 178 | (I[89] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 179 | (I[99] = (img)(_n5##x,_n5##y,z,v)),1)) || \ |
philpem@5 | 180 | _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \ |
philpem@5 | 181 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], \ |
philpem@5 | 182 | I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \ |
philpem@5 | 183 | I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \ |
philpem@5 | 184 | I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \ |
philpem@5 | 185 | I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], \ |
philpem@5 | 186 | I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \ |
philpem@5 | 187 | I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \ |
philpem@5 | 188 | I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \ |
philpem@5 | 189 | I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \ |
philpem@5 | 190 | I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \ |
philpem@5 | 191 | _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x) |
philpem@5 | 192 | |
philpem@5 | 193 | #define cimg_for_in10x10(img,x0,y0,x1,y1,x,y,z,v,I) \ |
philpem@5 | 194 | cimg_for_in10((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ |
philpem@5 | 195 | _p4##x = x-4<0?0:x-4, \ |
philpem@5 | 196 | _p3##x = x-3<0?0:x-3, \ |
philpem@5 | 197 | _p2##x = x-2<0?0:x-2, \ |
philpem@5 | 198 | _p1##x = x-1<0?0:x-1, \ |
philpem@5 | 199 | _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \ |
philpem@5 | 200 | _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \ |
philpem@5 | 201 | _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \ |
philpem@5 | 202 | _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \ |
philpem@5 | 203 | _n5##x = (int)( \ |
philpem@5 | 204 | (I[0] = (img)(_p4##x,_p4##y,z,v)), \ |
philpem@5 | 205 | (I[10] = (img)(_p4##x,_p3##y,z,v)), \ |
philpem@5 | 206 | (I[20] = (img)(_p4##x,_p2##y,z,v)), \ |
philpem@5 | 207 | (I[30] = (img)(_p4##x,_p1##y,z,v)), \ |
philpem@5 | 208 | (I[40] = (img)(_p4##x,y,z,v)), \ |
philpem@5 | 209 | (I[50] = (img)(_p4##x,_n1##y,z,v)), \ |
philpem@5 | 210 | (I[60] = (img)(_p4##x,_n2##y,z,v)), \ |
philpem@5 | 211 | (I[70] = (img)(_p4##x,_n3##y,z,v)), \ |
philpem@5 | 212 | (I[80] = (img)(_p4##x,_n4##y,z,v)), \ |
philpem@5 | 213 | (I[90] = (img)(_p4##x,_n5##y,z,v)), \ |
philpem@5 | 214 | (I[1] = (img)(_p3##x,_p4##y,z,v)), \ |
philpem@5 | 215 | (I[11] = (img)(_p3##x,_p3##y,z,v)), \ |
philpem@5 | 216 | (I[21] = (img)(_p3##x,_p2##y,z,v)), \ |
philpem@5 | 217 | (I[31] = (img)(_p3##x,_p1##y,z,v)), \ |
philpem@5 | 218 | (I[41] = (img)(_p3##x,y,z,v)), \ |
philpem@5 | 219 | (I[51] = (img)(_p3##x,_n1##y,z,v)), \ |
philpem@5 | 220 | (I[61] = (img)(_p3##x,_n2##y,z,v)), \ |
philpem@5 | 221 | (I[71] = (img)(_p3##x,_n3##y,z,v)), \ |
philpem@5 | 222 | (I[81] = (img)(_p3##x,_n4##y,z,v)), \ |
philpem@5 | 223 | (I[91] = (img)(_p3##x,_n5##y,z,v)), \ |
philpem@5 | 224 | (I[2] = (img)(_p2##x,_p4##y,z,v)), \ |
philpem@5 | 225 | (I[12] = (img)(_p2##x,_p3##y,z,v)), \ |
philpem@5 | 226 | (I[22] = (img)(_p2##x,_p2##y,z,v)), \ |
philpem@5 | 227 | (I[32] = (img)(_p2##x,_p1##y,z,v)), \ |
philpem@5 | 228 | (I[42] = (img)(_p2##x,y,z,v)), \ |
philpem@5 | 229 | (I[52] = (img)(_p2##x,_n1##y,z,v)), \ |
philpem@5 | 230 | (I[62] = (img)(_p2##x,_n2##y,z,v)), \ |
philpem@5 | 231 | (I[72] = (img)(_p2##x,_n3##y,z,v)), \ |
philpem@5 | 232 | (I[82] = (img)(_p2##x,_n4##y,z,v)), \ |
philpem@5 | 233 | (I[92] = (img)(_p2##x,_n5##y,z,v)), \ |
philpem@5 | 234 | (I[3] = (img)(_p1##x,_p4##y,z,v)), \ |
philpem@5 | 235 | (I[13] = (img)(_p1##x,_p3##y,z,v)), \ |
philpem@5 | 236 | (I[23] = (img)(_p1##x,_p2##y,z,v)), \ |
philpem@5 | 237 | (I[33] = (img)(_p1##x,_p1##y,z,v)), \ |
philpem@5 | 238 | (I[43] = (img)(_p1##x,y,z,v)), \ |
philpem@5 | 239 | (I[53] = (img)(_p1##x,_n1##y,z,v)), \ |
philpem@5 | 240 | (I[63] = (img)(_p1##x,_n2##y,z,v)), \ |
philpem@5 | 241 | (I[73] = (img)(_p1##x,_n3##y,z,v)), \ |
philpem@5 | 242 | (I[83] = (img)(_p1##x,_n4##y,z,v)), \ |
philpem@5 | 243 | (I[93] = (img)(_p1##x,_n5##y,z,v)), \ |
philpem@5 | 244 | (I[4] = (img)(x,_p4##y,z,v)), \ |
philpem@5 | 245 | (I[14] = (img)(x,_p3##y,z,v)), \ |
philpem@5 | 246 | (I[24] = (img)(x,_p2##y,z,v)), \ |
philpem@5 | 247 | (I[34] = (img)(x,_p1##y,z,v)), \ |
philpem@5 | 248 | (I[44] = (img)(x,y,z,v)), \ |
philpem@5 | 249 | (I[54] = (img)(x,_n1##y,z,v)), \ |
philpem@5 | 250 | (I[64] = (img)(x,_n2##y,z,v)), \ |
philpem@5 | 251 | (I[74] = (img)(x,_n3##y,z,v)), \ |
philpem@5 | 252 | (I[84] = (img)(x,_n4##y,z,v)), \ |
philpem@5 | 253 | (I[94] = (img)(x,_n5##y,z,v)), \ |
philpem@5 | 254 | (I[5] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 255 | (I[15] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 256 | (I[25] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 257 | (I[35] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 258 | (I[45] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 259 | (I[55] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 260 | (I[65] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 261 | (I[75] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 262 | (I[85] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 263 | (I[95] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 264 | (I[6] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 265 | (I[16] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 266 | (I[26] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 267 | (I[36] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 268 | (I[46] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 269 | (I[56] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 270 | (I[66] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 271 | (I[76] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 272 | (I[86] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 273 | (I[96] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 274 | (I[7] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 275 | (I[17] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 276 | (I[27] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 277 | (I[37] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 278 | (I[47] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 279 | (I[57] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 280 | (I[67] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 281 | (I[77] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 282 | (I[87] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 283 | (I[97] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 284 | (I[8] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 285 | (I[18] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 286 | (I[28] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 287 | (I[38] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 288 | (I[48] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 289 | (I[58] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 290 | (I[68] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 291 | (I[78] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 292 | (I[88] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 293 | (I[98] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 294 | x+5>=(int)((img).width)?(int)((img).width)-1:x+5); \ |
philpem@5 | 295 | x<=(int)(x1) && ((_n5##x<(int)((img).width) && ( \ |
philpem@5 | 296 | (I[9] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 297 | (I[19] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 298 | (I[29] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 299 | (I[39] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 300 | (I[49] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 301 | (I[59] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 302 | (I[69] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 303 | (I[79] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 304 | (I[89] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 305 | (I[99] = (img)(_n5##x,_n5##y,z,v)),1)) || \ |
philpem@5 | 306 | _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \ |
philpem@5 | 307 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], \ |
philpem@5 | 308 | I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \ |
philpem@5 | 309 | I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \ |
philpem@5 | 310 | I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \ |
philpem@5 | 311 | I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], \ |
philpem@5 | 312 | I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \ |
philpem@5 | 313 | I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \ |
philpem@5 | 314 | I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \ |
philpem@5 | 315 | I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \ |
philpem@5 | 316 | I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \ |
philpem@5 | 317 | _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x) |
philpem@5 | 318 | |
philpem@5 | 319 | #define cimg_get10x10(img,x,y,z,v,I) \ |
philpem@5 | 320 | I[0] = (img)(_p4##x,_p4##y,z,v), I[1] = (img)(_p3##x,_p4##y,z,v), I[2] = (img)(_p2##x,_p4##y,z,v), I[3] = (img)(_p1##x,_p4##y,z,v), I[4] = (img)(x,_p4##y,z,v), I[5] = (img)(_n1##x,_p4##y,z,v), I[6] = (img)(_n2##x,_p4##y,z,v), I[7] = (img)(_n3##x,_p4##y,z,v), I[8] = (img)(_n4##x,_p4##y,z,v), I[9] = (img)(_n5##x,_p4##y,z,v), \ |
philpem@5 | 321 | I[10] = (img)(_p4##x,_p3##y,z,v), I[11] = (img)(_p3##x,_p3##y,z,v), I[12] = (img)(_p2##x,_p3##y,z,v), I[13] = (img)(_p1##x,_p3##y,z,v), I[14] = (img)(x,_p3##y,z,v), I[15] = (img)(_n1##x,_p3##y,z,v), I[16] = (img)(_n2##x,_p3##y,z,v), I[17] = (img)(_n3##x,_p3##y,z,v), I[18] = (img)(_n4##x,_p3##y,z,v), I[19] = (img)(_n5##x,_p3##y,z,v), \ |
philpem@5 | 322 | I[20] = (img)(_p4##x,_p2##y,z,v), I[21] = (img)(_p3##x,_p2##y,z,v), I[22] = (img)(_p2##x,_p2##y,z,v), I[23] = (img)(_p1##x,_p2##y,z,v), I[24] = (img)(x,_p2##y,z,v), I[25] = (img)(_n1##x,_p2##y,z,v), I[26] = (img)(_n2##x,_p2##y,z,v), I[27] = (img)(_n3##x,_p2##y,z,v), I[28] = (img)(_n4##x,_p2##y,z,v), I[29] = (img)(_n5##x,_p2##y,z,v), \ |
philpem@5 | 323 | I[30] = (img)(_p4##x,_p1##y,z,v), I[31] = (img)(_p3##x,_p1##y,z,v), I[32] = (img)(_p2##x,_p1##y,z,v), I[33] = (img)(_p1##x,_p1##y,z,v), I[34] = (img)(x,_p1##y,z,v), I[35] = (img)(_n1##x,_p1##y,z,v), I[36] = (img)(_n2##x,_p1##y,z,v), I[37] = (img)(_n3##x,_p1##y,z,v), I[38] = (img)(_n4##x,_p1##y,z,v), I[39] = (img)(_n5##x,_p1##y,z,v), \ |
philpem@5 | 324 | I[40] = (img)(_p4##x,y,z,v), I[41] = (img)(_p3##x,y,z,v), I[42] = (img)(_p2##x,y,z,v), I[43] = (img)(_p1##x,y,z,v), I[44] = (img)(x,y,z,v), I[45] = (img)(_n1##x,y,z,v), I[46] = (img)(_n2##x,y,z,v), I[47] = (img)(_n3##x,y,z,v), I[48] = (img)(_n4##x,y,z,v), I[49] = (img)(_n5##x,y,z,v), \ |
philpem@5 | 325 | I[50] = (img)(_p4##x,_n1##y,z,v), I[51] = (img)(_p3##x,_n1##y,z,v), I[52] = (img)(_p2##x,_n1##y,z,v), I[53] = (img)(_p1##x,_n1##y,z,v), I[54] = (img)(x,_n1##y,z,v), I[55] = (img)(_n1##x,_n1##y,z,v), I[56] = (img)(_n2##x,_n1##y,z,v), I[57] = (img)(_n3##x,_n1##y,z,v), I[58] = (img)(_n4##x,_n1##y,z,v), I[59] = (img)(_n5##x,_n1##y,z,v), \ |
philpem@5 | 326 | I[60] = (img)(_p4##x,_n2##y,z,v), I[61] = (img)(_p3##x,_n2##y,z,v), I[62] = (img)(_p2##x,_n2##y,z,v), I[63] = (img)(_p1##x,_n2##y,z,v), I[64] = (img)(x,_n2##y,z,v), I[65] = (img)(_n1##x,_n2##y,z,v), I[66] = (img)(_n2##x,_n2##y,z,v), I[67] = (img)(_n3##x,_n2##y,z,v), I[68] = (img)(_n4##x,_n2##y,z,v), I[69] = (img)(_n5##x,_n2##y,z,v), \ |
philpem@5 | 327 | I[70] = (img)(_p4##x,_n3##y,z,v), I[71] = (img)(_p3##x,_n3##y,z,v), I[72] = (img)(_p2##x,_n3##y,z,v), I[73] = (img)(_p1##x,_n3##y,z,v), I[74] = (img)(x,_n3##y,z,v), I[75] = (img)(_n1##x,_n3##y,z,v), I[76] = (img)(_n2##x,_n3##y,z,v), I[77] = (img)(_n3##x,_n3##y,z,v), I[78] = (img)(_n4##x,_n3##y,z,v), I[79] = (img)(_n5##x,_n3##y,z,v), \ |
philpem@5 | 328 | I[80] = (img)(_p4##x,_n4##y,z,v), I[81] = (img)(_p3##x,_n4##y,z,v), I[82] = (img)(_p2##x,_n4##y,z,v), I[83] = (img)(_p1##x,_n4##y,z,v), I[84] = (img)(x,_n4##y,z,v), I[85] = (img)(_n1##x,_n4##y,z,v), I[86] = (img)(_n2##x,_n4##y,z,v), I[87] = (img)(_n3##x,_n4##y,z,v), I[88] = (img)(_n4##x,_n4##y,z,v), I[89] = (img)(_n5##x,_n4##y,z,v), \ |
philpem@5 | 329 | I[90] = (img)(_p4##x,_n5##y,z,v), I[91] = (img)(_p3##x,_n5##y,z,v), I[92] = (img)(_p2##x,_n5##y,z,v), I[93] = (img)(_p1##x,_n5##y,z,v), I[94] = (img)(x,_n5##y,z,v), I[95] = (img)(_n1##x,_n5##y,z,v), I[96] = (img)(_n2##x,_n5##y,z,v), I[97] = (img)(_n3##x,_n5##y,z,v), I[98] = (img)(_n4##x,_n5##y,z,v), I[99] = (img)(_n5##x,_n5##y,z,v); |
philpem@5 | 330 | |
philpem@5 | 331 | // Define 11x11 loop macros for CImg |
philpem@5 | 332 | //---------------------------------- |
philpem@5 | 333 | #define cimg_for11(bound,i) for (int i = 0, \ |
philpem@5 | 334 | _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \ |
philpem@5 | 335 | _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \ |
philpem@5 | 336 | _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \ |
philpem@5 | 337 | _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \ |
philpem@5 | 338 | _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \ |
philpem@5 | 339 | _n5##i = 5>=(int)(bound)?(int)(bound)-1:5; \ |
philpem@5 | 340 | _n5##i<(int)(bound) || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 341 | i==(_n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \ |
philpem@5 | 342 | _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 343 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i) |
philpem@5 | 344 | |
philpem@5 | 345 | #define cimg_for11X(img,x) cimg_for11((img).width,x) |
philpem@5 | 346 | #define cimg_for11Y(img,y) cimg_for11((img).height,y) |
philpem@5 | 347 | #define cimg_for11Z(img,z) cimg_for11((img).depth,z) |
philpem@5 | 348 | #define cimg_for11V(img,v) cimg_for11((img).dim,v) |
philpem@5 | 349 | #define cimg_for11XY(img,x,y) cimg_for11Y(img,y) cimg_for11X(img,x) |
philpem@5 | 350 | #define cimg_for11XZ(img,x,z) cimg_for11Z(img,z) cimg_for11X(img,x) |
philpem@5 | 351 | #define cimg_for11XV(img,x,v) cimg_for11V(img,v) cimg_for11X(img,x) |
philpem@5 | 352 | #define cimg_for11YZ(img,y,z) cimg_for11Z(img,z) cimg_for11Y(img,y) |
philpem@5 | 353 | #define cimg_for11YV(img,y,v) cimg_for11V(img,v) cimg_for11Y(img,y) |
philpem@5 | 354 | #define cimg_for11ZV(img,z,v) cimg_for11V(img,v) cimg_for11Z(img,z) |
philpem@5 | 355 | #define cimg_for11XYZ(img,x,y,z) cimg_for11Z(img,z) cimg_for11XY(img,x,y) |
philpem@5 | 356 | #define cimg_for11XZV(img,x,z,v) cimg_for11V(img,v) cimg_for11XZ(img,x,z) |
philpem@5 | 357 | #define cimg_for11YZV(img,y,z,v) cimg_for11V(img,v) cimg_for11YZ(img,y,z) |
philpem@5 | 358 | #define cimg_for11XYZV(img,x,y,z,v) cimg_for11V(img,v) cimg_for11XYZ(img,x,y,z) |
philpem@5 | 359 | |
philpem@5 | 360 | #define cimg_for_in11(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \ |
philpem@5 | 361 | _p5##i = i-5<0?0:i-5, \ |
philpem@5 | 362 | _p4##i = i-4<0?0:i-4, \ |
philpem@5 | 363 | _p3##i = i-3<0?0:i-3, \ |
philpem@5 | 364 | _p2##i = i-2<0?0:i-2, \ |
philpem@5 | 365 | _p1##i = i-1<0?0:i-1, \ |
philpem@5 | 366 | _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \ |
philpem@5 | 367 | _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \ |
philpem@5 | 368 | _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \ |
philpem@5 | 369 | _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \ |
philpem@5 | 370 | _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5; \ |
philpem@5 | 371 | i<=(int)(i1) && (_n5##i<(int)(bound) || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 372 | i==(_n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \ |
philpem@5 | 373 | _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 374 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i) |
philpem@5 | 375 | |
philpem@5 | 376 | #define cimg_for_in11X(img,x0,x1,x) cimg_for_in11((img).width,x0,x1,x) |
philpem@5 | 377 | #define cimg_for_in11Y(img,y0,y1,y) cimg_for_in11((img).height,y0,y1,y) |
philpem@5 | 378 | #define cimg_for_in11Z(img,z0,z1,z) cimg_for_in11((img).depth,z0,z1,z) |
philpem@5 | 379 | #define cimg_for_in11V(img,v0,v1,v) cimg_for_in11((img).dim,v0,v1,v) |
philpem@5 | 380 | #define cimg_for_in11XY(img,x0,y0,x1,y1,x,y) cimg_for_in11Y(img,y0,y1,y) cimg_for_in11X(img,x0,x1,x) |
philpem@5 | 381 | #define cimg_for_in11XZ(img,x0,z0,x1,z1,x,z) cimg_for_in11Z(img,z0,z1,z) cimg_for_in11X(img,x0,x1,x) |
philpem@5 | 382 | #define cimg_for_in11XV(img,x0,v0,x1,v1,x,v) cimg_for_in11V(img,v0,v1,v) cimg_for_in11X(img,x0,x1,x) |
philpem@5 | 383 | #define cimg_for_in11YZ(img,y0,z0,y1,z1,y,z) cimg_for_in11Z(img,z0,z1,z) cimg_for_in11Y(img,y0,y1,y) |
philpem@5 | 384 | #define cimg_for_in11YV(img,y0,v0,y1,v1,y,v) cimg_for_in11V(img,v0,v1,v) cimg_for_in11Y(img,y0,y1,y) |
philpem@5 | 385 | #define cimg_for_in11ZV(img,z0,v0,z1,v1,z,v) cimg_for_in11V(img,v0,v1,v) cimg_for_in11Z(img,z0,z1,z) |
philpem@5 | 386 | #define cimg_for_in11XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in11Z(img,z0,z1,z) cimg_for_in11XY(img,x0,y0,x1,y1,x,y) |
philpem@5 | 387 | #define cimg_for_in11XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in11V(img,v0,v1,v) cimg_for_in11XZ(img,x0,y0,x1,y1,x,z) |
philpem@5 | 388 | #define cimg_for_in11YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in11V(img,v0,v1,v) cimg_for_in11YZ(img,y0,z0,y1,z1,y,z) |
philpem@5 | 389 | #define cimg_for_in11XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in11V(img,v0,v1,v) cimg_for_in11XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) |
philpem@5 | 390 | |
philpem@5 | 391 | #define cimg_for11x11(img,x,y,z,v,I) \ |
philpem@5 | 392 | cimg_for11((img).height,y) for (int x = 0, \ |
philpem@5 | 393 | _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \ |
philpem@5 | 394 | _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \ |
philpem@5 | 395 | _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \ |
philpem@5 | 396 | _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \ |
philpem@5 | 397 | _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \ |
philpem@5 | 398 | _n5##x = (int)( \ |
philpem@5 | 399 | (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = (img)(0,_p5##y,z,v)), \ |
philpem@5 | 400 | (I[11] = I[12] = I[13] = I[14] = I[15] = I[16] = (img)(0,_p4##y,z,v)), \ |
philpem@5 | 401 | (I[22] = I[23] = I[24] = I[25] = I[26] = I[27] = (img)(0,_p3##y,z,v)), \ |
philpem@5 | 402 | (I[33] = I[34] = I[35] = I[36] = I[37] = I[38] = (img)(0,_p2##y,z,v)), \ |
philpem@5 | 403 | (I[44] = I[45] = I[46] = I[47] = I[48] = I[49] = (img)(0,_p1##y,z,v)), \ |
philpem@5 | 404 | (I[55] = I[56] = I[57] = I[58] = I[59] = I[60] = (img)(0,y,z,v)), \ |
philpem@5 | 405 | (I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = (img)(0,_n1##y,z,v)), \ |
philpem@5 | 406 | (I[77] = I[78] = I[79] = I[80] = I[81] = I[82] = (img)(0,_n2##y,z,v)), \ |
philpem@5 | 407 | (I[88] = I[89] = I[90] = I[91] = I[92] = I[93] = (img)(0,_n3##y,z,v)), \ |
philpem@5 | 408 | (I[99] = I[100] = I[101] = I[102] = I[103] = I[104] = (img)(0,_n4##y,z,v)), \ |
philpem@5 | 409 | (I[110] = I[111] = I[112] = I[113] = I[114] = I[115] = (img)(0,_n5##y,z,v)), \ |
philpem@5 | 410 | (I[6] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 411 | (I[17] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 412 | (I[28] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 413 | (I[39] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 414 | (I[50] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 415 | (I[61] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 416 | (I[72] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 417 | (I[83] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 418 | (I[94] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 419 | (I[105] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 420 | (I[116] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 421 | (I[7] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 422 | (I[18] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 423 | (I[29] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 424 | (I[40] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 425 | (I[51] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 426 | (I[62] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 427 | (I[73] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 428 | (I[84] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 429 | (I[95] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 430 | (I[106] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 431 | (I[117] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 432 | (I[8] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 433 | (I[19] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 434 | (I[30] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 435 | (I[41] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 436 | (I[52] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 437 | (I[63] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 438 | (I[74] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 439 | (I[85] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 440 | (I[96] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 441 | (I[107] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 442 | (I[118] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 443 | (I[9] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 444 | (I[20] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 445 | (I[31] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 446 | (I[42] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 447 | (I[53] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 448 | (I[64] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 449 | (I[75] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 450 | (I[86] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 451 | (I[97] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 452 | (I[108] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 453 | (I[119] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 454 | 5>=((img).width)?(int)((img).width)-1:5); \ |
philpem@5 | 455 | (_n5##x<(int)((img).width) && ( \ |
philpem@5 | 456 | (I[10] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 457 | (I[21] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 458 | (I[32] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 459 | (I[43] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 460 | (I[54] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 461 | (I[65] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 462 | (I[76] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 463 | (I[87] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 464 | (I[98] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 465 | (I[109] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 466 | (I[120] = (img)(_n5##x,_n5##y,z,v)),1)) || \ |
philpem@5 | 467 | _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \ |
philpem@5 | 468 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], \ |
philpem@5 | 469 | I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], \ |
philpem@5 | 470 | I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], \ |
philpem@5 | 471 | I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], \ |
philpem@5 | 472 | I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], \ |
philpem@5 | 473 | I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], \ |
philpem@5 | 474 | I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], \ |
philpem@5 | 475 | I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], \ |
philpem@5 | 476 | I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], \ |
philpem@5 | 477 | I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], \ |
philpem@5 | 478 | I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], \ |
philpem@5 | 479 | _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x) |
philpem@5 | 480 | |
philpem@5 | 481 | #define cimg_for_in11x11(img,x0,y0,x1,y1,x,y,z,v,I) \ |
philpem@5 | 482 | cimg_for_in11((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ |
philpem@5 | 483 | _p5##x = x-5<0?0:x-5, \ |
philpem@5 | 484 | _p4##x = x-4<0?0:x-4, \ |
philpem@5 | 485 | _p3##x = x-3<0?0:x-3, \ |
philpem@5 | 486 | _p2##x = x-2<0?0:x-2, \ |
philpem@5 | 487 | _p1##x = x-1<0?0:x-1, \ |
philpem@5 | 488 | _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \ |
philpem@5 | 489 | _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \ |
philpem@5 | 490 | _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \ |
philpem@5 | 491 | _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \ |
philpem@5 | 492 | _n5##x = (int)( \ |
philpem@5 | 493 | (I[0] = (img)(_p5##x,_p5##y,z,v)), \ |
philpem@5 | 494 | (I[11] = (img)(_p5##x,_p4##y,z,v)), \ |
philpem@5 | 495 | (I[22] = (img)(_p5##x,_p3##y,z,v)), \ |
philpem@5 | 496 | (I[33] = (img)(_p5##x,_p2##y,z,v)), \ |
philpem@5 | 497 | (I[44] = (img)(_p5##x,_p1##y,z,v)), \ |
philpem@5 | 498 | (I[55] = (img)(_p5##x,y,z,v)), \ |
philpem@5 | 499 | (I[66] = (img)(_p5##x,_n1##y,z,v)), \ |
philpem@5 | 500 | (I[77] = (img)(_p5##x,_n2##y,z,v)), \ |
philpem@5 | 501 | (I[88] = (img)(_p5##x,_n3##y,z,v)), \ |
philpem@5 | 502 | (I[99] = (img)(_p5##x,_n4##y,z,v)), \ |
philpem@5 | 503 | (I[110] = (img)(_p5##x,_n5##y,z,v)), \ |
philpem@5 | 504 | (I[1] = (img)(_p4##x,_p5##y,z,v)), \ |
philpem@5 | 505 | (I[12] = (img)(_p4##x,_p4##y,z,v)), \ |
philpem@5 | 506 | (I[23] = (img)(_p4##x,_p3##y,z,v)), \ |
philpem@5 | 507 | (I[34] = (img)(_p4##x,_p2##y,z,v)), \ |
philpem@5 | 508 | (I[45] = (img)(_p4##x,_p1##y,z,v)), \ |
philpem@5 | 509 | (I[56] = (img)(_p4##x,y,z,v)), \ |
philpem@5 | 510 | (I[67] = (img)(_p4##x,_n1##y,z,v)), \ |
philpem@5 | 511 | (I[78] = (img)(_p4##x,_n2##y,z,v)), \ |
philpem@5 | 512 | (I[89] = (img)(_p4##x,_n3##y,z,v)), \ |
philpem@5 | 513 | (I[100] = (img)(_p4##x,_n4##y,z,v)), \ |
philpem@5 | 514 | (I[111] = (img)(_p4##x,_n5##y,z,v)), \ |
philpem@5 | 515 | (I[2] = (img)(_p3##x,_p5##y,z,v)), \ |
philpem@5 | 516 | (I[13] = (img)(_p3##x,_p4##y,z,v)), \ |
philpem@5 | 517 | (I[24] = (img)(_p3##x,_p3##y,z,v)), \ |
philpem@5 | 518 | (I[35] = (img)(_p3##x,_p2##y,z,v)), \ |
philpem@5 | 519 | (I[46] = (img)(_p3##x,_p1##y,z,v)), \ |
philpem@5 | 520 | (I[57] = (img)(_p3##x,y,z,v)), \ |
philpem@5 | 521 | (I[68] = (img)(_p3##x,_n1##y,z,v)), \ |
philpem@5 | 522 | (I[79] = (img)(_p3##x,_n2##y,z,v)), \ |
philpem@5 | 523 | (I[90] = (img)(_p3##x,_n3##y,z,v)), \ |
philpem@5 | 524 | (I[101] = (img)(_p3##x,_n4##y,z,v)), \ |
philpem@5 | 525 | (I[112] = (img)(_p3##x,_n5##y,z,v)), \ |
philpem@5 | 526 | (I[3] = (img)(_p2##x,_p5##y,z,v)), \ |
philpem@5 | 527 | (I[14] = (img)(_p2##x,_p4##y,z,v)), \ |
philpem@5 | 528 | (I[25] = (img)(_p2##x,_p3##y,z,v)), \ |
philpem@5 | 529 | (I[36] = (img)(_p2##x,_p2##y,z,v)), \ |
philpem@5 | 530 | (I[47] = (img)(_p2##x,_p1##y,z,v)), \ |
philpem@5 | 531 | (I[58] = (img)(_p2##x,y,z,v)), \ |
philpem@5 | 532 | (I[69] = (img)(_p2##x,_n1##y,z,v)), \ |
philpem@5 | 533 | (I[80] = (img)(_p2##x,_n2##y,z,v)), \ |
philpem@5 | 534 | (I[91] = (img)(_p2##x,_n3##y,z,v)), \ |
philpem@5 | 535 | (I[102] = (img)(_p2##x,_n4##y,z,v)), \ |
philpem@5 | 536 | (I[113] = (img)(_p2##x,_n5##y,z,v)), \ |
philpem@5 | 537 | (I[4] = (img)(_p1##x,_p5##y,z,v)), \ |
philpem@5 | 538 | (I[15] = (img)(_p1##x,_p4##y,z,v)), \ |
philpem@5 | 539 | (I[26] = (img)(_p1##x,_p3##y,z,v)), \ |
philpem@5 | 540 | (I[37] = (img)(_p1##x,_p2##y,z,v)), \ |
philpem@5 | 541 | (I[48] = (img)(_p1##x,_p1##y,z,v)), \ |
philpem@5 | 542 | (I[59] = (img)(_p1##x,y,z,v)), \ |
philpem@5 | 543 | (I[70] = (img)(_p1##x,_n1##y,z,v)), \ |
philpem@5 | 544 | (I[81] = (img)(_p1##x,_n2##y,z,v)), \ |
philpem@5 | 545 | (I[92] = (img)(_p1##x,_n3##y,z,v)), \ |
philpem@5 | 546 | (I[103] = (img)(_p1##x,_n4##y,z,v)), \ |
philpem@5 | 547 | (I[114] = (img)(_p1##x,_n5##y,z,v)), \ |
philpem@5 | 548 | (I[5] = (img)(x,_p5##y,z,v)), \ |
philpem@5 | 549 | (I[16] = (img)(x,_p4##y,z,v)), \ |
philpem@5 | 550 | (I[27] = (img)(x,_p3##y,z,v)), \ |
philpem@5 | 551 | (I[38] = (img)(x,_p2##y,z,v)), \ |
philpem@5 | 552 | (I[49] = (img)(x,_p1##y,z,v)), \ |
philpem@5 | 553 | (I[60] = (img)(x,y,z,v)), \ |
philpem@5 | 554 | (I[71] = (img)(x,_n1##y,z,v)), \ |
philpem@5 | 555 | (I[82] = (img)(x,_n2##y,z,v)), \ |
philpem@5 | 556 | (I[93] = (img)(x,_n3##y,z,v)), \ |
philpem@5 | 557 | (I[104] = (img)(x,_n4##y,z,v)), \ |
philpem@5 | 558 | (I[115] = (img)(x,_n5##y,z,v)), \ |
philpem@5 | 559 | (I[6] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 560 | (I[17] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 561 | (I[28] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 562 | (I[39] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 563 | (I[50] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 564 | (I[61] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 565 | (I[72] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 566 | (I[83] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 567 | (I[94] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 568 | (I[105] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 569 | (I[116] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 570 | (I[7] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 571 | (I[18] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 572 | (I[29] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 573 | (I[40] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 574 | (I[51] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 575 | (I[62] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 576 | (I[73] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 577 | (I[84] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 578 | (I[95] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 579 | (I[106] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 580 | (I[117] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 581 | (I[8] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 582 | (I[19] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 583 | (I[30] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 584 | (I[41] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 585 | (I[52] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 586 | (I[63] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 587 | (I[74] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 588 | (I[85] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 589 | (I[96] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 590 | (I[107] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 591 | (I[118] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 592 | (I[9] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 593 | (I[20] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 594 | (I[31] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 595 | (I[42] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 596 | (I[53] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 597 | (I[64] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 598 | (I[75] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 599 | (I[86] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 600 | (I[97] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 601 | (I[108] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 602 | (I[119] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 603 | x+5>=(int)((img).width)?(int)((img).width)-1:x+5); \ |
philpem@5 | 604 | x<=(int)(x1) && ((_n5##x<(int)((img).width) && ( \ |
philpem@5 | 605 | (I[10] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 606 | (I[21] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 607 | (I[32] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 608 | (I[43] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 609 | (I[54] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 610 | (I[65] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 611 | (I[76] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 612 | (I[87] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 613 | (I[98] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 614 | (I[109] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 615 | (I[120] = (img)(_n5##x,_n5##y,z,v)),1)) || \ |
philpem@5 | 616 | _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \ |
philpem@5 | 617 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], \ |
philpem@5 | 618 | I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], \ |
philpem@5 | 619 | I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], \ |
philpem@5 | 620 | I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], \ |
philpem@5 | 621 | I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], \ |
philpem@5 | 622 | I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], \ |
philpem@5 | 623 | I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], \ |
philpem@5 | 624 | I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], \ |
philpem@5 | 625 | I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], \ |
philpem@5 | 626 | I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], \ |
philpem@5 | 627 | I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], \ |
philpem@5 | 628 | _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x) |
philpem@5 | 629 | |
philpem@5 | 630 | #define cimg_get11x11(img,x,y,z,v,I) \ |
philpem@5 | 631 | I[0] = (img)(_p5##x,_p5##y,z,v), I[1] = (img)(_p4##x,_p5##y,z,v), I[2] = (img)(_p3##x,_p5##y,z,v), I[3] = (img)(_p2##x,_p5##y,z,v), I[4] = (img)(_p1##x,_p5##y,z,v), I[5] = (img)(x,_p5##y,z,v), I[6] = (img)(_n1##x,_p5##y,z,v), I[7] = (img)(_n2##x,_p5##y,z,v), I[8] = (img)(_n3##x,_p5##y,z,v), I[9] = (img)(_n4##x,_p5##y,z,v), I[10] = (img)(_n5##x,_p5##y,z,v), \ |
philpem@5 | 632 | I[11] = (img)(_p5##x,_p4##y,z,v), I[12] = (img)(_p4##x,_p4##y,z,v), I[13] = (img)(_p3##x,_p4##y,z,v), I[14] = (img)(_p2##x,_p4##y,z,v), I[15] = (img)(_p1##x,_p4##y,z,v), I[16] = (img)(x,_p4##y,z,v), I[17] = (img)(_n1##x,_p4##y,z,v), I[18] = (img)(_n2##x,_p4##y,z,v), I[19] = (img)(_n3##x,_p4##y,z,v), I[20] = (img)(_n4##x,_p4##y,z,v), I[21] = (img)(_n5##x,_p4##y,z,v), \ |
philpem@5 | 633 | I[22] = (img)(_p5##x,_p3##y,z,v), I[23] = (img)(_p4##x,_p3##y,z,v), I[24] = (img)(_p3##x,_p3##y,z,v), I[25] = (img)(_p2##x,_p3##y,z,v), I[26] = (img)(_p1##x,_p3##y,z,v), I[27] = (img)(x,_p3##y,z,v), I[28] = (img)(_n1##x,_p3##y,z,v), I[29] = (img)(_n2##x,_p3##y,z,v), I[30] = (img)(_n3##x,_p3##y,z,v), I[31] = (img)(_n4##x,_p3##y,z,v), I[32] = (img)(_n5##x,_p3##y,z,v), \ |
philpem@5 | 634 | I[33] = (img)(_p5##x,_p2##y,z,v), I[34] = (img)(_p4##x,_p2##y,z,v), I[35] = (img)(_p3##x,_p2##y,z,v), I[36] = (img)(_p2##x,_p2##y,z,v), I[37] = (img)(_p1##x,_p2##y,z,v), I[38] = (img)(x,_p2##y,z,v), I[39] = (img)(_n1##x,_p2##y,z,v), I[40] = (img)(_n2##x,_p2##y,z,v), I[41] = (img)(_n3##x,_p2##y,z,v), I[42] = (img)(_n4##x,_p2##y,z,v), I[43] = (img)(_n5##x,_p2##y,z,v), \ |
philpem@5 | 635 | I[44] = (img)(_p5##x,_p1##y,z,v), I[45] = (img)(_p4##x,_p1##y,z,v), I[46] = (img)(_p3##x,_p1##y,z,v), I[47] = (img)(_p2##x,_p1##y,z,v), I[48] = (img)(_p1##x,_p1##y,z,v), I[49] = (img)(x,_p1##y,z,v), I[50] = (img)(_n1##x,_p1##y,z,v), I[51] = (img)(_n2##x,_p1##y,z,v), I[52] = (img)(_n3##x,_p1##y,z,v), I[53] = (img)(_n4##x,_p1##y,z,v), I[54] = (img)(_n5##x,_p1##y,z,v), \ |
philpem@5 | 636 | I[55] = (img)(_p5##x,y,z,v), I[56] = (img)(_p4##x,y,z,v), I[57] = (img)(_p3##x,y,z,v), I[58] = (img)(_p2##x,y,z,v), I[59] = (img)(_p1##x,y,z,v), I[60] = (img)(x,y,z,v), I[61] = (img)(_n1##x,y,z,v), I[62] = (img)(_n2##x,y,z,v), I[63] = (img)(_n3##x,y,z,v), I[64] = (img)(_n4##x,y,z,v), I[65] = (img)(_n5##x,y,z,v), \ |
philpem@5 | 637 | I[66] = (img)(_p5##x,_n1##y,z,v), I[67] = (img)(_p4##x,_n1##y,z,v), I[68] = (img)(_p3##x,_n1##y,z,v), I[69] = (img)(_p2##x,_n1##y,z,v), I[70] = (img)(_p1##x,_n1##y,z,v), I[71] = (img)(x,_n1##y,z,v), I[72] = (img)(_n1##x,_n1##y,z,v), I[73] = (img)(_n2##x,_n1##y,z,v), I[74] = (img)(_n3##x,_n1##y,z,v), I[75] = (img)(_n4##x,_n1##y,z,v), I[76] = (img)(_n5##x,_n1##y,z,v), \ |
philpem@5 | 638 | I[77] = (img)(_p5##x,_n2##y,z,v), I[78] = (img)(_p4##x,_n2##y,z,v), I[79] = (img)(_p3##x,_n2##y,z,v), I[80] = (img)(_p2##x,_n2##y,z,v), I[81] = (img)(_p1##x,_n2##y,z,v), I[82] = (img)(x,_n2##y,z,v), I[83] = (img)(_n1##x,_n2##y,z,v), I[84] = (img)(_n2##x,_n2##y,z,v), I[85] = (img)(_n3##x,_n2##y,z,v), I[86] = (img)(_n4##x,_n2##y,z,v), I[87] = (img)(_n5##x,_n2##y,z,v), \ |
philpem@5 | 639 | I[88] = (img)(_p5##x,_n3##y,z,v), I[89] = (img)(_p4##x,_n3##y,z,v), I[90] = (img)(_p3##x,_n3##y,z,v), I[91] = (img)(_p2##x,_n3##y,z,v), I[92] = (img)(_p1##x,_n3##y,z,v), I[93] = (img)(x,_n3##y,z,v), I[94] = (img)(_n1##x,_n3##y,z,v), I[95] = (img)(_n2##x,_n3##y,z,v), I[96] = (img)(_n3##x,_n3##y,z,v), I[97] = (img)(_n4##x,_n3##y,z,v), I[98] = (img)(_n5##x,_n3##y,z,v), \ |
philpem@5 | 640 | I[99] = (img)(_p5##x,_n4##y,z,v), I[100] = (img)(_p4##x,_n4##y,z,v), I[101] = (img)(_p3##x,_n4##y,z,v), I[102] = (img)(_p2##x,_n4##y,z,v), I[103] = (img)(_p1##x,_n4##y,z,v), I[104] = (img)(x,_n4##y,z,v), I[105] = (img)(_n1##x,_n4##y,z,v), I[106] = (img)(_n2##x,_n4##y,z,v), I[107] = (img)(_n3##x,_n4##y,z,v), I[108] = (img)(_n4##x,_n4##y,z,v), I[109] = (img)(_n5##x,_n4##y,z,v), \ |
philpem@5 | 641 | I[110] = (img)(_p5##x,_n5##y,z,v), I[111] = (img)(_p4##x,_n5##y,z,v), I[112] = (img)(_p3##x,_n5##y,z,v), I[113] = (img)(_p2##x,_n5##y,z,v), I[114] = (img)(_p1##x,_n5##y,z,v), I[115] = (img)(x,_n5##y,z,v), I[116] = (img)(_n1##x,_n5##y,z,v), I[117] = (img)(_n2##x,_n5##y,z,v), I[118] = (img)(_n3##x,_n5##y,z,v), I[119] = (img)(_n4##x,_n5##y,z,v), I[120] = (img)(_n5##x,_n5##y,z,v); |
philpem@5 | 642 | |
philpem@5 | 643 | // Define 12x12 loop macros for CImg |
philpem@5 | 644 | //---------------------------------- |
philpem@5 | 645 | #define cimg_for12(bound,i) for (int i = 0, \ |
philpem@5 | 646 | _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \ |
philpem@5 | 647 | _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \ |
philpem@5 | 648 | _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \ |
philpem@5 | 649 | _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \ |
philpem@5 | 650 | _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \ |
philpem@5 | 651 | _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \ |
philpem@5 | 652 | _n6##i = 6>=(int)(bound)?(int)(bound)-1:6; \ |
philpem@5 | 653 | _n6##i<(int)(bound) || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 654 | i==(_n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \ |
philpem@5 | 655 | _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 656 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i) |
philpem@5 | 657 | |
philpem@5 | 658 | #define cimg_for12X(img,x) cimg_for12((img).width,x) |
philpem@5 | 659 | #define cimg_for12Y(img,y) cimg_for12((img).height,y) |
philpem@5 | 660 | #define cimg_for12Z(img,z) cimg_for12((img).depth,z) |
philpem@5 | 661 | #define cimg_for12V(img,v) cimg_for12((img).dim,v) |
philpem@5 | 662 | #define cimg_for12XY(img,x,y) cimg_for12Y(img,y) cimg_for12X(img,x) |
philpem@5 | 663 | #define cimg_for12XZ(img,x,z) cimg_for12Z(img,z) cimg_for12X(img,x) |
philpem@5 | 664 | #define cimg_for12XV(img,x,v) cimg_for12V(img,v) cimg_for12X(img,x) |
philpem@5 | 665 | #define cimg_for12YZ(img,y,z) cimg_for12Z(img,z) cimg_for12Y(img,y) |
philpem@5 | 666 | #define cimg_for12YV(img,y,v) cimg_for12V(img,v) cimg_for12Y(img,y) |
philpem@5 | 667 | #define cimg_for12ZV(img,z,v) cimg_for12V(img,v) cimg_for12Z(img,z) |
philpem@5 | 668 | #define cimg_for12XYZ(img,x,y,z) cimg_for12Z(img,z) cimg_for12XY(img,x,y) |
philpem@5 | 669 | #define cimg_for12XZV(img,x,z,v) cimg_for12V(img,v) cimg_for12XZ(img,x,z) |
philpem@5 | 670 | #define cimg_for12YZV(img,y,z,v) cimg_for12V(img,v) cimg_for12YZ(img,y,z) |
philpem@5 | 671 | #define cimg_for12XYZV(img,x,y,z,v) cimg_for12V(img,v) cimg_for12XYZ(img,x,y,z) |
philpem@5 | 672 | |
philpem@5 | 673 | #define cimg_for_in12(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \ |
philpem@5 | 674 | _p5##i = i-5<0?0:i-5, \ |
philpem@5 | 675 | _p4##i = i-4<0?0:i-4, \ |
philpem@5 | 676 | _p3##i = i-3<0?0:i-3, \ |
philpem@5 | 677 | _p2##i = i-2<0?0:i-2, \ |
philpem@5 | 678 | _p1##i = i-1<0?0:i-1, \ |
philpem@5 | 679 | _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \ |
philpem@5 | 680 | _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \ |
philpem@5 | 681 | _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \ |
philpem@5 | 682 | _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \ |
philpem@5 | 683 | _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \ |
philpem@5 | 684 | _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6; \ |
philpem@5 | 685 | i<=(int)(i1) && (_n6##i<(int)(bound) || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 686 | i==(_n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \ |
philpem@5 | 687 | _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 688 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i) |
philpem@5 | 689 | |
philpem@5 | 690 | #define cimg_for_in12X(img,x0,x1,x) cimg_for_in12((img).width,x0,x1,x) |
philpem@5 | 691 | #define cimg_for_in12Y(img,y0,y1,y) cimg_for_in12((img).height,y0,y1,y) |
philpem@5 | 692 | #define cimg_for_in12Z(img,z0,z1,z) cimg_for_in12((img).depth,z0,z1,z) |
philpem@5 | 693 | #define cimg_for_in12V(img,v0,v1,v) cimg_for_in12((img).dim,v0,v1,v) |
philpem@5 | 694 | #define cimg_for_in12XY(img,x0,y0,x1,y1,x,y) cimg_for_in12Y(img,y0,y1,y) cimg_for_in12X(img,x0,x1,x) |
philpem@5 | 695 | #define cimg_for_in12XZ(img,x0,z0,x1,z1,x,z) cimg_for_in12Z(img,z0,z1,z) cimg_for_in12X(img,x0,x1,x) |
philpem@5 | 696 | #define cimg_for_in12XV(img,x0,v0,x1,v1,x,v) cimg_for_in12V(img,v0,v1,v) cimg_for_in12X(img,x0,x1,x) |
philpem@5 | 697 | #define cimg_for_in12YZ(img,y0,z0,y1,z1,y,z) cimg_for_in12Z(img,z0,z1,z) cimg_for_in12Y(img,y0,y1,y) |
philpem@5 | 698 | #define cimg_for_in12YV(img,y0,v0,y1,v1,y,v) cimg_for_in12V(img,v0,v1,v) cimg_for_in12Y(img,y0,y1,y) |
philpem@5 | 699 | #define cimg_for_in12ZV(img,z0,v0,z1,v1,z,v) cimg_for_in12V(img,v0,v1,v) cimg_for_in12Z(img,z0,z1,z) |
philpem@5 | 700 | #define cimg_for_in12XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in12Z(img,z0,z1,z) cimg_for_in12XY(img,x0,y0,x1,y1,x,y) |
philpem@5 | 701 | #define cimg_for_in12XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in12V(img,v0,v1,v) cimg_for_in12XZ(img,x0,y0,x1,y1,x,z) |
philpem@5 | 702 | #define cimg_for_in12YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in12V(img,v0,v1,v) cimg_for_in12YZ(img,y0,z0,y1,z1,y,z) |
philpem@5 | 703 | #define cimg_for_in12XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in12V(img,v0,v1,v) cimg_for_in12XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) |
philpem@5 | 704 | |
philpem@5 | 705 | #define cimg_for12x12(img,x,y,z,v,I) \ |
philpem@5 | 706 | cimg_for12((img).height,y) for (int x = 0, \ |
philpem@5 | 707 | _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \ |
philpem@5 | 708 | _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \ |
philpem@5 | 709 | _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \ |
philpem@5 | 710 | _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \ |
philpem@5 | 711 | _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \ |
philpem@5 | 712 | _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \ |
philpem@5 | 713 | _n6##x = (int)( \ |
philpem@5 | 714 | (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = (img)(0,_p5##y,z,v)), \ |
philpem@5 | 715 | (I[12] = I[13] = I[14] = I[15] = I[16] = I[17] = (img)(0,_p4##y,z,v)), \ |
philpem@5 | 716 | (I[24] = I[25] = I[26] = I[27] = I[28] = I[29] = (img)(0,_p3##y,z,v)), \ |
philpem@5 | 717 | (I[36] = I[37] = I[38] = I[39] = I[40] = I[41] = (img)(0,_p2##y,z,v)), \ |
philpem@5 | 718 | (I[48] = I[49] = I[50] = I[51] = I[52] = I[53] = (img)(0,_p1##y,z,v)), \ |
philpem@5 | 719 | (I[60] = I[61] = I[62] = I[63] = I[64] = I[65] = (img)(0,y,z,v)), \ |
philpem@5 | 720 | (I[72] = I[73] = I[74] = I[75] = I[76] = I[77] = (img)(0,_n1##y,z,v)), \ |
philpem@5 | 721 | (I[84] = I[85] = I[86] = I[87] = I[88] = I[89] = (img)(0,_n2##y,z,v)), \ |
philpem@5 | 722 | (I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = (img)(0,_n3##y,z,v)), \ |
philpem@5 | 723 | (I[108] = I[109] = I[110] = I[111] = I[112] = I[113] = (img)(0,_n4##y,z,v)), \ |
philpem@5 | 724 | (I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = (img)(0,_n5##y,z,v)), \ |
philpem@5 | 725 | (I[132] = I[133] = I[134] = I[135] = I[136] = I[137] = (img)(0,_n6##y,z,v)), \ |
philpem@5 | 726 | (I[6] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 727 | (I[18] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 728 | (I[30] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 729 | (I[42] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 730 | (I[54] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 731 | (I[66] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 732 | (I[78] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 733 | (I[90] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 734 | (I[102] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 735 | (I[114] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 736 | (I[126] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 737 | (I[138] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 738 | (I[7] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 739 | (I[19] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 740 | (I[31] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 741 | (I[43] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 742 | (I[55] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 743 | (I[67] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 744 | (I[79] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 745 | (I[91] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 746 | (I[103] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 747 | (I[115] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 748 | (I[127] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 749 | (I[139] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 750 | (I[8] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 751 | (I[20] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 752 | (I[32] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 753 | (I[44] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 754 | (I[56] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 755 | (I[68] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 756 | (I[80] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 757 | (I[92] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 758 | (I[104] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 759 | (I[116] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 760 | (I[128] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 761 | (I[140] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 762 | (I[9] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 763 | (I[21] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 764 | (I[33] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 765 | (I[45] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 766 | (I[57] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 767 | (I[69] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 768 | (I[81] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 769 | (I[93] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 770 | (I[105] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 771 | (I[117] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 772 | (I[129] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 773 | (I[141] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 774 | (I[10] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 775 | (I[22] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 776 | (I[34] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 777 | (I[46] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 778 | (I[58] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 779 | (I[70] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 780 | (I[82] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 781 | (I[94] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 782 | (I[106] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 783 | (I[118] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 784 | (I[130] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 785 | (I[142] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 786 | 6>=((img).width)?(int)((img).width)-1:6); \ |
philpem@5 | 787 | (_n6##x<(int)((img).width) && ( \ |
philpem@5 | 788 | (I[11] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 789 | (I[23] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 790 | (I[35] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 791 | (I[47] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 792 | (I[59] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 793 | (I[71] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 794 | (I[83] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 795 | (I[95] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 796 | (I[107] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 797 | (I[119] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 798 | (I[131] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 799 | (I[143] = (img)(_n6##x,_n6##y,z,v)),1)) || \ |
philpem@5 | 800 | _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \ |
philpem@5 | 801 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], \ |
philpem@5 | 802 | I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \ |
philpem@5 | 803 | I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \ |
philpem@5 | 804 | I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \ |
philpem@5 | 805 | I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \ |
philpem@5 | 806 | I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \ |
philpem@5 | 807 | I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \ |
philpem@5 | 808 | I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \ |
philpem@5 | 809 | I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \ |
philpem@5 | 810 | I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \ |
philpem@5 | 811 | I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], \ |
philpem@5 | 812 | I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \ |
philpem@5 | 813 | _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x) |
philpem@5 | 814 | |
philpem@5 | 815 | #define cimg_for_in12x12(img,x0,y0,x1,y1,x,y,z,v,I) \ |
philpem@5 | 816 | cimg_for_in12((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ |
philpem@5 | 817 | _p5##x = x-5<0?0:x-5, \ |
philpem@5 | 818 | _p4##x = x-4<0?0:x-4, \ |
philpem@5 | 819 | _p3##x = x-3<0?0:x-3, \ |
philpem@5 | 820 | _p2##x = x-2<0?0:x-2, \ |
philpem@5 | 821 | _p1##x = x-1<0?0:x-1, \ |
philpem@5 | 822 | _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \ |
philpem@5 | 823 | _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \ |
philpem@5 | 824 | _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \ |
philpem@5 | 825 | _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \ |
philpem@5 | 826 | _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \ |
philpem@5 | 827 | _n6##x = (int)( \ |
philpem@5 | 828 | (I[0] = (img)(_p5##x,_p5##y,z,v)), \ |
philpem@5 | 829 | (I[12] = (img)(_p5##x,_p4##y,z,v)), \ |
philpem@5 | 830 | (I[24] = (img)(_p5##x,_p3##y,z,v)), \ |
philpem@5 | 831 | (I[36] = (img)(_p5##x,_p2##y,z,v)), \ |
philpem@5 | 832 | (I[48] = (img)(_p5##x,_p1##y,z,v)), \ |
philpem@5 | 833 | (I[60] = (img)(_p5##x,y,z,v)), \ |
philpem@5 | 834 | (I[72] = (img)(_p5##x,_n1##y,z,v)), \ |
philpem@5 | 835 | (I[84] = (img)(_p5##x,_n2##y,z,v)), \ |
philpem@5 | 836 | (I[96] = (img)(_p5##x,_n3##y,z,v)), \ |
philpem@5 | 837 | (I[108] = (img)(_p5##x,_n4##y,z,v)), \ |
philpem@5 | 838 | (I[120] = (img)(_p5##x,_n5##y,z,v)), \ |
philpem@5 | 839 | (I[132] = (img)(_p5##x,_n6##y,z,v)), \ |
philpem@5 | 840 | (I[1] = (img)(_p4##x,_p5##y,z,v)), \ |
philpem@5 | 841 | (I[13] = (img)(_p4##x,_p4##y,z,v)), \ |
philpem@5 | 842 | (I[25] = (img)(_p4##x,_p3##y,z,v)), \ |
philpem@5 | 843 | (I[37] = (img)(_p4##x,_p2##y,z,v)), \ |
philpem@5 | 844 | (I[49] = (img)(_p4##x,_p1##y,z,v)), \ |
philpem@5 | 845 | (I[61] = (img)(_p4##x,y,z,v)), \ |
philpem@5 | 846 | (I[73] = (img)(_p4##x,_n1##y,z,v)), \ |
philpem@5 | 847 | (I[85] = (img)(_p4##x,_n2##y,z,v)), \ |
philpem@5 | 848 | (I[97] = (img)(_p4##x,_n3##y,z,v)), \ |
philpem@5 | 849 | (I[109] = (img)(_p4##x,_n4##y,z,v)), \ |
philpem@5 | 850 | (I[121] = (img)(_p4##x,_n5##y,z,v)), \ |
philpem@5 | 851 | (I[133] = (img)(_p4##x,_n6##y,z,v)), \ |
philpem@5 | 852 | (I[2] = (img)(_p3##x,_p5##y,z,v)), \ |
philpem@5 | 853 | (I[14] = (img)(_p3##x,_p4##y,z,v)), \ |
philpem@5 | 854 | (I[26] = (img)(_p3##x,_p3##y,z,v)), \ |
philpem@5 | 855 | (I[38] = (img)(_p3##x,_p2##y,z,v)), \ |
philpem@5 | 856 | (I[50] = (img)(_p3##x,_p1##y,z,v)), \ |
philpem@5 | 857 | (I[62] = (img)(_p3##x,y,z,v)), \ |
philpem@5 | 858 | (I[74] = (img)(_p3##x,_n1##y,z,v)), \ |
philpem@5 | 859 | (I[86] = (img)(_p3##x,_n2##y,z,v)), \ |
philpem@5 | 860 | (I[98] = (img)(_p3##x,_n3##y,z,v)), \ |
philpem@5 | 861 | (I[110] = (img)(_p3##x,_n4##y,z,v)), \ |
philpem@5 | 862 | (I[122] = (img)(_p3##x,_n5##y,z,v)), \ |
philpem@5 | 863 | (I[134] = (img)(_p3##x,_n6##y,z,v)), \ |
philpem@5 | 864 | (I[3] = (img)(_p2##x,_p5##y,z,v)), \ |
philpem@5 | 865 | (I[15] = (img)(_p2##x,_p4##y,z,v)), \ |
philpem@5 | 866 | (I[27] = (img)(_p2##x,_p3##y,z,v)), \ |
philpem@5 | 867 | (I[39] = (img)(_p2##x,_p2##y,z,v)), \ |
philpem@5 | 868 | (I[51] = (img)(_p2##x,_p1##y,z,v)), \ |
philpem@5 | 869 | (I[63] = (img)(_p2##x,y,z,v)), \ |
philpem@5 | 870 | (I[75] = (img)(_p2##x,_n1##y,z,v)), \ |
philpem@5 | 871 | (I[87] = (img)(_p2##x,_n2##y,z,v)), \ |
philpem@5 | 872 | (I[99] = (img)(_p2##x,_n3##y,z,v)), \ |
philpem@5 | 873 | (I[111] = (img)(_p2##x,_n4##y,z,v)), \ |
philpem@5 | 874 | (I[123] = (img)(_p2##x,_n5##y,z,v)), \ |
philpem@5 | 875 | (I[135] = (img)(_p2##x,_n6##y,z,v)), \ |
philpem@5 | 876 | (I[4] = (img)(_p1##x,_p5##y,z,v)), \ |
philpem@5 | 877 | (I[16] = (img)(_p1##x,_p4##y,z,v)), \ |
philpem@5 | 878 | (I[28] = (img)(_p1##x,_p3##y,z,v)), \ |
philpem@5 | 879 | (I[40] = (img)(_p1##x,_p2##y,z,v)), \ |
philpem@5 | 880 | (I[52] = (img)(_p1##x,_p1##y,z,v)), \ |
philpem@5 | 881 | (I[64] = (img)(_p1##x,y,z,v)), \ |
philpem@5 | 882 | (I[76] = (img)(_p1##x,_n1##y,z,v)), \ |
philpem@5 | 883 | (I[88] = (img)(_p1##x,_n2##y,z,v)), \ |
philpem@5 | 884 | (I[100] = (img)(_p1##x,_n3##y,z,v)), \ |
philpem@5 | 885 | (I[112] = (img)(_p1##x,_n4##y,z,v)), \ |
philpem@5 | 886 | (I[124] = (img)(_p1##x,_n5##y,z,v)), \ |
philpem@5 | 887 | (I[136] = (img)(_p1##x,_n6##y,z,v)), \ |
philpem@5 | 888 | (I[5] = (img)(x,_p5##y,z,v)), \ |
philpem@5 | 889 | (I[17] = (img)(x,_p4##y,z,v)), \ |
philpem@5 | 890 | (I[29] = (img)(x,_p3##y,z,v)), \ |
philpem@5 | 891 | (I[41] = (img)(x,_p2##y,z,v)), \ |
philpem@5 | 892 | (I[53] = (img)(x,_p1##y,z,v)), \ |
philpem@5 | 893 | (I[65] = (img)(x,y,z,v)), \ |
philpem@5 | 894 | (I[77] = (img)(x,_n1##y,z,v)), \ |
philpem@5 | 895 | (I[89] = (img)(x,_n2##y,z,v)), \ |
philpem@5 | 896 | (I[101] = (img)(x,_n3##y,z,v)), \ |
philpem@5 | 897 | (I[113] = (img)(x,_n4##y,z,v)), \ |
philpem@5 | 898 | (I[125] = (img)(x,_n5##y,z,v)), \ |
philpem@5 | 899 | (I[137] = (img)(x,_n6##y,z,v)), \ |
philpem@5 | 900 | (I[6] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 901 | (I[18] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 902 | (I[30] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 903 | (I[42] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 904 | (I[54] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 905 | (I[66] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 906 | (I[78] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 907 | (I[90] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 908 | (I[102] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 909 | (I[114] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 910 | (I[126] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 911 | (I[138] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 912 | (I[7] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 913 | (I[19] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 914 | (I[31] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 915 | (I[43] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 916 | (I[55] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 917 | (I[67] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 918 | (I[79] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 919 | (I[91] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 920 | (I[103] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 921 | (I[115] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 922 | (I[127] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 923 | (I[139] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 924 | (I[8] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 925 | (I[20] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 926 | (I[32] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 927 | (I[44] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 928 | (I[56] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 929 | (I[68] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 930 | (I[80] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 931 | (I[92] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 932 | (I[104] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 933 | (I[116] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 934 | (I[128] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 935 | (I[140] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 936 | (I[9] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 937 | (I[21] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 938 | (I[33] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 939 | (I[45] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 940 | (I[57] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 941 | (I[69] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 942 | (I[81] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 943 | (I[93] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 944 | (I[105] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 945 | (I[117] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 946 | (I[129] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 947 | (I[141] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 948 | (I[10] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 949 | (I[22] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 950 | (I[34] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 951 | (I[46] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 952 | (I[58] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 953 | (I[70] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 954 | (I[82] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 955 | (I[94] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 956 | (I[106] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 957 | (I[118] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 958 | (I[130] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 959 | (I[142] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 960 | x+6>=(int)((img).width)?(int)((img).width)-1:x+6); \ |
philpem@5 | 961 | x<=(int)(x1) && ((_n6##x<(int)((img).width) && ( \ |
philpem@5 | 962 | (I[11] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 963 | (I[23] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 964 | (I[35] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 965 | (I[47] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 966 | (I[59] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 967 | (I[71] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 968 | (I[83] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 969 | (I[95] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 970 | (I[107] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 971 | (I[119] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 972 | (I[131] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 973 | (I[143] = (img)(_n6##x,_n6##y,z,v)),1)) || \ |
philpem@5 | 974 | _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \ |
philpem@5 | 975 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], \ |
philpem@5 | 976 | I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \ |
philpem@5 | 977 | I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \ |
philpem@5 | 978 | I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \ |
philpem@5 | 979 | I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \ |
philpem@5 | 980 | I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \ |
philpem@5 | 981 | I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \ |
philpem@5 | 982 | I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \ |
philpem@5 | 983 | I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \ |
philpem@5 | 984 | I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \ |
philpem@5 | 985 | I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], \ |
philpem@5 | 986 | I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \ |
philpem@5 | 987 | _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x) |
philpem@5 | 988 | |
philpem@5 | 989 | #define cimg_get12x12(img,x,y,z,v,I) \ |
philpem@5 | 990 | I[0] = (img)(_p5##x,_p5##y,z,v), I[1] = (img)(_p4##x,_p5##y,z,v), I[2] = (img)(_p3##x,_p5##y,z,v), I[3] = (img)(_p2##x,_p5##y,z,v), I[4] = (img)(_p1##x,_p5##y,z,v), I[5] = (img)(x,_p5##y,z,v), I[6] = (img)(_n1##x,_p5##y,z,v), I[7] = (img)(_n2##x,_p5##y,z,v), I[8] = (img)(_n3##x,_p5##y,z,v), I[9] = (img)(_n4##x,_p5##y,z,v), I[10] = (img)(_n5##x,_p5##y,z,v), I[11] = (img)(_n6##x,_p5##y,z,v), \ |
philpem@5 | 991 | I[12] = (img)(_p5##x,_p4##y,z,v), I[13] = (img)(_p4##x,_p4##y,z,v), I[14] = (img)(_p3##x,_p4##y,z,v), I[15] = (img)(_p2##x,_p4##y,z,v), I[16] = (img)(_p1##x,_p4##y,z,v), I[17] = (img)(x,_p4##y,z,v), I[18] = (img)(_n1##x,_p4##y,z,v), I[19] = (img)(_n2##x,_p4##y,z,v), I[20] = (img)(_n3##x,_p4##y,z,v), I[21] = (img)(_n4##x,_p4##y,z,v), I[22] = (img)(_n5##x,_p4##y,z,v), I[23] = (img)(_n6##x,_p4##y,z,v), \ |
philpem@5 | 992 | I[24] = (img)(_p5##x,_p3##y,z,v), I[25] = (img)(_p4##x,_p3##y,z,v), I[26] = (img)(_p3##x,_p3##y,z,v), I[27] = (img)(_p2##x,_p3##y,z,v), I[28] = (img)(_p1##x,_p3##y,z,v), I[29] = (img)(x,_p3##y,z,v), I[30] = (img)(_n1##x,_p3##y,z,v), I[31] = (img)(_n2##x,_p3##y,z,v), I[32] = (img)(_n3##x,_p3##y,z,v), I[33] = (img)(_n4##x,_p3##y,z,v), I[34] = (img)(_n5##x,_p3##y,z,v), I[35] = (img)(_n6##x,_p3##y,z,v), \ |
philpem@5 | 993 | I[36] = (img)(_p5##x,_p2##y,z,v), I[37] = (img)(_p4##x,_p2##y,z,v), I[38] = (img)(_p3##x,_p2##y,z,v), I[39] = (img)(_p2##x,_p2##y,z,v), I[40] = (img)(_p1##x,_p2##y,z,v), I[41] = (img)(x,_p2##y,z,v), I[42] = (img)(_n1##x,_p2##y,z,v), I[43] = (img)(_n2##x,_p2##y,z,v), I[44] = (img)(_n3##x,_p2##y,z,v), I[45] = (img)(_n4##x,_p2##y,z,v), I[46] = (img)(_n5##x,_p2##y,z,v), I[47] = (img)(_n6##x,_p2##y,z,v), \ |
philpem@5 | 994 | I[48] = (img)(_p5##x,_p1##y,z,v), I[49] = (img)(_p4##x,_p1##y,z,v), I[50] = (img)(_p3##x,_p1##y,z,v), I[51] = (img)(_p2##x,_p1##y,z,v), I[52] = (img)(_p1##x,_p1##y,z,v), I[53] = (img)(x,_p1##y,z,v), I[54] = (img)(_n1##x,_p1##y,z,v), I[55] = (img)(_n2##x,_p1##y,z,v), I[56] = (img)(_n3##x,_p1##y,z,v), I[57] = (img)(_n4##x,_p1##y,z,v), I[58] = (img)(_n5##x,_p1##y,z,v), I[59] = (img)(_n6##x,_p1##y,z,v), \ |
philpem@5 | 995 | I[60] = (img)(_p5##x,y,z,v), I[61] = (img)(_p4##x,y,z,v), I[62] = (img)(_p3##x,y,z,v), I[63] = (img)(_p2##x,y,z,v), I[64] = (img)(_p1##x,y,z,v), I[65] = (img)(x,y,z,v), I[66] = (img)(_n1##x,y,z,v), I[67] = (img)(_n2##x,y,z,v), I[68] = (img)(_n3##x,y,z,v), I[69] = (img)(_n4##x,y,z,v), I[70] = (img)(_n5##x,y,z,v), I[71] = (img)(_n6##x,y,z,v), \ |
philpem@5 | 996 | I[72] = (img)(_p5##x,_n1##y,z,v), I[73] = (img)(_p4##x,_n1##y,z,v), I[74] = (img)(_p3##x,_n1##y,z,v), I[75] = (img)(_p2##x,_n1##y,z,v), I[76] = (img)(_p1##x,_n1##y,z,v), I[77] = (img)(x,_n1##y,z,v), I[78] = (img)(_n1##x,_n1##y,z,v), I[79] = (img)(_n2##x,_n1##y,z,v), I[80] = (img)(_n3##x,_n1##y,z,v), I[81] = (img)(_n4##x,_n1##y,z,v), I[82] = (img)(_n5##x,_n1##y,z,v), I[83] = (img)(_n6##x,_n1##y,z,v), \ |
philpem@5 | 997 | I[84] = (img)(_p5##x,_n2##y,z,v), I[85] = (img)(_p4##x,_n2##y,z,v), I[86] = (img)(_p3##x,_n2##y,z,v), I[87] = (img)(_p2##x,_n2##y,z,v), I[88] = (img)(_p1##x,_n2##y,z,v), I[89] = (img)(x,_n2##y,z,v), I[90] = (img)(_n1##x,_n2##y,z,v), I[91] = (img)(_n2##x,_n2##y,z,v), I[92] = (img)(_n3##x,_n2##y,z,v), I[93] = (img)(_n4##x,_n2##y,z,v), I[94] = (img)(_n5##x,_n2##y,z,v), I[95] = (img)(_n6##x,_n2##y,z,v), \ |
philpem@5 | 998 | I[96] = (img)(_p5##x,_n3##y,z,v), I[97] = (img)(_p4##x,_n3##y,z,v), I[98] = (img)(_p3##x,_n3##y,z,v), I[99] = (img)(_p2##x,_n3##y,z,v), I[100] = (img)(_p1##x,_n3##y,z,v), I[101] = (img)(x,_n3##y,z,v), I[102] = (img)(_n1##x,_n3##y,z,v), I[103] = (img)(_n2##x,_n3##y,z,v), I[104] = (img)(_n3##x,_n3##y,z,v), I[105] = (img)(_n4##x,_n3##y,z,v), I[106] = (img)(_n5##x,_n3##y,z,v), I[107] = (img)(_n6##x,_n3##y,z,v), \ |
philpem@5 | 999 | I[108] = (img)(_p5##x,_n4##y,z,v), I[109] = (img)(_p4##x,_n4##y,z,v), I[110] = (img)(_p3##x,_n4##y,z,v), I[111] = (img)(_p2##x,_n4##y,z,v), I[112] = (img)(_p1##x,_n4##y,z,v), I[113] = (img)(x,_n4##y,z,v), I[114] = (img)(_n1##x,_n4##y,z,v), I[115] = (img)(_n2##x,_n4##y,z,v), I[116] = (img)(_n3##x,_n4##y,z,v), I[117] = (img)(_n4##x,_n4##y,z,v), I[118] = (img)(_n5##x,_n4##y,z,v), I[119] = (img)(_n6##x,_n4##y,z,v), \ |
philpem@5 | 1000 | I[120] = (img)(_p5##x,_n5##y,z,v), I[121] = (img)(_p4##x,_n5##y,z,v), I[122] = (img)(_p3##x,_n5##y,z,v), I[123] = (img)(_p2##x,_n5##y,z,v), I[124] = (img)(_p1##x,_n5##y,z,v), I[125] = (img)(x,_n5##y,z,v), I[126] = (img)(_n1##x,_n5##y,z,v), I[127] = (img)(_n2##x,_n5##y,z,v), I[128] = (img)(_n3##x,_n5##y,z,v), I[129] = (img)(_n4##x,_n5##y,z,v), I[130] = (img)(_n5##x,_n5##y,z,v), I[131] = (img)(_n6##x,_n5##y,z,v), \ |
philpem@5 | 1001 | I[132] = (img)(_p5##x,_n6##y,z,v), I[133] = (img)(_p4##x,_n6##y,z,v), I[134] = (img)(_p3##x,_n6##y,z,v), I[135] = (img)(_p2##x,_n6##y,z,v), I[136] = (img)(_p1##x,_n6##y,z,v), I[137] = (img)(x,_n6##y,z,v), I[138] = (img)(_n1##x,_n6##y,z,v), I[139] = (img)(_n2##x,_n6##y,z,v), I[140] = (img)(_n3##x,_n6##y,z,v), I[141] = (img)(_n4##x,_n6##y,z,v), I[142] = (img)(_n5##x,_n6##y,z,v), I[143] = (img)(_n6##x,_n6##y,z,v); |
philpem@5 | 1002 | |
philpem@5 | 1003 | // Define 13x13 loop macros for CImg |
philpem@5 | 1004 | //---------------------------------- |
philpem@5 | 1005 | #define cimg_for13(bound,i) for (int i = 0, \ |
philpem@5 | 1006 | _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \ |
philpem@5 | 1007 | _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \ |
philpem@5 | 1008 | _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \ |
philpem@5 | 1009 | _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \ |
philpem@5 | 1010 | _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \ |
philpem@5 | 1011 | _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \ |
philpem@5 | 1012 | _n6##i = 6>=(int)(bound)?(int)(bound)-1:6; \ |
philpem@5 | 1013 | _n6##i<(int)(bound) || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 1014 | i==(_n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \ |
philpem@5 | 1015 | _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 1016 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i) |
philpem@5 | 1017 | |
philpem@5 | 1018 | #define cimg_for13X(img,x) cimg_for13((img).width,x) |
philpem@5 | 1019 | #define cimg_for13Y(img,y) cimg_for13((img).height,y) |
philpem@5 | 1020 | #define cimg_for13Z(img,z) cimg_for13((img).depth,z) |
philpem@5 | 1021 | #define cimg_for13V(img,v) cimg_for13((img).dim,v) |
philpem@5 | 1022 | #define cimg_for13XY(img,x,y) cimg_for13Y(img,y) cimg_for13X(img,x) |
philpem@5 | 1023 | #define cimg_for13XZ(img,x,z) cimg_for13Z(img,z) cimg_for13X(img,x) |
philpem@5 | 1024 | #define cimg_for13XV(img,x,v) cimg_for13V(img,v) cimg_for13X(img,x) |
philpem@5 | 1025 | #define cimg_for13YZ(img,y,z) cimg_for13Z(img,z) cimg_for13Y(img,y) |
philpem@5 | 1026 | #define cimg_for13YV(img,y,v) cimg_for13V(img,v) cimg_for13Y(img,y) |
philpem@5 | 1027 | #define cimg_for13ZV(img,z,v) cimg_for13V(img,v) cimg_for13Z(img,z) |
philpem@5 | 1028 | #define cimg_for13XYZ(img,x,y,z) cimg_for13Z(img,z) cimg_for13XY(img,x,y) |
philpem@5 | 1029 | #define cimg_for13XZV(img,x,z,v) cimg_for13V(img,v) cimg_for13XZ(img,x,z) |
philpem@5 | 1030 | #define cimg_for13YZV(img,y,z,v) cimg_for13V(img,v) cimg_for13YZ(img,y,z) |
philpem@5 | 1031 | #define cimg_for13XYZV(img,x,y,z,v) cimg_for13V(img,v) cimg_for13XYZ(img,x,y,z) |
philpem@5 | 1032 | |
philpem@5 | 1033 | #define cimg_for_in13(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \ |
philpem@5 | 1034 | _p6##i = i-6<0?0:i-6, \ |
philpem@5 | 1035 | _p5##i = i-5<0?0:i-5, \ |
philpem@5 | 1036 | _p4##i = i-4<0?0:i-4, \ |
philpem@5 | 1037 | _p3##i = i-3<0?0:i-3, \ |
philpem@5 | 1038 | _p2##i = i-2<0?0:i-2, \ |
philpem@5 | 1039 | _p1##i = i-1<0?0:i-1, \ |
philpem@5 | 1040 | _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \ |
philpem@5 | 1041 | _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \ |
philpem@5 | 1042 | _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \ |
philpem@5 | 1043 | _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \ |
philpem@5 | 1044 | _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \ |
philpem@5 | 1045 | _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6; \ |
philpem@5 | 1046 | i<=(int)(i1) && (_n6##i<(int)(bound) || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 1047 | i==(_n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \ |
philpem@5 | 1048 | _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 1049 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i) |
philpem@5 | 1050 | |
philpem@5 | 1051 | #define cimg_for_in13X(img,x0,x1,x) cimg_for_in13((img).width,x0,x1,x) |
philpem@5 | 1052 | #define cimg_for_in13Y(img,y0,y1,y) cimg_for_in13((img).height,y0,y1,y) |
philpem@5 | 1053 | #define cimg_for_in13Z(img,z0,z1,z) cimg_for_in13((img).depth,z0,z1,z) |
philpem@5 | 1054 | #define cimg_for_in13V(img,v0,v1,v) cimg_for_in13((img).dim,v0,v1,v) |
philpem@5 | 1055 | #define cimg_for_in13XY(img,x0,y0,x1,y1,x,y) cimg_for_in13Y(img,y0,y1,y) cimg_for_in13X(img,x0,x1,x) |
philpem@5 | 1056 | #define cimg_for_in13XZ(img,x0,z0,x1,z1,x,z) cimg_for_in13Z(img,z0,z1,z) cimg_for_in13X(img,x0,x1,x) |
philpem@5 | 1057 | #define cimg_for_in13XV(img,x0,v0,x1,v1,x,v) cimg_for_in13V(img,v0,v1,v) cimg_for_in13X(img,x0,x1,x) |
philpem@5 | 1058 | #define cimg_for_in13YZ(img,y0,z0,y1,z1,y,z) cimg_for_in13Z(img,z0,z1,z) cimg_for_in13Y(img,y0,y1,y) |
philpem@5 | 1059 | #define cimg_for_in13YV(img,y0,v0,y1,v1,y,v) cimg_for_in13V(img,v0,v1,v) cimg_for_in13Y(img,y0,y1,y) |
philpem@5 | 1060 | #define cimg_for_in13ZV(img,z0,v0,z1,v1,z,v) cimg_for_in13V(img,v0,v1,v) cimg_for_in13Z(img,z0,z1,z) |
philpem@5 | 1061 | #define cimg_for_in13XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in13Z(img,z0,z1,z) cimg_for_in13XY(img,x0,y0,x1,y1,x,y) |
philpem@5 | 1062 | #define cimg_for_in13XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in13V(img,v0,v1,v) cimg_for_in13XZ(img,x0,y0,x1,y1,x,z) |
philpem@5 | 1063 | #define cimg_for_in13YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in13V(img,v0,v1,v) cimg_for_in13YZ(img,y0,z0,y1,z1,y,z) |
philpem@5 | 1064 | #define cimg_for_in13XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in13V(img,v0,v1,v) cimg_for_in13XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) |
philpem@5 | 1065 | |
philpem@5 | 1066 | #define cimg_for13x13(img,x,y,z,v,I) \ |
philpem@5 | 1067 | cimg_for13((img).height,y) for (int x = 0, \ |
philpem@5 | 1068 | _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \ |
philpem@5 | 1069 | _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \ |
philpem@5 | 1070 | _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \ |
philpem@5 | 1071 | _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \ |
philpem@5 | 1072 | _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \ |
philpem@5 | 1073 | _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \ |
philpem@5 | 1074 | _n6##x = (int)( \ |
philpem@5 | 1075 | (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = (img)(0,_p6##y,z,v)), \ |
philpem@5 | 1076 | (I[13] = I[14] = I[15] = I[16] = I[17] = I[18] = I[19] = (img)(0,_p5##y,z,v)), \ |
philpem@5 | 1077 | (I[26] = I[27] = I[28] = I[29] = I[30] = I[31] = I[32] = (img)(0,_p4##y,z,v)), \ |
philpem@5 | 1078 | (I[39] = I[40] = I[41] = I[42] = I[43] = I[44] = I[45] = (img)(0,_p3##y,z,v)), \ |
philpem@5 | 1079 | (I[52] = I[53] = I[54] = I[55] = I[56] = I[57] = I[58] = (img)(0,_p2##y,z,v)), \ |
philpem@5 | 1080 | (I[65] = I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = (img)(0,_p1##y,z,v)), \ |
philpem@5 | 1081 | (I[78] = I[79] = I[80] = I[81] = I[82] = I[83] = I[84] = (img)(0,y,z,v)), \ |
philpem@5 | 1082 | (I[91] = I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = (img)(0,_n1##y,z,v)), \ |
philpem@5 | 1083 | (I[104] = I[105] = I[106] = I[107] = I[108] = I[109] = I[110] = (img)(0,_n2##y,z,v)), \ |
philpem@5 | 1084 | (I[117] = I[118] = I[119] = I[120] = I[121] = I[122] = I[123] = (img)(0,_n3##y,z,v)), \ |
philpem@5 | 1085 | (I[130] = I[131] = I[132] = I[133] = I[134] = I[135] = I[136] = (img)(0,_n4##y,z,v)), \ |
philpem@5 | 1086 | (I[143] = I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = (img)(0,_n5##y,z,v)), \ |
philpem@5 | 1087 | (I[156] = I[157] = I[158] = I[159] = I[160] = I[161] = I[162] = (img)(0,_n6##y,z,v)), \ |
philpem@5 | 1088 | (I[7] = (img)(_n1##x,_p6##y,z,v)), \ |
philpem@5 | 1089 | (I[20] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 1090 | (I[33] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 1091 | (I[46] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 1092 | (I[59] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 1093 | (I[72] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 1094 | (I[85] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 1095 | (I[98] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 1096 | (I[111] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 1097 | (I[124] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 1098 | (I[137] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 1099 | (I[150] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 1100 | (I[163] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 1101 | (I[8] = (img)(_n2##x,_p6##y,z,v)), \ |
philpem@5 | 1102 | (I[21] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 1103 | (I[34] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 1104 | (I[47] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 1105 | (I[60] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 1106 | (I[73] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 1107 | (I[86] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 1108 | (I[99] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 1109 | (I[112] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 1110 | (I[125] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 1111 | (I[138] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 1112 | (I[151] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 1113 | (I[164] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 1114 | (I[9] = (img)(_n3##x,_p6##y,z,v)), \ |
philpem@5 | 1115 | (I[22] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 1116 | (I[35] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 1117 | (I[48] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 1118 | (I[61] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 1119 | (I[74] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 1120 | (I[87] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 1121 | (I[100] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 1122 | (I[113] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 1123 | (I[126] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 1124 | (I[139] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 1125 | (I[152] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 1126 | (I[165] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 1127 | (I[10] = (img)(_n4##x,_p6##y,z,v)), \ |
philpem@5 | 1128 | (I[23] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 1129 | (I[36] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 1130 | (I[49] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 1131 | (I[62] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 1132 | (I[75] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 1133 | (I[88] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 1134 | (I[101] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 1135 | (I[114] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 1136 | (I[127] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 1137 | (I[140] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 1138 | (I[153] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 1139 | (I[166] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 1140 | (I[11] = (img)(_n5##x,_p6##y,z,v)), \ |
philpem@5 | 1141 | (I[24] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 1142 | (I[37] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 1143 | (I[50] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 1144 | (I[63] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 1145 | (I[76] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 1146 | (I[89] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 1147 | (I[102] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 1148 | (I[115] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 1149 | (I[128] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 1150 | (I[141] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 1151 | (I[154] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 1152 | (I[167] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 1153 | 6>=((img).width)?(int)((img).width)-1:6); \ |
philpem@5 | 1154 | (_n6##x<(int)((img).width) && ( \ |
philpem@5 | 1155 | (I[12] = (img)(_n6##x,_p6##y,z,v)), \ |
philpem@5 | 1156 | (I[25] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 1157 | (I[38] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 1158 | (I[51] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 1159 | (I[64] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 1160 | (I[77] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 1161 | (I[90] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 1162 | (I[103] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 1163 | (I[116] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 1164 | (I[129] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 1165 | (I[142] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 1166 | (I[155] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 1167 | (I[168] = (img)(_n6##x,_n6##y,z,v)),1)) || \ |
philpem@5 | 1168 | _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \ |
philpem@5 | 1169 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], \ |
philpem@5 | 1170 | I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], \ |
philpem@5 | 1171 | I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], \ |
philpem@5 | 1172 | I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], \ |
philpem@5 | 1173 | I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], \ |
philpem@5 | 1174 | I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], \ |
philpem@5 | 1175 | I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], \ |
philpem@5 | 1176 | I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], \ |
philpem@5 | 1177 | I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], \ |
philpem@5 | 1178 | I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], \ |
philpem@5 | 1179 | I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], \ |
philpem@5 | 1180 | I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], \ |
philpem@5 | 1181 | I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], \ |
philpem@5 | 1182 | _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x) |
philpem@5 | 1183 | |
philpem@5 | 1184 | #define cimg_for_in13x13(img,x0,y0,x1,y1,x,y,z,v,I) \ |
philpem@5 | 1185 | cimg_for_in13((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ |
philpem@5 | 1186 | _p6##x = x-6<0?0:x-6, \ |
philpem@5 | 1187 | _p5##x = x-5<0?0:x-5, \ |
philpem@5 | 1188 | _p4##x = x-4<0?0:x-4, \ |
philpem@5 | 1189 | _p3##x = x-3<0?0:x-3, \ |
philpem@5 | 1190 | _p2##x = x-2<0?0:x-2, \ |
philpem@5 | 1191 | _p1##x = x-1<0?0:x-1, \ |
philpem@5 | 1192 | _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \ |
philpem@5 | 1193 | _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \ |
philpem@5 | 1194 | _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \ |
philpem@5 | 1195 | _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \ |
philpem@5 | 1196 | _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \ |
philpem@5 | 1197 | _n6##x = (int)( \ |
philpem@5 | 1198 | (I[0] = (img)(_p6##x,_p6##y,z,v)), \ |
philpem@5 | 1199 | (I[13] = (img)(_p6##x,_p5##y,z,v)), \ |
philpem@5 | 1200 | (I[26] = (img)(_p6##x,_p4##y,z,v)), \ |
philpem@5 | 1201 | (I[39] = (img)(_p6##x,_p3##y,z,v)), \ |
philpem@5 | 1202 | (I[52] = (img)(_p6##x,_p2##y,z,v)), \ |
philpem@5 | 1203 | (I[65] = (img)(_p6##x,_p1##y,z,v)), \ |
philpem@5 | 1204 | (I[78] = (img)(_p6##x,y,z,v)), \ |
philpem@5 | 1205 | (I[91] = (img)(_p6##x,_n1##y,z,v)), \ |
philpem@5 | 1206 | (I[104] = (img)(_p6##x,_n2##y,z,v)), \ |
philpem@5 | 1207 | (I[117] = (img)(_p6##x,_n3##y,z,v)), \ |
philpem@5 | 1208 | (I[130] = (img)(_p6##x,_n4##y,z,v)), \ |
philpem@5 | 1209 | (I[143] = (img)(_p6##x,_n5##y,z,v)), \ |
philpem@5 | 1210 | (I[156] = (img)(_p6##x,_n6##y,z,v)), \ |
philpem@5 | 1211 | (I[1] = (img)(_p5##x,_p6##y,z,v)), \ |
philpem@5 | 1212 | (I[14] = (img)(_p5##x,_p5##y,z,v)), \ |
philpem@5 | 1213 | (I[27] = (img)(_p5##x,_p4##y,z,v)), \ |
philpem@5 | 1214 | (I[40] = (img)(_p5##x,_p3##y,z,v)), \ |
philpem@5 | 1215 | (I[53] = (img)(_p5##x,_p2##y,z,v)), \ |
philpem@5 | 1216 | (I[66] = (img)(_p5##x,_p1##y,z,v)), \ |
philpem@5 | 1217 | (I[79] = (img)(_p5##x,y,z,v)), \ |
philpem@5 | 1218 | (I[92] = (img)(_p5##x,_n1##y,z,v)), \ |
philpem@5 | 1219 | (I[105] = (img)(_p5##x,_n2##y,z,v)), \ |
philpem@5 | 1220 | (I[118] = (img)(_p5##x,_n3##y,z,v)), \ |
philpem@5 | 1221 | (I[131] = (img)(_p5##x,_n4##y,z,v)), \ |
philpem@5 | 1222 | (I[144] = (img)(_p5##x,_n5##y,z,v)), \ |
philpem@5 | 1223 | (I[157] = (img)(_p5##x,_n6##y,z,v)), \ |
philpem@5 | 1224 | (I[2] = (img)(_p4##x,_p6##y,z,v)), \ |
philpem@5 | 1225 | (I[15] = (img)(_p4##x,_p5##y,z,v)), \ |
philpem@5 | 1226 | (I[28] = (img)(_p4##x,_p4##y,z,v)), \ |
philpem@5 | 1227 | (I[41] = (img)(_p4##x,_p3##y,z,v)), \ |
philpem@5 | 1228 | (I[54] = (img)(_p4##x,_p2##y,z,v)), \ |
philpem@5 | 1229 | (I[67] = (img)(_p4##x,_p1##y,z,v)), \ |
philpem@5 | 1230 | (I[80] = (img)(_p4##x,y,z,v)), \ |
philpem@5 | 1231 | (I[93] = (img)(_p4##x,_n1##y,z,v)), \ |
philpem@5 | 1232 | (I[106] = (img)(_p4##x,_n2##y,z,v)), \ |
philpem@5 | 1233 | (I[119] = (img)(_p4##x,_n3##y,z,v)), \ |
philpem@5 | 1234 | (I[132] = (img)(_p4##x,_n4##y,z,v)), \ |
philpem@5 | 1235 | (I[145] = (img)(_p4##x,_n5##y,z,v)), \ |
philpem@5 | 1236 | (I[158] = (img)(_p4##x,_n6##y,z,v)), \ |
philpem@5 | 1237 | (I[3] = (img)(_p3##x,_p6##y,z,v)), \ |
philpem@5 | 1238 | (I[16] = (img)(_p3##x,_p5##y,z,v)), \ |
philpem@5 | 1239 | (I[29] = (img)(_p3##x,_p4##y,z,v)), \ |
philpem@5 | 1240 | (I[42] = (img)(_p3##x,_p3##y,z,v)), \ |
philpem@5 | 1241 | (I[55] = (img)(_p3##x,_p2##y,z,v)), \ |
philpem@5 | 1242 | (I[68] = (img)(_p3##x,_p1##y,z,v)), \ |
philpem@5 | 1243 | (I[81] = (img)(_p3##x,y,z,v)), \ |
philpem@5 | 1244 | (I[94] = (img)(_p3##x,_n1##y,z,v)), \ |
philpem@5 | 1245 | (I[107] = (img)(_p3##x,_n2##y,z,v)), \ |
philpem@5 | 1246 | (I[120] = (img)(_p3##x,_n3##y,z,v)), \ |
philpem@5 | 1247 | (I[133] = (img)(_p3##x,_n4##y,z,v)), \ |
philpem@5 | 1248 | (I[146] = (img)(_p3##x,_n5##y,z,v)), \ |
philpem@5 | 1249 | (I[159] = (img)(_p3##x,_n6##y,z,v)), \ |
philpem@5 | 1250 | (I[4] = (img)(_p2##x,_p6##y,z,v)), \ |
philpem@5 | 1251 | (I[17] = (img)(_p2##x,_p5##y,z,v)), \ |
philpem@5 | 1252 | (I[30] = (img)(_p2##x,_p4##y,z,v)), \ |
philpem@5 | 1253 | (I[43] = (img)(_p2##x,_p3##y,z,v)), \ |
philpem@5 | 1254 | (I[56] = (img)(_p2##x,_p2##y,z,v)), \ |
philpem@5 | 1255 | (I[69] = (img)(_p2##x,_p1##y,z,v)), \ |
philpem@5 | 1256 | (I[82] = (img)(_p2##x,y,z,v)), \ |
philpem@5 | 1257 | (I[95] = (img)(_p2##x,_n1##y,z,v)), \ |
philpem@5 | 1258 | (I[108] = (img)(_p2##x,_n2##y,z,v)), \ |
philpem@5 | 1259 | (I[121] = (img)(_p2##x,_n3##y,z,v)), \ |
philpem@5 | 1260 | (I[134] = (img)(_p2##x,_n4##y,z,v)), \ |
philpem@5 | 1261 | (I[147] = (img)(_p2##x,_n5##y,z,v)), \ |
philpem@5 | 1262 | (I[160] = (img)(_p2##x,_n6##y,z,v)), \ |
philpem@5 | 1263 | (I[5] = (img)(_p1##x,_p6##y,z,v)), \ |
philpem@5 | 1264 | (I[18] = (img)(_p1##x,_p5##y,z,v)), \ |
philpem@5 | 1265 | (I[31] = (img)(_p1##x,_p4##y,z,v)), \ |
philpem@5 | 1266 | (I[44] = (img)(_p1##x,_p3##y,z,v)), \ |
philpem@5 | 1267 | (I[57] = (img)(_p1##x,_p2##y,z,v)), \ |
philpem@5 | 1268 | (I[70] = (img)(_p1##x,_p1##y,z,v)), \ |
philpem@5 | 1269 | (I[83] = (img)(_p1##x,y,z,v)), \ |
philpem@5 | 1270 | (I[96] = (img)(_p1##x,_n1##y,z,v)), \ |
philpem@5 | 1271 | (I[109] = (img)(_p1##x,_n2##y,z,v)), \ |
philpem@5 | 1272 | (I[122] = (img)(_p1##x,_n3##y,z,v)), \ |
philpem@5 | 1273 | (I[135] = (img)(_p1##x,_n4##y,z,v)), \ |
philpem@5 | 1274 | (I[148] = (img)(_p1##x,_n5##y,z,v)), \ |
philpem@5 | 1275 | (I[161] = (img)(_p1##x,_n6##y,z,v)), \ |
philpem@5 | 1276 | (I[6] = (img)(x,_p6##y,z,v)), \ |
philpem@5 | 1277 | (I[19] = (img)(x,_p5##y,z,v)), \ |
philpem@5 | 1278 | (I[32] = (img)(x,_p4##y,z,v)), \ |
philpem@5 | 1279 | (I[45] = (img)(x,_p3##y,z,v)), \ |
philpem@5 | 1280 | (I[58] = (img)(x,_p2##y,z,v)), \ |
philpem@5 | 1281 | (I[71] = (img)(x,_p1##y,z,v)), \ |
philpem@5 | 1282 | (I[84] = (img)(x,y,z,v)), \ |
philpem@5 | 1283 | (I[97] = (img)(x,_n1##y,z,v)), \ |
philpem@5 | 1284 | (I[110] = (img)(x,_n2##y,z,v)), \ |
philpem@5 | 1285 | (I[123] = (img)(x,_n3##y,z,v)), \ |
philpem@5 | 1286 | (I[136] = (img)(x,_n4##y,z,v)), \ |
philpem@5 | 1287 | (I[149] = (img)(x,_n5##y,z,v)), \ |
philpem@5 | 1288 | (I[162] = (img)(x,_n6##y,z,v)), \ |
philpem@5 | 1289 | (I[7] = (img)(_n1##x,_p6##y,z,v)), \ |
philpem@5 | 1290 | (I[20] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 1291 | (I[33] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 1292 | (I[46] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 1293 | (I[59] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 1294 | (I[72] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 1295 | (I[85] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 1296 | (I[98] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 1297 | (I[111] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 1298 | (I[124] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 1299 | (I[137] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 1300 | (I[150] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 1301 | (I[163] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 1302 | (I[8] = (img)(_n2##x,_p6##y,z,v)), \ |
philpem@5 | 1303 | (I[21] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 1304 | (I[34] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 1305 | (I[47] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 1306 | (I[60] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 1307 | (I[73] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 1308 | (I[86] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 1309 | (I[99] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 1310 | (I[112] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 1311 | (I[125] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 1312 | (I[138] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 1313 | (I[151] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 1314 | (I[164] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 1315 | (I[9] = (img)(_n3##x,_p6##y,z,v)), \ |
philpem@5 | 1316 | (I[22] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 1317 | (I[35] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 1318 | (I[48] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 1319 | (I[61] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 1320 | (I[74] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 1321 | (I[87] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 1322 | (I[100] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 1323 | (I[113] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 1324 | (I[126] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 1325 | (I[139] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 1326 | (I[152] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 1327 | (I[165] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 1328 | (I[10] = (img)(_n4##x,_p6##y,z,v)), \ |
philpem@5 | 1329 | (I[23] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 1330 | (I[36] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 1331 | (I[49] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 1332 | (I[62] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 1333 | (I[75] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 1334 | (I[88] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 1335 | (I[101] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 1336 | (I[114] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 1337 | (I[127] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 1338 | (I[140] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 1339 | (I[153] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 1340 | (I[166] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 1341 | (I[11] = (img)(_n5##x,_p6##y,z,v)), \ |
philpem@5 | 1342 | (I[24] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 1343 | (I[37] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 1344 | (I[50] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 1345 | (I[63] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 1346 | (I[76] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 1347 | (I[89] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 1348 | (I[102] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 1349 | (I[115] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 1350 | (I[128] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 1351 | (I[141] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 1352 | (I[154] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 1353 | (I[167] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 1354 | x+6>=(int)((img).width)?(int)((img).width)-1:x+6); \ |
philpem@5 | 1355 | x<=(int)(x1) && ((_n6##x<(int)((img).width) && ( \ |
philpem@5 | 1356 | (I[12] = (img)(_n6##x,_p6##y,z,v)), \ |
philpem@5 | 1357 | (I[25] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 1358 | (I[38] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 1359 | (I[51] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 1360 | (I[64] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 1361 | (I[77] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 1362 | (I[90] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 1363 | (I[103] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 1364 | (I[116] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 1365 | (I[129] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 1366 | (I[142] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 1367 | (I[155] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 1368 | (I[168] = (img)(_n6##x,_n6##y,z,v)),1)) || \ |
philpem@5 | 1369 | _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \ |
philpem@5 | 1370 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], \ |
philpem@5 | 1371 | I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], \ |
philpem@5 | 1372 | I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], \ |
philpem@5 | 1373 | I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], \ |
philpem@5 | 1374 | I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], \ |
philpem@5 | 1375 | I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], \ |
philpem@5 | 1376 | I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], \ |
philpem@5 | 1377 | I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], \ |
philpem@5 | 1378 | I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], \ |
philpem@5 | 1379 | I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], \ |
philpem@5 | 1380 | I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], \ |
philpem@5 | 1381 | I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], \ |
philpem@5 | 1382 | I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], \ |
philpem@5 | 1383 | _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x) |
philpem@5 | 1384 | |
philpem@5 | 1385 | #define cimg_get13x13(img,x,y,z,v,I) \ |
philpem@5 | 1386 | I[0] = (img)(_p6##x,_p6##y,z,v), I[1] = (img)(_p5##x,_p6##y,z,v), I[2] = (img)(_p4##x,_p6##y,z,v), I[3] = (img)(_p3##x,_p6##y,z,v), I[4] = (img)(_p2##x,_p6##y,z,v), I[5] = (img)(_p1##x,_p6##y,z,v), I[6] = (img)(x,_p6##y,z,v), I[7] = (img)(_n1##x,_p6##y,z,v), I[8] = (img)(_n2##x,_p6##y,z,v), I[9] = (img)(_n3##x,_p6##y,z,v), I[10] = (img)(_n4##x,_p6##y,z,v), I[11] = (img)(_n5##x,_p6##y,z,v), I[12] = (img)(_n6##x,_p6##y,z,v), \ |
philpem@5 | 1387 | I[13] = (img)(_p6##x,_p5##y,z,v), I[14] = (img)(_p5##x,_p5##y,z,v), I[15] = (img)(_p4##x,_p5##y,z,v), I[16] = (img)(_p3##x,_p5##y,z,v), I[17] = (img)(_p2##x,_p5##y,z,v), I[18] = (img)(_p1##x,_p5##y,z,v), I[19] = (img)(x,_p5##y,z,v), I[20] = (img)(_n1##x,_p5##y,z,v), I[21] = (img)(_n2##x,_p5##y,z,v), I[22] = (img)(_n3##x,_p5##y,z,v), I[23] = (img)(_n4##x,_p5##y,z,v), I[24] = (img)(_n5##x,_p5##y,z,v), I[25] = (img)(_n6##x,_p5##y,z,v), \ |
philpem@5 | 1388 | I[26] = (img)(_p6##x,_p4##y,z,v), I[27] = (img)(_p5##x,_p4##y,z,v), I[28] = (img)(_p4##x,_p4##y,z,v), I[29] = (img)(_p3##x,_p4##y,z,v), I[30] = (img)(_p2##x,_p4##y,z,v), I[31] = (img)(_p1##x,_p4##y,z,v), I[32] = (img)(x,_p4##y,z,v), I[33] = (img)(_n1##x,_p4##y,z,v), I[34] = (img)(_n2##x,_p4##y,z,v), I[35] = (img)(_n3##x,_p4##y,z,v), I[36] = (img)(_n4##x,_p4##y,z,v), I[37] = (img)(_n5##x,_p4##y,z,v), I[38] = (img)(_n6##x,_p4##y,z,v), \ |
philpem@5 | 1389 | I[39] = (img)(_p6##x,_p3##y,z,v), I[40] = (img)(_p5##x,_p3##y,z,v), I[41] = (img)(_p4##x,_p3##y,z,v), I[42] = (img)(_p3##x,_p3##y,z,v), I[43] = (img)(_p2##x,_p3##y,z,v), I[44] = (img)(_p1##x,_p3##y,z,v), I[45] = (img)(x,_p3##y,z,v), I[46] = (img)(_n1##x,_p3##y,z,v), I[47] = (img)(_n2##x,_p3##y,z,v), I[48] = (img)(_n3##x,_p3##y,z,v), I[49] = (img)(_n4##x,_p3##y,z,v), I[50] = (img)(_n5##x,_p3##y,z,v), I[51] = (img)(_n6##x,_p3##y,z,v), \ |
philpem@5 | 1390 | I[52] = (img)(_p6##x,_p2##y,z,v), I[53] = (img)(_p5##x,_p2##y,z,v), I[54] = (img)(_p4##x,_p2##y,z,v), I[55] = (img)(_p3##x,_p2##y,z,v), I[56] = (img)(_p2##x,_p2##y,z,v), I[57] = (img)(_p1##x,_p2##y,z,v), I[58] = (img)(x,_p2##y,z,v), I[59] = (img)(_n1##x,_p2##y,z,v), I[60] = (img)(_n2##x,_p2##y,z,v), I[61] = (img)(_n3##x,_p2##y,z,v), I[62] = (img)(_n4##x,_p2##y,z,v), I[63] = (img)(_n5##x,_p2##y,z,v), I[64] = (img)(_n6##x,_p2##y,z,v), \ |
philpem@5 | 1391 | I[65] = (img)(_p6##x,_p1##y,z,v), I[66] = (img)(_p5##x,_p1##y,z,v), I[67] = (img)(_p4##x,_p1##y,z,v), I[68] = (img)(_p3##x,_p1##y,z,v), I[69] = (img)(_p2##x,_p1##y,z,v), I[70] = (img)(_p1##x,_p1##y,z,v), I[71] = (img)(x,_p1##y,z,v), I[72] = (img)(_n1##x,_p1##y,z,v), I[73] = (img)(_n2##x,_p1##y,z,v), I[74] = (img)(_n3##x,_p1##y,z,v), I[75] = (img)(_n4##x,_p1##y,z,v), I[76] = (img)(_n5##x,_p1##y,z,v), I[77] = (img)(_n6##x,_p1##y,z,v), \ |
philpem@5 | 1392 | I[78] = (img)(_p6##x,y,z,v), I[79] = (img)(_p5##x,y,z,v), I[80] = (img)(_p4##x,y,z,v), I[81] = (img)(_p3##x,y,z,v), I[82] = (img)(_p2##x,y,z,v), I[83] = (img)(_p1##x,y,z,v), I[84] = (img)(x,y,z,v), I[85] = (img)(_n1##x,y,z,v), I[86] = (img)(_n2##x,y,z,v), I[87] = (img)(_n3##x,y,z,v), I[88] = (img)(_n4##x,y,z,v), I[89] = (img)(_n5##x,y,z,v), I[90] = (img)(_n6##x,y,z,v), \ |
philpem@5 | 1393 | I[91] = (img)(_p6##x,_n1##y,z,v), I[92] = (img)(_p5##x,_n1##y,z,v), I[93] = (img)(_p4##x,_n1##y,z,v), I[94] = (img)(_p3##x,_n1##y,z,v), I[95] = (img)(_p2##x,_n1##y,z,v), I[96] = (img)(_p1##x,_n1##y,z,v), I[97] = (img)(x,_n1##y,z,v), I[98] = (img)(_n1##x,_n1##y,z,v), I[99] = (img)(_n2##x,_n1##y,z,v), I[100] = (img)(_n3##x,_n1##y,z,v), I[101] = (img)(_n4##x,_n1##y,z,v), I[102] = (img)(_n5##x,_n1##y,z,v), I[103] = (img)(_n6##x,_n1##y,z,v), \ |
philpem@5 | 1394 | I[104] = (img)(_p6##x,_n2##y,z,v), I[105] = (img)(_p5##x,_n2##y,z,v), I[106] = (img)(_p4##x,_n2##y,z,v), I[107] = (img)(_p3##x,_n2##y,z,v), I[108] = (img)(_p2##x,_n2##y,z,v), I[109] = (img)(_p1##x,_n2##y,z,v), I[110] = (img)(x,_n2##y,z,v), I[111] = (img)(_n1##x,_n2##y,z,v), I[112] = (img)(_n2##x,_n2##y,z,v), I[113] = (img)(_n3##x,_n2##y,z,v), I[114] = (img)(_n4##x,_n2##y,z,v), I[115] = (img)(_n5##x,_n2##y,z,v), I[116] = (img)(_n6##x,_n2##y,z,v), \ |
philpem@5 | 1395 | I[117] = (img)(_p6##x,_n3##y,z,v), I[118] = (img)(_p5##x,_n3##y,z,v), I[119] = (img)(_p4##x,_n3##y,z,v), I[120] = (img)(_p3##x,_n3##y,z,v), I[121] = (img)(_p2##x,_n3##y,z,v), I[122] = (img)(_p1##x,_n3##y,z,v), I[123] = (img)(x,_n3##y,z,v), I[124] = (img)(_n1##x,_n3##y,z,v), I[125] = (img)(_n2##x,_n3##y,z,v), I[126] = (img)(_n3##x,_n3##y,z,v), I[127] = (img)(_n4##x,_n3##y,z,v), I[128] = (img)(_n5##x,_n3##y,z,v), I[129] = (img)(_n6##x,_n3##y,z,v), \ |
philpem@5 | 1396 | I[130] = (img)(_p6##x,_n4##y,z,v), I[131] = (img)(_p5##x,_n4##y,z,v), I[132] = (img)(_p4##x,_n4##y,z,v), I[133] = (img)(_p3##x,_n4##y,z,v), I[134] = (img)(_p2##x,_n4##y,z,v), I[135] = (img)(_p1##x,_n4##y,z,v), I[136] = (img)(x,_n4##y,z,v), I[137] = (img)(_n1##x,_n4##y,z,v), I[138] = (img)(_n2##x,_n4##y,z,v), I[139] = (img)(_n3##x,_n4##y,z,v), I[140] = (img)(_n4##x,_n4##y,z,v), I[141] = (img)(_n5##x,_n4##y,z,v), I[142] = (img)(_n6##x,_n4##y,z,v), \ |
philpem@5 | 1397 | I[143] = (img)(_p6##x,_n5##y,z,v), I[144] = (img)(_p5##x,_n5##y,z,v), I[145] = (img)(_p4##x,_n5##y,z,v), I[146] = (img)(_p3##x,_n5##y,z,v), I[147] = (img)(_p2##x,_n5##y,z,v), I[148] = (img)(_p1##x,_n5##y,z,v), I[149] = (img)(x,_n5##y,z,v), I[150] = (img)(_n1##x,_n5##y,z,v), I[151] = (img)(_n2##x,_n5##y,z,v), I[152] = (img)(_n3##x,_n5##y,z,v), I[153] = (img)(_n4##x,_n5##y,z,v), I[154] = (img)(_n5##x,_n5##y,z,v), I[155] = (img)(_n6##x,_n5##y,z,v), \ |
philpem@5 | 1398 | I[156] = (img)(_p6##x,_n6##y,z,v), I[157] = (img)(_p5##x,_n6##y,z,v), I[158] = (img)(_p4##x,_n6##y,z,v), I[159] = (img)(_p3##x,_n6##y,z,v), I[160] = (img)(_p2##x,_n6##y,z,v), I[161] = (img)(_p1##x,_n6##y,z,v), I[162] = (img)(x,_n6##y,z,v), I[163] = (img)(_n1##x,_n6##y,z,v), I[164] = (img)(_n2##x,_n6##y,z,v), I[165] = (img)(_n3##x,_n6##y,z,v), I[166] = (img)(_n4##x,_n6##y,z,v), I[167] = (img)(_n5##x,_n6##y,z,v), I[168] = (img)(_n6##x,_n6##y,z,v); |
philpem@5 | 1399 | |
philpem@5 | 1400 | // Define 14x14 loop macros for CImg |
philpem@5 | 1401 | //---------------------------------- |
philpem@5 | 1402 | #define cimg_for14(bound,i) for (int i = 0, \ |
philpem@5 | 1403 | _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \ |
philpem@5 | 1404 | _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \ |
philpem@5 | 1405 | _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \ |
philpem@5 | 1406 | _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \ |
philpem@5 | 1407 | _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \ |
philpem@5 | 1408 | _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \ |
philpem@5 | 1409 | _n6##i = 6>=(int)(bound)?(int)(bound)-1:6, \ |
philpem@5 | 1410 | _n7##i = 7>=(int)(bound)?(int)(bound)-1:7; \ |
philpem@5 | 1411 | _n7##i<(int)(bound) || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 1412 | i==(_n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \ |
philpem@5 | 1413 | _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 1414 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i) |
philpem@5 | 1415 | |
philpem@5 | 1416 | #define cimg_for14X(img,x) cimg_for14((img).width,x) |
philpem@5 | 1417 | #define cimg_for14Y(img,y) cimg_for14((img).height,y) |
philpem@5 | 1418 | #define cimg_for14Z(img,z) cimg_for14((img).depth,z) |
philpem@5 | 1419 | #define cimg_for14V(img,v) cimg_for14((img).dim,v) |
philpem@5 | 1420 | #define cimg_for14XY(img,x,y) cimg_for14Y(img,y) cimg_for14X(img,x) |
philpem@5 | 1421 | #define cimg_for14XZ(img,x,z) cimg_for14Z(img,z) cimg_for14X(img,x) |
philpem@5 | 1422 | #define cimg_for14XV(img,x,v) cimg_for14V(img,v) cimg_for14X(img,x) |
philpem@5 | 1423 | #define cimg_for14YZ(img,y,z) cimg_for14Z(img,z) cimg_for14Y(img,y) |
philpem@5 | 1424 | #define cimg_for14YV(img,y,v) cimg_for14V(img,v) cimg_for14Y(img,y) |
philpem@5 | 1425 | #define cimg_for14ZV(img,z,v) cimg_for14V(img,v) cimg_for14Z(img,z) |
philpem@5 | 1426 | #define cimg_for14XYZ(img,x,y,z) cimg_for14Z(img,z) cimg_for14XY(img,x,y) |
philpem@5 | 1427 | #define cimg_for14XZV(img,x,z,v) cimg_for14V(img,v) cimg_for14XZ(img,x,z) |
philpem@5 | 1428 | #define cimg_for14YZV(img,y,z,v) cimg_for14V(img,v) cimg_for14YZ(img,y,z) |
philpem@5 | 1429 | #define cimg_for14XYZV(img,x,y,z,v) cimg_for14V(img,v) cimg_for14XYZ(img,x,y,z) |
philpem@5 | 1430 | |
philpem@5 | 1431 | #define cimg_for_in14(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \ |
philpem@5 | 1432 | _p6##i = i-6<0?0:i-6, \ |
philpem@5 | 1433 | _p5##i = i-5<0?0:i-5, \ |
philpem@5 | 1434 | _p4##i = i-4<0?0:i-4, \ |
philpem@5 | 1435 | _p3##i = i-3<0?0:i-3, \ |
philpem@5 | 1436 | _p2##i = i-2<0?0:i-2, \ |
philpem@5 | 1437 | _p1##i = i-1<0?0:i-1, \ |
philpem@5 | 1438 | _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \ |
philpem@5 | 1439 | _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \ |
philpem@5 | 1440 | _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \ |
philpem@5 | 1441 | _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \ |
philpem@5 | 1442 | _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \ |
philpem@5 | 1443 | _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6, \ |
philpem@5 | 1444 | _n7##i = i+7>=(int)(bound)?(int)(bound)-1:i+7; \ |
philpem@5 | 1445 | i<=(int)(i1) && (_n7##i<(int)(bound) || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 1446 | i==(_n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \ |
philpem@5 | 1447 | _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 1448 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i) |
philpem@5 | 1449 | |
philpem@5 | 1450 | #define cimg_for_in14X(img,x0,x1,x) cimg_for_in14((img).width,x0,x1,x) |
philpem@5 | 1451 | #define cimg_for_in14Y(img,y0,y1,y) cimg_for_in14((img).height,y0,y1,y) |
philpem@5 | 1452 | #define cimg_for_in14Z(img,z0,z1,z) cimg_for_in14((img).depth,z0,z1,z) |
philpem@5 | 1453 | #define cimg_for_in14V(img,v0,v1,v) cimg_for_in14((img).dim,v0,v1,v) |
philpem@5 | 1454 | #define cimg_for_in14XY(img,x0,y0,x1,y1,x,y) cimg_for_in14Y(img,y0,y1,y) cimg_for_in14X(img,x0,x1,x) |
philpem@5 | 1455 | #define cimg_for_in14XZ(img,x0,z0,x1,z1,x,z) cimg_for_in14Z(img,z0,z1,z) cimg_for_in14X(img,x0,x1,x) |
philpem@5 | 1456 | #define cimg_for_in14XV(img,x0,v0,x1,v1,x,v) cimg_for_in14V(img,v0,v1,v) cimg_for_in14X(img,x0,x1,x) |
philpem@5 | 1457 | #define cimg_for_in14YZ(img,y0,z0,y1,z1,y,z) cimg_for_in14Z(img,z0,z1,z) cimg_for_in14Y(img,y0,y1,y) |
philpem@5 | 1458 | #define cimg_for_in14YV(img,y0,v0,y1,v1,y,v) cimg_for_in14V(img,v0,v1,v) cimg_for_in14Y(img,y0,y1,y) |
philpem@5 | 1459 | #define cimg_for_in14ZV(img,z0,v0,z1,v1,z,v) cimg_for_in14V(img,v0,v1,v) cimg_for_in14Z(img,z0,z1,z) |
philpem@5 | 1460 | #define cimg_for_in14XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in14Z(img,z0,z1,z) cimg_for_in14XY(img,x0,y0,x1,y1,x,y) |
philpem@5 | 1461 | #define cimg_for_in14XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in14V(img,v0,v1,v) cimg_for_in14XZ(img,x0,y0,x1,y1,x,z) |
philpem@5 | 1462 | #define cimg_for_in14YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in14V(img,v0,v1,v) cimg_for_in14YZ(img,y0,z0,y1,z1,y,z) |
philpem@5 | 1463 | #define cimg_for_in14XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in14V(img,v0,v1,v) cimg_for_in14XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) |
philpem@5 | 1464 | |
philpem@5 | 1465 | #define cimg_for14x14(img,x,y,z,v,I) \ |
philpem@5 | 1466 | cimg_for14((img).height,y) for (int x = 0, \ |
philpem@5 | 1467 | _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \ |
philpem@5 | 1468 | _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \ |
philpem@5 | 1469 | _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \ |
philpem@5 | 1470 | _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \ |
philpem@5 | 1471 | _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \ |
philpem@5 | 1472 | _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \ |
philpem@5 | 1473 | _n6##x = 6>=((img).width)?(int)((img).width)-1:6, \ |
philpem@5 | 1474 | _n7##x = (int)( \ |
philpem@5 | 1475 | (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = (img)(0,_p6##y,z,v)), \ |
philpem@5 | 1476 | (I[14] = I[15] = I[16] = I[17] = I[18] = I[19] = I[20] = (img)(0,_p5##y,z,v)), \ |
philpem@5 | 1477 | (I[28] = I[29] = I[30] = I[31] = I[32] = I[33] = I[34] = (img)(0,_p4##y,z,v)), \ |
philpem@5 | 1478 | (I[42] = I[43] = I[44] = I[45] = I[46] = I[47] = I[48] = (img)(0,_p3##y,z,v)), \ |
philpem@5 | 1479 | (I[56] = I[57] = I[58] = I[59] = I[60] = I[61] = I[62] = (img)(0,_p2##y,z,v)), \ |
philpem@5 | 1480 | (I[70] = I[71] = I[72] = I[73] = I[74] = I[75] = I[76] = (img)(0,_p1##y,z,v)), \ |
philpem@5 | 1481 | (I[84] = I[85] = I[86] = I[87] = I[88] = I[89] = I[90] = (img)(0,y,z,v)), \ |
philpem@5 | 1482 | (I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = I[104] = (img)(0,_n1##y,z,v)), \ |
philpem@5 | 1483 | (I[112] = I[113] = I[114] = I[115] = I[116] = I[117] = I[118] = (img)(0,_n2##y,z,v)), \ |
philpem@5 | 1484 | (I[126] = I[127] = I[128] = I[129] = I[130] = I[131] = I[132] = (img)(0,_n3##y,z,v)), \ |
philpem@5 | 1485 | (I[140] = I[141] = I[142] = I[143] = I[144] = I[145] = I[146] = (img)(0,_n4##y,z,v)), \ |
philpem@5 | 1486 | (I[154] = I[155] = I[156] = I[157] = I[158] = I[159] = I[160] = (img)(0,_n5##y,z,v)), \ |
philpem@5 | 1487 | (I[168] = I[169] = I[170] = I[171] = I[172] = I[173] = I[174] = (img)(0,_n6##y,z,v)), \ |
philpem@5 | 1488 | (I[182] = I[183] = I[184] = I[185] = I[186] = I[187] = I[188] = (img)(0,_n7##y,z,v)), \ |
philpem@5 | 1489 | (I[7] = (img)(_n1##x,_p6##y,z,v)), \ |
philpem@5 | 1490 | (I[21] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 1491 | (I[35] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 1492 | (I[49] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 1493 | (I[63] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 1494 | (I[77] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 1495 | (I[91] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 1496 | (I[105] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 1497 | (I[119] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 1498 | (I[133] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 1499 | (I[147] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 1500 | (I[161] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 1501 | (I[175] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 1502 | (I[189] = (img)(_n1##x,_n7##y,z,v)), \ |
philpem@5 | 1503 | (I[8] = (img)(_n2##x,_p6##y,z,v)), \ |
philpem@5 | 1504 | (I[22] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 1505 | (I[36] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 1506 | (I[50] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 1507 | (I[64] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 1508 | (I[78] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 1509 | (I[92] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 1510 | (I[106] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 1511 | (I[120] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 1512 | (I[134] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 1513 | (I[148] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 1514 | (I[162] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 1515 | (I[176] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 1516 | (I[190] = (img)(_n2##x,_n7##y,z,v)), \ |
philpem@5 | 1517 | (I[9] = (img)(_n3##x,_p6##y,z,v)), \ |
philpem@5 | 1518 | (I[23] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 1519 | (I[37] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 1520 | (I[51] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 1521 | (I[65] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 1522 | (I[79] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 1523 | (I[93] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 1524 | (I[107] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 1525 | (I[121] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 1526 | (I[135] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 1527 | (I[149] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 1528 | (I[163] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 1529 | (I[177] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 1530 | (I[191] = (img)(_n3##x,_n7##y,z,v)), \ |
philpem@5 | 1531 | (I[10] = (img)(_n4##x,_p6##y,z,v)), \ |
philpem@5 | 1532 | (I[24] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 1533 | (I[38] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 1534 | (I[52] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 1535 | (I[66] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 1536 | (I[80] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 1537 | (I[94] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 1538 | (I[108] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 1539 | (I[122] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 1540 | (I[136] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 1541 | (I[150] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 1542 | (I[164] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 1543 | (I[178] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 1544 | (I[192] = (img)(_n4##x,_n7##y,z,v)), \ |
philpem@5 | 1545 | (I[11] = (img)(_n5##x,_p6##y,z,v)), \ |
philpem@5 | 1546 | (I[25] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 1547 | (I[39] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 1548 | (I[53] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 1549 | (I[67] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 1550 | (I[81] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 1551 | (I[95] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 1552 | (I[109] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 1553 | (I[123] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 1554 | (I[137] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 1555 | (I[151] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 1556 | (I[165] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 1557 | (I[179] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 1558 | (I[193] = (img)(_n5##x,_n7##y,z,v)), \ |
philpem@5 | 1559 | (I[12] = (img)(_n6##x,_p6##y,z,v)), \ |
philpem@5 | 1560 | (I[26] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 1561 | (I[40] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 1562 | (I[54] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 1563 | (I[68] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 1564 | (I[82] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 1565 | (I[96] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 1566 | (I[110] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 1567 | (I[124] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 1568 | (I[138] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 1569 | (I[152] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 1570 | (I[166] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 1571 | (I[180] = (img)(_n6##x,_n6##y,z,v)), \ |
philpem@5 | 1572 | (I[194] = (img)(_n6##x,_n7##y,z,v)), \ |
philpem@5 | 1573 | 7>=((img).width)?(int)((img).width)-1:7); \ |
philpem@5 | 1574 | (_n7##x<(int)((img).width) && ( \ |
philpem@5 | 1575 | (I[13] = (img)(_n7##x,_p6##y,z,v)), \ |
philpem@5 | 1576 | (I[27] = (img)(_n7##x,_p5##y,z,v)), \ |
philpem@5 | 1577 | (I[41] = (img)(_n7##x,_p4##y,z,v)), \ |
philpem@5 | 1578 | (I[55] = (img)(_n7##x,_p3##y,z,v)), \ |
philpem@5 | 1579 | (I[69] = (img)(_n7##x,_p2##y,z,v)), \ |
philpem@5 | 1580 | (I[83] = (img)(_n7##x,_p1##y,z,v)), \ |
philpem@5 | 1581 | (I[97] = (img)(_n7##x,y,z,v)), \ |
philpem@5 | 1582 | (I[111] = (img)(_n7##x,_n1##y,z,v)), \ |
philpem@5 | 1583 | (I[125] = (img)(_n7##x,_n2##y,z,v)), \ |
philpem@5 | 1584 | (I[139] = (img)(_n7##x,_n3##y,z,v)), \ |
philpem@5 | 1585 | (I[153] = (img)(_n7##x,_n4##y,z,v)), \ |
philpem@5 | 1586 | (I[167] = (img)(_n7##x,_n5##y,z,v)), \ |
philpem@5 | 1587 | (I[181] = (img)(_n7##x,_n6##y,z,v)), \ |
philpem@5 | 1588 | (I[195] = (img)(_n7##x,_n7##y,z,v)),1)) || \ |
philpem@5 | 1589 | _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \ |
philpem@5 | 1590 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \ |
philpem@5 | 1591 | I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \ |
philpem@5 | 1592 | I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \ |
philpem@5 | 1593 | I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \ |
philpem@5 | 1594 | I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \ |
philpem@5 | 1595 | I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \ |
philpem@5 | 1596 | I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], \ |
philpem@5 | 1597 | I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \ |
philpem@5 | 1598 | I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \ |
philpem@5 | 1599 | I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \ |
philpem@5 | 1600 | I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], \ |
philpem@5 | 1601 | I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \ |
philpem@5 | 1602 | I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], \ |
philpem@5 | 1603 | I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], \ |
philpem@5 | 1604 | _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x) |
philpem@5 | 1605 | |
philpem@5 | 1606 | #define cimg_for_in14x14(img,x0,y0,x1,y1,x,y,z,v,I) \ |
philpem@5 | 1607 | cimg_for_in14((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ |
philpem@5 | 1608 | _p6##x = x-6<0?0:x-6, \ |
philpem@5 | 1609 | _p5##x = x-5<0?0:x-5, \ |
philpem@5 | 1610 | _p4##x = x-4<0?0:x-4, \ |
philpem@5 | 1611 | _p3##x = x-3<0?0:x-3, \ |
philpem@5 | 1612 | _p2##x = x-2<0?0:x-2, \ |
philpem@5 | 1613 | _p1##x = x-1<0?0:x-1, \ |
philpem@5 | 1614 | _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \ |
philpem@5 | 1615 | _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \ |
philpem@5 | 1616 | _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \ |
philpem@5 | 1617 | _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \ |
philpem@5 | 1618 | _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \ |
philpem@5 | 1619 | _n6##x = x+6>=(int)((img).width)?(int)((img).width)-1:x+6, \ |
philpem@5 | 1620 | _n7##x = (int)( \ |
philpem@5 | 1621 | (I[0] = (img)(_p6##x,_p6##y,z,v)), \ |
philpem@5 | 1622 | (I[14] = (img)(_p6##x,_p5##y,z,v)), \ |
philpem@5 | 1623 | (I[28] = (img)(_p6##x,_p4##y,z,v)), \ |
philpem@5 | 1624 | (I[42] = (img)(_p6##x,_p3##y,z,v)), \ |
philpem@5 | 1625 | (I[56] = (img)(_p6##x,_p2##y,z,v)), \ |
philpem@5 | 1626 | (I[70] = (img)(_p6##x,_p1##y,z,v)), \ |
philpem@5 | 1627 | (I[84] = (img)(_p6##x,y,z,v)), \ |
philpem@5 | 1628 | (I[98] = (img)(_p6##x,_n1##y,z,v)), \ |
philpem@5 | 1629 | (I[112] = (img)(_p6##x,_n2##y,z,v)), \ |
philpem@5 | 1630 | (I[126] = (img)(_p6##x,_n3##y,z,v)), \ |
philpem@5 | 1631 | (I[140] = (img)(_p6##x,_n4##y,z,v)), \ |
philpem@5 | 1632 | (I[154] = (img)(_p6##x,_n5##y,z,v)), \ |
philpem@5 | 1633 | (I[168] = (img)(_p6##x,_n6##y,z,v)), \ |
philpem@5 | 1634 | (I[182] = (img)(_p6##x,_n7##y,z,v)), \ |
philpem@5 | 1635 | (I[1] = (img)(_p5##x,_p6##y,z,v)), \ |
philpem@5 | 1636 | (I[15] = (img)(_p5##x,_p5##y,z,v)), \ |
philpem@5 | 1637 | (I[29] = (img)(_p5##x,_p4##y,z,v)), \ |
philpem@5 | 1638 | (I[43] = (img)(_p5##x,_p3##y,z,v)), \ |
philpem@5 | 1639 | (I[57] = (img)(_p5##x,_p2##y,z,v)), \ |
philpem@5 | 1640 | (I[71] = (img)(_p5##x,_p1##y,z,v)), \ |
philpem@5 | 1641 | (I[85] = (img)(_p5##x,y,z,v)), \ |
philpem@5 | 1642 | (I[99] = (img)(_p5##x,_n1##y,z,v)), \ |
philpem@5 | 1643 | (I[113] = (img)(_p5##x,_n2##y,z,v)), \ |
philpem@5 | 1644 | (I[127] = (img)(_p5##x,_n3##y,z,v)), \ |
philpem@5 | 1645 | (I[141] = (img)(_p5##x,_n4##y,z,v)), \ |
philpem@5 | 1646 | (I[155] = (img)(_p5##x,_n5##y,z,v)), \ |
philpem@5 | 1647 | (I[169] = (img)(_p5##x,_n6##y,z,v)), \ |
philpem@5 | 1648 | (I[183] = (img)(_p5##x,_n7##y,z,v)), \ |
philpem@5 | 1649 | (I[2] = (img)(_p4##x,_p6##y,z,v)), \ |
philpem@5 | 1650 | (I[16] = (img)(_p4##x,_p5##y,z,v)), \ |
philpem@5 | 1651 | (I[30] = (img)(_p4##x,_p4##y,z,v)), \ |
philpem@5 | 1652 | (I[44] = (img)(_p4##x,_p3##y,z,v)), \ |
philpem@5 | 1653 | (I[58] = (img)(_p4##x,_p2##y,z,v)), \ |
philpem@5 | 1654 | (I[72] = (img)(_p4##x,_p1##y,z,v)), \ |
philpem@5 | 1655 | (I[86] = (img)(_p4##x,y,z,v)), \ |
philpem@5 | 1656 | (I[100] = (img)(_p4##x,_n1##y,z,v)), \ |
philpem@5 | 1657 | (I[114] = (img)(_p4##x,_n2##y,z,v)), \ |
philpem@5 | 1658 | (I[128] = (img)(_p4##x,_n3##y,z,v)), \ |
philpem@5 | 1659 | (I[142] = (img)(_p4##x,_n4##y,z,v)), \ |
philpem@5 | 1660 | (I[156] = (img)(_p4##x,_n5##y,z,v)), \ |
philpem@5 | 1661 | (I[170] = (img)(_p4##x,_n6##y,z,v)), \ |
philpem@5 | 1662 | (I[184] = (img)(_p4##x,_n7##y,z,v)), \ |
philpem@5 | 1663 | (I[3] = (img)(_p3##x,_p6##y,z,v)), \ |
philpem@5 | 1664 | (I[17] = (img)(_p3##x,_p5##y,z,v)), \ |
philpem@5 | 1665 | (I[31] = (img)(_p3##x,_p4##y,z,v)), \ |
philpem@5 | 1666 | (I[45] = (img)(_p3##x,_p3##y,z,v)), \ |
philpem@5 | 1667 | (I[59] = (img)(_p3##x,_p2##y,z,v)), \ |
philpem@5 | 1668 | (I[73] = (img)(_p3##x,_p1##y,z,v)), \ |
philpem@5 | 1669 | (I[87] = (img)(_p3##x,y,z,v)), \ |
philpem@5 | 1670 | (I[101] = (img)(_p3##x,_n1##y,z,v)), \ |
philpem@5 | 1671 | (I[115] = (img)(_p3##x,_n2##y,z,v)), \ |
philpem@5 | 1672 | (I[129] = (img)(_p3##x,_n3##y,z,v)), \ |
philpem@5 | 1673 | (I[143] = (img)(_p3##x,_n4##y,z,v)), \ |
philpem@5 | 1674 | (I[157] = (img)(_p3##x,_n5##y,z,v)), \ |
philpem@5 | 1675 | (I[171] = (img)(_p3##x,_n6##y,z,v)), \ |
philpem@5 | 1676 | (I[185] = (img)(_p3##x,_n7##y,z,v)), \ |
philpem@5 | 1677 | (I[4] = (img)(_p2##x,_p6##y,z,v)), \ |
philpem@5 | 1678 | (I[18] = (img)(_p2##x,_p5##y,z,v)), \ |
philpem@5 | 1679 | (I[32] = (img)(_p2##x,_p4##y,z,v)), \ |
philpem@5 | 1680 | (I[46] = (img)(_p2##x,_p3##y,z,v)), \ |
philpem@5 | 1681 | (I[60] = (img)(_p2##x,_p2##y,z,v)), \ |
philpem@5 | 1682 | (I[74] = (img)(_p2##x,_p1##y,z,v)), \ |
philpem@5 | 1683 | (I[88] = (img)(_p2##x,y,z,v)), \ |
philpem@5 | 1684 | (I[102] = (img)(_p2##x,_n1##y,z,v)), \ |
philpem@5 | 1685 | (I[116] = (img)(_p2##x,_n2##y,z,v)), \ |
philpem@5 | 1686 | (I[130] = (img)(_p2##x,_n3##y,z,v)), \ |
philpem@5 | 1687 | (I[144] = (img)(_p2##x,_n4##y,z,v)), \ |
philpem@5 | 1688 | (I[158] = (img)(_p2##x,_n5##y,z,v)), \ |
philpem@5 | 1689 | (I[172] = (img)(_p2##x,_n6##y,z,v)), \ |
philpem@5 | 1690 | (I[186] = (img)(_p2##x,_n7##y,z,v)), \ |
philpem@5 | 1691 | (I[5] = (img)(_p1##x,_p6##y,z,v)), \ |
philpem@5 | 1692 | (I[19] = (img)(_p1##x,_p5##y,z,v)), \ |
philpem@5 | 1693 | (I[33] = (img)(_p1##x,_p4##y,z,v)), \ |
philpem@5 | 1694 | (I[47] = (img)(_p1##x,_p3##y,z,v)), \ |
philpem@5 | 1695 | (I[61] = (img)(_p1##x,_p2##y,z,v)), \ |
philpem@5 | 1696 | (I[75] = (img)(_p1##x,_p1##y,z,v)), \ |
philpem@5 | 1697 | (I[89] = (img)(_p1##x,y,z,v)), \ |
philpem@5 | 1698 | (I[103] = (img)(_p1##x,_n1##y,z,v)), \ |
philpem@5 | 1699 | (I[117] = (img)(_p1##x,_n2##y,z,v)), \ |
philpem@5 | 1700 | (I[131] = (img)(_p1##x,_n3##y,z,v)), \ |
philpem@5 | 1701 | (I[145] = (img)(_p1##x,_n4##y,z,v)), \ |
philpem@5 | 1702 | (I[159] = (img)(_p1##x,_n5##y,z,v)), \ |
philpem@5 | 1703 | (I[173] = (img)(_p1##x,_n6##y,z,v)), \ |
philpem@5 | 1704 | (I[187] = (img)(_p1##x,_n7##y,z,v)), \ |
philpem@5 | 1705 | (I[6] = (img)(x,_p6##y,z,v)), \ |
philpem@5 | 1706 | (I[20] = (img)(x,_p5##y,z,v)), \ |
philpem@5 | 1707 | (I[34] = (img)(x,_p4##y,z,v)), \ |
philpem@5 | 1708 | (I[48] = (img)(x,_p3##y,z,v)), \ |
philpem@5 | 1709 | (I[62] = (img)(x,_p2##y,z,v)), \ |
philpem@5 | 1710 | (I[76] = (img)(x,_p1##y,z,v)), \ |
philpem@5 | 1711 | (I[90] = (img)(x,y,z,v)), \ |
philpem@5 | 1712 | (I[104] = (img)(x,_n1##y,z,v)), \ |
philpem@5 | 1713 | (I[118] = (img)(x,_n2##y,z,v)), \ |
philpem@5 | 1714 | (I[132] = (img)(x,_n3##y,z,v)), \ |
philpem@5 | 1715 | (I[146] = (img)(x,_n4##y,z,v)), \ |
philpem@5 | 1716 | (I[160] = (img)(x,_n5##y,z,v)), \ |
philpem@5 | 1717 | (I[174] = (img)(x,_n6##y,z,v)), \ |
philpem@5 | 1718 | (I[188] = (img)(x,_n7##y,z,v)), \ |
philpem@5 | 1719 | (I[7] = (img)(_n1##x,_p6##y,z,v)), \ |
philpem@5 | 1720 | (I[21] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 1721 | (I[35] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 1722 | (I[49] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 1723 | (I[63] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 1724 | (I[77] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 1725 | (I[91] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 1726 | (I[105] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 1727 | (I[119] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 1728 | (I[133] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 1729 | (I[147] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 1730 | (I[161] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 1731 | (I[175] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 1732 | (I[189] = (img)(_n1##x,_n7##y,z,v)), \ |
philpem@5 | 1733 | (I[8] = (img)(_n2##x,_p6##y,z,v)), \ |
philpem@5 | 1734 | (I[22] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 1735 | (I[36] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 1736 | (I[50] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 1737 | (I[64] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 1738 | (I[78] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 1739 | (I[92] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 1740 | (I[106] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 1741 | (I[120] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 1742 | (I[134] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 1743 | (I[148] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 1744 | (I[162] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 1745 | (I[176] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 1746 | (I[190] = (img)(_n2##x,_n7##y,z,v)), \ |
philpem@5 | 1747 | (I[9] = (img)(_n3##x,_p6##y,z,v)), \ |
philpem@5 | 1748 | (I[23] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 1749 | (I[37] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 1750 | (I[51] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 1751 | (I[65] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 1752 | (I[79] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 1753 | (I[93] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 1754 | (I[107] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 1755 | (I[121] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 1756 | (I[135] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 1757 | (I[149] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 1758 | (I[163] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 1759 | (I[177] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 1760 | (I[191] = (img)(_n3##x,_n7##y,z,v)), \ |
philpem@5 | 1761 | (I[10] = (img)(_n4##x,_p6##y,z,v)), \ |
philpem@5 | 1762 | (I[24] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 1763 | (I[38] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 1764 | (I[52] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 1765 | (I[66] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 1766 | (I[80] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 1767 | (I[94] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 1768 | (I[108] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 1769 | (I[122] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 1770 | (I[136] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 1771 | (I[150] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 1772 | (I[164] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 1773 | (I[178] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 1774 | (I[192] = (img)(_n4##x,_n7##y,z,v)), \ |
philpem@5 | 1775 | (I[11] = (img)(_n5##x,_p6##y,z,v)), \ |
philpem@5 | 1776 | (I[25] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 1777 | (I[39] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 1778 | (I[53] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 1779 | (I[67] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 1780 | (I[81] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 1781 | (I[95] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 1782 | (I[109] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 1783 | (I[123] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 1784 | (I[137] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 1785 | (I[151] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 1786 | (I[165] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 1787 | (I[179] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 1788 | (I[193] = (img)(_n5##x,_n7##y,z,v)), \ |
philpem@5 | 1789 | (I[12] = (img)(_n6##x,_p6##y,z,v)), \ |
philpem@5 | 1790 | (I[26] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 1791 | (I[40] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 1792 | (I[54] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 1793 | (I[68] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 1794 | (I[82] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 1795 | (I[96] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 1796 | (I[110] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 1797 | (I[124] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 1798 | (I[138] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 1799 | (I[152] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 1800 | (I[166] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 1801 | (I[180] = (img)(_n6##x,_n6##y,z,v)), \ |
philpem@5 | 1802 | (I[194] = (img)(_n6##x,_n7##y,z,v)), \ |
philpem@5 | 1803 | x+7>=(int)((img).width)?(int)((img).width)-1:x+7); \ |
philpem@5 | 1804 | x<=(int)(x1) && ((_n7##x<(int)((img).width) && ( \ |
philpem@5 | 1805 | (I[13] = (img)(_n7##x,_p6##y,z,v)), \ |
philpem@5 | 1806 | (I[27] = (img)(_n7##x,_p5##y,z,v)), \ |
philpem@5 | 1807 | (I[41] = (img)(_n7##x,_p4##y,z,v)), \ |
philpem@5 | 1808 | (I[55] = (img)(_n7##x,_p3##y,z,v)), \ |
philpem@5 | 1809 | (I[69] = (img)(_n7##x,_p2##y,z,v)), \ |
philpem@5 | 1810 | (I[83] = (img)(_n7##x,_p1##y,z,v)), \ |
philpem@5 | 1811 | (I[97] = (img)(_n7##x,y,z,v)), \ |
philpem@5 | 1812 | (I[111] = (img)(_n7##x,_n1##y,z,v)), \ |
philpem@5 | 1813 | (I[125] = (img)(_n7##x,_n2##y,z,v)), \ |
philpem@5 | 1814 | (I[139] = (img)(_n7##x,_n3##y,z,v)), \ |
philpem@5 | 1815 | (I[153] = (img)(_n7##x,_n4##y,z,v)), \ |
philpem@5 | 1816 | (I[167] = (img)(_n7##x,_n5##y,z,v)), \ |
philpem@5 | 1817 | (I[181] = (img)(_n7##x,_n6##y,z,v)), \ |
philpem@5 | 1818 | (I[195] = (img)(_n7##x,_n7##y,z,v)),1)) || \ |
philpem@5 | 1819 | _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \ |
philpem@5 | 1820 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \ |
philpem@5 | 1821 | I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \ |
philpem@5 | 1822 | I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \ |
philpem@5 | 1823 | I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \ |
philpem@5 | 1824 | I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \ |
philpem@5 | 1825 | I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \ |
philpem@5 | 1826 | I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], \ |
philpem@5 | 1827 | I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \ |
philpem@5 | 1828 | I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \ |
philpem@5 | 1829 | I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \ |
philpem@5 | 1830 | I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], \ |
philpem@5 | 1831 | I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \ |
philpem@5 | 1832 | I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], \ |
philpem@5 | 1833 | I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], \ |
philpem@5 | 1834 | _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x) |
philpem@5 | 1835 | |
philpem@5 | 1836 | #define cimg_get14x14(img,x,y,z,v,I) \ |
philpem@5 | 1837 | I[0] = (img)(_p6##x,_p6##y,z,v), I[1] = (img)(_p5##x,_p6##y,z,v), I[2] = (img)(_p4##x,_p6##y,z,v), I[3] = (img)(_p3##x,_p6##y,z,v), I[4] = (img)(_p2##x,_p6##y,z,v), I[5] = (img)(_p1##x,_p6##y,z,v), I[6] = (img)(x,_p6##y,z,v), I[7] = (img)(_n1##x,_p6##y,z,v), I[8] = (img)(_n2##x,_p6##y,z,v), I[9] = (img)(_n3##x,_p6##y,z,v), I[10] = (img)(_n4##x,_p6##y,z,v), I[11] = (img)(_n5##x,_p6##y,z,v), I[12] = (img)(_n6##x,_p6##y,z,v), I[13] = (img)(_n7##x,_p6##y,z,v), \ |
philpem@5 | 1838 | I[14] = (img)(_p6##x,_p5##y,z,v), I[15] = (img)(_p5##x,_p5##y,z,v), I[16] = (img)(_p4##x,_p5##y,z,v), I[17] = (img)(_p3##x,_p5##y,z,v), I[18] = (img)(_p2##x,_p5##y,z,v), I[19] = (img)(_p1##x,_p5##y,z,v), I[20] = (img)(x,_p5##y,z,v), I[21] = (img)(_n1##x,_p5##y,z,v), I[22] = (img)(_n2##x,_p5##y,z,v), I[23] = (img)(_n3##x,_p5##y,z,v), I[24] = (img)(_n4##x,_p5##y,z,v), I[25] = (img)(_n5##x,_p5##y,z,v), I[26] = (img)(_n6##x,_p5##y,z,v), I[27] = (img)(_n7##x,_p5##y,z,v), \ |
philpem@5 | 1839 | I[28] = (img)(_p6##x,_p4##y,z,v), I[29] = (img)(_p5##x,_p4##y,z,v), I[30] = (img)(_p4##x,_p4##y,z,v), I[31] = (img)(_p3##x,_p4##y,z,v), I[32] = (img)(_p2##x,_p4##y,z,v), I[33] = (img)(_p1##x,_p4##y,z,v), I[34] = (img)(x,_p4##y,z,v), I[35] = (img)(_n1##x,_p4##y,z,v), I[36] = (img)(_n2##x,_p4##y,z,v), I[37] = (img)(_n3##x,_p4##y,z,v), I[38] = (img)(_n4##x,_p4##y,z,v), I[39] = (img)(_n5##x,_p4##y,z,v), I[40] = (img)(_n6##x,_p4##y,z,v), I[41] = (img)(_n7##x,_p4##y,z,v), \ |
philpem@5 | 1840 | I[42] = (img)(_p6##x,_p3##y,z,v), I[43] = (img)(_p5##x,_p3##y,z,v), I[44] = (img)(_p4##x,_p3##y,z,v), I[45] = (img)(_p3##x,_p3##y,z,v), I[46] = (img)(_p2##x,_p3##y,z,v), I[47] = (img)(_p1##x,_p3##y,z,v), I[48] = (img)(x,_p3##y,z,v), I[49] = (img)(_n1##x,_p3##y,z,v), I[50] = (img)(_n2##x,_p3##y,z,v), I[51] = (img)(_n3##x,_p3##y,z,v), I[52] = (img)(_n4##x,_p3##y,z,v), I[53] = (img)(_n5##x,_p3##y,z,v), I[54] = (img)(_n6##x,_p3##y,z,v), I[55] = (img)(_n7##x,_p3##y,z,v), \ |
philpem@5 | 1841 | I[56] = (img)(_p6##x,_p2##y,z,v), I[57] = (img)(_p5##x,_p2##y,z,v), I[58] = (img)(_p4##x,_p2##y,z,v), I[59] = (img)(_p3##x,_p2##y,z,v), I[60] = (img)(_p2##x,_p2##y,z,v), I[61] = (img)(_p1##x,_p2##y,z,v), I[62] = (img)(x,_p2##y,z,v), I[63] = (img)(_n1##x,_p2##y,z,v), I[64] = (img)(_n2##x,_p2##y,z,v), I[65] = (img)(_n3##x,_p2##y,z,v), I[66] = (img)(_n4##x,_p2##y,z,v), I[67] = (img)(_n5##x,_p2##y,z,v), I[68] = (img)(_n6##x,_p2##y,z,v), I[69] = (img)(_n7##x,_p2##y,z,v), \ |
philpem@5 | 1842 | I[70] = (img)(_p6##x,_p1##y,z,v), I[71] = (img)(_p5##x,_p1##y,z,v), I[72] = (img)(_p4##x,_p1##y,z,v), I[73] = (img)(_p3##x,_p1##y,z,v), I[74] = (img)(_p2##x,_p1##y,z,v), I[75] = (img)(_p1##x,_p1##y,z,v), I[76] = (img)(x,_p1##y,z,v), I[77] = (img)(_n1##x,_p1##y,z,v), I[78] = (img)(_n2##x,_p1##y,z,v), I[79] = (img)(_n3##x,_p1##y,z,v), I[80] = (img)(_n4##x,_p1##y,z,v), I[81] = (img)(_n5##x,_p1##y,z,v), I[82] = (img)(_n6##x,_p1##y,z,v), I[83] = (img)(_n7##x,_p1##y,z,v), \ |
philpem@5 | 1843 | I[84] = (img)(_p6##x,y,z,v), I[85] = (img)(_p5##x,y,z,v), I[86] = (img)(_p4##x,y,z,v), I[87] = (img)(_p3##x,y,z,v), I[88] = (img)(_p2##x,y,z,v), I[89] = (img)(_p1##x,y,z,v), I[90] = (img)(x,y,z,v), I[91] = (img)(_n1##x,y,z,v), I[92] = (img)(_n2##x,y,z,v), I[93] = (img)(_n3##x,y,z,v), I[94] = (img)(_n4##x,y,z,v), I[95] = (img)(_n5##x,y,z,v), I[96] = (img)(_n6##x,y,z,v), I[97] = (img)(_n7##x,y,z,v), \ |
philpem@5 | 1844 | I[98] = (img)(_p6##x,_n1##y,z,v), I[99] = (img)(_p5##x,_n1##y,z,v), I[100] = (img)(_p4##x,_n1##y,z,v), I[101] = (img)(_p3##x,_n1##y,z,v), I[102] = (img)(_p2##x,_n1##y,z,v), I[103] = (img)(_p1##x,_n1##y,z,v), I[104] = (img)(x,_n1##y,z,v), I[105] = (img)(_n1##x,_n1##y,z,v), I[106] = (img)(_n2##x,_n1##y,z,v), I[107] = (img)(_n3##x,_n1##y,z,v), I[108] = (img)(_n4##x,_n1##y,z,v), I[109] = (img)(_n5##x,_n1##y,z,v), I[110] = (img)(_n6##x,_n1##y,z,v), I[111] = (img)(_n7##x,_n1##y,z,v), \ |
philpem@5 | 1845 | I[112] = (img)(_p6##x,_n2##y,z,v), I[113] = (img)(_p5##x,_n2##y,z,v), I[114] = (img)(_p4##x,_n2##y,z,v), I[115] = (img)(_p3##x,_n2##y,z,v), I[116] = (img)(_p2##x,_n2##y,z,v), I[117] = (img)(_p1##x,_n2##y,z,v), I[118] = (img)(x,_n2##y,z,v), I[119] = (img)(_n1##x,_n2##y,z,v), I[120] = (img)(_n2##x,_n2##y,z,v), I[121] = (img)(_n3##x,_n2##y,z,v), I[122] = (img)(_n4##x,_n2##y,z,v), I[123] = (img)(_n5##x,_n2##y,z,v), I[124] = (img)(_n6##x,_n2##y,z,v), I[125] = (img)(_n7##x,_n2##y,z,v), \ |
philpem@5 | 1846 | I[126] = (img)(_p6##x,_n3##y,z,v), I[127] = (img)(_p5##x,_n3##y,z,v), I[128] = (img)(_p4##x,_n3##y,z,v), I[129] = (img)(_p3##x,_n3##y,z,v), I[130] = (img)(_p2##x,_n3##y,z,v), I[131] = (img)(_p1##x,_n3##y,z,v), I[132] = (img)(x,_n3##y,z,v), I[133] = (img)(_n1##x,_n3##y,z,v), I[134] = (img)(_n2##x,_n3##y,z,v), I[135] = (img)(_n3##x,_n3##y,z,v), I[136] = (img)(_n4##x,_n3##y,z,v), I[137] = (img)(_n5##x,_n3##y,z,v), I[138] = (img)(_n6##x,_n3##y,z,v), I[139] = (img)(_n7##x,_n3##y,z,v), \ |
philpem@5 | 1847 | I[140] = (img)(_p6##x,_n4##y,z,v), I[141] = (img)(_p5##x,_n4##y,z,v), I[142] = (img)(_p4##x,_n4##y,z,v), I[143] = (img)(_p3##x,_n4##y,z,v), I[144] = (img)(_p2##x,_n4##y,z,v), I[145] = (img)(_p1##x,_n4##y,z,v), I[146] = (img)(x,_n4##y,z,v), I[147] = (img)(_n1##x,_n4##y,z,v), I[148] = (img)(_n2##x,_n4##y,z,v), I[149] = (img)(_n3##x,_n4##y,z,v), I[150] = (img)(_n4##x,_n4##y,z,v), I[151] = (img)(_n5##x,_n4##y,z,v), I[152] = (img)(_n6##x,_n4##y,z,v), I[153] = (img)(_n7##x,_n4##y,z,v), \ |
philpem@5 | 1848 | I[154] = (img)(_p6##x,_n5##y,z,v), I[155] = (img)(_p5##x,_n5##y,z,v), I[156] = (img)(_p4##x,_n5##y,z,v), I[157] = (img)(_p3##x,_n5##y,z,v), I[158] = (img)(_p2##x,_n5##y,z,v), I[159] = (img)(_p1##x,_n5##y,z,v), I[160] = (img)(x,_n5##y,z,v), I[161] = (img)(_n1##x,_n5##y,z,v), I[162] = (img)(_n2##x,_n5##y,z,v), I[163] = (img)(_n3##x,_n5##y,z,v), I[164] = (img)(_n4##x,_n5##y,z,v), I[165] = (img)(_n5##x,_n5##y,z,v), I[166] = (img)(_n6##x,_n5##y,z,v), I[167] = (img)(_n7##x,_n5##y,z,v), \ |
philpem@5 | 1849 | I[168] = (img)(_p6##x,_n6##y,z,v), I[169] = (img)(_p5##x,_n6##y,z,v), I[170] = (img)(_p4##x,_n6##y,z,v), I[171] = (img)(_p3##x,_n6##y,z,v), I[172] = (img)(_p2##x,_n6##y,z,v), I[173] = (img)(_p1##x,_n6##y,z,v), I[174] = (img)(x,_n6##y,z,v), I[175] = (img)(_n1##x,_n6##y,z,v), I[176] = (img)(_n2##x,_n6##y,z,v), I[177] = (img)(_n3##x,_n6##y,z,v), I[178] = (img)(_n4##x,_n6##y,z,v), I[179] = (img)(_n5##x,_n6##y,z,v), I[180] = (img)(_n6##x,_n6##y,z,v), I[181] = (img)(_n7##x,_n6##y,z,v), \ |
philpem@5 | 1850 | I[182] = (img)(_p6##x,_n7##y,z,v), I[183] = (img)(_p5##x,_n7##y,z,v), I[184] = (img)(_p4##x,_n7##y,z,v), I[185] = (img)(_p3##x,_n7##y,z,v), I[186] = (img)(_p2##x,_n7##y,z,v), I[187] = (img)(_p1##x,_n7##y,z,v), I[188] = (img)(x,_n7##y,z,v), I[189] = (img)(_n1##x,_n7##y,z,v), I[190] = (img)(_n2##x,_n7##y,z,v), I[191] = (img)(_n3##x,_n7##y,z,v), I[192] = (img)(_n4##x,_n7##y,z,v), I[193] = (img)(_n5##x,_n7##y,z,v), I[194] = (img)(_n6##x,_n7##y,z,v), I[195] = (img)(_n7##x,_n7##y,z,v); |
philpem@5 | 1851 | |
philpem@5 | 1852 | // Define 15x15 loop macros for CImg |
philpem@5 | 1853 | //---------------------------------- |
philpem@5 | 1854 | #define cimg_for15(bound,i) for (int i = 0, \ |
philpem@5 | 1855 | _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \ |
philpem@5 | 1856 | _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \ |
philpem@5 | 1857 | _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \ |
philpem@5 | 1858 | _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \ |
philpem@5 | 1859 | _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \ |
philpem@5 | 1860 | _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \ |
philpem@5 | 1861 | _n6##i = 6>=(int)(bound)?(int)(bound)-1:6, \ |
philpem@5 | 1862 | _n7##i = 7>=(int)(bound)?(int)(bound)-1:7; \ |
philpem@5 | 1863 | _n7##i<(int)(bound) || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 1864 | i==(_n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \ |
philpem@5 | 1865 | _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 1866 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i) |
philpem@5 | 1867 | |
philpem@5 | 1868 | #define cimg_for15X(img,x) cimg_for15((img).width,x) |
philpem@5 | 1869 | #define cimg_for15Y(img,y) cimg_for15((img).height,y) |
philpem@5 | 1870 | #define cimg_for15Z(img,z) cimg_for15((img).depth,z) |
philpem@5 | 1871 | #define cimg_for15V(img,v) cimg_for15((img).dim,v) |
philpem@5 | 1872 | #define cimg_for15XY(img,x,y) cimg_for15Y(img,y) cimg_for15X(img,x) |
philpem@5 | 1873 | #define cimg_for15XZ(img,x,z) cimg_for15Z(img,z) cimg_for15X(img,x) |
philpem@5 | 1874 | #define cimg_for15XV(img,x,v) cimg_for15V(img,v) cimg_for15X(img,x) |
philpem@5 | 1875 | #define cimg_for15YZ(img,y,z) cimg_for15Z(img,z) cimg_for15Y(img,y) |
philpem@5 | 1876 | #define cimg_for15YV(img,y,v) cimg_for15V(img,v) cimg_for15Y(img,y) |
philpem@5 | 1877 | #define cimg_for15ZV(img,z,v) cimg_for15V(img,v) cimg_for15Z(img,z) |
philpem@5 | 1878 | #define cimg_for15XYZ(img,x,y,z) cimg_for15Z(img,z) cimg_for15XY(img,x,y) |
philpem@5 | 1879 | #define cimg_for15XZV(img,x,z,v) cimg_for15V(img,v) cimg_for15XZ(img,x,z) |
philpem@5 | 1880 | #define cimg_for15YZV(img,y,z,v) cimg_for15V(img,v) cimg_for15YZ(img,y,z) |
philpem@5 | 1881 | #define cimg_for15XYZV(img,x,y,z,v) cimg_for15V(img,v) cimg_for15XYZ(img,x,y,z) |
philpem@5 | 1882 | |
philpem@5 | 1883 | #define cimg_for_in15(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \ |
philpem@5 | 1884 | _p7##i = i-7<0?0:i-7, \ |
philpem@5 | 1885 | _p6##i = i-6<0?0:i-6, \ |
philpem@5 | 1886 | _p5##i = i-5<0?0:i-5, \ |
philpem@5 | 1887 | _p4##i = i-4<0?0:i-4, \ |
philpem@5 | 1888 | _p3##i = i-3<0?0:i-3, \ |
philpem@5 | 1889 | _p2##i = i-2<0?0:i-2, \ |
philpem@5 | 1890 | _p1##i = i-1<0?0:i-1, \ |
philpem@5 | 1891 | _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \ |
philpem@5 | 1892 | _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \ |
philpem@5 | 1893 | _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \ |
philpem@5 | 1894 | _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \ |
philpem@5 | 1895 | _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \ |
philpem@5 | 1896 | _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6, \ |
philpem@5 | 1897 | _n7##i = i+7>=(int)(bound)?(int)(bound)-1:i+7; \ |
philpem@5 | 1898 | i<=(int)(i1) && (_n7##i<(int)(bound) || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 1899 | i==(_n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \ |
philpem@5 | 1900 | _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 1901 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i) |
philpem@5 | 1902 | |
philpem@5 | 1903 | #define cimg_for_in15X(img,x0,x1,x) cimg_for_in15((img).width,x0,x1,x) |
philpem@5 | 1904 | #define cimg_for_in15Y(img,y0,y1,y) cimg_for_in15((img).height,y0,y1,y) |
philpem@5 | 1905 | #define cimg_for_in15Z(img,z0,z1,z) cimg_for_in15((img).depth,z0,z1,z) |
philpem@5 | 1906 | #define cimg_for_in15V(img,v0,v1,v) cimg_for_in15((img).dim,v0,v1,v) |
philpem@5 | 1907 | #define cimg_for_in15XY(img,x0,y0,x1,y1,x,y) cimg_for_in15Y(img,y0,y1,y) cimg_for_in15X(img,x0,x1,x) |
philpem@5 | 1908 | #define cimg_for_in15XZ(img,x0,z0,x1,z1,x,z) cimg_for_in15Z(img,z0,z1,z) cimg_for_in15X(img,x0,x1,x) |
philpem@5 | 1909 | #define cimg_for_in15XV(img,x0,v0,x1,v1,x,v) cimg_for_in15V(img,v0,v1,v) cimg_for_in15X(img,x0,x1,x) |
philpem@5 | 1910 | #define cimg_for_in15YZ(img,y0,z0,y1,z1,y,z) cimg_for_in15Z(img,z0,z1,z) cimg_for_in15Y(img,y0,y1,y) |
philpem@5 | 1911 | #define cimg_for_in15YV(img,y0,v0,y1,v1,y,v) cimg_for_in15V(img,v0,v1,v) cimg_for_in15Y(img,y0,y1,y) |
philpem@5 | 1912 | #define cimg_for_in15ZV(img,z0,v0,z1,v1,z,v) cimg_for_in15V(img,v0,v1,v) cimg_for_in15Z(img,z0,z1,z) |
philpem@5 | 1913 | #define cimg_for_in15XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in15Z(img,z0,z1,z) cimg_for_in15XY(img,x0,y0,x1,y1,x,y) |
philpem@5 | 1914 | #define cimg_for_in15XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in15V(img,v0,v1,v) cimg_for_in15XZ(img,x0,y0,x1,y1,x,z) |
philpem@5 | 1915 | #define cimg_for_in15YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in15V(img,v0,v1,v) cimg_for_in15YZ(img,y0,z0,y1,z1,y,z) |
philpem@5 | 1916 | #define cimg_for_in15XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in15V(img,v0,v1,v) cimg_for_in15XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) |
philpem@5 | 1917 | |
philpem@5 | 1918 | #define cimg_for15x15(img,x,y,z,v,I) \ |
philpem@5 | 1919 | cimg_for15((img).height,y) for (int x = 0, \ |
philpem@5 | 1920 | _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \ |
philpem@5 | 1921 | _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \ |
philpem@5 | 1922 | _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \ |
philpem@5 | 1923 | _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \ |
philpem@5 | 1924 | _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \ |
philpem@5 | 1925 | _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \ |
philpem@5 | 1926 | _n6##x = 6>=((img).width)?(int)((img).width)-1:6, \ |
philpem@5 | 1927 | _n7##x = (int)( \ |
philpem@5 | 1928 | (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = (img)(0,_p7##y,z,v)), \ |
philpem@5 | 1929 | (I[15] = I[16] = I[17] = I[18] = I[19] = I[20] = I[21] = I[22] = (img)(0,_p6##y,z,v)), \ |
philpem@5 | 1930 | (I[30] = I[31] = I[32] = I[33] = I[34] = I[35] = I[36] = I[37] = (img)(0,_p5##y,z,v)), \ |
philpem@5 | 1931 | (I[45] = I[46] = I[47] = I[48] = I[49] = I[50] = I[51] = I[52] = (img)(0,_p4##y,z,v)), \ |
philpem@5 | 1932 | (I[60] = I[61] = I[62] = I[63] = I[64] = I[65] = I[66] = I[67] = (img)(0,_p3##y,z,v)), \ |
philpem@5 | 1933 | (I[75] = I[76] = I[77] = I[78] = I[79] = I[80] = I[81] = I[82] = (img)(0,_p2##y,z,v)), \ |
philpem@5 | 1934 | (I[90] = I[91] = I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = (img)(0,_p1##y,z,v)), \ |
philpem@5 | 1935 | (I[105] = I[106] = I[107] = I[108] = I[109] = I[110] = I[111] = I[112] = (img)(0,y,z,v)), \ |
philpem@5 | 1936 | (I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = I[126] = I[127] = (img)(0,_n1##y,z,v)), \ |
philpem@5 | 1937 | (I[135] = I[136] = I[137] = I[138] = I[139] = I[140] = I[141] = I[142] = (img)(0,_n2##y,z,v)), \ |
philpem@5 | 1938 | (I[150] = I[151] = I[152] = I[153] = I[154] = I[155] = I[156] = I[157] = (img)(0,_n3##y,z,v)), \ |
philpem@5 | 1939 | (I[165] = I[166] = I[167] = I[168] = I[169] = I[170] = I[171] = I[172] = (img)(0,_n4##y,z,v)), \ |
philpem@5 | 1940 | (I[180] = I[181] = I[182] = I[183] = I[184] = I[185] = I[186] = I[187] = (img)(0,_n5##y,z,v)), \ |
philpem@5 | 1941 | (I[195] = I[196] = I[197] = I[198] = I[199] = I[200] = I[201] = I[202] = (img)(0,_n6##y,z,v)), \ |
philpem@5 | 1942 | (I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = I[216] = I[217] = (img)(0,_n7##y,z,v)), \ |
philpem@5 | 1943 | (I[8] = (img)(_n1##x,_p7##y,z,v)), \ |
philpem@5 | 1944 | (I[23] = (img)(_n1##x,_p6##y,z,v)), \ |
philpem@5 | 1945 | (I[38] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 1946 | (I[53] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 1947 | (I[68] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 1948 | (I[83] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 1949 | (I[98] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 1950 | (I[113] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 1951 | (I[128] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 1952 | (I[143] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 1953 | (I[158] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 1954 | (I[173] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 1955 | (I[188] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 1956 | (I[203] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 1957 | (I[218] = (img)(_n1##x,_n7##y,z,v)), \ |
philpem@5 | 1958 | (I[9] = (img)(_n2##x,_p7##y,z,v)), \ |
philpem@5 | 1959 | (I[24] = (img)(_n2##x,_p6##y,z,v)), \ |
philpem@5 | 1960 | (I[39] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 1961 | (I[54] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 1962 | (I[69] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 1963 | (I[84] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 1964 | (I[99] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 1965 | (I[114] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 1966 | (I[129] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 1967 | (I[144] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 1968 | (I[159] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 1969 | (I[174] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 1970 | (I[189] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 1971 | (I[204] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 1972 | (I[219] = (img)(_n2##x,_n7##y,z,v)), \ |
philpem@5 | 1973 | (I[10] = (img)(_n3##x,_p7##y,z,v)), \ |
philpem@5 | 1974 | (I[25] = (img)(_n3##x,_p6##y,z,v)), \ |
philpem@5 | 1975 | (I[40] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 1976 | (I[55] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 1977 | (I[70] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 1978 | (I[85] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 1979 | (I[100] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 1980 | (I[115] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 1981 | (I[130] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 1982 | (I[145] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 1983 | (I[160] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 1984 | (I[175] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 1985 | (I[190] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 1986 | (I[205] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 1987 | (I[220] = (img)(_n3##x,_n7##y,z,v)), \ |
philpem@5 | 1988 | (I[11] = (img)(_n4##x,_p7##y,z,v)), \ |
philpem@5 | 1989 | (I[26] = (img)(_n4##x,_p6##y,z,v)), \ |
philpem@5 | 1990 | (I[41] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 1991 | (I[56] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 1992 | (I[71] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 1993 | (I[86] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 1994 | (I[101] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 1995 | (I[116] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 1996 | (I[131] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 1997 | (I[146] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 1998 | (I[161] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 1999 | (I[176] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 2000 | (I[191] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 2001 | (I[206] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 2002 | (I[221] = (img)(_n4##x,_n7##y,z,v)), \ |
philpem@5 | 2003 | (I[12] = (img)(_n5##x,_p7##y,z,v)), \ |
philpem@5 | 2004 | (I[27] = (img)(_n5##x,_p6##y,z,v)), \ |
philpem@5 | 2005 | (I[42] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 2006 | (I[57] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 2007 | (I[72] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 2008 | (I[87] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 2009 | (I[102] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 2010 | (I[117] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 2011 | (I[132] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 2012 | (I[147] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 2013 | (I[162] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 2014 | (I[177] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 2015 | (I[192] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 2016 | (I[207] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 2017 | (I[222] = (img)(_n5##x,_n7##y,z,v)), \ |
philpem@5 | 2018 | (I[13] = (img)(_n6##x,_p7##y,z,v)), \ |
philpem@5 | 2019 | (I[28] = (img)(_n6##x,_p6##y,z,v)), \ |
philpem@5 | 2020 | (I[43] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 2021 | (I[58] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 2022 | (I[73] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 2023 | (I[88] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 2024 | (I[103] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 2025 | (I[118] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 2026 | (I[133] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 2027 | (I[148] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 2028 | (I[163] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 2029 | (I[178] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 2030 | (I[193] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 2031 | (I[208] = (img)(_n6##x,_n6##y,z,v)), \ |
philpem@5 | 2032 | (I[223] = (img)(_n6##x,_n7##y,z,v)), \ |
philpem@5 | 2033 | 7>=((img).width)?(int)((img).width)-1:7); \ |
philpem@5 | 2034 | (_n7##x<(int)((img).width) && ( \ |
philpem@5 | 2035 | (I[14] = (img)(_n7##x,_p7##y,z,v)), \ |
philpem@5 | 2036 | (I[29] = (img)(_n7##x,_p6##y,z,v)), \ |
philpem@5 | 2037 | (I[44] = (img)(_n7##x,_p5##y,z,v)), \ |
philpem@5 | 2038 | (I[59] = (img)(_n7##x,_p4##y,z,v)), \ |
philpem@5 | 2039 | (I[74] = (img)(_n7##x,_p3##y,z,v)), \ |
philpem@5 | 2040 | (I[89] = (img)(_n7##x,_p2##y,z,v)), \ |
philpem@5 | 2041 | (I[104] = (img)(_n7##x,_p1##y,z,v)), \ |
philpem@5 | 2042 | (I[119] = (img)(_n7##x,y,z,v)), \ |
philpem@5 | 2043 | (I[134] = (img)(_n7##x,_n1##y,z,v)), \ |
philpem@5 | 2044 | (I[149] = (img)(_n7##x,_n2##y,z,v)), \ |
philpem@5 | 2045 | (I[164] = (img)(_n7##x,_n3##y,z,v)), \ |
philpem@5 | 2046 | (I[179] = (img)(_n7##x,_n4##y,z,v)), \ |
philpem@5 | 2047 | (I[194] = (img)(_n7##x,_n5##y,z,v)), \ |
philpem@5 | 2048 | (I[209] = (img)(_n7##x,_n6##y,z,v)), \ |
philpem@5 | 2049 | (I[224] = (img)(_n7##x,_n7##y,z,v)),1)) || \ |
philpem@5 | 2050 | _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \ |
philpem@5 | 2051 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], \ |
philpem@5 | 2052 | I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \ |
philpem@5 | 2053 | I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], \ |
philpem@5 | 2054 | I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \ |
philpem@5 | 2055 | I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], \ |
philpem@5 | 2056 | I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \ |
philpem@5 | 2057 | I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \ |
philpem@5 | 2058 | I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \ |
philpem@5 | 2059 | I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], \ |
philpem@5 | 2060 | I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], \ |
philpem@5 | 2061 | I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], \ |
philpem@5 | 2062 | I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \ |
philpem@5 | 2063 | I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], \ |
philpem@5 | 2064 | I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \ |
philpem@5 | 2065 | I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], \ |
philpem@5 | 2066 | _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x) |
philpem@5 | 2067 | |
philpem@5 | 2068 | #define cimg_for_in15x15(img,x0,y0,x1,y1,x,y,z,v,I) \ |
philpem@5 | 2069 | cimg_for_in15((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ |
philpem@5 | 2070 | _p7##x = x-7<0?0:x-7, \ |
philpem@5 | 2071 | _p6##x = x-6<0?0:x-6, \ |
philpem@5 | 2072 | _p5##x = x-5<0?0:x-5, \ |
philpem@5 | 2073 | _p4##x = x-4<0?0:x-4, \ |
philpem@5 | 2074 | _p3##x = x-3<0?0:x-3, \ |
philpem@5 | 2075 | _p2##x = x-2<0?0:x-2, \ |
philpem@5 | 2076 | _p1##x = x-1<0?0:x-1, \ |
philpem@5 | 2077 | _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \ |
philpem@5 | 2078 | _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \ |
philpem@5 | 2079 | _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \ |
philpem@5 | 2080 | _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \ |
philpem@5 | 2081 | _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \ |
philpem@5 | 2082 | _n6##x = x+6>=(int)((img).width)?(int)((img).width)-1:x+6, \ |
philpem@5 | 2083 | _n7##x = (int)( \ |
philpem@5 | 2084 | (I[0] = (img)(_p7##x,_p7##y,z,v)), \ |
philpem@5 | 2085 | (I[15] = (img)(_p7##x,_p6##y,z,v)), \ |
philpem@5 | 2086 | (I[30] = (img)(_p7##x,_p5##y,z,v)), \ |
philpem@5 | 2087 | (I[45] = (img)(_p7##x,_p4##y,z,v)), \ |
philpem@5 | 2088 | (I[60] = (img)(_p7##x,_p3##y,z,v)), \ |
philpem@5 | 2089 | (I[75] = (img)(_p7##x,_p2##y,z,v)), \ |
philpem@5 | 2090 | (I[90] = (img)(_p7##x,_p1##y,z,v)), \ |
philpem@5 | 2091 | (I[105] = (img)(_p7##x,y,z,v)), \ |
philpem@5 | 2092 | (I[120] = (img)(_p7##x,_n1##y,z,v)), \ |
philpem@5 | 2093 | (I[135] = (img)(_p7##x,_n2##y,z,v)), \ |
philpem@5 | 2094 | (I[150] = (img)(_p7##x,_n3##y,z,v)), \ |
philpem@5 | 2095 | (I[165] = (img)(_p7##x,_n4##y,z,v)), \ |
philpem@5 | 2096 | (I[180] = (img)(_p7##x,_n5##y,z,v)), \ |
philpem@5 | 2097 | (I[195] = (img)(_p7##x,_n6##y,z,v)), \ |
philpem@5 | 2098 | (I[210] = (img)(_p7##x,_n7##y,z,v)), \ |
philpem@5 | 2099 | (I[1] = (img)(_p6##x,_p7##y,z,v)), \ |
philpem@5 | 2100 | (I[16] = (img)(_p6##x,_p6##y,z,v)), \ |
philpem@5 | 2101 | (I[31] = (img)(_p6##x,_p5##y,z,v)), \ |
philpem@5 | 2102 | (I[46] = (img)(_p6##x,_p4##y,z,v)), \ |
philpem@5 | 2103 | (I[61] = (img)(_p6##x,_p3##y,z,v)), \ |
philpem@5 | 2104 | (I[76] = (img)(_p6##x,_p2##y,z,v)), \ |
philpem@5 | 2105 | (I[91] = (img)(_p6##x,_p1##y,z,v)), \ |
philpem@5 | 2106 | (I[106] = (img)(_p6##x,y,z,v)), \ |
philpem@5 | 2107 | (I[121] = (img)(_p6##x,_n1##y,z,v)), \ |
philpem@5 | 2108 | (I[136] = (img)(_p6##x,_n2##y,z,v)), \ |
philpem@5 | 2109 | (I[151] = (img)(_p6##x,_n3##y,z,v)), \ |
philpem@5 | 2110 | (I[166] = (img)(_p6##x,_n4##y,z,v)), \ |
philpem@5 | 2111 | (I[181] = (img)(_p6##x,_n5##y,z,v)), \ |
philpem@5 | 2112 | (I[196] = (img)(_p6##x,_n6##y,z,v)), \ |
philpem@5 | 2113 | (I[211] = (img)(_p6##x,_n7##y,z,v)), \ |
philpem@5 | 2114 | (I[2] = (img)(_p5##x,_p7##y,z,v)), \ |
philpem@5 | 2115 | (I[17] = (img)(_p5##x,_p6##y,z,v)), \ |
philpem@5 | 2116 | (I[32] = (img)(_p5##x,_p5##y,z,v)), \ |
philpem@5 | 2117 | (I[47] = (img)(_p5##x,_p4##y,z,v)), \ |
philpem@5 | 2118 | (I[62] = (img)(_p5##x,_p3##y,z,v)), \ |
philpem@5 | 2119 | (I[77] = (img)(_p5##x,_p2##y,z,v)), \ |
philpem@5 | 2120 | (I[92] = (img)(_p5##x,_p1##y,z,v)), \ |
philpem@5 | 2121 | (I[107] = (img)(_p5##x,y,z,v)), \ |
philpem@5 | 2122 | (I[122] = (img)(_p5##x,_n1##y,z,v)), \ |
philpem@5 | 2123 | (I[137] = (img)(_p5##x,_n2##y,z,v)), \ |
philpem@5 | 2124 | (I[152] = (img)(_p5##x,_n3##y,z,v)), \ |
philpem@5 | 2125 | (I[167] = (img)(_p5##x,_n4##y,z,v)), \ |
philpem@5 | 2126 | (I[182] = (img)(_p5##x,_n5##y,z,v)), \ |
philpem@5 | 2127 | (I[197] = (img)(_p5##x,_n6##y,z,v)), \ |
philpem@5 | 2128 | (I[212] = (img)(_p5##x,_n7##y,z,v)), \ |
philpem@5 | 2129 | (I[3] = (img)(_p4##x,_p7##y,z,v)), \ |
philpem@5 | 2130 | (I[18] = (img)(_p4##x,_p6##y,z,v)), \ |
philpem@5 | 2131 | (I[33] = (img)(_p4##x,_p5##y,z,v)), \ |
philpem@5 | 2132 | (I[48] = (img)(_p4##x,_p4##y,z,v)), \ |
philpem@5 | 2133 | (I[63] = (img)(_p4##x,_p3##y,z,v)), \ |
philpem@5 | 2134 | (I[78] = (img)(_p4##x,_p2##y,z,v)), \ |
philpem@5 | 2135 | (I[93] = (img)(_p4##x,_p1##y,z,v)), \ |
philpem@5 | 2136 | (I[108] = (img)(_p4##x,y,z,v)), \ |
philpem@5 | 2137 | (I[123] = (img)(_p4##x,_n1##y,z,v)), \ |
philpem@5 | 2138 | (I[138] = (img)(_p4##x,_n2##y,z,v)), \ |
philpem@5 | 2139 | (I[153] = (img)(_p4##x,_n3##y,z,v)), \ |
philpem@5 | 2140 | (I[168] = (img)(_p4##x,_n4##y,z,v)), \ |
philpem@5 | 2141 | (I[183] = (img)(_p4##x,_n5##y,z,v)), \ |
philpem@5 | 2142 | (I[198] = (img)(_p4##x,_n6##y,z,v)), \ |
philpem@5 | 2143 | (I[213] = (img)(_p4##x,_n7##y,z,v)), \ |
philpem@5 | 2144 | (I[4] = (img)(_p3##x,_p7##y,z,v)), \ |
philpem@5 | 2145 | (I[19] = (img)(_p3##x,_p6##y,z,v)), \ |
philpem@5 | 2146 | (I[34] = (img)(_p3##x,_p5##y,z,v)), \ |
philpem@5 | 2147 | (I[49] = (img)(_p3##x,_p4##y,z,v)), \ |
philpem@5 | 2148 | (I[64] = (img)(_p3##x,_p3##y,z,v)), \ |
philpem@5 | 2149 | (I[79] = (img)(_p3##x,_p2##y,z,v)), \ |
philpem@5 | 2150 | (I[94] = (img)(_p3##x,_p1##y,z,v)), \ |
philpem@5 | 2151 | (I[109] = (img)(_p3##x,y,z,v)), \ |
philpem@5 | 2152 | (I[124] = (img)(_p3##x,_n1##y,z,v)), \ |
philpem@5 | 2153 | (I[139] = (img)(_p3##x,_n2##y,z,v)), \ |
philpem@5 | 2154 | (I[154] = (img)(_p3##x,_n3##y,z,v)), \ |
philpem@5 | 2155 | (I[169] = (img)(_p3##x,_n4##y,z,v)), \ |
philpem@5 | 2156 | (I[184] = (img)(_p3##x,_n5##y,z,v)), \ |
philpem@5 | 2157 | (I[199] = (img)(_p3##x,_n6##y,z,v)), \ |
philpem@5 | 2158 | (I[214] = (img)(_p3##x,_n7##y,z,v)), \ |
philpem@5 | 2159 | (I[5] = (img)(_p2##x,_p7##y,z,v)), \ |
philpem@5 | 2160 | (I[20] = (img)(_p2##x,_p6##y,z,v)), \ |
philpem@5 | 2161 | (I[35] = (img)(_p2##x,_p5##y,z,v)), \ |
philpem@5 | 2162 | (I[50] = (img)(_p2##x,_p4##y,z,v)), \ |
philpem@5 | 2163 | (I[65] = (img)(_p2##x,_p3##y,z,v)), \ |
philpem@5 | 2164 | (I[80] = (img)(_p2##x,_p2##y,z,v)), \ |
philpem@5 | 2165 | (I[95] = (img)(_p2##x,_p1##y,z,v)), \ |
philpem@5 | 2166 | (I[110] = (img)(_p2##x,y,z,v)), \ |
philpem@5 | 2167 | (I[125] = (img)(_p2##x,_n1##y,z,v)), \ |
philpem@5 | 2168 | (I[140] = (img)(_p2##x,_n2##y,z,v)), \ |
philpem@5 | 2169 | (I[155] = (img)(_p2##x,_n3##y,z,v)), \ |
philpem@5 | 2170 | (I[170] = (img)(_p2##x,_n4##y,z,v)), \ |
philpem@5 | 2171 | (I[185] = (img)(_p2##x,_n5##y,z,v)), \ |
philpem@5 | 2172 | (I[200] = (img)(_p2##x,_n6##y,z,v)), \ |
philpem@5 | 2173 | (I[215] = (img)(_p2##x,_n7##y,z,v)), \ |
philpem@5 | 2174 | (I[6] = (img)(_p1##x,_p7##y,z,v)), \ |
philpem@5 | 2175 | (I[21] = (img)(_p1##x,_p6##y,z,v)), \ |
philpem@5 | 2176 | (I[36] = (img)(_p1##x,_p5##y,z,v)), \ |
philpem@5 | 2177 | (I[51] = (img)(_p1##x,_p4##y,z,v)), \ |
philpem@5 | 2178 | (I[66] = (img)(_p1##x,_p3##y,z,v)), \ |
philpem@5 | 2179 | (I[81] = (img)(_p1##x,_p2##y,z,v)), \ |
philpem@5 | 2180 | (I[96] = (img)(_p1##x,_p1##y,z,v)), \ |
philpem@5 | 2181 | (I[111] = (img)(_p1##x,y,z,v)), \ |
philpem@5 | 2182 | (I[126] = (img)(_p1##x,_n1##y,z,v)), \ |
philpem@5 | 2183 | (I[141] = (img)(_p1##x,_n2##y,z,v)), \ |
philpem@5 | 2184 | (I[156] = (img)(_p1##x,_n3##y,z,v)), \ |
philpem@5 | 2185 | (I[171] = (img)(_p1##x,_n4##y,z,v)), \ |
philpem@5 | 2186 | (I[186] = (img)(_p1##x,_n5##y,z,v)), \ |
philpem@5 | 2187 | (I[201] = (img)(_p1##x,_n6##y,z,v)), \ |
philpem@5 | 2188 | (I[216] = (img)(_p1##x,_n7##y,z,v)), \ |
philpem@5 | 2189 | (I[7] = (img)(x,_p7##y,z,v)), \ |
philpem@5 | 2190 | (I[22] = (img)(x,_p6##y,z,v)), \ |
philpem@5 | 2191 | (I[37] = (img)(x,_p5##y,z,v)), \ |
philpem@5 | 2192 | (I[52] = (img)(x,_p4##y,z,v)), \ |
philpem@5 | 2193 | (I[67] = (img)(x,_p3##y,z,v)), \ |
philpem@5 | 2194 | (I[82] = (img)(x,_p2##y,z,v)), \ |
philpem@5 | 2195 | (I[97] = (img)(x,_p1##y,z,v)), \ |
philpem@5 | 2196 | (I[112] = (img)(x,y,z,v)), \ |
philpem@5 | 2197 | (I[127] = (img)(x,_n1##y,z,v)), \ |
philpem@5 | 2198 | (I[142] = (img)(x,_n2##y,z,v)), \ |
philpem@5 | 2199 | (I[157] = (img)(x,_n3##y,z,v)), \ |
philpem@5 | 2200 | (I[172] = (img)(x,_n4##y,z,v)), \ |
philpem@5 | 2201 | (I[187] = (img)(x,_n5##y,z,v)), \ |
philpem@5 | 2202 | (I[202] = (img)(x,_n6##y,z,v)), \ |
philpem@5 | 2203 | (I[217] = (img)(x,_n7##y,z,v)), \ |
philpem@5 | 2204 | (I[8] = (img)(_n1##x,_p7##y,z,v)), \ |
philpem@5 | 2205 | (I[23] = (img)(_n1##x,_p6##y,z,v)), \ |
philpem@5 | 2206 | (I[38] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 2207 | (I[53] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 2208 | (I[68] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 2209 | (I[83] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 2210 | (I[98] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 2211 | (I[113] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 2212 | (I[128] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 2213 | (I[143] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 2214 | (I[158] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 2215 | (I[173] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 2216 | (I[188] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 2217 | (I[203] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 2218 | (I[218] = (img)(_n1##x,_n7##y,z,v)), \ |
philpem@5 | 2219 | (I[9] = (img)(_n2##x,_p7##y,z,v)), \ |
philpem@5 | 2220 | (I[24] = (img)(_n2##x,_p6##y,z,v)), \ |
philpem@5 | 2221 | (I[39] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 2222 | (I[54] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 2223 | (I[69] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 2224 | (I[84] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 2225 | (I[99] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 2226 | (I[114] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 2227 | (I[129] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 2228 | (I[144] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 2229 | (I[159] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 2230 | (I[174] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 2231 | (I[189] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 2232 | (I[204] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 2233 | (I[219] = (img)(_n2##x,_n7##y,z,v)), \ |
philpem@5 | 2234 | (I[10] = (img)(_n3##x,_p7##y,z,v)), \ |
philpem@5 | 2235 | (I[25] = (img)(_n3##x,_p6##y,z,v)), \ |
philpem@5 | 2236 | (I[40] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 2237 | (I[55] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 2238 | (I[70] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 2239 | (I[85] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 2240 | (I[100] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 2241 | (I[115] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 2242 | (I[130] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 2243 | (I[145] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 2244 | (I[160] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 2245 | (I[175] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 2246 | (I[190] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 2247 | (I[205] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 2248 | (I[220] = (img)(_n3##x,_n7##y,z,v)), \ |
philpem@5 | 2249 | (I[11] = (img)(_n4##x,_p7##y,z,v)), \ |
philpem@5 | 2250 | (I[26] = (img)(_n4##x,_p6##y,z,v)), \ |
philpem@5 | 2251 | (I[41] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 2252 | (I[56] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 2253 | (I[71] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 2254 | (I[86] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 2255 | (I[101] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 2256 | (I[116] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 2257 | (I[131] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 2258 | (I[146] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 2259 | (I[161] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 2260 | (I[176] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 2261 | (I[191] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 2262 | (I[206] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 2263 | (I[221] = (img)(_n4##x,_n7##y,z,v)), \ |
philpem@5 | 2264 | (I[12] = (img)(_n5##x,_p7##y,z,v)), \ |
philpem@5 | 2265 | (I[27] = (img)(_n5##x,_p6##y,z,v)), \ |
philpem@5 | 2266 | (I[42] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 2267 | (I[57] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 2268 | (I[72] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 2269 | (I[87] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 2270 | (I[102] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 2271 | (I[117] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 2272 | (I[132] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 2273 | (I[147] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 2274 | (I[162] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 2275 | (I[177] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 2276 | (I[192] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 2277 | (I[207] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 2278 | (I[222] = (img)(_n5##x,_n7##y,z,v)), \ |
philpem@5 | 2279 | (I[13] = (img)(_n6##x,_p7##y,z,v)), \ |
philpem@5 | 2280 | (I[28] = (img)(_n6##x,_p6##y,z,v)), \ |
philpem@5 | 2281 | (I[43] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 2282 | (I[58] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 2283 | (I[73] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 2284 | (I[88] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 2285 | (I[103] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 2286 | (I[118] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 2287 | (I[133] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 2288 | (I[148] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 2289 | (I[163] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 2290 | (I[178] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 2291 | (I[193] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 2292 | (I[208] = (img)(_n6##x,_n6##y,z,v)), \ |
philpem@5 | 2293 | (I[223] = (img)(_n6##x,_n7##y,z,v)), \ |
philpem@5 | 2294 | x+7>=(int)((img).width)?(int)((img).width)-1:x+7); \ |
philpem@5 | 2295 | x<=(int)(x1) && ((_n7##x<(int)((img).width) && ( \ |
philpem@5 | 2296 | (I[14] = (img)(_n7##x,_p7##y,z,v)), \ |
philpem@5 | 2297 | (I[29] = (img)(_n7##x,_p6##y,z,v)), \ |
philpem@5 | 2298 | (I[44] = (img)(_n7##x,_p5##y,z,v)), \ |
philpem@5 | 2299 | (I[59] = (img)(_n7##x,_p4##y,z,v)), \ |
philpem@5 | 2300 | (I[74] = (img)(_n7##x,_p3##y,z,v)), \ |
philpem@5 | 2301 | (I[89] = (img)(_n7##x,_p2##y,z,v)), \ |
philpem@5 | 2302 | (I[104] = (img)(_n7##x,_p1##y,z,v)), \ |
philpem@5 | 2303 | (I[119] = (img)(_n7##x,y,z,v)), \ |
philpem@5 | 2304 | (I[134] = (img)(_n7##x,_n1##y,z,v)), \ |
philpem@5 | 2305 | (I[149] = (img)(_n7##x,_n2##y,z,v)), \ |
philpem@5 | 2306 | (I[164] = (img)(_n7##x,_n3##y,z,v)), \ |
philpem@5 | 2307 | (I[179] = (img)(_n7##x,_n4##y,z,v)), \ |
philpem@5 | 2308 | (I[194] = (img)(_n7##x,_n5##y,z,v)), \ |
philpem@5 | 2309 | (I[209] = (img)(_n7##x,_n6##y,z,v)), \ |
philpem@5 | 2310 | (I[224] = (img)(_n7##x,_n7##y,z,v)),1)) || \ |
philpem@5 | 2311 | _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \ |
philpem@5 | 2312 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], \ |
philpem@5 | 2313 | I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \ |
philpem@5 | 2314 | I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], \ |
philpem@5 | 2315 | I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \ |
philpem@5 | 2316 | I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], \ |
philpem@5 | 2317 | I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \ |
philpem@5 | 2318 | I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \ |
philpem@5 | 2319 | I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \ |
philpem@5 | 2320 | I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], \ |
philpem@5 | 2321 | I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], \ |
philpem@5 | 2322 | I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], \ |
philpem@5 | 2323 | I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \ |
philpem@5 | 2324 | I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], \ |
philpem@5 | 2325 | I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \ |
philpem@5 | 2326 | I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], \ |
philpem@5 | 2327 | _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x) |
philpem@5 | 2328 | |
philpem@5 | 2329 | #define cimg_get15x15(img,x,y,z,v,I) \ |
philpem@5 | 2330 | I[0] = (img)(_p7##x,_p7##y,z,v), I[1] = (img)(_p6##x,_p7##y,z,v), I[2] = (img)(_p5##x,_p7##y,z,v), I[3] = (img)(_p4##x,_p7##y,z,v), I[4] = (img)(_p3##x,_p7##y,z,v), I[5] = (img)(_p2##x,_p7##y,z,v), I[6] = (img)(_p1##x,_p7##y,z,v), I[7] = (img)(x,_p7##y,z,v), I[8] = (img)(_n1##x,_p7##y,z,v), I[9] = (img)(_n2##x,_p7##y,z,v), I[10] = (img)(_n3##x,_p7##y,z,v), I[11] = (img)(_n4##x,_p7##y,z,v), I[12] = (img)(_n5##x,_p7##y,z,v), I[13] = (img)(_n6##x,_p7##y,z,v), I[14] = (img)(_n7##x,_p7##y,z,v), \ |
philpem@5 | 2331 | I[15] = (img)(_p7##x,_p6##y,z,v), I[16] = (img)(_p6##x,_p6##y,z,v), I[17] = (img)(_p5##x,_p6##y,z,v), I[18] = (img)(_p4##x,_p6##y,z,v), I[19] = (img)(_p3##x,_p6##y,z,v), I[20] = (img)(_p2##x,_p6##y,z,v), I[21] = (img)(_p1##x,_p6##y,z,v), I[22] = (img)(x,_p6##y,z,v), I[23] = (img)(_n1##x,_p6##y,z,v), I[24] = (img)(_n2##x,_p6##y,z,v), I[25] = (img)(_n3##x,_p6##y,z,v), I[26] = (img)(_n4##x,_p6##y,z,v), I[27] = (img)(_n5##x,_p6##y,z,v), I[28] = (img)(_n6##x,_p6##y,z,v), I[29] = (img)(_n7##x,_p6##y,z,v), \ |
philpem@5 | 2332 | I[30] = (img)(_p7##x,_p5##y,z,v), I[31] = (img)(_p6##x,_p5##y,z,v), I[32] = (img)(_p5##x,_p5##y,z,v), I[33] = (img)(_p4##x,_p5##y,z,v), I[34] = (img)(_p3##x,_p5##y,z,v), I[35] = (img)(_p2##x,_p5##y,z,v), I[36] = (img)(_p1##x,_p5##y,z,v), I[37] = (img)(x,_p5##y,z,v), I[38] = (img)(_n1##x,_p5##y,z,v), I[39] = (img)(_n2##x,_p5##y,z,v), I[40] = (img)(_n3##x,_p5##y,z,v), I[41] = (img)(_n4##x,_p5##y,z,v), I[42] = (img)(_n5##x,_p5##y,z,v), I[43] = (img)(_n6##x,_p5##y,z,v), I[44] = (img)(_n7##x,_p5##y,z,v), \ |
philpem@5 | 2333 | I[45] = (img)(_p7##x,_p4##y,z,v), I[46] = (img)(_p6##x,_p4##y,z,v), I[47] = (img)(_p5##x,_p4##y,z,v), I[48] = (img)(_p4##x,_p4##y,z,v), I[49] = (img)(_p3##x,_p4##y,z,v), I[50] = (img)(_p2##x,_p4##y,z,v), I[51] = (img)(_p1##x,_p4##y,z,v), I[52] = (img)(x,_p4##y,z,v), I[53] = (img)(_n1##x,_p4##y,z,v), I[54] = (img)(_n2##x,_p4##y,z,v), I[55] = (img)(_n3##x,_p4##y,z,v), I[56] = (img)(_n4##x,_p4##y,z,v), I[57] = (img)(_n5##x,_p4##y,z,v), I[58] = (img)(_n6##x,_p4##y,z,v), I[59] = (img)(_n7##x,_p4##y,z,v), \ |
philpem@5 | 2334 | I[60] = (img)(_p7##x,_p3##y,z,v), I[61] = (img)(_p6##x,_p3##y,z,v), I[62] = (img)(_p5##x,_p3##y,z,v), I[63] = (img)(_p4##x,_p3##y,z,v), I[64] = (img)(_p3##x,_p3##y,z,v), I[65] = (img)(_p2##x,_p3##y,z,v), I[66] = (img)(_p1##x,_p3##y,z,v), I[67] = (img)(x,_p3##y,z,v), I[68] = (img)(_n1##x,_p3##y,z,v), I[69] = (img)(_n2##x,_p3##y,z,v), I[70] = (img)(_n3##x,_p3##y,z,v), I[71] = (img)(_n4##x,_p3##y,z,v), I[72] = (img)(_n5##x,_p3##y,z,v), I[73] = (img)(_n6##x,_p3##y,z,v), I[74] = (img)(_n7##x,_p3##y,z,v), \ |
philpem@5 | 2335 | I[75] = (img)(_p7##x,_p2##y,z,v), I[76] = (img)(_p6##x,_p2##y,z,v), I[77] = (img)(_p5##x,_p2##y,z,v), I[78] = (img)(_p4##x,_p2##y,z,v), I[79] = (img)(_p3##x,_p2##y,z,v), I[80] = (img)(_p2##x,_p2##y,z,v), I[81] = (img)(_p1##x,_p2##y,z,v), I[82] = (img)(x,_p2##y,z,v), I[83] = (img)(_n1##x,_p2##y,z,v), I[84] = (img)(_n2##x,_p2##y,z,v), I[85] = (img)(_n3##x,_p2##y,z,v), I[86] = (img)(_n4##x,_p2##y,z,v), I[87] = (img)(_n5##x,_p2##y,z,v), I[88] = (img)(_n6##x,_p2##y,z,v), I[89] = (img)(_n7##x,_p2##y,z,v), \ |
philpem@5 | 2336 | I[90] = (img)(_p7##x,_p1##y,z,v), I[91] = (img)(_p6##x,_p1##y,z,v), I[92] = (img)(_p5##x,_p1##y,z,v), I[93] = (img)(_p4##x,_p1##y,z,v), I[94] = (img)(_p3##x,_p1##y,z,v), I[95] = (img)(_p2##x,_p1##y,z,v), I[96] = (img)(_p1##x,_p1##y,z,v), I[97] = (img)(x,_p1##y,z,v), I[98] = (img)(_n1##x,_p1##y,z,v), I[99] = (img)(_n2##x,_p1##y,z,v), I[100] = (img)(_n3##x,_p1##y,z,v), I[101] = (img)(_n4##x,_p1##y,z,v), I[102] = (img)(_n5##x,_p1##y,z,v), I[103] = (img)(_n6##x,_p1##y,z,v), I[104] = (img)(_n7##x,_p1##y,z,v), \ |
philpem@5 | 2337 | I[105] = (img)(_p7##x,y,z,v), I[106] = (img)(_p6##x,y,z,v), I[107] = (img)(_p5##x,y,z,v), I[108] = (img)(_p4##x,y,z,v), I[109] = (img)(_p3##x,y,z,v), I[110] = (img)(_p2##x,y,z,v), I[111] = (img)(_p1##x,y,z,v), I[112] = (img)(x,y,z,v), I[113] = (img)(_n1##x,y,z,v), I[114] = (img)(_n2##x,y,z,v), I[115] = (img)(_n3##x,y,z,v), I[116] = (img)(_n4##x,y,z,v), I[117] = (img)(_n5##x,y,z,v), I[118] = (img)(_n6##x,y,z,v), I[119] = (img)(_n7##x,y,z,v), \ |
philpem@5 | 2338 | I[120] = (img)(_p7##x,_n1##y,z,v), I[121] = (img)(_p6##x,_n1##y,z,v), I[122] = (img)(_p5##x,_n1##y,z,v), I[123] = (img)(_p4##x,_n1##y,z,v), I[124] = (img)(_p3##x,_n1##y,z,v), I[125] = (img)(_p2##x,_n1##y,z,v), I[126] = (img)(_p1##x,_n1##y,z,v), I[127] = (img)(x,_n1##y,z,v), I[128] = (img)(_n1##x,_n1##y,z,v), I[129] = (img)(_n2##x,_n1##y,z,v), I[130] = (img)(_n3##x,_n1##y,z,v), I[131] = (img)(_n4##x,_n1##y,z,v), I[132] = (img)(_n5##x,_n1##y,z,v), I[133] = (img)(_n6##x,_n1##y,z,v), I[134] = (img)(_n7##x,_n1##y,z,v), \ |
philpem@5 | 2339 | I[135] = (img)(_p7##x,_n2##y,z,v), I[136] = (img)(_p6##x,_n2##y,z,v), I[137] = (img)(_p5##x,_n2##y,z,v), I[138] = (img)(_p4##x,_n2##y,z,v), I[139] = (img)(_p3##x,_n2##y,z,v), I[140] = (img)(_p2##x,_n2##y,z,v), I[141] = (img)(_p1##x,_n2##y,z,v), I[142] = (img)(x,_n2##y,z,v), I[143] = (img)(_n1##x,_n2##y,z,v), I[144] = (img)(_n2##x,_n2##y,z,v), I[145] = (img)(_n3##x,_n2##y,z,v), I[146] = (img)(_n4##x,_n2##y,z,v), I[147] = (img)(_n5##x,_n2##y,z,v), I[148] = (img)(_n6##x,_n2##y,z,v), I[149] = (img)(_n7##x,_n2##y,z,v), \ |
philpem@5 | 2340 | I[150] = (img)(_p7##x,_n3##y,z,v), I[151] = (img)(_p6##x,_n3##y,z,v), I[152] = (img)(_p5##x,_n3##y,z,v), I[153] = (img)(_p4##x,_n3##y,z,v), I[154] = (img)(_p3##x,_n3##y,z,v), I[155] = (img)(_p2##x,_n3##y,z,v), I[156] = (img)(_p1##x,_n3##y,z,v), I[157] = (img)(x,_n3##y,z,v), I[158] = (img)(_n1##x,_n3##y,z,v), I[159] = (img)(_n2##x,_n3##y,z,v), I[160] = (img)(_n3##x,_n3##y,z,v), I[161] = (img)(_n4##x,_n3##y,z,v), I[162] = (img)(_n5##x,_n3##y,z,v), I[163] = (img)(_n6##x,_n3##y,z,v), I[164] = (img)(_n7##x,_n3##y,z,v), \ |
philpem@5 | 2341 | I[165] = (img)(_p7##x,_n4##y,z,v), I[166] = (img)(_p6##x,_n4##y,z,v), I[167] = (img)(_p5##x,_n4##y,z,v), I[168] = (img)(_p4##x,_n4##y,z,v), I[169] = (img)(_p3##x,_n4##y,z,v), I[170] = (img)(_p2##x,_n4##y,z,v), I[171] = (img)(_p1##x,_n4##y,z,v), I[172] = (img)(x,_n4##y,z,v), I[173] = (img)(_n1##x,_n4##y,z,v), I[174] = (img)(_n2##x,_n4##y,z,v), I[175] = (img)(_n3##x,_n4##y,z,v), I[176] = (img)(_n4##x,_n4##y,z,v), I[177] = (img)(_n5##x,_n4##y,z,v), I[178] = (img)(_n6##x,_n4##y,z,v), I[179] = (img)(_n7##x,_n4##y,z,v), \ |
philpem@5 | 2342 | I[180] = (img)(_p7##x,_n5##y,z,v), I[181] = (img)(_p6##x,_n5##y,z,v), I[182] = (img)(_p5##x,_n5##y,z,v), I[183] = (img)(_p4##x,_n5##y,z,v), I[184] = (img)(_p3##x,_n5##y,z,v), I[185] = (img)(_p2##x,_n5##y,z,v), I[186] = (img)(_p1##x,_n5##y,z,v), I[187] = (img)(x,_n5##y,z,v), I[188] = (img)(_n1##x,_n5##y,z,v), I[189] = (img)(_n2##x,_n5##y,z,v), I[190] = (img)(_n3##x,_n5##y,z,v), I[191] = (img)(_n4##x,_n5##y,z,v), I[192] = (img)(_n5##x,_n5##y,z,v), I[193] = (img)(_n6##x,_n5##y,z,v), I[194] = (img)(_n7##x,_n5##y,z,v), \ |
philpem@5 | 2343 | I[195] = (img)(_p7##x,_n6##y,z,v), I[196] = (img)(_p6##x,_n6##y,z,v), I[197] = (img)(_p5##x,_n6##y,z,v), I[198] = (img)(_p4##x,_n6##y,z,v), I[199] = (img)(_p3##x,_n6##y,z,v), I[200] = (img)(_p2##x,_n6##y,z,v), I[201] = (img)(_p1##x,_n6##y,z,v), I[202] = (img)(x,_n6##y,z,v), I[203] = (img)(_n1##x,_n6##y,z,v), I[204] = (img)(_n2##x,_n6##y,z,v), I[205] = (img)(_n3##x,_n6##y,z,v), I[206] = (img)(_n4##x,_n6##y,z,v), I[207] = (img)(_n5##x,_n6##y,z,v), I[208] = (img)(_n6##x,_n6##y,z,v), I[209] = (img)(_n7##x,_n6##y,z,v), \ |
philpem@5 | 2344 | I[210] = (img)(_p7##x,_n7##y,z,v), I[211] = (img)(_p6##x,_n7##y,z,v), I[212] = (img)(_p5##x,_n7##y,z,v), I[213] = (img)(_p4##x,_n7##y,z,v), I[214] = (img)(_p3##x,_n7##y,z,v), I[215] = (img)(_p2##x,_n7##y,z,v), I[216] = (img)(_p1##x,_n7##y,z,v), I[217] = (img)(x,_n7##y,z,v), I[218] = (img)(_n1##x,_n7##y,z,v), I[219] = (img)(_n2##x,_n7##y,z,v), I[220] = (img)(_n3##x,_n7##y,z,v), I[221] = (img)(_n4##x,_n7##y,z,v), I[222] = (img)(_n5##x,_n7##y,z,v), I[223] = (img)(_n6##x,_n7##y,z,v), I[224] = (img)(_n7##x,_n7##y,z,v); |
philpem@5 | 2345 | |
philpem@5 | 2346 | // Define 16x16 loop macros for CImg |
philpem@5 | 2347 | //---------------------------------- |
philpem@5 | 2348 | #define cimg_for16(bound,i) for (int i = 0, \ |
philpem@5 | 2349 | _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \ |
philpem@5 | 2350 | _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \ |
philpem@5 | 2351 | _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \ |
philpem@5 | 2352 | _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \ |
philpem@5 | 2353 | _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \ |
philpem@5 | 2354 | _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \ |
philpem@5 | 2355 | _n6##i = 6>=(int)(bound)?(int)(bound)-1:6, \ |
philpem@5 | 2356 | _n7##i = 7>=(int)(bound)?(int)(bound)-1:7, \ |
philpem@5 | 2357 | _n8##i = 8>=(int)(bound)?(int)(bound)-1:8; \ |
philpem@5 | 2358 | _n8##i<(int)(bound) || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 2359 | i==(_n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \ |
philpem@5 | 2360 | _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 2361 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i) |
philpem@5 | 2362 | |
philpem@5 | 2363 | #define cimg_for16X(img,x) cimg_for16((img).width,x) |
philpem@5 | 2364 | #define cimg_for16Y(img,y) cimg_for16((img).height,y) |
philpem@5 | 2365 | #define cimg_for16Z(img,z) cimg_for16((img).depth,z) |
philpem@5 | 2366 | #define cimg_for16V(img,v) cimg_for16((img).dim,v) |
philpem@5 | 2367 | #define cimg_for16XY(img,x,y) cimg_for16Y(img,y) cimg_for16X(img,x) |
philpem@5 | 2368 | #define cimg_for16XZ(img,x,z) cimg_for16Z(img,z) cimg_for16X(img,x) |
philpem@5 | 2369 | #define cimg_for16XV(img,x,v) cimg_for16V(img,v) cimg_for16X(img,x) |
philpem@5 | 2370 | #define cimg_for16YZ(img,y,z) cimg_for16Z(img,z) cimg_for16Y(img,y) |
philpem@5 | 2371 | #define cimg_for16YV(img,y,v) cimg_for16V(img,v) cimg_for16Y(img,y) |
philpem@5 | 2372 | #define cimg_for16ZV(img,z,v) cimg_for16V(img,v) cimg_for16Z(img,z) |
philpem@5 | 2373 | #define cimg_for16XYZ(img,x,y,z) cimg_for16Z(img,z) cimg_for16XY(img,x,y) |
philpem@5 | 2374 | #define cimg_for16XZV(img,x,z,v) cimg_for16V(img,v) cimg_for16XZ(img,x,z) |
philpem@5 | 2375 | #define cimg_for16YZV(img,y,z,v) cimg_for16V(img,v) cimg_for16YZ(img,y,z) |
philpem@5 | 2376 | #define cimg_for16XYZV(img,x,y,z,v) cimg_for16V(img,v) cimg_for16XYZ(img,x,y,z) |
philpem@5 | 2377 | |
philpem@5 | 2378 | #define cimg_for_in16(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \ |
philpem@5 | 2379 | _p7##i = i-7<0?0:i-7, \ |
philpem@5 | 2380 | _p6##i = i-6<0?0:i-6, \ |
philpem@5 | 2381 | _p5##i = i-5<0?0:i-5, \ |
philpem@5 | 2382 | _p4##i = i-4<0?0:i-4, \ |
philpem@5 | 2383 | _p3##i = i-3<0?0:i-3, \ |
philpem@5 | 2384 | _p2##i = i-2<0?0:i-2, \ |
philpem@5 | 2385 | _p1##i = i-1<0?0:i-1, \ |
philpem@5 | 2386 | _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \ |
philpem@5 | 2387 | _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \ |
philpem@5 | 2388 | _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \ |
philpem@5 | 2389 | _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \ |
philpem@5 | 2390 | _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \ |
philpem@5 | 2391 | _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6, \ |
philpem@5 | 2392 | _n7##i = i+7>=(int)(bound)?(int)(bound)-1:i+7, \ |
philpem@5 | 2393 | _n8##i = i+8>=(int)(bound)?(int)(bound)-1:i+8; \ |
philpem@5 | 2394 | i<=(int)(i1) && (_n8##i<(int)(bound) || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 2395 | i==(_n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \ |
philpem@5 | 2396 | _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 2397 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i) |
philpem@5 | 2398 | |
philpem@5 | 2399 | #define cimg_for_in16X(img,x0,x1,x) cimg_for_in16((img).width,x0,x1,x) |
philpem@5 | 2400 | #define cimg_for_in16Y(img,y0,y1,y) cimg_for_in16((img).height,y0,y1,y) |
philpem@5 | 2401 | #define cimg_for_in16Z(img,z0,z1,z) cimg_for_in16((img).depth,z0,z1,z) |
philpem@5 | 2402 | #define cimg_for_in16V(img,v0,v1,v) cimg_for_in16((img).dim,v0,v1,v) |
philpem@5 | 2403 | #define cimg_for_in16XY(img,x0,y0,x1,y1,x,y) cimg_for_in16Y(img,y0,y1,y) cimg_for_in16X(img,x0,x1,x) |
philpem@5 | 2404 | #define cimg_for_in16XZ(img,x0,z0,x1,z1,x,z) cimg_for_in16Z(img,z0,z1,z) cimg_for_in16X(img,x0,x1,x) |
philpem@5 | 2405 | #define cimg_for_in16XV(img,x0,v0,x1,v1,x,v) cimg_for_in16V(img,v0,v1,v) cimg_for_in16X(img,x0,x1,x) |
philpem@5 | 2406 | #define cimg_for_in16YZ(img,y0,z0,y1,z1,y,z) cimg_for_in16Z(img,z0,z1,z) cimg_for_in16Y(img,y0,y1,y) |
philpem@5 | 2407 | #define cimg_for_in16YV(img,y0,v0,y1,v1,y,v) cimg_for_in16V(img,v0,v1,v) cimg_for_in16Y(img,y0,y1,y) |
philpem@5 | 2408 | #define cimg_for_in16ZV(img,z0,v0,z1,v1,z,v) cimg_for_in16V(img,v0,v1,v) cimg_for_in16Z(img,z0,z1,z) |
philpem@5 | 2409 | #define cimg_for_in16XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in16Z(img,z0,z1,z) cimg_for_in16XY(img,x0,y0,x1,y1,x,y) |
philpem@5 | 2410 | #define cimg_for_in16XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in16V(img,v0,v1,v) cimg_for_in16XZ(img,x0,y0,x1,y1,x,z) |
philpem@5 | 2411 | #define cimg_for_in16YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in16V(img,v0,v1,v) cimg_for_in16YZ(img,y0,z0,y1,z1,y,z) |
philpem@5 | 2412 | #define cimg_for_in16XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in16V(img,v0,v1,v) cimg_for_in16XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) |
philpem@5 | 2413 | |
philpem@5 | 2414 | #define cimg_for16x16(img,x,y,z,v,I) \ |
philpem@5 | 2415 | cimg_for16((img).height,y) for (int x = 0, \ |
philpem@5 | 2416 | _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \ |
philpem@5 | 2417 | _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \ |
philpem@5 | 2418 | _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \ |
philpem@5 | 2419 | _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \ |
philpem@5 | 2420 | _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \ |
philpem@5 | 2421 | _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \ |
philpem@5 | 2422 | _n6##x = 6>=((img).width)?(int)((img).width)-1:6, \ |
philpem@5 | 2423 | _n7##x = 7>=((img).width)?(int)((img).width)-1:7, \ |
philpem@5 | 2424 | _n8##x = (int)( \ |
philpem@5 | 2425 | (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = (img)(0,_p7##y,z,v)), \ |
philpem@5 | 2426 | (I[16] = I[17] = I[18] = I[19] = I[20] = I[21] = I[22] = I[23] = (img)(0,_p6##y,z,v)), \ |
philpem@5 | 2427 | (I[32] = I[33] = I[34] = I[35] = I[36] = I[37] = I[38] = I[39] = (img)(0,_p5##y,z,v)), \ |
philpem@5 | 2428 | (I[48] = I[49] = I[50] = I[51] = I[52] = I[53] = I[54] = I[55] = (img)(0,_p4##y,z,v)), \ |
philpem@5 | 2429 | (I[64] = I[65] = I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = (img)(0,_p3##y,z,v)), \ |
philpem@5 | 2430 | (I[80] = I[81] = I[82] = I[83] = I[84] = I[85] = I[86] = I[87] = (img)(0,_p2##y,z,v)), \ |
philpem@5 | 2431 | (I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = (img)(0,_p1##y,z,v)), \ |
philpem@5 | 2432 | (I[112] = I[113] = I[114] = I[115] = I[116] = I[117] = I[118] = I[119] = (img)(0,y,z,v)), \ |
philpem@5 | 2433 | (I[128] = I[129] = I[130] = I[131] = I[132] = I[133] = I[134] = I[135] = (img)(0,_n1##y,z,v)), \ |
philpem@5 | 2434 | (I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = I[150] = I[151] = (img)(0,_n2##y,z,v)), \ |
philpem@5 | 2435 | (I[160] = I[161] = I[162] = I[163] = I[164] = I[165] = I[166] = I[167] = (img)(0,_n3##y,z,v)), \ |
philpem@5 | 2436 | (I[176] = I[177] = I[178] = I[179] = I[180] = I[181] = I[182] = I[183] = (img)(0,_n4##y,z,v)), \ |
philpem@5 | 2437 | (I[192] = I[193] = I[194] = I[195] = I[196] = I[197] = I[198] = I[199] = (img)(0,_n5##y,z,v)), \ |
philpem@5 | 2438 | (I[208] = I[209] = I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = (img)(0,_n6##y,z,v)), \ |
philpem@5 | 2439 | (I[224] = I[225] = I[226] = I[227] = I[228] = I[229] = I[230] = I[231] = (img)(0,_n7##y,z,v)), \ |
philpem@5 | 2440 | (I[240] = I[241] = I[242] = I[243] = I[244] = I[245] = I[246] = I[247] = (img)(0,_n8##y,z,v)), \ |
philpem@5 | 2441 | (I[8] = (img)(_n1##x,_p7##y,z,v)), \ |
philpem@5 | 2442 | (I[24] = (img)(_n1##x,_p6##y,z,v)), \ |
philpem@5 | 2443 | (I[40] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 2444 | (I[56] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 2445 | (I[72] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 2446 | (I[88] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 2447 | (I[104] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 2448 | (I[120] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 2449 | (I[136] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 2450 | (I[152] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 2451 | (I[168] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 2452 | (I[184] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 2453 | (I[200] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 2454 | (I[216] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 2455 | (I[232] = (img)(_n1##x,_n7##y,z,v)), \ |
philpem@5 | 2456 | (I[248] = (img)(_n1##x,_n8##y,z,v)), \ |
philpem@5 | 2457 | (I[9] = (img)(_n2##x,_p7##y,z,v)), \ |
philpem@5 | 2458 | (I[25] = (img)(_n2##x,_p6##y,z,v)), \ |
philpem@5 | 2459 | (I[41] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 2460 | (I[57] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 2461 | (I[73] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 2462 | (I[89] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 2463 | (I[105] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 2464 | (I[121] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 2465 | (I[137] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 2466 | (I[153] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 2467 | (I[169] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 2468 | (I[185] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 2469 | (I[201] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 2470 | (I[217] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 2471 | (I[233] = (img)(_n2##x,_n7##y,z,v)), \ |
philpem@5 | 2472 | (I[249] = (img)(_n2##x,_n8##y,z,v)), \ |
philpem@5 | 2473 | (I[10] = (img)(_n3##x,_p7##y,z,v)), \ |
philpem@5 | 2474 | (I[26] = (img)(_n3##x,_p6##y,z,v)), \ |
philpem@5 | 2475 | (I[42] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 2476 | (I[58] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 2477 | (I[74] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 2478 | (I[90] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 2479 | (I[106] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 2480 | (I[122] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 2481 | (I[138] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 2482 | (I[154] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 2483 | (I[170] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 2484 | (I[186] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 2485 | (I[202] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 2486 | (I[218] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 2487 | (I[234] = (img)(_n3##x,_n7##y,z,v)), \ |
philpem@5 | 2488 | (I[250] = (img)(_n3##x,_n8##y,z,v)), \ |
philpem@5 | 2489 | (I[11] = (img)(_n4##x,_p7##y,z,v)), \ |
philpem@5 | 2490 | (I[27] = (img)(_n4##x,_p6##y,z,v)), \ |
philpem@5 | 2491 | (I[43] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 2492 | (I[59] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 2493 | (I[75] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 2494 | (I[91] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 2495 | (I[107] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 2496 | (I[123] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 2497 | (I[139] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 2498 | (I[155] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 2499 | (I[171] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 2500 | (I[187] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 2501 | (I[203] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 2502 | (I[219] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 2503 | (I[235] = (img)(_n4##x,_n7##y,z,v)), \ |
philpem@5 | 2504 | (I[251] = (img)(_n4##x,_n8##y,z,v)), \ |
philpem@5 | 2505 | (I[12] = (img)(_n5##x,_p7##y,z,v)), \ |
philpem@5 | 2506 | (I[28] = (img)(_n5##x,_p6##y,z,v)), \ |
philpem@5 | 2507 | (I[44] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 2508 | (I[60] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 2509 | (I[76] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 2510 | (I[92] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 2511 | (I[108] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 2512 | (I[124] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 2513 | (I[140] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 2514 | (I[156] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 2515 | (I[172] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 2516 | (I[188] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 2517 | (I[204] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 2518 | (I[220] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 2519 | (I[236] = (img)(_n5##x,_n7##y,z,v)), \ |
philpem@5 | 2520 | (I[252] = (img)(_n5##x,_n8##y,z,v)), \ |
philpem@5 | 2521 | (I[13] = (img)(_n6##x,_p7##y,z,v)), \ |
philpem@5 | 2522 | (I[29] = (img)(_n6##x,_p6##y,z,v)), \ |
philpem@5 | 2523 | (I[45] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 2524 | (I[61] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 2525 | (I[77] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 2526 | (I[93] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 2527 | (I[109] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 2528 | (I[125] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 2529 | (I[141] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 2530 | (I[157] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 2531 | (I[173] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 2532 | (I[189] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 2533 | (I[205] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 2534 | (I[221] = (img)(_n6##x,_n6##y,z,v)), \ |
philpem@5 | 2535 | (I[237] = (img)(_n6##x,_n7##y,z,v)), \ |
philpem@5 | 2536 | (I[253] = (img)(_n6##x,_n8##y,z,v)), \ |
philpem@5 | 2537 | (I[14] = (img)(_n7##x,_p7##y,z,v)), \ |
philpem@5 | 2538 | (I[30] = (img)(_n7##x,_p6##y,z,v)), \ |
philpem@5 | 2539 | (I[46] = (img)(_n7##x,_p5##y,z,v)), \ |
philpem@5 | 2540 | (I[62] = (img)(_n7##x,_p4##y,z,v)), \ |
philpem@5 | 2541 | (I[78] = (img)(_n7##x,_p3##y,z,v)), \ |
philpem@5 | 2542 | (I[94] = (img)(_n7##x,_p2##y,z,v)), \ |
philpem@5 | 2543 | (I[110] = (img)(_n7##x,_p1##y,z,v)), \ |
philpem@5 | 2544 | (I[126] = (img)(_n7##x,y,z,v)), \ |
philpem@5 | 2545 | (I[142] = (img)(_n7##x,_n1##y,z,v)), \ |
philpem@5 | 2546 | (I[158] = (img)(_n7##x,_n2##y,z,v)), \ |
philpem@5 | 2547 | (I[174] = (img)(_n7##x,_n3##y,z,v)), \ |
philpem@5 | 2548 | (I[190] = (img)(_n7##x,_n4##y,z,v)), \ |
philpem@5 | 2549 | (I[206] = (img)(_n7##x,_n5##y,z,v)), \ |
philpem@5 | 2550 | (I[222] = (img)(_n7##x,_n6##y,z,v)), \ |
philpem@5 | 2551 | (I[238] = (img)(_n7##x,_n7##y,z,v)), \ |
philpem@5 | 2552 | (I[254] = (img)(_n7##x,_n8##y,z,v)), \ |
philpem@5 | 2553 | 8>=((img).width)?(int)((img).width)-1:8); \ |
philpem@5 | 2554 | (_n8##x<(int)((img).width) && ( \ |
philpem@5 | 2555 | (I[15] = (img)(_n8##x,_p7##y,z,v)), \ |
philpem@5 | 2556 | (I[31] = (img)(_n8##x,_p6##y,z,v)), \ |
philpem@5 | 2557 | (I[47] = (img)(_n8##x,_p5##y,z,v)), \ |
philpem@5 | 2558 | (I[63] = (img)(_n8##x,_p4##y,z,v)), \ |
philpem@5 | 2559 | (I[79] = (img)(_n8##x,_p3##y,z,v)), \ |
philpem@5 | 2560 | (I[95] = (img)(_n8##x,_p2##y,z,v)), \ |
philpem@5 | 2561 | (I[111] = (img)(_n8##x,_p1##y,z,v)), \ |
philpem@5 | 2562 | (I[127] = (img)(_n8##x,y,z,v)), \ |
philpem@5 | 2563 | (I[143] = (img)(_n8##x,_n1##y,z,v)), \ |
philpem@5 | 2564 | (I[159] = (img)(_n8##x,_n2##y,z,v)), \ |
philpem@5 | 2565 | (I[175] = (img)(_n8##x,_n3##y,z,v)), \ |
philpem@5 | 2566 | (I[191] = (img)(_n8##x,_n4##y,z,v)), \ |
philpem@5 | 2567 | (I[207] = (img)(_n8##x,_n5##y,z,v)), \ |
philpem@5 | 2568 | (I[223] = (img)(_n8##x,_n6##y,z,v)), \ |
philpem@5 | 2569 | (I[239] = (img)(_n8##x,_n7##y,z,v)), \ |
philpem@5 | 2570 | (I[255] = (img)(_n8##x,_n8##y,z,v)),1)) || \ |
philpem@5 | 2571 | _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \ |
philpem@5 | 2572 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], \ |
philpem@5 | 2573 | I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \ |
philpem@5 | 2574 | I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \ |
philpem@5 | 2575 | I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \ |
philpem@5 | 2576 | I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \ |
philpem@5 | 2577 | I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \ |
philpem@5 | 2578 | I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \ |
philpem@5 | 2579 | I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], \ |
philpem@5 | 2580 | I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \ |
philpem@5 | 2581 | I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \ |
philpem@5 | 2582 | I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], \ |
philpem@5 | 2583 | I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \ |
philpem@5 | 2584 | I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], \ |
philpem@5 | 2585 | I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \ |
philpem@5 | 2586 | I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \ |
philpem@5 | 2587 | I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], \ |
philpem@5 | 2588 | _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x) |
philpem@5 | 2589 | |
philpem@5 | 2590 | #define cimg_for_in16x16(img,x0,y0,x1,y1,x,y,z,v,I) \ |
philpem@5 | 2591 | cimg_for_in16((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ |
philpem@5 | 2592 | _p7##x = x-7<0?0:x-7, \ |
philpem@5 | 2593 | _p6##x = x-6<0?0:x-6, \ |
philpem@5 | 2594 | _p5##x = x-5<0?0:x-5, \ |
philpem@5 | 2595 | _p4##x = x-4<0?0:x-4, \ |
philpem@5 | 2596 | _p3##x = x-3<0?0:x-3, \ |
philpem@5 | 2597 | _p2##x = x-2<0?0:x-2, \ |
philpem@5 | 2598 | _p1##x = x-1<0?0:x-1, \ |
philpem@5 | 2599 | _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \ |
philpem@5 | 2600 | _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \ |
philpem@5 | 2601 | _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \ |
philpem@5 | 2602 | _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \ |
philpem@5 | 2603 | _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \ |
philpem@5 | 2604 | _n6##x = x+6>=(int)((img).width)?(int)((img).width)-1:x+6, \ |
philpem@5 | 2605 | _n7##x = x+7>=(int)((img).width)?(int)((img).width)-1:x+7, \ |
philpem@5 | 2606 | _n8##x = (int)( \ |
philpem@5 | 2607 | (I[0] = (img)(_p7##x,_p7##y,z,v)), \ |
philpem@5 | 2608 | (I[16] = (img)(_p7##x,_p6##y,z,v)), \ |
philpem@5 | 2609 | (I[32] = (img)(_p7##x,_p5##y,z,v)), \ |
philpem@5 | 2610 | (I[48] = (img)(_p7##x,_p4##y,z,v)), \ |
philpem@5 | 2611 | (I[64] = (img)(_p7##x,_p3##y,z,v)), \ |
philpem@5 | 2612 | (I[80] = (img)(_p7##x,_p2##y,z,v)), \ |
philpem@5 | 2613 | (I[96] = (img)(_p7##x,_p1##y,z,v)), \ |
philpem@5 | 2614 | (I[112] = (img)(_p7##x,y,z,v)), \ |
philpem@5 | 2615 | (I[128] = (img)(_p7##x,_n1##y,z,v)), \ |
philpem@5 | 2616 | (I[144] = (img)(_p7##x,_n2##y,z,v)), \ |
philpem@5 | 2617 | (I[160] = (img)(_p7##x,_n3##y,z,v)), \ |
philpem@5 | 2618 | (I[176] = (img)(_p7##x,_n4##y,z,v)), \ |
philpem@5 | 2619 | (I[192] = (img)(_p7##x,_n5##y,z,v)), \ |
philpem@5 | 2620 | (I[208] = (img)(_p7##x,_n6##y,z,v)), \ |
philpem@5 | 2621 | (I[224] = (img)(_p7##x,_n7##y,z,v)), \ |
philpem@5 | 2622 | (I[240] = (img)(_p7##x,_n8##y,z,v)), \ |
philpem@5 | 2623 | (I[1] = (img)(_p6##x,_p7##y,z,v)), \ |
philpem@5 | 2624 | (I[17] = (img)(_p6##x,_p6##y,z,v)), \ |
philpem@5 | 2625 | (I[33] = (img)(_p6##x,_p5##y,z,v)), \ |
philpem@5 | 2626 | (I[49] = (img)(_p6##x,_p4##y,z,v)), \ |
philpem@5 | 2627 | (I[65] = (img)(_p6##x,_p3##y,z,v)), \ |
philpem@5 | 2628 | (I[81] = (img)(_p6##x,_p2##y,z,v)), \ |
philpem@5 | 2629 | (I[97] = (img)(_p6##x,_p1##y,z,v)), \ |
philpem@5 | 2630 | (I[113] = (img)(_p6##x,y,z,v)), \ |
philpem@5 | 2631 | (I[129] = (img)(_p6##x,_n1##y,z,v)), \ |
philpem@5 | 2632 | (I[145] = (img)(_p6##x,_n2##y,z,v)), \ |
philpem@5 | 2633 | (I[161] = (img)(_p6##x,_n3##y,z,v)), \ |
philpem@5 | 2634 | (I[177] = (img)(_p6##x,_n4##y,z,v)), \ |
philpem@5 | 2635 | (I[193] = (img)(_p6##x,_n5##y,z,v)), \ |
philpem@5 | 2636 | (I[209] = (img)(_p6##x,_n6##y,z,v)), \ |
philpem@5 | 2637 | (I[225] = (img)(_p6##x,_n7##y,z,v)), \ |
philpem@5 | 2638 | (I[241] = (img)(_p6##x,_n8##y,z,v)), \ |
philpem@5 | 2639 | (I[2] = (img)(_p5##x,_p7##y,z,v)), \ |
philpem@5 | 2640 | (I[18] = (img)(_p5##x,_p6##y,z,v)), \ |
philpem@5 | 2641 | (I[34] = (img)(_p5##x,_p5##y,z,v)), \ |
philpem@5 | 2642 | (I[50] = (img)(_p5##x,_p4##y,z,v)), \ |
philpem@5 | 2643 | (I[66] = (img)(_p5##x,_p3##y,z,v)), \ |
philpem@5 | 2644 | (I[82] = (img)(_p5##x,_p2##y,z,v)), \ |
philpem@5 | 2645 | (I[98] = (img)(_p5##x,_p1##y,z,v)), \ |
philpem@5 | 2646 | (I[114] = (img)(_p5##x,y,z,v)), \ |
philpem@5 | 2647 | (I[130] = (img)(_p5##x,_n1##y,z,v)), \ |
philpem@5 | 2648 | (I[146] = (img)(_p5##x,_n2##y,z,v)), \ |
philpem@5 | 2649 | (I[162] = (img)(_p5##x,_n3##y,z,v)), \ |
philpem@5 | 2650 | (I[178] = (img)(_p5##x,_n4##y,z,v)), \ |
philpem@5 | 2651 | (I[194] = (img)(_p5##x,_n5##y,z,v)), \ |
philpem@5 | 2652 | (I[210] = (img)(_p5##x,_n6##y,z,v)), \ |
philpem@5 | 2653 | (I[226] = (img)(_p5##x,_n7##y,z,v)), \ |
philpem@5 | 2654 | (I[242] = (img)(_p5##x,_n8##y,z,v)), \ |
philpem@5 | 2655 | (I[3] = (img)(_p4##x,_p7##y,z,v)), \ |
philpem@5 | 2656 | (I[19] = (img)(_p4##x,_p6##y,z,v)), \ |
philpem@5 | 2657 | (I[35] = (img)(_p4##x,_p5##y,z,v)), \ |
philpem@5 | 2658 | (I[51] = (img)(_p4##x,_p4##y,z,v)), \ |
philpem@5 | 2659 | (I[67] = (img)(_p4##x,_p3##y,z,v)), \ |
philpem@5 | 2660 | (I[83] = (img)(_p4##x,_p2##y,z,v)), \ |
philpem@5 | 2661 | (I[99] = (img)(_p4##x,_p1##y,z,v)), \ |
philpem@5 | 2662 | (I[115] = (img)(_p4##x,y,z,v)), \ |
philpem@5 | 2663 | (I[131] = (img)(_p4##x,_n1##y,z,v)), \ |
philpem@5 | 2664 | (I[147] = (img)(_p4##x,_n2##y,z,v)), \ |
philpem@5 | 2665 | (I[163] = (img)(_p4##x,_n3##y,z,v)), \ |
philpem@5 | 2666 | (I[179] = (img)(_p4##x,_n4##y,z,v)), \ |
philpem@5 | 2667 | (I[195] = (img)(_p4##x,_n5##y,z,v)), \ |
philpem@5 | 2668 | (I[211] = (img)(_p4##x,_n6##y,z,v)), \ |
philpem@5 | 2669 | (I[227] = (img)(_p4##x,_n7##y,z,v)), \ |
philpem@5 | 2670 | (I[243] = (img)(_p4##x,_n8##y,z,v)), \ |
philpem@5 | 2671 | (I[4] = (img)(_p3##x,_p7##y,z,v)), \ |
philpem@5 | 2672 | (I[20] = (img)(_p3##x,_p6##y,z,v)), \ |
philpem@5 | 2673 | (I[36] = (img)(_p3##x,_p5##y,z,v)), \ |
philpem@5 | 2674 | (I[52] = (img)(_p3##x,_p4##y,z,v)), \ |
philpem@5 | 2675 | (I[68] = (img)(_p3##x,_p3##y,z,v)), \ |
philpem@5 | 2676 | (I[84] = (img)(_p3##x,_p2##y,z,v)), \ |
philpem@5 | 2677 | (I[100] = (img)(_p3##x,_p1##y,z,v)), \ |
philpem@5 | 2678 | (I[116] = (img)(_p3##x,y,z,v)), \ |
philpem@5 | 2679 | (I[132] = (img)(_p3##x,_n1##y,z,v)), \ |
philpem@5 | 2680 | (I[148] = (img)(_p3##x,_n2##y,z,v)), \ |
philpem@5 | 2681 | (I[164] = (img)(_p3##x,_n3##y,z,v)), \ |
philpem@5 | 2682 | (I[180] = (img)(_p3##x,_n4##y,z,v)), \ |
philpem@5 | 2683 | (I[196] = (img)(_p3##x,_n5##y,z,v)), \ |
philpem@5 | 2684 | (I[212] = (img)(_p3##x,_n6##y,z,v)), \ |
philpem@5 | 2685 | (I[228] = (img)(_p3##x,_n7##y,z,v)), \ |
philpem@5 | 2686 | (I[244] = (img)(_p3##x,_n8##y,z,v)), \ |
philpem@5 | 2687 | (I[5] = (img)(_p2##x,_p7##y,z,v)), \ |
philpem@5 | 2688 | (I[21] = (img)(_p2##x,_p6##y,z,v)), \ |
philpem@5 | 2689 | (I[37] = (img)(_p2##x,_p5##y,z,v)), \ |
philpem@5 | 2690 | (I[53] = (img)(_p2##x,_p4##y,z,v)), \ |
philpem@5 | 2691 | (I[69] = (img)(_p2##x,_p3##y,z,v)), \ |
philpem@5 | 2692 | (I[85] = (img)(_p2##x,_p2##y,z,v)), \ |
philpem@5 | 2693 | (I[101] = (img)(_p2##x,_p1##y,z,v)), \ |
philpem@5 | 2694 | (I[117] = (img)(_p2##x,y,z,v)), \ |
philpem@5 | 2695 | (I[133] = (img)(_p2##x,_n1##y,z,v)), \ |
philpem@5 | 2696 | (I[149] = (img)(_p2##x,_n2##y,z,v)), \ |
philpem@5 | 2697 | (I[165] = (img)(_p2##x,_n3##y,z,v)), \ |
philpem@5 | 2698 | (I[181] = (img)(_p2##x,_n4##y,z,v)), \ |
philpem@5 | 2699 | (I[197] = (img)(_p2##x,_n5##y,z,v)), \ |
philpem@5 | 2700 | (I[213] = (img)(_p2##x,_n6##y,z,v)), \ |
philpem@5 | 2701 | (I[229] = (img)(_p2##x,_n7##y,z,v)), \ |
philpem@5 | 2702 | (I[245] = (img)(_p2##x,_n8##y,z,v)), \ |
philpem@5 | 2703 | (I[6] = (img)(_p1##x,_p7##y,z,v)), \ |
philpem@5 | 2704 | (I[22] = (img)(_p1##x,_p6##y,z,v)), \ |
philpem@5 | 2705 | (I[38] = (img)(_p1##x,_p5##y,z,v)), \ |
philpem@5 | 2706 | (I[54] = (img)(_p1##x,_p4##y,z,v)), \ |
philpem@5 | 2707 | (I[70] = (img)(_p1##x,_p3##y,z,v)), \ |
philpem@5 | 2708 | (I[86] = (img)(_p1##x,_p2##y,z,v)), \ |
philpem@5 | 2709 | (I[102] = (img)(_p1##x,_p1##y,z,v)), \ |
philpem@5 | 2710 | (I[118] = (img)(_p1##x,y,z,v)), \ |
philpem@5 | 2711 | (I[134] = (img)(_p1##x,_n1##y,z,v)), \ |
philpem@5 | 2712 | (I[150] = (img)(_p1##x,_n2##y,z,v)), \ |
philpem@5 | 2713 | (I[166] = (img)(_p1##x,_n3##y,z,v)), \ |
philpem@5 | 2714 | (I[182] = (img)(_p1##x,_n4##y,z,v)), \ |
philpem@5 | 2715 | (I[198] = (img)(_p1##x,_n5##y,z,v)), \ |
philpem@5 | 2716 | (I[214] = (img)(_p1##x,_n6##y,z,v)), \ |
philpem@5 | 2717 | (I[230] = (img)(_p1##x,_n7##y,z,v)), \ |
philpem@5 | 2718 | (I[246] = (img)(_p1##x,_n8##y,z,v)), \ |
philpem@5 | 2719 | (I[7] = (img)(x,_p7##y,z,v)), \ |
philpem@5 | 2720 | (I[23] = (img)(x,_p6##y,z,v)), \ |
philpem@5 | 2721 | (I[39] = (img)(x,_p5##y,z,v)), \ |
philpem@5 | 2722 | (I[55] = (img)(x,_p4##y,z,v)), \ |
philpem@5 | 2723 | (I[71] = (img)(x,_p3##y,z,v)), \ |
philpem@5 | 2724 | (I[87] = (img)(x,_p2##y,z,v)), \ |
philpem@5 | 2725 | (I[103] = (img)(x,_p1##y,z,v)), \ |
philpem@5 | 2726 | (I[119] = (img)(x,y,z,v)), \ |
philpem@5 | 2727 | (I[135] = (img)(x,_n1##y,z,v)), \ |
philpem@5 | 2728 | (I[151] = (img)(x,_n2##y,z,v)), \ |
philpem@5 | 2729 | (I[167] = (img)(x,_n3##y,z,v)), \ |
philpem@5 | 2730 | (I[183] = (img)(x,_n4##y,z,v)), \ |
philpem@5 | 2731 | (I[199] = (img)(x,_n5##y,z,v)), \ |
philpem@5 | 2732 | (I[215] = (img)(x,_n6##y,z,v)), \ |
philpem@5 | 2733 | (I[231] = (img)(x,_n7##y,z,v)), \ |
philpem@5 | 2734 | (I[247] = (img)(x,_n8##y,z,v)), \ |
philpem@5 | 2735 | (I[8] = (img)(_n1##x,_p7##y,z,v)), \ |
philpem@5 | 2736 | (I[24] = (img)(_n1##x,_p6##y,z,v)), \ |
philpem@5 | 2737 | (I[40] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 2738 | (I[56] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 2739 | (I[72] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 2740 | (I[88] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 2741 | (I[104] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 2742 | (I[120] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 2743 | (I[136] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 2744 | (I[152] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 2745 | (I[168] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 2746 | (I[184] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 2747 | (I[200] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 2748 | (I[216] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 2749 | (I[232] = (img)(_n1##x,_n7##y,z,v)), \ |
philpem@5 | 2750 | (I[248] = (img)(_n1##x,_n8##y,z,v)), \ |
philpem@5 | 2751 | (I[9] = (img)(_n2##x,_p7##y,z,v)), \ |
philpem@5 | 2752 | (I[25] = (img)(_n2##x,_p6##y,z,v)), \ |
philpem@5 | 2753 | (I[41] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 2754 | (I[57] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 2755 | (I[73] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 2756 | (I[89] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 2757 | (I[105] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 2758 | (I[121] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 2759 | (I[137] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 2760 | (I[153] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 2761 | (I[169] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 2762 | (I[185] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 2763 | (I[201] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 2764 | (I[217] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 2765 | (I[233] = (img)(_n2##x,_n7##y,z,v)), \ |
philpem@5 | 2766 | (I[249] = (img)(_n2##x,_n8##y,z,v)), \ |
philpem@5 | 2767 | (I[10] = (img)(_n3##x,_p7##y,z,v)), \ |
philpem@5 | 2768 | (I[26] = (img)(_n3##x,_p6##y,z,v)), \ |
philpem@5 | 2769 | (I[42] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 2770 | (I[58] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 2771 | (I[74] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 2772 | (I[90] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 2773 | (I[106] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 2774 | (I[122] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 2775 | (I[138] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 2776 | (I[154] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 2777 | (I[170] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 2778 | (I[186] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 2779 | (I[202] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 2780 | (I[218] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 2781 | (I[234] = (img)(_n3##x,_n7##y,z,v)), \ |
philpem@5 | 2782 | (I[250] = (img)(_n3##x,_n8##y,z,v)), \ |
philpem@5 | 2783 | (I[11] = (img)(_n4##x,_p7##y,z,v)), \ |
philpem@5 | 2784 | (I[27] = (img)(_n4##x,_p6##y,z,v)), \ |
philpem@5 | 2785 | (I[43] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 2786 | (I[59] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 2787 | (I[75] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 2788 | (I[91] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 2789 | (I[107] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 2790 | (I[123] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 2791 | (I[139] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 2792 | (I[155] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 2793 | (I[171] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 2794 | (I[187] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 2795 | (I[203] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 2796 | (I[219] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 2797 | (I[235] = (img)(_n4##x,_n7##y,z,v)), \ |
philpem@5 | 2798 | (I[251] = (img)(_n4##x,_n8##y,z,v)), \ |
philpem@5 | 2799 | (I[12] = (img)(_n5##x,_p7##y,z,v)), \ |
philpem@5 | 2800 | (I[28] = (img)(_n5##x,_p6##y,z,v)), \ |
philpem@5 | 2801 | (I[44] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 2802 | (I[60] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 2803 | (I[76] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 2804 | (I[92] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 2805 | (I[108] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 2806 | (I[124] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 2807 | (I[140] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 2808 | (I[156] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 2809 | (I[172] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 2810 | (I[188] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 2811 | (I[204] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 2812 | (I[220] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 2813 | (I[236] = (img)(_n5##x,_n7##y,z,v)), \ |
philpem@5 | 2814 | (I[252] = (img)(_n5##x,_n8##y,z,v)), \ |
philpem@5 | 2815 | (I[13] = (img)(_n6##x,_p7##y,z,v)), \ |
philpem@5 | 2816 | (I[29] = (img)(_n6##x,_p6##y,z,v)), \ |
philpem@5 | 2817 | (I[45] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 2818 | (I[61] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 2819 | (I[77] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 2820 | (I[93] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 2821 | (I[109] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 2822 | (I[125] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 2823 | (I[141] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 2824 | (I[157] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 2825 | (I[173] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 2826 | (I[189] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 2827 | (I[205] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 2828 | (I[221] = (img)(_n6##x,_n6##y,z,v)), \ |
philpem@5 | 2829 | (I[237] = (img)(_n6##x,_n7##y,z,v)), \ |
philpem@5 | 2830 | (I[253] = (img)(_n6##x,_n8##y,z,v)), \ |
philpem@5 | 2831 | (I[14] = (img)(_n7##x,_p7##y,z,v)), \ |
philpem@5 | 2832 | (I[30] = (img)(_n7##x,_p6##y,z,v)), \ |
philpem@5 | 2833 | (I[46] = (img)(_n7##x,_p5##y,z,v)), \ |
philpem@5 | 2834 | (I[62] = (img)(_n7##x,_p4##y,z,v)), \ |
philpem@5 | 2835 | (I[78] = (img)(_n7##x,_p3##y,z,v)), \ |
philpem@5 | 2836 | (I[94] = (img)(_n7##x,_p2##y,z,v)), \ |
philpem@5 | 2837 | (I[110] = (img)(_n7##x,_p1##y,z,v)), \ |
philpem@5 | 2838 | (I[126] = (img)(_n7##x,y,z,v)), \ |
philpem@5 | 2839 | (I[142] = (img)(_n7##x,_n1##y,z,v)), \ |
philpem@5 | 2840 | (I[158] = (img)(_n7##x,_n2##y,z,v)), \ |
philpem@5 | 2841 | (I[174] = (img)(_n7##x,_n3##y,z,v)), \ |
philpem@5 | 2842 | (I[190] = (img)(_n7##x,_n4##y,z,v)), \ |
philpem@5 | 2843 | (I[206] = (img)(_n7##x,_n5##y,z,v)), \ |
philpem@5 | 2844 | (I[222] = (img)(_n7##x,_n6##y,z,v)), \ |
philpem@5 | 2845 | (I[238] = (img)(_n7##x,_n7##y,z,v)), \ |
philpem@5 | 2846 | (I[254] = (img)(_n7##x,_n8##y,z,v)), \ |
philpem@5 | 2847 | x+8>=(int)((img).width)?(int)((img).width)-1:x+8); \ |
philpem@5 | 2848 | x<=(int)(x1) && ((_n8##x<(int)((img).width) && ( \ |
philpem@5 | 2849 | (I[15] = (img)(_n8##x,_p7##y,z,v)), \ |
philpem@5 | 2850 | (I[31] = (img)(_n8##x,_p6##y,z,v)), \ |
philpem@5 | 2851 | (I[47] = (img)(_n8##x,_p5##y,z,v)), \ |
philpem@5 | 2852 | (I[63] = (img)(_n8##x,_p4##y,z,v)), \ |
philpem@5 | 2853 | (I[79] = (img)(_n8##x,_p3##y,z,v)), \ |
philpem@5 | 2854 | (I[95] = (img)(_n8##x,_p2##y,z,v)), \ |
philpem@5 | 2855 | (I[111] = (img)(_n8##x,_p1##y,z,v)), \ |
philpem@5 | 2856 | (I[127] = (img)(_n8##x,y,z,v)), \ |
philpem@5 | 2857 | (I[143] = (img)(_n8##x,_n1##y,z,v)), \ |
philpem@5 | 2858 | (I[159] = (img)(_n8##x,_n2##y,z,v)), \ |
philpem@5 | 2859 | (I[175] = (img)(_n8##x,_n3##y,z,v)), \ |
philpem@5 | 2860 | (I[191] = (img)(_n8##x,_n4##y,z,v)), \ |
philpem@5 | 2861 | (I[207] = (img)(_n8##x,_n5##y,z,v)), \ |
philpem@5 | 2862 | (I[223] = (img)(_n8##x,_n6##y,z,v)), \ |
philpem@5 | 2863 | (I[239] = (img)(_n8##x,_n7##y,z,v)), \ |
philpem@5 | 2864 | (I[255] = (img)(_n8##x,_n8##y,z,v)),1)) || \ |
philpem@5 | 2865 | _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \ |
philpem@5 | 2866 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], \ |
philpem@5 | 2867 | I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \ |
philpem@5 | 2868 | I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \ |
philpem@5 | 2869 | I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \ |
philpem@5 | 2870 | I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \ |
philpem@5 | 2871 | I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \ |
philpem@5 | 2872 | I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \ |
philpem@5 | 2873 | I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], \ |
philpem@5 | 2874 | I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \ |
philpem@5 | 2875 | I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \ |
philpem@5 | 2876 | I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], \ |
philpem@5 | 2877 | I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \ |
philpem@5 | 2878 | I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], \ |
philpem@5 | 2879 | I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \ |
philpem@5 | 2880 | I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \ |
philpem@5 | 2881 | I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], \ |
philpem@5 | 2882 | _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x) |
philpem@5 | 2883 | |
philpem@5 | 2884 | #define cimg_get16x16(img,x,y,z,v,I) \ |
philpem@5 | 2885 | I[0] = (img)(_p7##x,_p7##y,z,v), I[1] = (img)(_p6##x,_p7##y,z,v), I[2] = (img)(_p5##x,_p7##y,z,v), I[3] = (img)(_p4##x,_p7##y,z,v), I[4] = (img)(_p3##x,_p7##y,z,v), I[5] = (img)(_p2##x,_p7##y,z,v), I[6] = (img)(_p1##x,_p7##y,z,v), I[7] = (img)(x,_p7##y,z,v), I[8] = (img)(_n1##x,_p7##y,z,v), I[9] = (img)(_n2##x,_p7##y,z,v), I[10] = (img)(_n3##x,_p7##y,z,v), I[11] = (img)(_n4##x,_p7##y,z,v), I[12] = (img)(_n5##x,_p7##y,z,v), I[13] = (img)(_n6##x,_p7##y,z,v), I[14] = (img)(_n7##x,_p7##y,z,v), I[15] = (img)(_n8##x,_p7##y,z,v), \ |
philpem@5 | 2886 | I[16] = (img)(_p7##x,_p6##y,z,v), I[17] = (img)(_p6##x,_p6##y,z,v), I[18] = (img)(_p5##x,_p6##y,z,v), I[19] = (img)(_p4##x,_p6##y,z,v), I[20] = (img)(_p3##x,_p6##y,z,v), I[21] = (img)(_p2##x,_p6##y,z,v), I[22] = (img)(_p1##x,_p6##y,z,v), I[23] = (img)(x,_p6##y,z,v), I[24] = (img)(_n1##x,_p6##y,z,v), I[25] = (img)(_n2##x,_p6##y,z,v), I[26] = (img)(_n3##x,_p6##y,z,v), I[27] = (img)(_n4##x,_p6##y,z,v), I[28] = (img)(_n5##x,_p6##y,z,v), I[29] = (img)(_n6##x,_p6##y,z,v), I[30] = (img)(_n7##x,_p6##y,z,v), I[31] = (img)(_n8##x,_p6##y,z,v), \ |
philpem@5 | 2887 | I[32] = (img)(_p7##x,_p5##y,z,v), I[33] = (img)(_p6##x,_p5##y,z,v), I[34] = (img)(_p5##x,_p5##y,z,v), I[35] = (img)(_p4##x,_p5##y,z,v), I[36] = (img)(_p3##x,_p5##y,z,v), I[37] = (img)(_p2##x,_p5##y,z,v), I[38] = (img)(_p1##x,_p5##y,z,v), I[39] = (img)(x,_p5##y,z,v), I[40] = (img)(_n1##x,_p5##y,z,v), I[41] = (img)(_n2##x,_p5##y,z,v), I[42] = (img)(_n3##x,_p5##y,z,v), I[43] = (img)(_n4##x,_p5##y,z,v), I[44] = (img)(_n5##x,_p5##y,z,v), I[45] = (img)(_n6##x,_p5##y,z,v), I[46] = (img)(_n7##x,_p5##y,z,v), I[47] = (img)(_n8##x,_p5##y,z,v), \ |
philpem@5 | 2888 | I[48] = (img)(_p7##x,_p4##y,z,v), I[49] = (img)(_p6##x,_p4##y,z,v), I[50] = (img)(_p5##x,_p4##y,z,v), I[51] = (img)(_p4##x,_p4##y,z,v), I[52] = (img)(_p3##x,_p4##y,z,v), I[53] = (img)(_p2##x,_p4##y,z,v), I[54] = (img)(_p1##x,_p4##y,z,v), I[55] = (img)(x,_p4##y,z,v), I[56] = (img)(_n1##x,_p4##y,z,v), I[57] = (img)(_n2##x,_p4##y,z,v), I[58] = (img)(_n3##x,_p4##y,z,v), I[59] = (img)(_n4##x,_p4##y,z,v), I[60] = (img)(_n5##x,_p4##y,z,v), I[61] = (img)(_n6##x,_p4##y,z,v), I[62] = (img)(_n7##x,_p4##y,z,v), I[63] = (img)(_n8##x,_p4##y,z,v), \ |
philpem@5 | 2889 | I[64] = (img)(_p7##x,_p3##y,z,v), I[65] = (img)(_p6##x,_p3##y,z,v), I[66] = (img)(_p5##x,_p3##y,z,v), I[67] = (img)(_p4##x,_p3##y,z,v), I[68] = (img)(_p3##x,_p3##y,z,v), I[69] = (img)(_p2##x,_p3##y,z,v), I[70] = (img)(_p1##x,_p3##y,z,v), I[71] = (img)(x,_p3##y,z,v), I[72] = (img)(_n1##x,_p3##y,z,v), I[73] = (img)(_n2##x,_p3##y,z,v), I[74] = (img)(_n3##x,_p3##y,z,v), I[75] = (img)(_n4##x,_p3##y,z,v), I[76] = (img)(_n5##x,_p3##y,z,v), I[77] = (img)(_n6##x,_p3##y,z,v), I[78] = (img)(_n7##x,_p3##y,z,v), I[79] = (img)(_n8##x,_p3##y,z,v), \ |
philpem@5 | 2890 | I[80] = (img)(_p7##x,_p2##y,z,v), I[81] = (img)(_p6##x,_p2##y,z,v), I[82] = (img)(_p5##x,_p2##y,z,v), I[83] = (img)(_p4##x,_p2##y,z,v), I[84] = (img)(_p3##x,_p2##y,z,v), I[85] = (img)(_p2##x,_p2##y,z,v), I[86] = (img)(_p1##x,_p2##y,z,v), I[87] = (img)(x,_p2##y,z,v), I[88] = (img)(_n1##x,_p2##y,z,v), I[89] = (img)(_n2##x,_p2##y,z,v), I[90] = (img)(_n3##x,_p2##y,z,v), I[91] = (img)(_n4##x,_p2##y,z,v), I[92] = (img)(_n5##x,_p2##y,z,v), I[93] = (img)(_n6##x,_p2##y,z,v), I[94] = (img)(_n7##x,_p2##y,z,v), I[95] = (img)(_n8##x,_p2##y,z,v), \ |
philpem@5 | 2891 | I[96] = (img)(_p7##x,_p1##y,z,v), I[97] = (img)(_p6##x,_p1##y,z,v), I[98] = (img)(_p5##x,_p1##y,z,v), I[99] = (img)(_p4##x,_p1##y,z,v), I[100] = (img)(_p3##x,_p1##y,z,v), I[101] = (img)(_p2##x,_p1##y,z,v), I[102] = (img)(_p1##x,_p1##y,z,v), I[103] = (img)(x,_p1##y,z,v), I[104] = (img)(_n1##x,_p1##y,z,v), I[105] = (img)(_n2##x,_p1##y,z,v), I[106] = (img)(_n3##x,_p1##y,z,v), I[107] = (img)(_n4##x,_p1##y,z,v), I[108] = (img)(_n5##x,_p1##y,z,v), I[109] = (img)(_n6##x,_p1##y,z,v), I[110] = (img)(_n7##x,_p1##y,z,v), I[111] = (img)(_n8##x,_p1##y,z,v), \ |
philpem@5 | 2892 | I[112] = (img)(_p7##x,y,z,v), I[113] = (img)(_p6##x,y,z,v), I[114] = (img)(_p5##x,y,z,v), I[115] = (img)(_p4##x,y,z,v), I[116] = (img)(_p3##x,y,z,v), I[117] = (img)(_p2##x,y,z,v), I[118] = (img)(_p1##x,y,z,v), I[119] = (img)(x,y,z,v), I[120] = (img)(_n1##x,y,z,v), I[121] = (img)(_n2##x,y,z,v), I[122] = (img)(_n3##x,y,z,v), I[123] = (img)(_n4##x,y,z,v), I[124] = (img)(_n5##x,y,z,v), I[125] = (img)(_n6##x,y,z,v), I[126] = (img)(_n7##x,y,z,v), I[127] = (img)(_n8##x,y,z,v), \ |
philpem@5 | 2893 | I[128] = (img)(_p7##x,_n1##y,z,v), I[129] = (img)(_p6##x,_n1##y,z,v), I[130] = (img)(_p5##x,_n1##y,z,v), I[131] = (img)(_p4##x,_n1##y,z,v), I[132] = (img)(_p3##x,_n1##y,z,v), I[133] = (img)(_p2##x,_n1##y,z,v), I[134] = (img)(_p1##x,_n1##y,z,v), I[135] = (img)(x,_n1##y,z,v), I[136] = (img)(_n1##x,_n1##y,z,v), I[137] = (img)(_n2##x,_n1##y,z,v), I[138] = (img)(_n3##x,_n1##y,z,v), I[139] = (img)(_n4##x,_n1##y,z,v), I[140] = (img)(_n5##x,_n1##y,z,v), I[141] = (img)(_n6##x,_n1##y,z,v), I[142] = (img)(_n7##x,_n1##y,z,v), I[143] = (img)(_n8##x,_n1##y,z,v), \ |
philpem@5 | 2894 | I[144] = (img)(_p7##x,_n2##y,z,v), I[145] = (img)(_p6##x,_n2##y,z,v), I[146] = (img)(_p5##x,_n2##y,z,v), I[147] = (img)(_p4##x,_n2##y,z,v), I[148] = (img)(_p3##x,_n2##y,z,v), I[149] = (img)(_p2##x,_n2##y,z,v), I[150] = (img)(_p1##x,_n2##y,z,v), I[151] = (img)(x,_n2##y,z,v), I[152] = (img)(_n1##x,_n2##y,z,v), I[153] = (img)(_n2##x,_n2##y,z,v), I[154] = (img)(_n3##x,_n2##y,z,v), I[155] = (img)(_n4##x,_n2##y,z,v), I[156] = (img)(_n5##x,_n2##y,z,v), I[157] = (img)(_n6##x,_n2##y,z,v), I[158] = (img)(_n7##x,_n2##y,z,v), I[159] = (img)(_n8##x,_n2##y,z,v), \ |
philpem@5 | 2895 | I[160] = (img)(_p7##x,_n3##y,z,v), I[161] = (img)(_p6##x,_n3##y,z,v), I[162] = (img)(_p5##x,_n3##y,z,v), I[163] = (img)(_p4##x,_n3##y,z,v), I[164] = (img)(_p3##x,_n3##y,z,v), I[165] = (img)(_p2##x,_n3##y,z,v), I[166] = (img)(_p1##x,_n3##y,z,v), I[167] = (img)(x,_n3##y,z,v), I[168] = (img)(_n1##x,_n3##y,z,v), I[169] = (img)(_n2##x,_n3##y,z,v), I[170] = (img)(_n3##x,_n3##y,z,v), I[171] = (img)(_n4##x,_n3##y,z,v), I[172] = (img)(_n5##x,_n3##y,z,v), I[173] = (img)(_n6##x,_n3##y,z,v), I[174] = (img)(_n7##x,_n3##y,z,v), I[175] = (img)(_n8##x,_n3##y,z,v), \ |
philpem@5 | 2896 | I[176] = (img)(_p7##x,_n4##y,z,v), I[177] = (img)(_p6##x,_n4##y,z,v), I[178] = (img)(_p5##x,_n4##y,z,v), I[179] = (img)(_p4##x,_n4##y,z,v), I[180] = (img)(_p3##x,_n4##y,z,v), I[181] = (img)(_p2##x,_n4##y,z,v), I[182] = (img)(_p1##x,_n4##y,z,v), I[183] = (img)(x,_n4##y,z,v), I[184] = (img)(_n1##x,_n4##y,z,v), I[185] = (img)(_n2##x,_n4##y,z,v), I[186] = (img)(_n3##x,_n4##y,z,v), I[187] = (img)(_n4##x,_n4##y,z,v), I[188] = (img)(_n5##x,_n4##y,z,v), I[189] = (img)(_n6##x,_n4##y,z,v), I[190] = (img)(_n7##x,_n4##y,z,v), I[191] = (img)(_n8##x,_n4##y,z,v), \ |
philpem@5 | 2897 | I[192] = (img)(_p7##x,_n5##y,z,v), I[193] = (img)(_p6##x,_n5##y,z,v), I[194] = (img)(_p5##x,_n5##y,z,v), I[195] = (img)(_p4##x,_n5##y,z,v), I[196] = (img)(_p3##x,_n5##y,z,v), I[197] = (img)(_p2##x,_n5##y,z,v), I[198] = (img)(_p1##x,_n5##y,z,v), I[199] = (img)(x,_n5##y,z,v), I[200] = (img)(_n1##x,_n5##y,z,v), I[201] = (img)(_n2##x,_n5##y,z,v), I[202] = (img)(_n3##x,_n5##y,z,v), I[203] = (img)(_n4##x,_n5##y,z,v), I[204] = (img)(_n5##x,_n5##y,z,v), I[205] = (img)(_n6##x,_n5##y,z,v), I[206] = (img)(_n7##x,_n5##y,z,v), I[207] = (img)(_n8##x,_n5##y,z,v), \ |
philpem@5 | 2898 | I[208] = (img)(_p7##x,_n6##y,z,v), I[209] = (img)(_p6##x,_n6##y,z,v), I[210] = (img)(_p5##x,_n6##y,z,v), I[211] = (img)(_p4##x,_n6##y,z,v), I[212] = (img)(_p3##x,_n6##y,z,v), I[213] = (img)(_p2##x,_n6##y,z,v), I[214] = (img)(_p1##x,_n6##y,z,v), I[215] = (img)(x,_n6##y,z,v), I[216] = (img)(_n1##x,_n6##y,z,v), I[217] = (img)(_n2##x,_n6##y,z,v), I[218] = (img)(_n3##x,_n6##y,z,v), I[219] = (img)(_n4##x,_n6##y,z,v), I[220] = (img)(_n5##x,_n6##y,z,v), I[221] = (img)(_n6##x,_n6##y,z,v), I[222] = (img)(_n7##x,_n6##y,z,v), I[223] = (img)(_n8##x,_n6##y,z,v), \ |
philpem@5 | 2899 | I[224] = (img)(_p7##x,_n7##y,z,v), I[225] = (img)(_p6##x,_n7##y,z,v), I[226] = (img)(_p5##x,_n7##y,z,v), I[227] = (img)(_p4##x,_n7##y,z,v), I[228] = (img)(_p3##x,_n7##y,z,v), I[229] = (img)(_p2##x,_n7##y,z,v), I[230] = (img)(_p1##x,_n7##y,z,v), I[231] = (img)(x,_n7##y,z,v), I[232] = (img)(_n1##x,_n7##y,z,v), I[233] = (img)(_n2##x,_n7##y,z,v), I[234] = (img)(_n3##x,_n7##y,z,v), I[235] = (img)(_n4##x,_n7##y,z,v), I[236] = (img)(_n5##x,_n7##y,z,v), I[237] = (img)(_n6##x,_n7##y,z,v), I[238] = (img)(_n7##x,_n7##y,z,v), I[239] = (img)(_n8##x,_n7##y,z,v), \ |
philpem@5 | 2900 | I[240] = (img)(_p7##x,_n8##y,z,v), I[241] = (img)(_p6##x,_n8##y,z,v), I[242] = (img)(_p5##x,_n8##y,z,v), I[243] = (img)(_p4##x,_n8##y,z,v), I[244] = (img)(_p3##x,_n8##y,z,v), I[245] = (img)(_p2##x,_n8##y,z,v), I[246] = (img)(_p1##x,_n8##y,z,v), I[247] = (img)(x,_n8##y,z,v), I[248] = (img)(_n1##x,_n8##y,z,v), I[249] = (img)(_n2##x,_n8##y,z,v), I[250] = (img)(_n3##x,_n8##y,z,v), I[251] = (img)(_n4##x,_n8##y,z,v), I[252] = (img)(_n5##x,_n8##y,z,v), I[253] = (img)(_n6##x,_n8##y,z,v), I[254] = (img)(_n7##x,_n8##y,z,v), I[255] = (img)(_n8##x,_n8##y,z,v); |
philpem@5 | 2901 | |
philpem@5 | 2902 | // Define 17x17 loop macros for CImg |
philpem@5 | 2903 | //---------------------------------- |
philpem@5 | 2904 | #define cimg_for17(bound,i) for (int i = 0, \ |
philpem@5 | 2905 | _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \ |
philpem@5 | 2906 | _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \ |
philpem@5 | 2907 | _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \ |
philpem@5 | 2908 | _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \ |
philpem@5 | 2909 | _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \ |
philpem@5 | 2910 | _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \ |
philpem@5 | 2911 | _n6##i = 6>=(int)(bound)?(int)(bound)-1:6, \ |
philpem@5 | 2912 | _n7##i = 7>=(int)(bound)?(int)(bound)-1:7, \ |
philpem@5 | 2913 | _n8##i = 8>=(int)(bound)?(int)(bound)-1:8; \ |
philpem@5 | 2914 | _n8##i<(int)(bound) || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 2915 | i==(_n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \ |
philpem@5 | 2916 | _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 2917 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i) |
philpem@5 | 2918 | |
philpem@5 | 2919 | #define cimg_for17X(img,x) cimg_for17((img).width,x) |
philpem@5 | 2920 | #define cimg_for17Y(img,y) cimg_for17((img).height,y) |
philpem@5 | 2921 | #define cimg_for17Z(img,z) cimg_for17((img).depth,z) |
philpem@5 | 2922 | #define cimg_for17V(img,v) cimg_for17((img).dim,v) |
philpem@5 | 2923 | #define cimg_for17XY(img,x,y) cimg_for17Y(img,y) cimg_for17X(img,x) |
philpem@5 | 2924 | #define cimg_for17XZ(img,x,z) cimg_for17Z(img,z) cimg_for17X(img,x) |
philpem@5 | 2925 | #define cimg_for17XV(img,x,v) cimg_for17V(img,v) cimg_for17X(img,x) |
philpem@5 | 2926 | #define cimg_for17YZ(img,y,z) cimg_for17Z(img,z) cimg_for17Y(img,y) |
philpem@5 | 2927 | #define cimg_for17YV(img,y,v) cimg_for17V(img,v) cimg_for17Y(img,y) |
philpem@5 | 2928 | #define cimg_for17ZV(img,z,v) cimg_for17V(img,v) cimg_for17Z(img,z) |
philpem@5 | 2929 | #define cimg_for17XYZ(img,x,y,z) cimg_for17Z(img,z) cimg_for17XY(img,x,y) |
philpem@5 | 2930 | #define cimg_for17XZV(img,x,z,v) cimg_for17V(img,v) cimg_for17XZ(img,x,z) |
philpem@5 | 2931 | #define cimg_for17YZV(img,y,z,v) cimg_for17V(img,v) cimg_for17YZ(img,y,z) |
philpem@5 | 2932 | #define cimg_for17XYZV(img,x,y,z,v) cimg_for17V(img,v) cimg_for17XYZ(img,x,y,z) |
philpem@5 | 2933 | |
philpem@5 | 2934 | #define cimg_for_in17(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \ |
philpem@5 | 2935 | _p8##i = i-8<0?0:i-8, \ |
philpem@5 | 2936 | _p7##i = i-7<0?0:i-7, \ |
philpem@5 | 2937 | _p6##i = i-6<0?0:i-6, \ |
philpem@5 | 2938 | _p5##i = i-5<0?0:i-5, \ |
philpem@5 | 2939 | _p4##i = i-4<0?0:i-4, \ |
philpem@5 | 2940 | _p3##i = i-3<0?0:i-3, \ |
philpem@5 | 2941 | _p2##i = i-2<0?0:i-2, \ |
philpem@5 | 2942 | _p1##i = i-1<0?0:i-1, \ |
philpem@5 | 2943 | _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \ |
philpem@5 | 2944 | _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \ |
philpem@5 | 2945 | _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \ |
philpem@5 | 2946 | _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \ |
philpem@5 | 2947 | _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \ |
philpem@5 | 2948 | _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6, \ |
philpem@5 | 2949 | _n7##i = i+7>=(int)(bound)?(int)(bound)-1:i+7, \ |
philpem@5 | 2950 | _n8##i = i+8>=(int)(bound)?(int)(bound)-1:i+8; \ |
philpem@5 | 2951 | i<=(int)(i1) && (_n8##i<(int)(bound) || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 2952 | i==(_n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \ |
philpem@5 | 2953 | _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 2954 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i) |
philpem@5 | 2955 | |
philpem@5 | 2956 | #define cimg_for_in17X(img,x0,x1,x) cimg_for_in17((img).width,x0,x1,x) |
philpem@5 | 2957 | #define cimg_for_in17Y(img,y0,y1,y) cimg_for_in17((img).height,y0,y1,y) |
philpem@5 | 2958 | #define cimg_for_in17Z(img,z0,z1,z) cimg_for_in17((img).depth,z0,z1,z) |
philpem@5 | 2959 | #define cimg_for_in17V(img,v0,v1,v) cimg_for_in17((img).dim,v0,v1,v) |
philpem@5 | 2960 | #define cimg_for_in17XY(img,x0,y0,x1,y1,x,y) cimg_for_in17Y(img,y0,y1,y) cimg_for_in17X(img,x0,x1,x) |
philpem@5 | 2961 | #define cimg_for_in17XZ(img,x0,z0,x1,z1,x,z) cimg_for_in17Z(img,z0,z1,z) cimg_for_in17X(img,x0,x1,x) |
philpem@5 | 2962 | #define cimg_for_in17XV(img,x0,v0,x1,v1,x,v) cimg_for_in17V(img,v0,v1,v) cimg_for_in17X(img,x0,x1,x) |
philpem@5 | 2963 | #define cimg_for_in17YZ(img,y0,z0,y1,z1,y,z) cimg_for_in17Z(img,z0,z1,z) cimg_for_in17Y(img,y0,y1,y) |
philpem@5 | 2964 | #define cimg_for_in17YV(img,y0,v0,y1,v1,y,v) cimg_for_in17V(img,v0,v1,v) cimg_for_in17Y(img,y0,y1,y) |
philpem@5 | 2965 | #define cimg_for_in17ZV(img,z0,v0,z1,v1,z,v) cimg_for_in17V(img,v0,v1,v) cimg_for_in17Z(img,z0,z1,z) |
philpem@5 | 2966 | #define cimg_for_in17XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in17Z(img,z0,z1,z) cimg_for_in17XY(img,x0,y0,x1,y1,x,y) |
philpem@5 | 2967 | #define cimg_for_in17XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in17V(img,v0,v1,v) cimg_for_in17XZ(img,x0,y0,x1,y1,x,z) |
philpem@5 | 2968 | #define cimg_for_in17YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in17V(img,v0,v1,v) cimg_for_in17YZ(img,y0,z0,y1,z1,y,z) |
philpem@5 | 2969 | #define cimg_for_in17XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in17V(img,v0,v1,v) cimg_for_in17XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) |
philpem@5 | 2970 | |
philpem@5 | 2971 | #define cimg_for17x17(img,x,y,z,v,I) \ |
philpem@5 | 2972 | cimg_for17((img).height,y) for (int x = 0, \ |
philpem@5 | 2973 | _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \ |
philpem@5 | 2974 | _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \ |
philpem@5 | 2975 | _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \ |
philpem@5 | 2976 | _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \ |
philpem@5 | 2977 | _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \ |
philpem@5 | 2978 | _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \ |
philpem@5 | 2979 | _n6##x = 6>=((img).width)?(int)((img).width)-1:6, \ |
philpem@5 | 2980 | _n7##x = 7>=((img).width)?(int)((img).width)-1:7, \ |
philpem@5 | 2981 | _n8##x = (int)( \ |
philpem@5 | 2982 | (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = (img)(0,_p8##y,z,v)), \ |
philpem@5 | 2983 | (I[17] = I[18] = I[19] = I[20] = I[21] = I[22] = I[23] = I[24] = I[25] = (img)(0,_p7##y,z,v)), \ |
philpem@5 | 2984 | (I[34] = I[35] = I[36] = I[37] = I[38] = I[39] = I[40] = I[41] = I[42] = (img)(0,_p6##y,z,v)), \ |
philpem@5 | 2985 | (I[51] = I[52] = I[53] = I[54] = I[55] = I[56] = I[57] = I[58] = I[59] = (img)(0,_p5##y,z,v)), \ |
philpem@5 | 2986 | (I[68] = I[69] = I[70] = I[71] = I[72] = I[73] = I[74] = I[75] = I[76] = (img)(0,_p4##y,z,v)), \ |
philpem@5 | 2987 | (I[85] = I[86] = I[87] = I[88] = I[89] = I[90] = I[91] = I[92] = I[93] = (img)(0,_p3##y,z,v)), \ |
philpem@5 | 2988 | (I[102] = I[103] = I[104] = I[105] = I[106] = I[107] = I[108] = I[109] = I[110] = (img)(0,_p2##y,z,v)), \ |
philpem@5 | 2989 | (I[119] = I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = I[126] = I[127] = (img)(0,_p1##y,z,v)), \ |
philpem@5 | 2990 | (I[136] = I[137] = I[138] = I[139] = I[140] = I[141] = I[142] = I[143] = I[144] = (img)(0,y,z,v)), \ |
philpem@5 | 2991 | (I[153] = I[154] = I[155] = I[156] = I[157] = I[158] = I[159] = I[160] = I[161] = (img)(0,_n1##y,z,v)), \ |
philpem@5 | 2992 | (I[170] = I[171] = I[172] = I[173] = I[174] = I[175] = I[176] = I[177] = I[178] = (img)(0,_n2##y,z,v)), \ |
philpem@5 | 2993 | (I[187] = I[188] = I[189] = I[190] = I[191] = I[192] = I[193] = I[194] = I[195] = (img)(0,_n3##y,z,v)), \ |
philpem@5 | 2994 | (I[204] = I[205] = I[206] = I[207] = I[208] = I[209] = I[210] = I[211] = I[212] = (img)(0,_n4##y,z,v)), \ |
philpem@5 | 2995 | (I[221] = I[222] = I[223] = I[224] = I[225] = I[226] = I[227] = I[228] = I[229] = (img)(0,_n5##y,z,v)), \ |
philpem@5 | 2996 | (I[238] = I[239] = I[240] = I[241] = I[242] = I[243] = I[244] = I[245] = I[246] = (img)(0,_n6##y,z,v)), \ |
philpem@5 | 2997 | (I[255] = I[256] = I[257] = I[258] = I[259] = I[260] = I[261] = I[262] = I[263] = (img)(0,_n7##y,z,v)), \ |
philpem@5 | 2998 | (I[272] = I[273] = I[274] = I[275] = I[276] = I[277] = I[278] = I[279] = I[280] = (img)(0,_n8##y,z,v)), \ |
philpem@5 | 2999 | (I[9] = (img)(_n1##x,_p8##y,z,v)), \ |
philpem@5 | 3000 | (I[26] = (img)(_n1##x,_p7##y,z,v)), \ |
philpem@5 | 3001 | (I[43] = (img)(_n1##x,_p6##y,z,v)), \ |
philpem@5 | 3002 | (I[60] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 3003 | (I[77] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 3004 | (I[94] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 3005 | (I[111] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 3006 | (I[128] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 3007 | (I[145] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 3008 | (I[162] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 3009 | (I[179] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 3010 | (I[196] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 3011 | (I[213] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 3012 | (I[230] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 3013 | (I[247] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 3014 | (I[264] = (img)(_n1##x,_n7##y,z,v)), \ |
philpem@5 | 3015 | (I[281] = (img)(_n1##x,_n8##y,z,v)), \ |
philpem@5 | 3016 | (I[10] = (img)(_n2##x,_p8##y,z,v)), \ |
philpem@5 | 3017 | (I[27] = (img)(_n2##x,_p7##y,z,v)), \ |
philpem@5 | 3018 | (I[44] = (img)(_n2##x,_p6##y,z,v)), \ |
philpem@5 | 3019 | (I[61] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 3020 | (I[78] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 3021 | (I[95] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 3022 | (I[112] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 3023 | (I[129] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 3024 | (I[146] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 3025 | (I[163] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 3026 | (I[180] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 3027 | (I[197] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 3028 | (I[214] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 3029 | (I[231] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 3030 | (I[248] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 3031 | (I[265] = (img)(_n2##x,_n7##y,z,v)), \ |
philpem@5 | 3032 | (I[282] = (img)(_n2##x,_n8##y,z,v)), \ |
philpem@5 | 3033 | (I[11] = (img)(_n3##x,_p8##y,z,v)), \ |
philpem@5 | 3034 | (I[28] = (img)(_n3##x,_p7##y,z,v)), \ |
philpem@5 | 3035 | (I[45] = (img)(_n3##x,_p6##y,z,v)), \ |
philpem@5 | 3036 | (I[62] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 3037 | (I[79] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 3038 | (I[96] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 3039 | (I[113] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 3040 | (I[130] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 3041 | (I[147] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 3042 | (I[164] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 3043 | (I[181] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 3044 | (I[198] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 3045 | (I[215] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 3046 | (I[232] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 3047 | (I[249] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 3048 | (I[266] = (img)(_n3##x,_n7##y,z,v)), \ |
philpem@5 | 3049 | (I[283] = (img)(_n3##x,_n8##y,z,v)), \ |
philpem@5 | 3050 | (I[12] = (img)(_n4##x,_p8##y,z,v)), \ |
philpem@5 | 3051 | (I[29] = (img)(_n4##x,_p7##y,z,v)), \ |
philpem@5 | 3052 | (I[46] = (img)(_n4##x,_p6##y,z,v)), \ |
philpem@5 | 3053 | (I[63] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 3054 | (I[80] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 3055 | (I[97] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 3056 | (I[114] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 3057 | (I[131] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 3058 | (I[148] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 3059 | (I[165] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 3060 | (I[182] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 3061 | (I[199] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 3062 | (I[216] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 3063 | (I[233] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 3064 | (I[250] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 3065 | (I[267] = (img)(_n4##x,_n7##y,z,v)), \ |
philpem@5 | 3066 | (I[284] = (img)(_n4##x,_n8##y,z,v)), \ |
philpem@5 | 3067 | (I[13] = (img)(_n5##x,_p8##y,z,v)), \ |
philpem@5 | 3068 | (I[30] = (img)(_n5##x,_p7##y,z,v)), \ |
philpem@5 | 3069 | (I[47] = (img)(_n5##x,_p6##y,z,v)), \ |
philpem@5 | 3070 | (I[64] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 3071 | (I[81] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 3072 | (I[98] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 3073 | (I[115] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 3074 | (I[132] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 3075 | (I[149] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 3076 | (I[166] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 3077 | (I[183] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 3078 | (I[200] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 3079 | (I[217] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 3080 | (I[234] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 3081 | (I[251] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 3082 | (I[268] = (img)(_n5##x,_n7##y,z,v)), \ |
philpem@5 | 3083 | (I[285] = (img)(_n5##x,_n8##y,z,v)), \ |
philpem@5 | 3084 | (I[14] = (img)(_n6##x,_p8##y,z,v)), \ |
philpem@5 | 3085 | (I[31] = (img)(_n6##x,_p7##y,z,v)), \ |
philpem@5 | 3086 | (I[48] = (img)(_n6##x,_p6##y,z,v)), \ |
philpem@5 | 3087 | (I[65] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 3088 | (I[82] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 3089 | (I[99] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 3090 | (I[116] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 3091 | (I[133] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 3092 | (I[150] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 3093 | (I[167] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 3094 | (I[184] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 3095 | (I[201] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 3096 | (I[218] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 3097 | (I[235] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 3098 | (I[252] = (img)(_n6##x,_n6##y,z,v)), \ |
philpem@5 | 3099 | (I[269] = (img)(_n6##x,_n7##y,z,v)), \ |
philpem@5 | 3100 | (I[286] = (img)(_n6##x,_n8##y,z,v)), \ |
philpem@5 | 3101 | (I[15] = (img)(_n7##x,_p8##y,z,v)), \ |
philpem@5 | 3102 | (I[32] = (img)(_n7##x,_p7##y,z,v)), \ |
philpem@5 | 3103 | (I[49] = (img)(_n7##x,_p6##y,z,v)), \ |
philpem@5 | 3104 | (I[66] = (img)(_n7##x,_p5##y,z,v)), \ |
philpem@5 | 3105 | (I[83] = (img)(_n7##x,_p4##y,z,v)), \ |
philpem@5 | 3106 | (I[100] = (img)(_n7##x,_p3##y,z,v)), \ |
philpem@5 | 3107 | (I[117] = (img)(_n7##x,_p2##y,z,v)), \ |
philpem@5 | 3108 | (I[134] = (img)(_n7##x,_p1##y,z,v)), \ |
philpem@5 | 3109 | (I[151] = (img)(_n7##x,y,z,v)), \ |
philpem@5 | 3110 | (I[168] = (img)(_n7##x,_n1##y,z,v)), \ |
philpem@5 | 3111 | (I[185] = (img)(_n7##x,_n2##y,z,v)), \ |
philpem@5 | 3112 | (I[202] = (img)(_n7##x,_n3##y,z,v)), \ |
philpem@5 | 3113 | (I[219] = (img)(_n7##x,_n4##y,z,v)), \ |
philpem@5 | 3114 | (I[236] = (img)(_n7##x,_n5##y,z,v)), \ |
philpem@5 | 3115 | (I[253] = (img)(_n7##x,_n6##y,z,v)), \ |
philpem@5 | 3116 | (I[270] = (img)(_n7##x,_n7##y,z,v)), \ |
philpem@5 | 3117 | (I[287] = (img)(_n7##x,_n8##y,z,v)), \ |
philpem@5 | 3118 | 8>=((img).width)?(int)((img).width)-1:8); \ |
philpem@5 | 3119 | (_n8##x<(int)((img).width) && ( \ |
philpem@5 | 3120 | (I[16] = (img)(_n8##x,_p8##y,z,v)), \ |
philpem@5 | 3121 | (I[33] = (img)(_n8##x,_p7##y,z,v)), \ |
philpem@5 | 3122 | (I[50] = (img)(_n8##x,_p6##y,z,v)), \ |
philpem@5 | 3123 | (I[67] = (img)(_n8##x,_p5##y,z,v)), \ |
philpem@5 | 3124 | (I[84] = (img)(_n8##x,_p4##y,z,v)), \ |
philpem@5 | 3125 | (I[101] = (img)(_n8##x,_p3##y,z,v)), \ |
philpem@5 | 3126 | (I[118] = (img)(_n8##x,_p2##y,z,v)), \ |
philpem@5 | 3127 | (I[135] = (img)(_n8##x,_p1##y,z,v)), \ |
philpem@5 | 3128 | (I[152] = (img)(_n8##x,y,z,v)), \ |
philpem@5 | 3129 | (I[169] = (img)(_n8##x,_n1##y,z,v)), \ |
philpem@5 | 3130 | (I[186] = (img)(_n8##x,_n2##y,z,v)), \ |
philpem@5 | 3131 | (I[203] = (img)(_n8##x,_n3##y,z,v)), \ |
philpem@5 | 3132 | (I[220] = (img)(_n8##x,_n4##y,z,v)), \ |
philpem@5 | 3133 | (I[237] = (img)(_n8##x,_n5##y,z,v)), \ |
philpem@5 | 3134 | (I[254] = (img)(_n8##x,_n6##y,z,v)), \ |
philpem@5 | 3135 | (I[271] = (img)(_n8##x,_n7##y,z,v)), \ |
philpem@5 | 3136 | (I[288] = (img)(_n8##x,_n8##y,z,v)),1)) || \ |
philpem@5 | 3137 | _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \ |
philpem@5 | 3138 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], \ |
philpem@5 | 3139 | I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], \ |
philpem@5 | 3140 | I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], \ |
philpem@5 | 3141 | I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], \ |
philpem@5 | 3142 | I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], \ |
philpem@5 | 3143 | I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], \ |
philpem@5 | 3144 | I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], \ |
philpem@5 | 3145 | I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], \ |
philpem@5 | 3146 | I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], \ |
philpem@5 | 3147 | I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], \ |
philpem@5 | 3148 | I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], \ |
philpem@5 | 3149 | I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], \ |
philpem@5 | 3150 | I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], \ |
philpem@5 | 3151 | I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], \ |
philpem@5 | 3152 | I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], \ |
philpem@5 | 3153 | I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], \ |
philpem@5 | 3154 | I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], \ |
philpem@5 | 3155 | _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x) |
philpem@5 | 3156 | |
philpem@5 | 3157 | #define cimg_for_in17x17(img,x0,y0,x1,y1,x,y,z,v,I) \ |
philpem@5 | 3158 | cimg_for_in17((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ |
philpem@5 | 3159 | _p8##x = x-8<0?0:x-8, \ |
philpem@5 | 3160 | _p7##x = x-7<0?0:x-7, \ |
philpem@5 | 3161 | _p6##x = x-6<0?0:x-6, \ |
philpem@5 | 3162 | _p5##x = x-5<0?0:x-5, \ |
philpem@5 | 3163 | _p4##x = x-4<0?0:x-4, \ |
philpem@5 | 3164 | _p3##x = x-3<0?0:x-3, \ |
philpem@5 | 3165 | _p2##x = x-2<0?0:x-2, \ |
philpem@5 | 3166 | _p1##x = x-1<0?0:x-1, \ |
philpem@5 | 3167 | _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \ |
philpem@5 | 3168 | _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \ |
philpem@5 | 3169 | _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \ |
philpem@5 | 3170 | _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \ |
philpem@5 | 3171 | _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \ |
philpem@5 | 3172 | _n6##x = x+6>=(int)((img).width)?(int)((img).width)-1:x+6, \ |
philpem@5 | 3173 | _n7##x = x+7>=(int)((img).width)?(int)((img).width)-1:x+7, \ |
philpem@5 | 3174 | _n8##x = (int)( \ |
philpem@5 | 3175 | (I[0] = (img)(_p8##x,_p8##y,z,v)), \ |
philpem@5 | 3176 | (I[17] = (img)(_p8##x,_p7##y,z,v)), \ |
philpem@5 | 3177 | (I[34] = (img)(_p8##x,_p6##y,z,v)), \ |
philpem@5 | 3178 | (I[51] = (img)(_p8##x,_p5##y,z,v)), \ |
philpem@5 | 3179 | (I[68] = (img)(_p8##x,_p4##y,z,v)), \ |
philpem@5 | 3180 | (I[85] = (img)(_p8##x,_p3##y,z,v)), \ |
philpem@5 | 3181 | (I[102] = (img)(_p8##x,_p2##y,z,v)), \ |
philpem@5 | 3182 | (I[119] = (img)(_p8##x,_p1##y,z,v)), \ |
philpem@5 | 3183 | (I[136] = (img)(_p8##x,y,z,v)), \ |
philpem@5 | 3184 | (I[153] = (img)(_p8##x,_n1##y,z,v)), \ |
philpem@5 | 3185 | (I[170] = (img)(_p8##x,_n2##y,z,v)), \ |
philpem@5 | 3186 | (I[187] = (img)(_p8##x,_n3##y,z,v)), \ |
philpem@5 | 3187 | (I[204] = (img)(_p8##x,_n4##y,z,v)), \ |
philpem@5 | 3188 | (I[221] = (img)(_p8##x,_n5##y,z,v)), \ |
philpem@5 | 3189 | (I[238] = (img)(_p8##x,_n6##y,z,v)), \ |
philpem@5 | 3190 | (I[255] = (img)(_p8##x,_n7##y,z,v)), \ |
philpem@5 | 3191 | (I[272] = (img)(_p8##x,_n8##y,z,v)), \ |
philpem@5 | 3192 | (I[1] = (img)(_p7##x,_p8##y,z,v)), \ |
philpem@5 | 3193 | (I[18] = (img)(_p7##x,_p7##y,z,v)), \ |
philpem@5 | 3194 | (I[35] = (img)(_p7##x,_p6##y,z,v)), \ |
philpem@5 | 3195 | (I[52] = (img)(_p7##x,_p5##y,z,v)), \ |
philpem@5 | 3196 | (I[69] = (img)(_p7##x,_p4##y,z,v)), \ |
philpem@5 | 3197 | (I[86] = (img)(_p7##x,_p3##y,z,v)), \ |
philpem@5 | 3198 | (I[103] = (img)(_p7##x,_p2##y,z,v)), \ |
philpem@5 | 3199 | (I[120] = (img)(_p7##x,_p1##y,z,v)), \ |
philpem@5 | 3200 | (I[137] = (img)(_p7##x,y,z,v)), \ |
philpem@5 | 3201 | (I[154] = (img)(_p7##x,_n1##y,z,v)), \ |
philpem@5 | 3202 | (I[171] = (img)(_p7##x,_n2##y,z,v)), \ |
philpem@5 | 3203 | (I[188] = (img)(_p7##x,_n3##y,z,v)), \ |
philpem@5 | 3204 | (I[205] = (img)(_p7##x,_n4##y,z,v)), \ |
philpem@5 | 3205 | (I[222] = (img)(_p7##x,_n5##y,z,v)), \ |
philpem@5 | 3206 | (I[239] = (img)(_p7##x,_n6##y,z,v)), \ |
philpem@5 | 3207 | (I[256] = (img)(_p7##x,_n7##y,z,v)), \ |
philpem@5 | 3208 | (I[273] = (img)(_p7##x,_n8##y,z,v)), \ |
philpem@5 | 3209 | (I[2] = (img)(_p6##x,_p8##y,z,v)), \ |
philpem@5 | 3210 | (I[19] = (img)(_p6##x,_p7##y,z,v)), \ |
philpem@5 | 3211 | (I[36] = (img)(_p6##x,_p6##y,z,v)), \ |
philpem@5 | 3212 | (I[53] = (img)(_p6##x,_p5##y,z,v)), \ |
philpem@5 | 3213 | (I[70] = (img)(_p6##x,_p4##y,z,v)), \ |
philpem@5 | 3214 | (I[87] = (img)(_p6##x,_p3##y,z,v)), \ |
philpem@5 | 3215 | (I[104] = (img)(_p6##x,_p2##y,z,v)), \ |
philpem@5 | 3216 | (I[121] = (img)(_p6##x,_p1##y,z,v)), \ |
philpem@5 | 3217 | (I[138] = (img)(_p6##x,y,z,v)), \ |
philpem@5 | 3218 | (I[155] = (img)(_p6##x,_n1##y,z,v)), \ |
philpem@5 | 3219 | (I[172] = (img)(_p6##x,_n2##y,z,v)), \ |
philpem@5 | 3220 | (I[189] = (img)(_p6##x,_n3##y,z,v)), \ |
philpem@5 | 3221 | (I[206] = (img)(_p6##x,_n4##y,z,v)), \ |
philpem@5 | 3222 | (I[223] = (img)(_p6##x,_n5##y,z,v)), \ |
philpem@5 | 3223 | (I[240] = (img)(_p6##x,_n6##y,z,v)), \ |
philpem@5 | 3224 | (I[257] = (img)(_p6##x,_n7##y,z,v)), \ |
philpem@5 | 3225 | (I[274] = (img)(_p6##x,_n8##y,z,v)), \ |
philpem@5 | 3226 | (I[3] = (img)(_p5##x,_p8##y,z,v)), \ |
philpem@5 | 3227 | (I[20] = (img)(_p5##x,_p7##y,z,v)), \ |
philpem@5 | 3228 | (I[37] = (img)(_p5##x,_p6##y,z,v)), \ |
philpem@5 | 3229 | (I[54] = (img)(_p5##x,_p5##y,z,v)), \ |
philpem@5 | 3230 | (I[71] = (img)(_p5##x,_p4##y,z,v)), \ |
philpem@5 | 3231 | (I[88] = (img)(_p5##x,_p3##y,z,v)), \ |
philpem@5 | 3232 | (I[105] = (img)(_p5##x,_p2##y,z,v)), \ |
philpem@5 | 3233 | (I[122] = (img)(_p5##x,_p1##y,z,v)), \ |
philpem@5 | 3234 | (I[139] = (img)(_p5##x,y,z,v)), \ |
philpem@5 | 3235 | (I[156] = (img)(_p5##x,_n1##y,z,v)), \ |
philpem@5 | 3236 | (I[173] = (img)(_p5##x,_n2##y,z,v)), \ |
philpem@5 | 3237 | (I[190] = (img)(_p5##x,_n3##y,z,v)), \ |
philpem@5 | 3238 | (I[207] = (img)(_p5##x,_n4##y,z,v)), \ |
philpem@5 | 3239 | (I[224] = (img)(_p5##x,_n5##y,z,v)), \ |
philpem@5 | 3240 | (I[241] = (img)(_p5##x,_n6##y,z,v)), \ |
philpem@5 | 3241 | (I[258] = (img)(_p5##x,_n7##y,z,v)), \ |
philpem@5 | 3242 | (I[275] = (img)(_p5##x,_n8##y,z,v)), \ |
philpem@5 | 3243 | (I[4] = (img)(_p4##x,_p8##y,z,v)), \ |
philpem@5 | 3244 | (I[21] = (img)(_p4##x,_p7##y,z,v)), \ |
philpem@5 | 3245 | (I[38] = (img)(_p4##x,_p6##y,z,v)), \ |
philpem@5 | 3246 | (I[55] = (img)(_p4##x,_p5##y,z,v)), \ |
philpem@5 | 3247 | (I[72] = (img)(_p4##x,_p4##y,z,v)), \ |
philpem@5 | 3248 | (I[89] = (img)(_p4##x,_p3##y,z,v)), \ |
philpem@5 | 3249 | (I[106] = (img)(_p4##x,_p2##y,z,v)), \ |
philpem@5 | 3250 | (I[123] = (img)(_p4##x,_p1##y,z,v)), \ |
philpem@5 | 3251 | (I[140] = (img)(_p4##x,y,z,v)), \ |
philpem@5 | 3252 | (I[157] = (img)(_p4##x,_n1##y,z,v)), \ |
philpem@5 | 3253 | (I[174] = (img)(_p4##x,_n2##y,z,v)), \ |
philpem@5 | 3254 | (I[191] = (img)(_p4##x,_n3##y,z,v)), \ |
philpem@5 | 3255 | (I[208] = (img)(_p4##x,_n4##y,z,v)), \ |
philpem@5 | 3256 | (I[225] = (img)(_p4##x,_n5##y,z,v)), \ |
philpem@5 | 3257 | (I[242] = (img)(_p4##x,_n6##y,z,v)), \ |
philpem@5 | 3258 | (I[259] = (img)(_p4##x,_n7##y,z,v)), \ |
philpem@5 | 3259 | (I[276] = (img)(_p4##x,_n8##y,z,v)), \ |
philpem@5 | 3260 | (I[5] = (img)(_p3##x,_p8##y,z,v)), \ |
philpem@5 | 3261 | (I[22] = (img)(_p3##x,_p7##y,z,v)), \ |
philpem@5 | 3262 | (I[39] = (img)(_p3##x,_p6##y,z,v)), \ |
philpem@5 | 3263 | (I[56] = (img)(_p3##x,_p5##y,z,v)), \ |
philpem@5 | 3264 | (I[73] = (img)(_p3##x,_p4##y,z,v)), \ |
philpem@5 | 3265 | (I[90] = (img)(_p3##x,_p3##y,z,v)), \ |
philpem@5 | 3266 | (I[107] = (img)(_p3##x,_p2##y,z,v)), \ |
philpem@5 | 3267 | (I[124] = (img)(_p3##x,_p1##y,z,v)), \ |
philpem@5 | 3268 | (I[141] = (img)(_p3##x,y,z,v)), \ |
philpem@5 | 3269 | (I[158] = (img)(_p3##x,_n1##y,z,v)), \ |
philpem@5 | 3270 | (I[175] = (img)(_p3##x,_n2##y,z,v)), \ |
philpem@5 | 3271 | (I[192] = (img)(_p3##x,_n3##y,z,v)), \ |
philpem@5 | 3272 | (I[209] = (img)(_p3##x,_n4##y,z,v)), \ |
philpem@5 | 3273 | (I[226] = (img)(_p3##x,_n5##y,z,v)), \ |
philpem@5 | 3274 | (I[243] = (img)(_p3##x,_n6##y,z,v)), \ |
philpem@5 | 3275 | (I[260] = (img)(_p3##x,_n7##y,z,v)), \ |
philpem@5 | 3276 | (I[277] = (img)(_p3##x,_n8##y,z,v)), \ |
philpem@5 | 3277 | (I[6] = (img)(_p2##x,_p8##y,z,v)), \ |
philpem@5 | 3278 | (I[23] = (img)(_p2##x,_p7##y,z,v)), \ |
philpem@5 | 3279 | (I[40] = (img)(_p2##x,_p6##y,z,v)), \ |
philpem@5 | 3280 | (I[57] = (img)(_p2##x,_p5##y,z,v)), \ |
philpem@5 | 3281 | (I[74] = (img)(_p2##x,_p4##y,z,v)), \ |
philpem@5 | 3282 | (I[91] = (img)(_p2##x,_p3##y,z,v)), \ |
philpem@5 | 3283 | (I[108] = (img)(_p2##x,_p2##y,z,v)), \ |
philpem@5 | 3284 | (I[125] = (img)(_p2##x,_p1##y,z,v)), \ |
philpem@5 | 3285 | (I[142] = (img)(_p2##x,y,z,v)), \ |
philpem@5 | 3286 | (I[159] = (img)(_p2##x,_n1##y,z,v)), \ |
philpem@5 | 3287 | (I[176] = (img)(_p2##x,_n2##y,z,v)), \ |
philpem@5 | 3288 | (I[193] = (img)(_p2##x,_n3##y,z,v)), \ |
philpem@5 | 3289 | (I[210] = (img)(_p2##x,_n4##y,z,v)), \ |
philpem@5 | 3290 | (I[227] = (img)(_p2##x,_n5##y,z,v)), \ |
philpem@5 | 3291 | (I[244] = (img)(_p2##x,_n6##y,z,v)), \ |
philpem@5 | 3292 | (I[261] = (img)(_p2##x,_n7##y,z,v)), \ |
philpem@5 | 3293 | (I[278] = (img)(_p2##x,_n8##y,z,v)), \ |
philpem@5 | 3294 | (I[7] = (img)(_p1##x,_p8##y,z,v)), \ |
philpem@5 | 3295 | (I[24] = (img)(_p1##x,_p7##y,z,v)), \ |
philpem@5 | 3296 | (I[41] = (img)(_p1##x,_p6##y,z,v)), \ |
philpem@5 | 3297 | (I[58] = (img)(_p1##x,_p5##y,z,v)), \ |
philpem@5 | 3298 | (I[75] = (img)(_p1##x,_p4##y,z,v)), \ |
philpem@5 | 3299 | (I[92] = (img)(_p1##x,_p3##y,z,v)), \ |
philpem@5 | 3300 | (I[109] = (img)(_p1##x,_p2##y,z,v)), \ |
philpem@5 | 3301 | (I[126] = (img)(_p1##x,_p1##y,z,v)), \ |
philpem@5 | 3302 | (I[143] = (img)(_p1##x,y,z,v)), \ |
philpem@5 | 3303 | (I[160] = (img)(_p1##x,_n1##y,z,v)), \ |
philpem@5 | 3304 | (I[177] = (img)(_p1##x,_n2##y,z,v)), \ |
philpem@5 | 3305 | (I[194] = (img)(_p1##x,_n3##y,z,v)), \ |
philpem@5 | 3306 | (I[211] = (img)(_p1##x,_n4##y,z,v)), \ |
philpem@5 | 3307 | (I[228] = (img)(_p1##x,_n5##y,z,v)), \ |
philpem@5 | 3308 | (I[245] = (img)(_p1##x,_n6##y,z,v)), \ |
philpem@5 | 3309 | (I[262] = (img)(_p1##x,_n7##y,z,v)), \ |
philpem@5 | 3310 | (I[279] = (img)(_p1##x,_n8##y,z,v)), \ |
philpem@5 | 3311 | (I[8] = (img)(x,_p8##y,z,v)), \ |
philpem@5 | 3312 | (I[25] = (img)(x,_p7##y,z,v)), \ |
philpem@5 | 3313 | (I[42] = (img)(x,_p6##y,z,v)), \ |
philpem@5 | 3314 | (I[59] = (img)(x,_p5##y,z,v)), \ |
philpem@5 | 3315 | (I[76] = (img)(x,_p4##y,z,v)), \ |
philpem@5 | 3316 | (I[93] = (img)(x,_p3##y,z,v)), \ |
philpem@5 | 3317 | (I[110] = (img)(x,_p2##y,z,v)), \ |
philpem@5 | 3318 | (I[127] = (img)(x,_p1##y,z,v)), \ |
philpem@5 | 3319 | (I[144] = (img)(x,y,z,v)), \ |
philpem@5 | 3320 | (I[161] = (img)(x,_n1##y,z,v)), \ |
philpem@5 | 3321 | (I[178] = (img)(x,_n2##y,z,v)), \ |
philpem@5 | 3322 | (I[195] = (img)(x,_n3##y,z,v)), \ |
philpem@5 | 3323 | (I[212] = (img)(x,_n4##y,z,v)), \ |
philpem@5 | 3324 | (I[229] = (img)(x,_n5##y,z,v)), \ |
philpem@5 | 3325 | (I[246] = (img)(x,_n6##y,z,v)), \ |
philpem@5 | 3326 | (I[263] = (img)(x,_n7##y,z,v)), \ |
philpem@5 | 3327 | (I[280] = (img)(x,_n8##y,z,v)), \ |
philpem@5 | 3328 | (I[9] = (img)(_n1##x,_p8##y,z,v)), \ |
philpem@5 | 3329 | (I[26] = (img)(_n1##x,_p7##y,z,v)), \ |
philpem@5 | 3330 | (I[43] = (img)(_n1##x,_p6##y,z,v)), \ |
philpem@5 | 3331 | (I[60] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 3332 | (I[77] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 3333 | (I[94] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 3334 | (I[111] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 3335 | (I[128] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 3336 | (I[145] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 3337 | (I[162] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 3338 | (I[179] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 3339 | (I[196] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 3340 | (I[213] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 3341 | (I[230] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 3342 | (I[247] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 3343 | (I[264] = (img)(_n1##x,_n7##y,z,v)), \ |
philpem@5 | 3344 | (I[281] = (img)(_n1##x,_n8##y,z,v)), \ |
philpem@5 | 3345 | (I[10] = (img)(_n2##x,_p8##y,z,v)), \ |
philpem@5 | 3346 | (I[27] = (img)(_n2##x,_p7##y,z,v)), \ |
philpem@5 | 3347 | (I[44] = (img)(_n2##x,_p6##y,z,v)), \ |
philpem@5 | 3348 | (I[61] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 3349 | (I[78] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 3350 | (I[95] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 3351 | (I[112] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 3352 | (I[129] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 3353 | (I[146] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 3354 | (I[163] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 3355 | (I[180] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 3356 | (I[197] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 3357 | (I[214] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 3358 | (I[231] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 3359 | (I[248] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 3360 | (I[265] = (img)(_n2##x,_n7##y,z,v)), \ |
philpem@5 | 3361 | (I[282] = (img)(_n2##x,_n8##y,z,v)), \ |
philpem@5 | 3362 | (I[11] = (img)(_n3##x,_p8##y,z,v)), \ |
philpem@5 | 3363 | (I[28] = (img)(_n3##x,_p7##y,z,v)), \ |
philpem@5 | 3364 | (I[45] = (img)(_n3##x,_p6##y,z,v)), \ |
philpem@5 | 3365 | (I[62] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 3366 | (I[79] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 3367 | (I[96] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 3368 | (I[113] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 3369 | (I[130] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 3370 | (I[147] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 3371 | (I[164] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 3372 | (I[181] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 3373 | (I[198] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 3374 | (I[215] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 3375 | (I[232] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 3376 | (I[249] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 3377 | (I[266] = (img)(_n3##x,_n7##y,z,v)), \ |
philpem@5 | 3378 | (I[283] = (img)(_n3##x,_n8##y,z,v)), \ |
philpem@5 | 3379 | (I[12] = (img)(_n4##x,_p8##y,z,v)), \ |
philpem@5 | 3380 | (I[29] = (img)(_n4##x,_p7##y,z,v)), \ |
philpem@5 | 3381 | (I[46] = (img)(_n4##x,_p6##y,z,v)), \ |
philpem@5 | 3382 | (I[63] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 3383 | (I[80] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 3384 | (I[97] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 3385 | (I[114] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 3386 | (I[131] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 3387 | (I[148] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 3388 | (I[165] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 3389 | (I[182] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 3390 | (I[199] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 3391 | (I[216] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 3392 | (I[233] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 3393 | (I[250] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 3394 | (I[267] = (img)(_n4##x,_n7##y,z,v)), \ |
philpem@5 | 3395 | (I[284] = (img)(_n4##x,_n8##y,z,v)), \ |
philpem@5 | 3396 | (I[13] = (img)(_n5##x,_p8##y,z,v)), \ |
philpem@5 | 3397 | (I[30] = (img)(_n5##x,_p7##y,z,v)), \ |
philpem@5 | 3398 | (I[47] = (img)(_n5##x,_p6##y,z,v)), \ |
philpem@5 | 3399 | (I[64] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 3400 | (I[81] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 3401 | (I[98] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 3402 | (I[115] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 3403 | (I[132] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 3404 | (I[149] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 3405 | (I[166] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 3406 | (I[183] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 3407 | (I[200] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 3408 | (I[217] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 3409 | (I[234] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 3410 | (I[251] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 3411 | (I[268] = (img)(_n5##x,_n7##y,z,v)), \ |
philpem@5 | 3412 | (I[285] = (img)(_n5##x,_n8##y,z,v)), \ |
philpem@5 | 3413 | (I[14] = (img)(_n6##x,_p8##y,z,v)), \ |
philpem@5 | 3414 | (I[31] = (img)(_n6##x,_p7##y,z,v)), \ |
philpem@5 | 3415 | (I[48] = (img)(_n6##x,_p6##y,z,v)), \ |
philpem@5 | 3416 | (I[65] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 3417 | (I[82] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 3418 | (I[99] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 3419 | (I[116] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 3420 | (I[133] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 3421 | (I[150] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 3422 | (I[167] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 3423 | (I[184] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 3424 | (I[201] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 3425 | (I[218] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 3426 | (I[235] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 3427 | (I[252] = (img)(_n6##x,_n6##y,z,v)), \ |
philpem@5 | 3428 | (I[269] = (img)(_n6##x,_n7##y,z,v)), \ |
philpem@5 | 3429 | (I[286] = (img)(_n6##x,_n8##y,z,v)), \ |
philpem@5 | 3430 | (I[15] = (img)(_n7##x,_p8##y,z,v)), \ |
philpem@5 | 3431 | (I[32] = (img)(_n7##x,_p7##y,z,v)), \ |
philpem@5 | 3432 | (I[49] = (img)(_n7##x,_p6##y,z,v)), \ |
philpem@5 | 3433 | (I[66] = (img)(_n7##x,_p5##y,z,v)), \ |
philpem@5 | 3434 | (I[83] = (img)(_n7##x,_p4##y,z,v)), \ |
philpem@5 | 3435 | (I[100] = (img)(_n7##x,_p3##y,z,v)), \ |
philpem@5 | 3436 | (I[117] = (img)(_n7##x,_p2##y,z,v)), \ |
philpem@5 | 3437 | (I[134] = (img)(_n7##x,_p1##y,z,v)), \ |
philpem@5 | 3438 | (I[151] = (img)(_n7##x,y,z,v)), \ |
philpem@5 | 3439 | (I[168] = (img)(_n7##x,_n1##y,z,v)), \ |
philpem@5 | 3440 | (I[185] = (img)(_n7##x,_n2##y,z,v)), \ |
philpem@5 | 3441 | (I[202] = (img)(_n7##x,_n3##y,z,v)), \ |
philpem@5 | 3442 | (I[219] = (img)(_n7##x,_n4##y,z,v)), \ |
philpem@5 | 3443 | (I[236] = (img)(_n7##x,_n5##y,z,v)), \ |
philpem@5 | 3444 | (I[253] = (img)(_n7##x,_n6##y,z,v)), \ |
philpem@5 | 3445 | (I[270] = (img)(_n7##x,_n7##y,z,v)), \ |
philpem@5 | 3446 | (I[287] = (img)(_n7##x,_n8##y,z,v)), \ |
philpem@5 | 3447 | x+8>=(int)((img).width)?(int)((img).width)-1:x+8); \ |
philpem@5 | 3448 | x<=(int)(x1) && ((_n8##x<(int)((img).width) && ( \ |
philpem@5 | 3449 | (I[16] = (img)(_n8##x,_p8##y,z,v)), \ |
philpem@5 | 3450 | (I[33] = (img)(_n8##x,_p7##y,z,v)), \ |
philpem@5 | 3451 | (I[50] = (img)(_n8##x,_p6##y,z,v)), \ |
philpem@5 | 3452 | (I[67] = (img)(_n8##x,_p5##y,z,v)), \ |
philpem@5 | 3453 | (I[84] = (img)(_n8##x,_p4##y,z,v)), \ |
philpem@5 | 3454 | (I[101] = (img)(_n8##x,_p3##y,z,v)), \ |
philpem@5 | 3455 | (I[118] = (img)(_n8##x,_p2##y,z,v)), \ |
philpem@5 | 3456 | (I[135] = (img)(_n8##x,_p1##y,z,v)), \ |
philpem@5 | 3457 | (I[152] = (img)(_n8##x,y,z,v)), \ |
philpem@5 | 3458 | (I[169] = (img)(_n8##x,_n1##y,z,v)), \ |
philpem@5 | 3459 | (I[186] = (img)(_n8##x,_n2##y,z,v)), \ |
philpem@5 | 3460 | (I[203] = (img)(_n8##x,_n3##y,z,v)), \ |
philpem@5 | 3461 | (I[220] = (img)(_n8##x,_n4##y,z,v)), \ |
philpem@5 | 3462 | (I[237] = (img)(_n8##x,_n5##y,z,v)), \ |
philpem@5 | 3463 | (I[254] = (img)(_n8##x,_n6##y,z,v)), \ |
philpem@5 | 3464 | (I[271] = (img)(_n8##x,_n7##y,z,v)), \ |
philpem@5 | 3465 | (I[288] = (img)(_n8##x,_n8##y,z,v)),1)) || \ |
philpem@5 | 3466 | _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \ |
philpem@5 | 3467 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], \ |
philpem@5 | 3468 | I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], \ |
philpem@5 | 3469 | I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], \ |
philpem@5 | 3470 | I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], \ |
philpem@5 | 3471 | I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], \ |
philpem@5 | 3472 | I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], \ |
philpem@5 | 3473 | I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], \ |
philpem@5 | 3474 | I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], \ |
philpem@5 | 3475 | I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], \ |
philpem@5 | 3476 | I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], \ |
philpem@5 | 3477 | I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], \ |
philpem@5 | 3478 | I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], \ |
philpem@5 | 3479 | I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], \ |
philpem@5 | 3480 | I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], \ |
philpem@5 | 3481 | I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], \ |
philpem@5 | 3482 | I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], \ |
philpem@5 | 3483 | I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], \ |
philpem@5 | 3484 | _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x) |
philpem@5 | 3485 | |
philpem@5 | 3486 | #define cimg_get17x17(img,x,y,z,v,I) \ |
philpem@5 | 3487 | I[0] = (img)(_p8##x,_p8##y,z,v), I[1] = (img)(_p7##x,_p8##y,z,v), I[2] = (img)(_p6##x,_p8##y,z,v), I[3] = (img)(_p5##x,_p8##y,z,v), I[4] = (img)(_p4##x,_p8##y,z,v), I[5] = (img)(_p3##x,_p8##y,z,v), I[6] = (img)(_p2##x,_p8##y,z,v), I[7] = (img)(_p1##x,_p8##y,z,v), I[8] = (img)(x,_p8##y,z,v), I[9] = (img)(_n1##x,_p8##y,z,v), I[10] = (img)(_n2##x,_p8##y,z,v), I[11] = (img)(_n3##x,_p8##y,z,v), I[12] = (img)(_n4##x,_p8##y,z,v), I[13] = (img)(_n5##x,_p8##y,z,v), I[14] = (img)(_n6##x,_p8##y,z,v), I[15] = (img)(_n7##x,_p8##y,z,v), I[16] = (img)(_n8##x,_p8##y,z,v), \ |
philpem@5 | 3488 | I[17] = (img)(_p8##x,_p7##y,z,v), I[18] = (img)(_p7##x,_p7##y,z,v), I[19] = (img)(_p6##x,_p7##y,z,v), I[20] = (img)(_p5##x,_p7##y,z,v), I[21] = (img)(_p4##x,_p7##y,z,v), I[22] = (img)(_p3##x,_p7##y,z,v), I[23] = (img)(_p2##x,_p7##y,z,v), I[24] = (img)(_p1##x,_p7##y,z,v), I[25] = (img)(x,_p7##y,z,v), I[26] = (img)(_n1##x,_p7##y,z,v), I[27] = (img)(_n2##x,_p7##y,z,v), I[28] = (img)(_n3##x,_p7##y,z,v), I[29] = (img)(_n4##x,_p7##y,z,v), I[30] = (img)(_n5##x,_p7##y,z,v), I[31] = (img)(_n6##x,_p7##y,z,v), I[32] = (img)(_n7##x,_p7##y,z,v), I[33] = (img)(_n8##x,_p7##y,z,v), \ |
philpem@5 | 3489 | I[34] = (img)(_p8##x,_p6##y,z,v), I[35] = (img)(_p7##x,_p6##y,z,v), I[36] = (img)(_p6##x,_p6##y,z,v), I[37] = (img)(_p5##x,_p6##y,z,v), I[38] = (img)(_p4##x,_p6##y,z,v), I[39] = (img)(_p3##x,_p6##y,z,v), I[40] = (img)(_p2##x,_p6##y,z,v), I[41] = (img)(_p1##x,_p6##y,z,v), I[42] = (img)(x,_p6##y,z,v), I[43] = (img)(_n1##x,_p6##y,z,v), I[44] = (img)(_n2##x,_p6##y,z,v), I[45] = (img)(_n3##x,_p6##y,z,v), I[46] = (img)(_n4##x,_p6##y,z,v), I[47] = (img)(_n5##x,_p6##y,z,v), I[48] = (img)(_n6##x,_p6##y,z,v), I[49] = (img)(_n7##x,_p6##y,z,v), I[50] = (img)(_n8##x,_p6##y,z,v), \ |
philpem@5 | 3490 | I[51] = (img)(_p8##x,_p5##y,z,v), I[52] = (img)(_p7##x,_p5##y,z,v), I[53] = (img)(_p6##x,_p5##y,z,v), I[54] = (img)(_p5##x,_p5##y,z,v), I[55] = (img)(_p4##x,_p5##y,z,v), I[56] = (img)(_p3##x,_p5##y,z,v), I[57] = (img)(_p2##x,_p5##y,z,v), I[58] = (img)(_p1##x,_p5##y,z,v), I[59] = (img)(x,_p5##y,z,v), I[60] = (img)(_n1##x,_p5##y,z,v), I[61] = (img)(_n2##x,_p5##y,z,v), I[62] = (img)(_n3##x,_p5##y,z,v), I[63] = (img)(_n4##x,_p5##y,z,v), I[64] = (img)(_n5##x,_p5##y,z,v), I[65] = (img)(_n6##x,_p5##y,z,v), I[66] = (img)(_n7##x,_p5##y,z,v), I[67] = (img)(_n8##x,_p5##y,z,v), \ |
philpem@5 | 3491 | I[68] = (img)(_p8##x,_p4##y,z,v), I[69] = (img)(_p7##x,_p4##y,z,v), I[70] = (img)(_p6##x,_p4##y,z,v), I[71] = (img)(_p5##x,_p4##y,z,v), I[72] = (img)(_p4##x,_p4##y,z,v), I[73] = (img)(_p3##x,_p4##y,z,v), I[74] = (img)(_p2##x,_p4##y,z,v), I[75] = (img)(_p1##x,_p4##y,z,v), I[76] = (img)(x,_p4##y,z,v), I[77] = (img)(_n1##x,_p4##y,z,v), I[78] = (img)(_n2##x,_p4##y,z,v), I[79] = (img)(_n3##x,_p4##y,z,v), I[80] = (img)(_n4##x,_p4##y,z,v), I[81] = (img)(_n5##x,_p4##y,z,v), I[82] = (img)(_n6##x,_p4##y,z,v), I[83] = (img)(_n7##x,_p4##y,z,v), I[84] = (img)(_n8##x,_p4##y,z,v), \ |
philpem@5 | 3492 | I[85] = (img)(_p8##x,_p3##y,z,v), I[86] = (img)(_p7##x,_p3##y,z,v), I[87] = (img)(_p6##x,_p3##y,z,v), I[88] = (img)(_p5##x,_p3##y,z,v), I[89] = (img)(_p4##x,_p3##y,z,v), I[90] = (img)(_p3##x,_p3##y,z,v), I[91] = (img)(_p2##x,_p3##y,z,v), I[92] = (img)(_p1##x,_p3##y,z,v), I[93] = (img)(x,_p3##y,z,v), I[94] = (img)(_n1##x,_p3##y,z,v), I[95] = (img)(_n2##x,_p3##y,z,v), I[96] = (img)(_n3##x,_p3##y,z,v), I[97] = (img)(_n4##x,_p3##y,z,v), I[98] = (img)(_n5##x,_p3##y,z,v), I[99] = (img)(_n6##x,_p3##y,z,v), I[100] = (img)(_n7##x,_p3##y,z,v), I[101] = (img)(_n8##x,_p3##y,z,v), \ |
philpem@5 | 3493 | I[102] = (img)(_p8##x,_p2##y,z,v), I[103] = (img)(_p7##x,_p2##y,z,v), I[104] = (img)(_p6##x,_p2##y,z,v), I[105] = (img)(_p5##x,_p2##y,z,v), I[106] = (img)(_p4##x,_p2##y,z,v), I[107] = (img)(_p3##x,_p2##y,z,v), I[108] = (img)(_p2##x,_p2##y,z,v), I[109] = (img)(_p1##x,_p2##y,z,v), I[110] = (img)(x,_p2##y,z,v), I[111] = (img)(_n1##x,_p2##y,z,v), I[112] = (img)(_n2##x,_p2##y,z,v), I[113] = (img)(_n3##x,_p2##y,z,v), I[114] = (img)(_n4##x,_p2##y,z,v), I[115] = (img)(_n5##x,_p2##y,z,v), I[116] = (img)(_n6##x,_p2##y,z,v), I[117] = (img)(_n7##x,_p2##y,z,v), I[118] = (img)(_n8##x,_p2##y,z,v), \ |
philpem@5 | 3494 | I[119] = (img)(_p8##x,_p1##y,z,v), I[120] = (img)(_p7##x,_p1##y,z,v), I[121] = (img)(_p6##x,_p1##y,z,v), I[122] = (img)(_p5##x,_p1##y,z,v), I[123] = (img)(_p4##x,_p1##y,z,v), I[124] = (img)(_p3##x,_p1##y,z,v), I[125] = (img)(_p2##x,_p1##y,z,v), I[126] = (img)(_p1##x,_p1##y,z,v), I[127] = (img)(x,_p1##y,z,v), I[128] = (img)(_n1##x,_p1##y,z,v), I[129] = (img)(_n2##x,_p1##y,z,v), I[130] = (img)(_n3##x,_p1##y,z,v), I[131] = (img)(_n4##x,_p1##y,z,v), I[132] = (img)(_n5##x,_p1##y,z,v), I[133] = (img)(_n6##x,_p1##y,z,v), I[134] = (img)(_n7##x,_p1##y,z,v), I[135] = (img)(_n8##x,_p1##y,z,v), \ |
philpem@5 | 3495 | I[136] = (img)(_p8##x,y,z,v), I[137] = (img)(_p7##x,y,z,v), I[138] = (img)(_p6##x,y,z,v), I[139] = (img)(_p5##x,y,z,v), I[140] = (img)(_p4##x,y,z,v), I[141] = (img)(_p3##x,y,z,v), I[142] = (img)(_p2##x,y,z,v), I[143] = (img)(_p1##x,y,z,v), I[144] = (img)(x,y,z,v), I[145] = (img)(_n1##x,y,z,v), I[146] = (img)(_n2##x,y,z,v), I[147] = (img)(_n3##x,y,z,v), I[148] = (img)(_n4##x,y,z,v), I[149] = (img)(_n5##x,y,z,v), I[150] = (img)(_n6##x,y,z,v), I[151] = (img)(_n7##x,y,z,v), I[152] = (img)(_n8##x,y,z,v), \ |
philpem@5 | 3496 | I[153] = (img)(_p8##x,_n1##y,z,v), I[154] = (img)(_p7##x,_n1##y,z,v), I[155] = (img)(_p6##x,_n1##y,z,v), I[156] = (img)(_p5##x,_n1##y,z,v), I[157] = (img)(_p4##x,_n1##y,z,v), I[158] = (img)(_p3##x,_n1##y,z,v), I[159] = (img)(_p2##x,_n1##y,z,v), I[160] = (img)(_p1##x,_n1##y,z,v), I[161] = (img)(x,_n1##y,z,v), I[162] = (img)(_n1##x,_n1##y,z,v), I[163] = (img)(_n2##x,_n1##y,z,v), I[164] = (img)(_n3##x,_n1##y,z,v), I[165] = (img)(_n4##x,_n1##y,z,v), I[166] = (img)(_n5##x,_n1##y,z,v), I[167] = (img)(_n6##x,_n1##y,z,v), I[168] = (img)(_n7##x,_n1##y,z,v), I[169] = (img)(_n8##x,_n1##y,z,v), \ |
philpem@5 | 3497 | I[170] = (img)(_p8##x,_n2##y,z,v), I[171] = (img)(_p7##x,_n2##y,z,v), I[172] = (img)(_p6##x,_n2##y,z,v), I[173] = (img)(_p5##x,_n2##y,z,v), I[174] = (img)(_p4##x,_n2##y,z,v), I[175] = (img)(_p3##x,_n2##y,z,v), I[176] = (img)(_p2##x,_n2##y,z,v), I[177] = (img)(_p1##x,_n2##y,z,v), I[178] = (img)(x,_n2##y,z,v), I[179] = (img)(_n1##x,_n2##y,z,v), I[180] = (img)(_n2##x,_n2##y,z,v), I[181] = (img)(_n3##x,_n2##y,z,v), I[182] = (img)(_n4##x,_n2##y,z,v), I[183] = (img)(_n5##x,_n2##y,z,v), I[184] = (img)(_n6##x,_n2##y,z,v), I[185] = (img)(_n7##x,_n2##y,z,v), I[186] = (img)(_n8##x,_n2##y,z,v), \ |
philpem@5 | 3498 | I[187] = (img)(_p8##x,_n3##y,z,v), I[188] = (img)(_p7##x,_n3##y,z,v), I[189] = (img)(_p6##x,_n3##y,z,v), I[190] = (img)(_p5##x,_n3##y,z,v), I[191] = (img)(_p4##x,_n3##y,z,v), I[192] = (img)(_p3##x,_n3##y,z,v), I[193] = (img)(_p2##x,_n3##y,z,v), I[194] = (img)(_p1##x,_n3##y,z,v), I[195] = (img)(x,_n3##y,z,v), I[196] = (img)(_n1##x,_n3##y,z,v), I[197] = (img)(_n2##x,_n3##y,z,v), I[198] = (img)(_n3##x,_n3##y,z,v), I[199] = (img)(_n4##x,_n3##y,z,v), I[200] = (img)(_n5##x,_n3##y,z,v), I[201] = (img)(_n6##x,_n3##y,z,v), I[202] = (img)(_n7##x,_n3##y,z,v), I[203] = (img)(_n8##x,_n3##y,z,v), \ |
philpem@5 | 3499 | I[204] = (img)(_p8##x,_n4##y,z,v), I[205] = (img)(_p7##x,_n4##y,z,v), I[206] = (img)(_p6##x,_n4##y,z,v), I[207] = (img)(_p5##x,_n4##y,z,v), I[208] = (img)(_p4##x,_n4##y,z,v), I[209] = (img)(_p3##x,_n4##y,z,v), I[210] = (img)(_p2##x,_n4##y,z,v), I[211] = (img)(_p1##x,_n4##y,z,v), I[212] = (img)(x,_n4##y,z,v), I[213] = (img)(_n1##x,_n4##y,z,v), I[214] = (img)(_n2##x,_n4##y,z,v), I[215] = (img)(_n3##x,_n4##y,z,v), I[216] = (img)(_n4##x,_n4##y,z,v), I[217] = (img)(_n5##x,_n4##y,z,v), I[218] = (img)(_n6##x,_n4##y,z,v), I[219] = (img)(_n7##x,_n4##y,z,v), I[220] = (img)(_n8##x,_n4##y,z,v), \ |
philpem@5 | 3500 | I[221] = (img)(_p8##x,_n5##y,z,v), I[222] = (img)(_p7##x,_n5##y,z,v), I[223] = (img)(_p6##x,_n5##y,z,v), I[224] = (img)(_p5##x,_n5##y,z,v), I[225] = (img)(_p4##x,_n5##y,z,v), I[226] = (img)(_p3##x,_n5##y,z,v), I[227] = (img)(_p2##x,_n5##y,z,v), I[228] = (img)(_p1##x,_n5##y,z,v), I[229] = (img)(x,_n5##y,z,v), I[230] = (img)(_n1##x,_n5##y,z,v), I[231] = (img)(_n2##x,_n5##y,z,v), I[232] = (img)(_n3##x,_n5##y,z,v), I[233] = (img)(_n4##x,_n5##y,z,v), I[234] = (img)(_n5##x,_n5##y,z,v), I[235] = (img)(_n6##x,_n5##y,z,v), I[236] = (img)(_n7##x,_n5##y,z,v), I[237] = (img)(_n8##x,_n5##y,z,v), \ |
philpem@5 | 3501 | I[238] = (img)(_p8##x,_n6##y,z,v), I[239] = (img)(_p7##x,_n6##y,z,v), I[240] = (img)(_p6##x,_n6##y,z,v), I[241] = (img)(_p5##x,_n6##y,z,v), I[242] = (img)(_p4##x,_n6##y,z,v), I[243] = (img)(_p3##x,_n6##y,z,v), I[244] = (img)(_p2##x,_n6##y,z,v), I[245] = (img)(_p1##x,_n6##y,z,v), I[246] = (img)(x,_n6##y,z,v), I[247] = (img)(_n1##x,_n6##y,z,v), I[248] = (img)(_n2##x,_n6##y,z,v), I[249] = (img)(_n3##x,_n6##y,z,v), I[250] = (img)(_n4##x,_n6##y,z,v), I[251] = (img)(_n5##x,_n6##y,z,v), I[252] = (img)(_n6##x,_n6##y,z,v), I[253] = (img)(_n7##x,_n6##y,z,v), I[254] = (img)(_n8##x,_n6##y,z,v), \ |
philpem@5 | 3502 | I[255] = (img)(_p8##x,_n7##y,z,v), I[256] = (img)(_p7##x,_n7##y,z,v), I[257] = (img)(_p6##x,_n7##y,z,v), I[258] = (img)(_p5##x,_n7##y,z,v), I[259] = (img)(_p4##x,_n7##y,z,v), I[260] = (img)(_p3##x,_n7##y,z,v), I[261] = (img)(_p2##x,_n7##y,z,v), I[262] = (img)(_p1##x,_n7##y,z,v), I[263] = (img)(x,_n7##y,z,v), I[264] = (img)(_n1##x,_n7##y,z,v), I[265] = (img)(_n2##x,_n7##y,z,v), I[266] = (img)(_n3##x,_n7##y,z,v), I[267] = (img)(_n4##x,_n7##y,z,v), I[268] = (img)(_n5##x,_n7##y,z,v), I[269] = (img)(_n6##x,_n7##y,z,v), I[270] = (img)(_n7##x,_n7##y,z,v), I[271] = (img)(_n8##x,_n7##y,z,v), \ |
philpem@5 | 3503 | I[272] = (img)(_p8##x,_n8##y,z,v), I[273] = (img)(_p7##x,_n8##y,z,v), I[274] = (img)(_p6##x,_n8##y,z,v), I[275] = (img)(_p5##x,_n8##y,z,v), I[276] = (img)(_p4##x,_n8##y,z,v), I[277] = (img)(_p3##x,_n8##y,z,v), I[278] = (img)(_p2##x,_n8##y,z,v), I[279] = (img)(_p1##x,_n8##y,z,v), I[280] = (img)(x,_n8##y,z,v), I[281] = (img)(_n1##x,_n8##y,z,v), I[282] = (img)(_n2##x,_n8##y,z,v), I[283] = (img)(_n3##x,_n8##y,z,v), I[284] = (img)(_n4##x,_n8##y,z,v), I[285] = (img)(_n5##x,_n8##y,z,v), I[286] = (img)(_n6##x,_n8##y,z,v), I[287] = (img)(_n7##x,_n8##y,z,v), I[288] = (img)(_n8##x,_n8##y,z,v); |
philpem@5 | 3504 | |
philpem@5 | 3505 | // Define 18x18 loop macros for CImg |
philpem@5 | 3506 | //---------------------------------- |
philpem@5 | 3507 | #define cimg_for18(bound,i) for (int i = 0, \ |
philpem@5 | 3508 | _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \ |
philpem@5 | 3509 | _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \ |
philpem@5 | 3510 | _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \ |
philpem@5 | 3511 | _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \ |
philpem@5 | 3512 | _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \ |
philpem@5 | 3513 | _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \ |
philpem@5 | 3514 | _n6##i = 6>=(int)(bound)?(int)(bound)-1:6, \ |
philpem@5 | 3515 | _n7##i = 7>=(int)(bound)?(int)(bound)-1:7, \ |
philpem@5 | 3516 | _n8##i = 8>=(int)(bound)?(int)(bound)-1:8, \ |
philpem@5 | 3517 | _n9##i = 9>=(int)(bound)?(int)(bound)-1:9; \ |
philpem@5 | 3518 | _n9##i<(int)(bound) || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 3519 | i==(_n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \ |
philpem@5 | 3520 | _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 3521 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i) |
philpem@5 | 3522 | |
philpem@5 | 3523 | #define cimg_for18X(img,x) cimg_for18((img).width,x) |
philpem@5 | 3524 | #define cimg_for18Y(img,y) cimg_for18((img).height,y) |
philpem@5 | 3525 | #define cimg_for18Z(img,z) cimg_for18((img).depth,z) |
philpem@5 | 3526 | #define cimg_for18V(img,v) cimg_for18((img).dim,v) |
philpem@5 | 3527 | #define cimg_for18XY(img,x,y) cimg_for18Y(img,y) cimg_for18X(img,x) |
philpem@5 | 3528 | #define cimg_for18XZ(img,x,z) cimg_for18Z(img,z) cimg_for18X(img,x) |
philpem@5 | 3529 | #define cimg_for18XV(img,x,v) cimg_for18V(img,v) cimg_for18X(img,x) |
philpem@5 | 3530 | #define cimg_for18YZ(img,y,z) cimg_for18Z(img,z) cimg_for18Y(img,y) |
philpem@5 | 3531 | #define cimg_for18YV(img,y,v) cimg_for18V(img,v) cimg_for18Y(img,y) |
philpem@5 | 3532 | #define cimg_for18ZV(img,z,v) cimg_for18V(img,v) cimg_for18Z(img,z) |
philpem@5 | 3533 | #define cimg_for18XYZ(img,x,y,z) cimg_for18Z(img,z) cimg_for18XY(img,x,y) |
philpem@5 | 3534 | #define cimg_for18XZV(img,x,z,v) cimg_for18V(img,v) cimg_for18XZ(img,x,z) |
philpem@5 | 3535 | #define cimg_for18YZV(img,y,z,v) cimg_for18V(img,v) cimg_for18YZ(img,y,z) |
philpem@5 | 3536 | #define cimg_for18XYZV(img,x,y,z,v) cimg_for18V(img,v) cimg_for18XYZ(img,x,y,z) |
philpem@5 | 3537 | |
philpem@5 | 3538 | #define cimg_for_in18(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \ |
philpem@5 | 3539 | _p8##i = i-8<0?0:i-8, \ |
philpem@5 | 3540 | _p7##i = i-7<0?0:i-7, \ |
philpem@5 | 3541 | _p6##i = i-6<0?0:i-6, \ |
philpem@5 | 3542 | _p5##i = i-5<0?0:i-5, \ |
philpem@5 | 3543 | _p4##i = i-4<0?0:i-4, \ |
philpem@5 | 3544 | _p3##i = i-3<0?0:i-3, \ |
philpem@5 | 3545 | _p2##i = i-2<0?0:i-2, \ |
philpem@5 | 3546 | _p1##i = i-1<0?0:i-1, \ |
philpem@5 | 3547 | _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \ |
philpem@5 | 3548 | _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \ |
philpem@5 | 3549 | _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \ |
philpem@5 | 3550 | _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \ |
philpem@5 | 3551 | _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \ |
philpem@5 | 3552 | _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6, \ |
philpem@5 | 3553 | _n7##i = i+7>=(int)(bound)?(int)(bound)-1:i+7, \ |
philpem@5 | 3554 | _n8##i = i+8>=(int)(bound)?(int)(bound)-1:i+8, \ |
philpem@5 | 3555 | _n9##i = i+9>=(int)(bound)?(int)(bound)-1:i+9; \ |
philpem@5 | 3556 | i<=(int)(i1) && (_n9##i<(int)(bound) || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 3557 | i==(_n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \ |
philpem@5 | 3558 | _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 3559 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i) |
philpem@5 | 3560 | |
philpem@5 | 3561 | #define cimg_for_in18X(img,x0,x1,x) cimg_for_in18((img).width,x0,x1,x) |
philpem@5 | 3562 | #define cimg_for_in18Y(img,y0,y1,y) cimg_for_in18((img).height,y0,y1,y) |
philpem@5 | 3563 | #define cimg_for_in18Z(img,z0,z1,z) cimg_for_in18((img).depth,z0,z1,z) |
philpem@5 | 3564 | #define cimg_for_in18V(img,v0,v1,v) cimg_for_in18((img).dim,v0,v1,v) |
philpem@5 | 3565 | #define cimg_for_in18XY(img,x0,y0,x1,y1,x,y) cimg_for_in18Y(img,y0,y1,y) cimg_for_in18X(img,x0,x1,x) |
philpem@5 | 3566 | #define cimg_for_in18XZ(img,x0,z0,x1,z1,x,z) cimg_for_in18Z(img,z0,z1,z) cimg_for_in18X(img,x0,x1,x) |
philpem@5 | 3567 | #define cimg_for_in18XV(img,x0,v0,x1,v1,x,v) cimg_for_in18V(img,v0,v1,v) cimg_for_in18X(img,x0,x1,x) |
philpem@5 | 3568 | #define cimg_for_in18YZ(img,y0,z0,y1,z1,y,z) cimg_for_in18Z(img,z0,z1,z) cimg_for_in18Y(img,y0,y1,y) |
philpem@5 | 3569 | #define cimg_for_in18YV(img,y0,v0,y1,v1,y,v) cimg_for_in18V(img,v0,v1,v) cimg_for_in18Y(img,y0,y1,y) |
philpem@5 | 3570 | #define cimg_for_in18ZV(img,z0,v0,z1,v1,z,v) cimg_for_in18V(img,v0,v1,v) cimg_for_in18Z(img,z0,z1,z) |
philpem@5 | 3571 | #define cimg_for_in18XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in18Z(img,z0,z1,z) cimg_for_in18XY(img,x0,y0,x1,y1,x,y) |
philpem@5 | 3572 | #define cimg_for_in18XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in18V(img,v0,v1,v) cimg_for_in18XZ(img,x0,y0,x1,y1,x,z) |
philpem@5 | 3573 | #define cimg_for_in18YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in18V(img,v0,v1,v) cimg_for_in18YZ(img,y0,z0,y1,z1,y,z) |
philpem@5 | 3574 | #define cimg_for_in18XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in18V(img,v0,v1,v) cimg_for_in18XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) |
philpem@5 | 3575 | |
philpem@5 | 3576 | #define cimg_for18x18(img,x,y,z,v,I) \ |
philpem@5 | 3577 | cimg_for18((img).height,y) for (int x = 0, \ |
philpem@5 | 3578 | _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \ |
philpem@5 | 3579 | _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \ |
philpem@5 | 3580 | _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \ |
philpem@5 | 3581 | _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \ |
philpem@5 | 3582 | _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \ |
philpem@5 | 3583 | _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \ |
philpem@5 | 3584 | _n6##x = 6>=((img).width)?(int)((img).width)-1:6, \ |
philpem@5 | 3585 | _n7##x = 7>=((img).width)?(int)((img).width)-1:7, \ |
philpem@5 | 3586 | _n8##x = 8>=((img).width)?(int)((img).width)-1:8, \ |
philpem@5 | 3587 | _n9##x = (int)( \ |
philpem@5 | 3588 | (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = (img)(0,_p8##y,z,v)), \ |
philpem@5 | 3589 | (I[18] = I[19] = I[20] = I[21] = I[22] = I[23] = I[24] = I[25] = I[26] = (img)(0,_p7##y,z,v)), \ |
philpem@5 | 3590 | (I[36] = I[37] = I[38] = I[39] = I[40] = I[41] = I[42] = I[43] = I[44] = (img)(0,_p6##y,z,v)), \ |
philpem@5 | 3591 | (I[54] = I[55] = I[56] = I[57] = I[58] = I[59] = I[60] = I[61] = I[62] = (img)(0,_p5##y,z,v)), \ |
philpem@5 | 3592 | (I[72] = I[73] = I[74] = I[75] = I[76] = I[77] = I[78] = I[79] = I[80] = (img)(0,_p4##y,z,v)), \ |
philpem@5 | 3593 | (I[90] = I[91] = I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = I[98] = (img)(0,_p3##y,z,v)), \ |
philpem@5 | 3594 | (I[108] = I[109] = I[110] = I[111] = I[112] = I[113] = I[114] = I[115] = I[116] = (img)(0,_p2##y,z,v)), \ |
philpem@5 | 3595 | (I[126] = I[127] = I[128] = I[129] = I[130] = I[131] = I[132] = I[133] = I[134] = (img)(0,_p1##y,z,v)), \ |
philpem@5 | 3596 | (I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = I[150] = I[151] = I[152] = (img)(0,y,z,v)), \ |
philpem@5 | 3597 | (I[162] = I[163] = I[164] = I[165] = I[166] = I[167] = I[168] = I[169] = I[170] = (img)(0,_n1##y,z,v)), \ |
philpem@5 | 3598 | (I[180] = I[181] = I[182] = I[183] = I[184] = I[185] = I[186] = I[187] = I[188] = (img)(0,_n2##y,z,v)), \ |
philpem@5 | 3599 | (I[198] = I[199] = I[200] = I[201] = I[202] = I[203] = I[204] = I[205] = I[206] = (img)(0,_n3##y,z,v)), \ |
philpem@5 | 3600 | (I[216] = I[217] = I[218] = I[219] = I[220] = I[221] = I[222] = I[223] = I[224] = (img)(0,_n4##y,z,v)), \ |
philpem@5 | 3601 | (I[234] = I[235] = I[236] = I[237] = I[238] = I[239] = I[240] = I[241] = I[242] = (img)(0,_n5##y,z,v)), \ |
philpem@5 | 3602 | (I[252] = I[253] = I[254] = I[255] = I[256] = I[257] = I[258] = I[259] = I[260] = (img)(0,_n6##y,z,v)), \ |
philpem@5 | 3603 | (I[270] = I[271] = I[272] = I[273] = I[274] = I[275] = I[276] = I[277] = I[278] = (img)(0,_n7##y,z,v)), \ |
philpem@5 | 3604 | (I[288] = I[289] = I[290] = I[291] = I[292] = I[293] = I[294] = I[295] = I[296] = (img)(0,_n8##y,z,v)), \ |
philpem@5 | 3605 | (I[306] = I[307] = I[308] = I[309] = I[310] = I[311] = I[312] = I[313] = I[314] = (img)(0,_n9##y,z,v)), \ |
philpem@5 | 3606 | (I[9] = (img)(_n1##x,_p8##y,z,v)), \ |
philpem@5 | 3607 | (I[27] = (img)(_n1##x,_p7##y,z,v)), \ |
philpem@5 | 3608 | (I[45] = (img)(_n1##x,_p6##y,z,v)), \ |
philpem@5 | 3609 | (I[63] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 3610 | (I[81] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 3611 | (I[99] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 3612 | (I[117] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 3613 | (I[135] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 3614 | (I[153] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 3615 | (I[171] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 3616 | (I[189] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 3617 | (I[207] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 3618 | (I[225] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 3619 | (I[243] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 3620 | (I[261] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 3621 | (I[279] = (img)(_n1##x,_n7##y,z,v)), \ |
philpem@5 | 3622 | (I[297] = (img)(_n1##x,_n8##y,z,v)), \ |
philpem@5 | 3623 | (I[315] = (img)(_n1##x,_n9##y,z,v)), \ |
philpem@5 | 3624 | (I[10] = (img)(_n2##x,_p8##y,z,v)), \ |
philpem@5 | 3625 | (I[28] = (img)(_n2##x,_p7##y,z,v)), \ |
philpem@5 | 3626 | (I[46] = (img)(_n2##x,_p6##y,z,v)), \ |
philpem@5 | 3627 | (I[64] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 3628 | (I[82] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 3629 | (I[100] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 3630 | (I[118] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 3631 | (I[136] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 3632 | (I[154] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 3633 | (I[172] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 3634 | (I[190] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 3635 | (I[208] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 3636 | (I[226] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 3637 | (I[244] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 3638 | (I[262] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 3639 | (I[280] = (img)(_n2##x,_n7##y,z,v)), \ |
philpem@5 | 3640 | (I[298] = (img)(_n2##x,_n8##y,z,v)), \ |
philpem@5 | 3641 | (I[316] = (img)(_n2##x,_n9##y,z,v)), \ |
philpem@5 | 3642 | (I[11] = (img)(_n3##x,_p8##y,z,v)), \ |
philpem@5 | 3643 | (I[29] = (img)(_n3##x,_p7##y,z,v)), \ |
philpem@5 | 3644 | (I[47] = (img)(_n3##x,_p6##y,z,v)), \ |
philpem@5 | 3645 | (I[65] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 3646 | (I[83] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 3647 | (I[101] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 3648 | (I[119] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 3649 | (I[137] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 3650 | (I[155] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 3651 | (I[173] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 3652 | (I[191] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 3653 | (I[209] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 3654 | (I[227] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 3655 | (I[245] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 3656 | (I[263] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 3657 | (I[281] = (img)(_n3##x,_n7##y,z,v)), \ |
philpem@5 | 3658 | (I[299] = (img)(_n3##x,_n8##y,z,v)), \ |
philpem@5 | 3659 | (I[317] = (img)(_n3##x,_n9##y,z,v)), \ |
philpem@5 | 3660 | (I[12] = (img)(_n4##x,_p8##y,z,v)), \ |
philpem@5 | 3661 | (I[30] = (img)(_n4##x,_p7##y,z,v)), \ |
philpem@5 | 3662 | (I[48] = (img)(_n4##x,_p6##y,z,v)), \ |
philpem@5 | 3663 | (I[66] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 3664 | (I[84] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 3665 | (I[102] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 3666 | (I[120] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 3667 | (I[138] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 3668 | (I[156] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 3669 | (I[174] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 3670 | (I[192] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 3671 | (I[210] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 3672 | (I[228] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 3673 | (I[246] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 3674 | (I[264] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 3675 | (I[282] = (img)(_n4##x,_n7##y,z,v)), \ |
philpem@5 | 3676 | (I[300] = (img)(_n4##x,_n8##y,z,v)), \ |
philpem@5 | 3677 | (I[318] = (img)(_n4##x,_n9##y,z,v)), \ |
philpem@5 | 3678 | (I[13] = (img)(_n5##x,_p8##y,z,v)), \ |
philpem@5 | 3679 | (I[31] = (img)(_n5##x,_p7##y,z,v)), \ |
philpem@5 | 3680 | (I[49] = (img)(_n5##x,_p6##y,z,v)), \ |
philpem@5 | 3681 | (I[67] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 3682 | (I[85] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 3683 | (I[103] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 3684 | (I[121] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 3685 | (I[139] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 3686 | (I[157] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 3687 | (I[175] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 3688 | (I[193] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 3689 | (I[211] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 3690 | (I[229] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 3691 | (I[247] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 3692 | (I[265] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 3693 | (I[283] = (img)(_n5##x,_n7##y,z,v)), \ |
philpem@5 | 3694 | (I[301] = (img)(_n5##x,_n8##y,z,v)), \ |
philpem@5 | 3695 | (I[319] = (img)(_n5##x,_n9##y,z,v)), \ |
philpem@5 | 3696 | (I[14] = (img)(_n6##x,_p8##y,z,v)), \ |
philpem@5 | 3697 | (I[32] = (img)(_n6##x,_p7##y,z,v)), \ |
philpem@5 | 3698 | (I[50] = (img)(_n6##x,_p6##y,z,v)), \ |
philpem@5 | 3699 | (I[68] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 3700 | (I[86] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 3701 | (I[104] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 3702 | (I[122] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 3703 | (I[140] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 3704 | (I[158] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 3705 | (I[176] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 3706 | (I[194] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 3707 | (I[212] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 3708 | (I[230] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 3709 | (I[248] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 3710 | (I[266] = (img)(_n6##x,_n6##y,z,v)), \ |
philpem@5 | 3711 | (I[284] = (img)(_n6##x,_n7##y,z,v)), \ |
philpem@5 | 3712 | (I[302] = (img)(_n6##x,_n8##y,z,v)), \ |
philpem@5 | 3713 | (I[320] = (img)(_n6##x,_n9##y,z,v)), \ |
philpem@5 | 3714 | (I[15] = (img)(_n7##x,_p8##y,z,v)), \ |
philpem@5 | 3715 | (I[33] = (img)(_n7##x,_p7##y,z,v)), \ |
philpem@5 | 3716 | (I[51] = (img)(_n7##x,_p6##y,z,v)), \ |
philpem@5 | 3717 | (I[69] = (img)(_n7##x,_p5##y,z,v)), \ |
philpem@5 | 3718 | (I[87] = (img)(_n7##x,_p4##y,z,v)), \ |
philpem@5 | 3719 | (I[105] = (img)(_n7##x,_p3##y,z,v)), \ |
philpem@5 | 3720 | (I[123] = (img)(_n7##x,_p2##y,z,v)), \ |
philpem@5 | 3721 | (I[141] = (img)(_n7##x,_p1##y,z,v)), \ |
philpem@5 | 3722 | (I[159] = (img)(_n7##x,y,z,v)), \ |
philpem@5 | 3723 | (I[177] = (img)(_n7##x,_n1##y,z,v)), \ |
philpem@5 | 3724 | (I[195] = (img)(_n7##x,_n2##y,z,v)), \ |
philpem@5 | 3725 | (I[213] = (img)(_n7##x,_n3##y,z,v)), \ |
philpem@5 | 3726 | (I[231] = (img)(_n7##x,_n4##y,z,v)), \ |
philpem@5 | 3727 | (I[249] = (img)(_n7##x,_n5##y,z,v)), \ |
philpem@5 | 3728 | (I[267] = (img)(_n7##x,_n6##y,z,v)), \ |
philpem@5 | 3729 | (I[285] = (img)(_n7##x,_n7##y,z,v)), \ |
philpem@5 | 3730 | (I[303] = (img)(_n7##x,_n8##y,z,v)), \ |
philpem@5 | 3731 | (I[321] = (img)(_n7##x,_n9##y,z,v)), \ |
philpem@5 | 3732 | (I[16] = (img)(_n8##x,_p8##y,z,v)), \ |
philpem@5 | 3733 | (I[34] = (img)(_n8##x,_p7##y,z,v)), \ |
philpem@5 | 3734 | (I[52] = (img)(_n8##x,_p6##y,z,v)), \ |
philpem@5 | 3735 | (I[70] = (img)(_n8##x,_p5##y,z,v)), \ |
philpem@5 | 3736 | (I[88] = (img)(_n8##x,_p4##y,z,v)), \ |
philpem@5 | 3737 | (I[106] = (img)(_n8##x,_p3##y,z,v)), \ |
philpem@5 | 3738 | (I[124] = (img)(_n8##x,_p2##y,z,v)), \ |
philpem@5 | 3739 | (I[142] = (img)(_n8##x,_p1##y,z,v)), \ |
philpem@5 | 3740 | (I[160] = (img)(_n8##x,y,z,v)), \ |
philpem@5 | 3741 | (I[178] = (img)(_n8##x,_n1##y,z,v)), \ |
philpem@5 | 3742 | (I[196] = (img)(_n8##x,_n2##y,z,v)), \ |
philpem@5 | 3743 | (I[214] = (img)(_n8##x,_n3##y,z,v)), \ |
philpem@5 | 3744 | (I[232] = (img)(_n8##x,_n4##y,z,v)), \ |
philpem@5 | 3745 | (I[250] = (img)(_n8##x,_n5##y,z,v)), \ |
philpem@5 | 3746 | (I[268] = (img)(_n8##x,_n6##y,z,v)), \ |
philpem@5 | 3747 | (I[286] = (img)(_n8##x,_n7##y,z,v)), \ |
philpem@5 | 3748 | (I[304] = (img)(_n8##x,_n8##y,z,v)), \ |
philpem@5 | 3749 | (I[322] = (img)(_n8##x,_n9##y,z,v)), \ |
philpem@5 | 3750 | 9>=((img).width)?(int)((img).width)-1:9); \ |
philpem@5 | 3751 | (_n9##x<(int)((img).width) && ( \ |
philpem@5 | 3752 | (I[17] = (img)(_n9##x,_p8##y,z,v)), \ |
philpem@5 | 3753 | (I[35] = (img)(_n9##x,_p7##y,z,v)), \ |
philpem@5 | 3754 | (I[53] = (img)(_n9##x,_p6##y,z,v)), \ |
philpem@5 | 3755 | (I[71] = (img)(_n9##x,_p5##y,z,v)), \ |
philpem@5 | 3756 | (I[89] = (img)(_n9##x,_p4##y,z,v)), \ |
philpem@5 | 3757 | (I[107] = (img)(_n9##x,_p3##y,z,v)), \ |
philpem@5 | 3758 | (I[125] = (img)(_n9##x,_p2##y,z,v)), \ |
philpem@5 | 3759 | (I[143] = (img)(_n9##x,_p1##y,z,v)), \ |
philpem@5 | 3760 | (I[161] = (img)(_n9##x,y,z,v)), \ |
philpem@5 | 3761 | (I[179] = (img)(_n9##x,_n1##y,z,v)), \ |
philpem@5 | 3762 | (I[197] = (img)(_n9##x,_n2##y,z,v)), \ |
philpem@5 | 3763 | (I[215] = (img)(_n9##x,_n3##y,z,v)), \ |
philpem@5 | 3764 | (I[233] = (img)(_n9##x,_n4##y,z,v)), \ |
philpem@5 | 3765 | (I[251] = (img)(_n9##x,_n5##y,z,v)), \ |
philpem@5 | 3766 | (I[269] = (img)(_n9##x,_n6##y,z,v)), \ |
philpem@5 | 3767 | (I[287] = (img)(_n9##x,_n7##y,z,v)), \ |
philpem@5 | 3768 | (I[305] = (img)(_n9##x,_n8##y,z,v)), \ |
philpem@5 | 3769 | (I[323] = (img)(_n9##x,_n9##y,z,v)),1)) || \ |
philpem@5 | 3770 | _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \ |
philpem@5 | 3771 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], \ |
philpem@5 | 3772 | I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \ |
philpem@5 | 3773 | I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], \ |
philpem@5 | 3774 | I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \ |
philpem@5 | 3775 | I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \ |
philpem@5 | 3776 | I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \ |
philpem@5 | 3777 | I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \ |
philpem@5 | 3778 | I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \ |
philpem@5 | 3779 | I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], \ |
philpem@5 | 3780 | I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \ |
philpem@5 | 3781 | I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], \ |
philpem@5 | 3782 | I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \ |
philpem@5 | 3783 | I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], \ |
philpem@5 | 3784 | I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \ |
philpem@5 | 3785 | I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], \ |
philpem@5 | 3786 | I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \ |
philpem@5 | 3787 | I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], \ |
philpem@5 | 3788 | I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], \ |
philpem@5 | 3789 | _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x) |
philpem@5 | 3790 | |
philpem@5 | 3791 | #define cimg_for_in18x18(img,x0,y0,x1,y1,x,y,z,v,I) \ |
philpem@5 | 3792 | cimg_for_in18((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ |
philpem@5 | 3793 | _p8##x = x-8<0?0:x-8, \ |
philpem@5 | 3794 | _p7##x = x-7<0?0:x-7, \ |
philpem@5 | 3795 | _p6##x = x-6<0?0:x-6, \ |
philpem@5 | 3796 | _p5##x = x-5<0?0:x-5, \ |
philpem@5 | 3797 | _p4##x = x-4<0?0:x-4, \ |
philpem@5 | 3798 | _p3##x = x-3<0?0:x-3, \ |
philpem@5 | 3799 | _p2##x = x-2<0?0:x-2, \ |
philpem@5 | 3800 | _p1##x = x-1<0?0:x-1, \ |
philpem@5 | 3801 | _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \ |
philpem@5 | 3802 | _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \ |
philpem@5 | 3803 | _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \ |
philpem@5 | 3804 | _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \ |
philpem@5 | 3805 | _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \ |
philpem@5 | 3806 | _n6##x = x+6>=(int)((img).width)?(int)((img).width)-1:x+6, \ |
philpem@5 | 3807 | _n7##x = x+7>=(int)((img).width)?(int)((img).width)-1:x+7, \ |
philpem@5 | 3808 | _n8##x = x+8>=(int)((img).width)?(int)((img).width)-1:x+8, \ |
philpem@5 | 3809 | _n9##x = (int)( \ |
philpem@5 | 3810 | (I[0] = (img)(_p8##x,_p8##y,z,v)), \ |
philpem@5 | 3811 | (I[18] = (img)(_p8##x,_p7##y,z,v)), \ |
philpem@5 | 3812 | (I[36] = (img)(_p8##x,_p6##y,z,v)), \ |
philpem@5 | 3813 | (I[54] = (img)(_p8##x,_p5##y,z,v)), \ |
philpem@5 | 3814 | (I[72] = (img)(_p8##x,_p4##y,z,v)), \ |
philpem@5 | 3815 | (I[90] = (img)(_p8##x,_p3##y,z,v)), \ |
philpem@5 | 3816 | (I[108] = (img)(_p8##x,_p2##y,z,v)), \ |
philpem@5 | 3817 | (I[126] = (img)(_p8##x,_p1##y,z,v)), \ |
philpem@5 | 3818 | (I[144] = (img)(_p8##x,y,z,v)), \ |
philpem@5 | 3819 | (I[162] = (img)(_p8##x,_n1##y,z,v)), \ |
philpem@5 | 3820 | (I[180] = (img)(_p8##x,_n2##y,z,v)), \ |
philpem@5 | 3821 | (I[198] = (img)(_p8##x,_n3##y,z,v)), \ |
philpem@5 | 3822 | (I[216] = (img)(_p8##x,_n4##y,z,v)), \ |
philpem@5 | 3823 | (I[234] = (img)(_p8##x,_n5##y,z,v)), \ |
philpem@5 | 3824 | (I[252] = (img)(_p8##x,_n6##y,z,v)), \ |
philpem@5 | 3825 | (I[270] = (img)(_p8##x,_n7##y,z,v)), \ |
philpem@5 | 3826 | (I[288] = (img)(_p8##x,_n8##y,z,v)), \ |
philpem@5 | 3827 | (I[306] = (img)(_p8##x,_n9##y,z,v)), \ |
philpem@5 | 3828 | (I[1] = (img)(_p7##x,_p8##y,z,v)), \ |
philpem@5 | 3829 | (I[19] = (img)(_p7##x,_p7##y,z,v)), \ |
philpem@5 | 3830 | (I[37] = (img)(_p7##x,_p6##y,z,v)), \ |
philpem@5 | 3831 | (I[55] = (img)(_p7##x,_p5##y,z,v)), \ |
philpem@5 | 3832 | (I[73] = (img)(_p7##x,_p4##y,z,v)), \ |
philpem@5 | 3833 | (I[91] = (img)(_p7##x,_p3##y,z,v)), \ |
philpem@5 | 3834 | (I[109] = (img)(_p7##x,_p2##y,z,v)), \ |
philpem@5 | 3835 | (I[127] = (img)(_p7##x,_p1##y,z,v)), \ |
philpem@5 | 3836 | (I[145] = (img)(_p7##x,y,z,v)), \ |
philpem@5 | 3837 | (I[163] = (img)(_p7##x,_n1##y,z,v)), \ |
philpem@5 | 3838 | (I[181] = (img)(_p7##x,_n2##y,z,v)), \ |
philpem@5 | 3839 | (I[199] = (img)(_p7##x,_n3##y,z,v)), \ |
philpem@5 | 3840 | (I[217] = (img)(_p7##x,_n4##y,z,v)), \ |
philpem@5 | 3841 | (I[235] = (img)(_p7##x,_n5##y,z,v)), \ |
philpem@5 | 3842 | (I[253] = (img)(_p7##x,_n6##y,z,v)), \ |
philpem@5 | 3843 | (I[271] = (img)(_p7##x,_n7##y,z,v)), \ |
philpem@5 | 3844 | (I[289] = (img)(_p7##x,_n8##y,z,v)), \ |
philpem@5 | 3845 | (I[307] = (img)(_p7##x,_n9##y,z,v)), \ |
philpem@5 | 3846 | (I[2] = (img)(_p6##x,_p8##y,z,v)), \ |
philpem@5 | 3847 | (I[20] = (img)(_p6##x,_p7##y,z,v)), \ |
philpem@5 | 3848 | (I[38] = (img)(_p6##x,_p6##y,z,v)), \ |
philpem@5 | 3849 | (I[56] = (img)(_p6##x,_p5##y,z,v)), \ |
philpem@5 | 3850 | (I[74] = (img)(_p6##x,_p4##y,z,v)), \ |
philpem@5 | 3851 | (I[92] = (img)(_p6##x,_p3##y,z,v)), \ |
philpem@5 | 3852 | (I[110] = (img)(_p6##x,_p2##y,z,v)), \ |
philpem@5 | 3853 | (I[128] = (img)(_p6##x,_p1##y,z,v)), \ |
philpem@5 | 3854 | (I[146] = (img)(_p6##x,y,z,v)), \ |
philpem@5 | 3855 | (I[164] = (img)(_p6##x,_n1##y,z,v)), \ |
philpem@5 | 3856 | (I[182] = (img)(_p6##x,_n2##y,z,v)), \ |
philpem@5 | 3857 | (I[200] = (img)(_p6##x,_n3##y,z,v)), \ |
philpem@5 | 3858 | (I[218] = (img)(_p6##x,_n4##y,z,v)), \ |
philpem@5 | 3859 | (I[236] = (img)(_p6##x,_n5##y,z,v)), \ |
philpem@5 | 3860 | (I[254] = (img)(_p6##x,_n6##y,z,v)), \ |
philpem@5 | 3861 | (I[272] = (img)(_p6##x,_n7##y,z,v)), \ |
philpem@5 | 3862 | (I[290] = (img)(_p6##x,_n8##y,z,v)), \ |
philpem@5 | 3863 | (I[308] = (img)(_p6##x,_n9##y,z,v)), \ |
philpem@5 | 3864 | (I[3] = (img)(_p5##x,_p8##y,z,v)), \ |
philpem@5 | 3865 | (I[21] = (img)(_p5##x,_p7##y,z,v)), \ |
philpem@5 | 3866 | (I[39] = (img)(_p5##x,_p6##y,z,v)), \ |
philpem@5 | 3867 | (I[57] = (img)(_p5##x,_p5##y,z,v)), \ |
philpem@5 | 3868 | (I[75] = (img)(_p5##x,_p4##y,z,v)), \ |
philpem@5 | 3869 | (I[93] = (img)(_p5##x,_p3##y,z,v)), \ |
philpem@5 | 3870 | (I[111] = (img)(_p5##x,_p2##y,z,v)), \ |
philpem@5 | 3871 | (I[129] = (img)(_p5##x,_p1##y,z,v)), \ |
philpem@5 | 3872 | (I[147] = (img)(_p5##x,y,z,v)), \ |
philpem@5 | 3873 | (I[165] = (img)(_p5##x,_n1##y,z,v)), \ |
philpem@5 | 3874 | (I[183] = (img)(_p5##x,_n2##y,z,v)), \ |
philpem@5 | 3875 | (I[201] = (img)(_p5##x,_n3##y,z,v)), \ |
philpem@5 | 3876 | (I[219] = (img)(_p5##x,_n4##y,z,v)), \ |
philpem@5 | 3877 | (I[237] = (img)(_p5##x,_n5##y,z,v)), \ |
philpem@5 | 3878 | (I[255] = (img)(_p5##x,_n6##y,z,v)), \ |
philpem@5 | 3879 | (I[273] = (img)(_p5##x,_n7##y,z,v)), \ |
philpem@5 | 3880 | (I[291] = (img)(_p5##x,_n8##y,z,v)), \ |
philpem@5 | 3881 | (I[309] = (img)(_p5##x,_n9##y,z,v)), \ |
philpem@5 | 3882 | (I[4] = (img)(_p4##x,_p8##y,z,v)), \ |
philpem@5 | 3883 | (I[22] = (img)(_p4##x,_p7##y,z,v)), \ |
philpem@5 | 3884 | (I[40] = (img)(_p4##x,_p6##y,z,v)), \ |
philpem@5 | 3885 | (I[58] = (img)(_p4##x,_p5##y,z,v)), \ |
philpem@5 | 3886 | (I[76] = (img)(_p4##x,_p4##y,z,v)), \ |
philpem@5 | 3887 | (I[94] = (img)(_p4##x,_p3##y,z,v)), \ |
philpem@5 | 3888 | (I[112] = (img)(_p4##x,_p2##y,z,v)), \ |
philpem@5 | 3889 | (I[130] = (img)(_p4##x,_p1##y,z,v)), \ |
philpem@5 | 3890 | (I[148] = (img)(_p4##x,y,z,v)), \ |
philpem@5 | 3891 | (I[166] = (img)(_p4##x,_n1##y,z,v)), \ |
philpem@5 | 3892 | (I[184] = (img)(_p4##x,_n2##y,z,v)), \ |
philpem@5 | 3893 | (I[202] = (img)(_p4##x,_n3##y,z,v)), \ |
philpem@5 | 3894 | (I[220] = (img)(_p4##x,_n4##y,z,v)), \ |
philpem@5 | 3895 | (I[238] = (img)(_p4##x,_n5##y,z,v)), \ |
philpem@5 | 3896 | (I[256] = (img)(_p4##x,_n6##y,z,v)), \ |
philpem@5 | 3897 | (I[274] = (img)(_p4##x,_n7##y,z,v)), \ |
philpem@5 | 3898 | (I[292] = (img)(_p4##x,_n8##y,z,v)), \ |
philpem@5 | 3899 | (I[310] = (img)(_p4##x,_n9##y,z,v)), \ |
philpem@5 | 3900 | (I[5] = (img)(_p3##x,_p8##y,z,v)), \ |
philpem@5 | 3901 | (I[23] = (img)(_p3##x,_p7##y,z,v)), \ |
philpem@5 | 3902 | (I[41] = (img)(_p3##x,_p6##y,z,v)), \ |
philpem@5 | 3903 | (I[59] = (img)(_p3##x,_p5##y,z,v)), \ |
philpem@5 | 3904 | (I[77] = (img)(_p3##x,_p4##y,z,v)), \ |
philpem@5 | 3905 | (I[95] = (img)(_p3##x,_p3##y,z,v)), \ |
philpem@5 | 3906 | (I[113] = (img)(_p3##x,_p2##y,z,v)), \ |
philpem@5 | 3907 | (I[131] = (img)(_p3##x,_p1##y,z,v)), \ |
philpem@5 | 3908 | (I[149] = (img)(_p3##x,y,z,v)), \ |
philpem@5 | 3909 | (I[167] = (img)(_p3##x,_n1##y,z,v)), \ |
philpem@5 | 3910 | (I[185] = (img)(_p3##x,_n2##y,z,v)), \ |
philpem@5 | 3911 | (I[203] = (img)(_p3##x,_n3##y,z,v)), \ |
philpem@5 | 3912 | (I[221] = (img)(_p3##x,_n4##y,z,v)), \ |
philpem@5 | 3913 | (I[239] = (img)(_p3##x,_n5##y,z,v)), \ |
philpem@5 | 3914 | (I[257] = (img)(_p3##x,_n6##y,z,v)), \ |
philpem@5 | 3915 | (I[275] = (img)(_p3##x,_n7##y,z,v)), \ |
philpem@5 | 3916 | (I[293] = (img)(_p3##x,_n8##y,z,v)), \ |
philpem@5 | 3917 | (I[311] = (img)(_p3##x,_n9##y,z,v)), \ |
philpem@5 | 3918 | (I[6] = (img)(_p2##x,_p8##y,z,v)), \ |
philpem@5 | 3919 | (I[24] = (img)(_p2##x,_p7##y,z,v)), \ |
philpem@5 | 3920 | (I[42] = (img)(_p2##x,_p6##y,z,v)), \ |
philpem@5 | 3921 | (I[60] = (img)(_p2##x,_p5##y,z,v)), \ |
philpem@5 | 3922 | (I[78] = (img)(_p2##x,_p4##y,z,v)), \ |
philpem@5 | 3923 | (I[96] = (img)(_p2##x,_p3##y,z,v)), \ |
philpem@5 | 3924 | (I[114] = (img)(_p2##x,_p2##y,z,v)), \ |
philpem@5 | 3925 | (I[132] = (img)(_p2##x,_p1##y,z,v)), \ |
philpem@5 | 3926 | (I[150] = (img)(_p2##x,y,z,v)), \ |
philpem@5 | 3927 | (I[168] = (img)(_p2##x,_n1##y,z,v)), \ |
philpem@5 | 3928 | (I[186] = (img)(_p2##x,_n2##y,z,v)), \ |
philpem@5 | 3929 | (I[204] = (img)(_p2##x,_n3##y,z,v)), \ |
philpem@5 | 3930 | (I[222] = (img)(_p2##x,_n4##y,z,v)), \ |
philpem@5 | 3931 | (I[240] = (img)(_p2##x,_n5##y,z,v)), \ |
philpem@5 | 3932 | (I[258] = (img)(_p2##x,_n6##y,z,v)), \ |
philpem@5 | 3933 | (I[276] = (img)(_p2##x,_n7##y,z,v)), \ |
philpem@5 | 3934 | (I[294] = (img)(_p2##x,_n8##y,z,v)), \ |
philpem@5 | 3935 | (I[312] = (img)(_p2##x,_n9##y,z,v)), \ |
philpem@5 | 3936 | (I[7] = (img)(_p1##x,_p8##y,z,v)), \ |
philpem@5 | 3937 | (I[25] = (img)(_p1##x,_p7##y,z,v)), \ |
philpem@5 | 3938 | (I[43] = (img)(_p1##x,_p6##y,z,v)), \ |
philpem@5 | 3939 | (I[61] = (img)(_p1##x,_p5##y,z,v)), \ |
philpem@5 | 3940 | (I[79] = (img)(_p1##x,_p4##y,z,v)), \ |
philpem@5 | 3941 | (I[97] = (img)(_p1##x,_p3##y,z,v)), \ |
philpem@5 | 3942 | (I[115] = (img)(_p1##x,_p2##y,z,v)), \ |
philpem@5 | 3943 | (I[133] = (img)(_p1##x,_p1##y,z,v)), \ |
philpem@5 | 3944 | (I[151] = (img)(_p1##x,y,z,v)), \ |
philpem@5 | 3945 | (I[169] = (img)(_p1##x,_n1##y,z,v)), \ |
philpem@5 | 3946 | (I[187] = (img)(_p1##x,_n2##y,z,v)), \ |
philpem@5 | 3947 | (I[205] = (img)(_p1##x,_n3##y,z,v)), \ |
philpem@5 | 3948 | (I[223] = (img)(_p1##x,_n4##y,z,v)), \ |
philpem@5 | 3949 | (I[241] = (img)(_p1##x,_n5##y,z,v)), \ |
philpem@5 | 3950 | (I[259] = (img)(_p1##x,_n6##y,z,v)), \ |
philpem@5 | 3951 | (I[277] = (img)(_p1##x,_n7##y,z,v)), \ |
philpem@5 | 3952 | (I[295] = (img)(_p1##x,_n8##y,z,v)), \ |
philpem@5 | 3953 | (I[313] = (img)(_p1##x,_n9##y,z,v)), \ |
philpem@5 | 3954 | (I[8] = (img)(x,_p8##y,z,v)), \ |
philpem@5 | 3955 | (I[26] = (img)(x,_p7##y,z,v)), \ |
philpem@5 | 3956 | (I[44] = (img)(x,_p6##y,z,v)), \ |
philpem@5 | 3957 | (I[62] = (img)(x,_p5##y,z,v)), \ |
philpem@5 | 3958 | (I[80] = (img)(x,_p4##y,z,v)), \ |
philpem@5 | 3959 | (I[98] = (img)(x,_p3##y,z,v)), \ |
philpem@5 | 3960 | (I[116] = (img)(x,_p2##y,z,v)), \ |
philpem@5 | 3961 | (I[134] = (img)(x,_p1##y,z,v)), \ |
philpem@5 | 3962 | (I[152] = (img)(x,y,z,v)), \ |
philpem@5 | 3963 | (I[170] = (img)(x,_n1##y,z,v)), \ |
philpem@5 | 3964 | (I[188] = (img)(x,_n2##y,z,v)), \ |
philpem@5 | 3965 | (I[206] = (img)(x,_n3##y,z,v)), \ |
philpem@5 | 3966 | (I[224] = (img)(x,_n4##y,z,v)), \ |
philpem@5 | 3967 | (I[242] = (img)(x,_n5##y,z,v)), \ |
philpem@5 | 3968 | (I[260] = (img)(x,_n6##y,z,v)), \ |
philpem@5 | 3969 | (I[278] = (img)(x,_n7##y,z,v)), \ |
philpem@5 | 3970 | (I[296] = (img)(x,_n8##y,z,v)), \ |
philpem@5 | 3971 | (I[314] = (img)(x,_n9##y,z,v)), \ |
philpem@5 | 3972 | (I[9] = (img)(_n1##x,_p8##y,z,v)), \ |
philpem@5 | 3973 | (I[27] = (img)(_n1##x,_p7##y,z,v)), \ |
philpem@5 | 3974 | (I[45] = (img)(_n1##x,_p6##y,z,v)), \ |
philpem@5 | 3975 | (I[63] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 3976 | (I[81] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 3977 | (I[99] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 3978 | (I[117] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 3979 | (I[135] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 3980 | (I[153] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 3981 | (I[171] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 3982 | (I[189] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 3983 | (I[207] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 3984 | (I[225] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 3985 | (I[243] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 3986 | (I[261] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 3987 | (I[279] = (img)(_n1##x,_n7##y,z,v)), \ |
philpem@5 | 3988 | (I[297] = (img)(_n1##x,_n8##y,z,v)), \ |
philpem@5 | 3989 | (I[315] = (img)(_n1##x,_n9##y,z,v)), \ |
philpem@5 | 3990 | (I[10] = (img)(_n2##x,_p8##y,z,v)), \ |
philpem@5 | 3991 | (I[28] = (img)(_n2##x,_p7##y,z,v)), \ |
philpem@5 | 3992 | (I[46] = (img)(_n2##x,_p6##y,z,v)), \ |
philpem@5 | 3993 | (I[64] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 3994 | (I[82] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 3995 | (I[100] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 3996 | (I[118] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 3997 | (I[136] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 3998 | (I[154] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 3999 | (I[172] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 4000 | (I[190] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 4001 | (I[208] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 4002 | (I[226] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 4003 | (I[244] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 4004 | (I[262] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 4005 | (I[280] = (img)(_n2##x,_n7##y,z,v)), \ |
philpem@5 | 4006 | (I[298] = (img)(_n2##x,_n8##y,z,v)), \ |
philpem@5 | 4007 | (I[316] = (img)(_n2##x,_n9##y,z,v)), \ |
philpem@5 | 4008 | (I[11] = (img)(_n3##x,_p8##y,z,v)), \ |
philpem@5 | 4009 | (I[29] = (img)(_n3##x,_p7##y,z,v)), \ |
philpem@5 | 4010 | (I[47] = (img)(_n3##x,_p6##y,z,v)), \ |
philpem@5 | 4011 | (I[65] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 4012 | (I[83] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 4013 | (I[101] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 4014 | (I[119] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 4015 | (I[137] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 4016 | (I[155] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 4017 | (I[173] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 4018 | (I[191] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 4019 | (I[209] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 4020 | (I[227] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 4021 | (I[245] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 4022 | (I[263] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 4023 | (I[281] = (img)(_n3##x,_n7##y,z,v)), \ |
philpem@5 | 4024 | (I[299] = (img)(_n3##x,_n8##y,z,v)), \ |
philpem@5 | 4025 | (I[317] = (img)(_n3##x,_n9##y,z,v)), \ |
philpem@5 | 4026 | (I[12] = (img)(_n4##x,_p8##y,z,v)), \ |
philpem@5 | 4027 | (I[30] = (img)(_n4##x,_p7##y,z,v)), \ |
philpem@5 | 4028 | (I[48] = (img)(_n4##x,_p6##y,z,v)), \ |
philpem@5 | 4029 | (I[66] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 4030 | (I[84] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 4031 | (I[102] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 4032 | (I[120] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 4033 | (I[138] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 4034 | (I[156] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 4035 | (I[174] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 4036 | (I[192] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 4037 | (I[210] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 4038 | (I[228] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 4039 | (I[246] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 4040 | (I[264] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 4041 | (I[282] = (img)(_n4##x,_n7##y,z,v)), \ |
philpem@5 | 4042 | (I[300] = (img)(_n4##x,_n8##y,z,v)), \ |
philpem@5 | 4043 | (I[318] = (img)(_n4##x,_n9##y,z,v)), \ |
philpem@5 | 4044 | (I[13] = (img)(_n5##x,_p8##y,z,v)), \ |
philpem@5 | 4045 | (I[31] = (img)(_n5##x,_p7##y,z,v)), \ |
philpem@5 | 4046 | (I[49] = (img)(_n5##x,_p6##y,z,v)), \ |
philpem@5 | 4047 | (I[67] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 4048 | (I[85] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 4049 | (I[103] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 4050 | (I[121] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 4051 | (I[139] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 4052 | (I[157] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 4053 | (I[175] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 4054 | (I[193] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 4055 | (I[211] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 4056 | (I[229] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 4057 | (I[247] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 4058 | (I[265] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 4059 | (I[283] = (img)(_n5##x,_n7##y,z,v)), \ |
philpem@5 | 4060 | (I[301] = (img)(_n5##x,_n8##y,z,v)), \ |
philpem@5 | 4061 | (I[319] = (img)(_n5##x,_n9##y,z,v)), \ |
philpem@5 | 4062 | (I[14] = (img)(_n6##x,_p8##y,z,v)), \ |
philpem@5 | 4063 | (I[32] = (img)(_n6##x,_p7##y,z,v)), \ |
philpem@5 | 4064 | (I[50] = (img)(_n6##x,_p6##y,z,v)), \ |
philpem@5 | 4065 | (I[68] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 4066 | (I[86] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 4067 | (I[104] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 4068 | (I[122] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 4069 | (I[140] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 4070 | (I[158] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 4071 | (I[176] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 4072 | (I[194] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 4073 | (I[212] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 4074 | (I[230] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 4075 | (I[248] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 4076 | (I[266] = (img)(_n6##x,_n6##y,z,v)), \ |
philpem@5 | 4077 | (I[284] = (img)(_n6##x,_n7##y,z,v)), \ |
philpem@5 | 4078 | (I[302] = (img)(_n6##x,_n8##y,z,v)), \ |
philpem@5 | 4079 | (I[320] = (img)(_n6##x,_n9##y,z,v)), \ |
philpem@5 | 4080 | (I[15] = (img)(_n7##x,_p8##y,z,v)), \ |
philpem@5 | 4081 | (I[33] = (img)(_n7##x,_p7##y,z,v)), \ |
philpem@5 | 4082 | (I[51] = (img)(_n7##x,_p6##y,z,v)), \ |
philpem@5 | 4083 | (I[69] = (img)(_n7##x,_p5##y,z,v)), \ |
philpem@5 | 4084 | (I[87] = (img)(_n7##x,_p4##y,z,v)), \ |
philpem@5 | 4085 | (I[105] = (img)(_n7##x,_p3##y,z,v)), \ |
philpem@5 | 4086 | (I[123] = (img)(_n7##x,_p2##y,z,v)), \ |
philpem@5 | 4087 | (I[141] = (img)(_n7##x,_p1##y,z,v)), \ |
philpem@5 | 4088 | (I[159] = (img)(_n7##x,y,z,v)), \ |
philpem@5 | 4089 | (I[177] = (img)(_n7##x,_n1##y,z,v)), \ |
philpem@5 | 4090 | (I[195] = (img)(_n7##x,_n2##y,z,v)), \ |
philpem@5 | 4091 | (I[213] = (img)(_n7##x,_n3##y,z,v)), \ |
philpem@5 | 4092 | (I[231] = (img)(_n7##x,_n4##y,z,v)), \ |
philpem@5 | 4093 | (I[249] = (img)(_n7##x,_n5##y,z,v)), \ |
philpem@5 | 4094 | (I[267] = (img)(_n7##x,_n6##y,z,v)), \ |
philpem@5 | 4095 | (I[285] = (img)(_n7##x,_n7##y,z,v)), \ |
philpem@5 | 4096 | (I[303] = (img)(_n7##x,_n8##y,z,v)), \ |
philpem@5 | 4097 | (I[321] = (img)(_n7##x,_n9##y,z,v)), \ |
philpem@5 | 4098 | (I[16] = (img)(_n8##x,_p8##y,z,v)), \ |
philpem@5 | 4099 | (I[34] = (img)(_n8##x,_p7##y,z,v)), \ |
philpem@5 | 4100 | (I[52] = (img)(_n8##x,_p6##y,z,v)), \ |
philpem@5 | 4101 | (I[70] = (img)(_n8##x,_p5##y,z,v)), \ |
philpem@5 | 4102 | (I[88] = (img)(_n8##x,_p4##y,z,v)), \ |
philpem@5 | 4103 | (I[106] = (img)(_n8##x,_p3##y,z,v)), \ |
philpem@5 | 4104 | (I[124] = (img)(_n8##x,_p2##y,z,v)), \ |
philpem@5 | 4105 | (I[142] = (img)(_n8##x,_p1##y,z,v)), \ |
philpem@5 | 4106 | (I[160] = (img)(_n8##x,y,z,v)), \ |
philpem@5 | 4107 | (I[178] = (img)(_n8##x,_n1##y,z,v)), \ |
philpem@5 | 4108 | (I[196] = (img)(_n8##x,_n2##y,z,v)), \ |
philpem@5 | 4109 | (I[214] = (img)(_n8##x,_n3##y,z,v)), \ |
philpem@5 | 4110 | (I[232] = (img)(_n8##x,_n4##y,z,v)), \ |
philpem@5 | 4111 | (I[250] = (img)(_n8##x,_n5##y,z,v)), \ |
philpem@5 | 4112 | (I[268] = (img)(_n8##x,_n6##y,z,v)), \ |
philpem@5 | 4113 | (I[286] = (img)(_n8##x,_n7##y,z,v)), \ |
philpem@5 | 4114 | (I[304] = (img)(_n8##x,_n8##y,z,v)), \ |
philpem@5 | 4115 | (I[322] = (img)(_n8##x,_n9##y,z,v)), \ |
philpem@5 | 4116 | x+9>=(int)((img).width)?(int)((img).width)-1:x+9); \ |
philpem@5 | 4117 | x<=(int)(x1) && ((_n9##x<(int)((img).width) && ( \ |
philpem@5 | 4118 | (I[17] = (img)(_n9##x,_p8##y,z,v)), \ |
philpem@5 | 4119 | (I[35] = (img)(_n9##x,_p7##y,z,v)), \ |
philpem@5 | 4120 | (I[53] = (img)(_n9##x,_p6##y,z,v)), \ |
philpem@5 | 4121 | (I[71] = (img)(_n9##x,_p5##y,z,v)), \ |
philpem@5 | 4122 | (I[89] = (img)(_n9##x,_p4##y,z,v)), \ |
philpem@5 | 4123 | (I[107] = (img)(_n9##x,_p3##y,z,v)), \ |
philpem@5 | 4124 | (I[125] = (img)(_n9##x,_p2##y,z,v)), \ |
philpem@5 | 4125 | (I[143] = (img)(_n9##x,_p1##y,z,v)), \ |
philpem@5 | 4126 | (I[161] = (img)(_n9##x,y,z,v)), \ |
philpem@5 | 4127 | (I[179] = (img)(_n9##x,_n1##y,z,v)), \ |
philpem@5 | 4128 | (I[197] = (img)(_n9##x,_n2##y,z,v)), \ |
philpem@5 | 4129 | (I[215] = (img)(_n9##x,_n3##y,z,v)), \ |
philpem@5 | 4130 | (I[233] = (img)(_n9##x,_n4##y,z,v)), \ |
philpem@5 | 4131 | (I[251] = (img)(_n9##x,_n5##y,z,v)), \ |
philpem@5 | 4132 | (I[269] = (img)(_n9##x,_n6##y,z,v)), \ |
philpem@5 | 4133 | (I[287] = (img)(_n9##x,_n7##y,z,v)), \ |
philpem@5 | 4134 | (I[305] = (img)(_n9##x,_n8##y,z,v)), \ |
philpem@5 | 4135 | (I[323] = (img)(_n9##x,_n9##y,z,v)),1)) || \ |
philpem@5 | 4136 | _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \ |
philpem@5 | 4137 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], \ |
philpem@5 | 4138 | I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \ |
philpem@5 | 4139 | I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], \ |
philpem@5 | 4140 | I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \ |
philpem@5 | 4141 | I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \ |
philpem@5 | 4142 | I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \ |
philpem@5 | 4143 | I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \ |
philpem@5 | 4144 | I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \ |
philpem@5 | 4145 | I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], \ |
philpem@5 | 4146 | I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \ |
philpem@5 | 4147 | I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], \ |
philpem@5 | 4148 | I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \ |
philpem@5 | 4149 | I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], \ |
philpem@5 | 4150 | I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \ |
philpem@5 | 4151 | I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], \ |
philpem@5 | 4152 | I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \ |
philpem@5 | 4153 | I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], \ |
philpem@5 | 4154 | I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], \ |
philpem@5 | 4155 | _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x) |
philpem@5 | 4156 | |
philpem@5 | 4157 | #define cimg_get18x18(img,x,y,z,v,I) \ |
philpem@5 | 4158 | I[0] = (img)(_p8##x,_p8##y,z,v), I[1] = (img)(_p7##x,_p8##y,z,v), I[2] = (img)(_p6##x,_p8##y,z,v), I[3] = (img)(_p5##x,_p8##y,z,v), I[4] = (img)(_p4##x,_p8##y,z,v), I[5] = (img)(_p3##x,_p8##y,z,v), I[6] = (img)(_p2##x,_p8##y,z,v), I[7] = (img)(_p1##x,_p8##y,z,v), I[8] = (img)(x,_p8##y,z,v), I[9] = (img)(_n1##x,_p8##y,z,v), I[10] = (img)(_n2##x,_p8##y,z,v), I[11] = (img)(_n3##x,_p8##y,z,v), I[12] = (img)(_n4##x,_p8##y,z,v), I[13] = (img)(_n5##x,_p8##y,z,v), I[14] = (img)(_n6##x,_p8##y,z,v), I[15] = (img)(_n7##x,_p8##y,z,v), I[16] = (img)(_n8##x,_p8##y,z,v), I[17] = (img)(_n9##x,_p8##y,z,v), \ |
philpem@5 | 4159 | I[18] = (img)(_p8##x,_p7##y,z,v), I[19] = (img)(_p7##x,_p7##y,z,v), I[20] = (img)(_p6##x,_p7##y,z,v), I[21] = (img)(_p5##x,_p7##y,z,v), I[22] = (img)(_p4##x,_p7##y,z,v), I[23] = (img)(_p3##x,_p7##y,z,v), I[24] = (img)(_p2##x,_p7##y,z,v), I[25] = (img)(_p1##x,_p7##y,z,v), I[26] = (img)(x,_p7##y,z,v), I[27] = (img)(_n1##x,_p7##y,z,v), I[28] = (img)(_n2##x,_p7##y,z,v), I[29] = (img)(_n3##x,_p7##y,z,v), I[30] = (img)(_n4##x,_p7##y,z,v), I[31] = (img)(_n5##x,_p7##y,z,v), I[32] = (img)(_n6##x,_p7##y,z,v), I[33] = (img)(_n7##x,_p7##y,z,v), I[34] = (img)(_n8##x,_p7##y,z,v), I[35] = (img)(_n9##x,_p7##y,z,v), \ |
philpem@5 | 4160 | I[36] = (img)(_p8##x,_p6##y,z,v), I[37] = (img)(_p7##x,_p6##y,z,v), I[38] = (img)(_p6##x,_p6##y,z,v), I[39] = (img)(_p5##x,_p6##y,z,v), I[40] = (img)(_p4##x,_p6##y,z,v), I[41] = (img)(_p3##x,_p6##y,z,v), I[42] = (img)(_p2##x,_p6##y,z,v), I[43] = (img)(_p1##x,_p6##y,z,v), I[44] = (img)(x,_p6##y,z,v), I[45] = (img)(_n1##x,_p6##y,z,v), I[46] = (img)(_n2##x,_p6##y,z,v), I[47] = (img)(_n3##x,_p6##y,z,v), I[48] = (img)(_n4##x,_p6##y,z,v), I[49] = (img)(_n5##x,_p6##y,z,v), I[50] = (img)(_n6##x,_p6##y,z,v), I[51] = (img)(_n7##x,_p6##y,z,v), I[52] = (img)(_n8##x,_p6##y,z,v), I[53] = (img)(_n9##x,_p6##y,z,v), \ |
philpem@5 | 4161 | I[54] = (img)(_p8##x,_p5##y,z,v), I[55] = (img)(_p7##x,_p5##y,z,v), I[56] = (img)(_p6##x,_p5##y,z,v), I[57] = (img)(_p5##x,_p5##y,z,v), I[58] = (img)(_p4##x,_p5##y,z,v), I[59] = (img)(_p3##x,_p5##y,z,v), I[60] = (img)(_p2##x,_p5##y,z,v), I[61] = (img)(_p1##x,_p5##y,z,v), I[62] = (img)(x,_p5##y,z,v), I[63] = (img)(_n1##x,_p5##y,z,v), I[64] = (img)(_n2##x,_p5##y,z,v), I[65] = (img)(_n3##x,_p5##y,z,v), I[66] = (img)(_n4##x,_p5##y,z,v), I[67] = (img)(_n5##x,_p5##y,z,v), I[68] = (img)(_n6##x,_p5##y,z,v), I[69] = (img)(_n7##x,_p5##y,z,v), I[70] = (img)(_n8##x,_p5##y,z,v), I[71] = (img)(_n9##x,_p5##y,z,v), \ |
philpem@5 | 4162 | I[72] = (img)(_p8##x,_p4##y,z,v), I[73] = (img)(_p7##x,_p4##y,z,v), I[74] = (img)(_p6##x,_p4##y,z,v), I[75] = (img)(_p5##x,_p4##y,z,v), I[76] = (img)(_p4##x,_p4##y,z,v), I[77] = (img)(_p3##x,_p4##y,z,v), I[78] = (img)(_p2##x,_p4##y,z,v), I[79] = (img)(_p1##x,_p4##y,z,v), I[80] = (img)(x,_p4##y,z,v), I[81] = (img)(_n1##x,_p4##y,z,v), I[82] = (img)(_n2##x,_p4##y,z,v), I[83] = (img)(_n3##x,_p4##y,z,v), I[84] = (img)(_n4##x,_p4##y,z,v), I[85] = (img)(_n5##x,_p4##y,z,v), I[86] = (img)(_n6##x,_p4##y,z,v), I[87] = (img)(_n7##x,_p4##y,z,v), I[88] = (img)(_n8##x,_p4##y,z,v), I[89] = (img)(_n9##x,_p4##y,z,v), \ |
philpem@5 | 4163 | I[90] = (img)(_p8##x,_p3##y,z,v), I[91] = (img)(_p7##x,_p3##y,z,v), I[92] = (img)(_p6##x,_p3##y,z,v), I[93] = (img)(_p5##x,_p3##y,z,v), I[94] = (img)(_p4##x,_p3##y,z,v), I[95] = (img)(_p3##x,_p3##y,z,v), I[96] = (img)(_p2##x,_p3##y,z,v), I[97] = (img)(_p1##x,_p3##y,z,v), I[98] = (img)(x,_p3##y,z,v), I[99] = (img)(_n1##x,_p3##y,z,v), I[100] = (img)(_n2##x,_p3##y,z,v), I[101] = (img)(_n3##x,_p3##y,z,v), I[102] = (img)(_n4##x,_p3##y,z,v), I[103] = (img)(_n5##x,_p3##y,z,v), I[104] = (img)(_n6##x,_p3##y,z,v), I[105] = (img)(_n7##x,_p3##y,z,v), I[106] = (img)(_n8##x,_p3##y,z,v), I[107] = (img)(_n9##x,_p3##y,z,v), \ |
philpem@5 | 4164 | I[108] = (img)(_p8##x,_p2##y,z,v), I[109] = (img)(_p7##x,_p2##y,z,v), I[110] = (img)(_p6##x,_p2##y,z,v), I[111] = (img)(_p5##x,_p2##y,z,v), I[112] = (img)(_p4##x,_p2##y,z,v), I[113] = (img)(_p3##x,_p2##y,z,v), I[114] = (img)(_p2##x,_p2##y,z,v), I[115] = (img)(_p1##x,_p2##y,z,v), I[116] = (img)(x,_p2##y,z,v), I[117] = (img)(_n1##x,_p2##y,z,v), I[118] = (img)(_n2##x,_p2##y,z,v), I[119] = (img)(_n3##x,_p2##y,z,v), I[120] = (img)(_n4##x,_p2##y,z,v), I[121] = (img)(_n5##x,_p2##y,z,v), I[122] = (img)(_n6##x,_p2##y,z,v), I[123] = (img)(_n7##x,_p2##y,z,v), I[124] = (img)(_n8##x,_p2##y,z,v), I[125] = (img)(_n9##x,_p2##y,z,v), \ |
philpem@5 | 4165 | I[126] = (img)(_p8##x,_p1##y,z,v), I[127] = (img)(_p7##x,_p1##y,z,v), I[128] = (img)(_p6##x,_p1##y,z,v), I[129] = (img)(_p5##x,_p1##y,z,v), I[130] = (img)(_p4##x,_p1##y,z,v), I[131] = (img)(_p3##x,_p1##y,z,v), I[132] = (img)(_p2##x,_p1##y,z,v), I[133] = (img)(_p1##x,_p1##y,z,v), I[134] = (img)(x,_p1##y,z,v), I[135] = (img)(_n1##x,_p1##y,z,v), I[136] = (img)(_n2##x,_p1##y,z,v), I[137] = (img)(_n3##x,_p1##y,z,v), I[138] = (img)(_n4##x,_p1##y,z,v), I[139] = (img)(_n5##x,_p1##y,z,v), I[140] = (img)(_n6##x,_p1##y,z,v), I[141] = (img)(_n7##x,_p1##y,z,v), I[142] = (img)(_n8##x,_p1##y,z,v), I[143] = (img)(_n9##x,_p1##y,z,v), \ |
philpem@5 | 4166 | I[144] = (img)(_p8##x,y,z,v), I[145] = (img)(_p7##x,y,z,v), I[146] = (img)(_p6##x,y,z,v), I[147] = (img)(_p5##x,y,z,v), I[148] = (img)(_p4##x,y,z,v), I[149] = (img)(_p3##x,y,z,v), I[150] = (img)(_p2##x,y,z,v), I[151] = (img)(_p1##x,y,z,v), I[152] = (img)(x,y,z,v), I[153] = (img)(_n1##x,y,z,v), I[154] = (img)(_n2##x,y,z,v), I[155] = (img)(_n3##x,y,z,v), I[156] = (img)(_n4##x,y,z,v), I[157] = (img)(_n5##x,y,z,v), I[158] = (img)(_n6##x,y,z,v), I[159] = (img)(_n7##x,y,z,v), I[160] = (img)(_n8##x,y,z,v), I[161] = (img)(_n9##x,y,z,v), \ |
philpem@5 | 4167 | I[162] = (img)(_p8##x,_n1##y,z,v), I[163] = (img)(_p7##x,_n1##y,z,v), I[164] = (img)(_p6##x,_n1##y,z,v), I[165] = (img)(_p5##x,_n1##y,z,v), I[166] = (img)(_p4##x,_n1##y,z,v), I[167] = (img)(_p3##x,_n1##y,z,v), I[168] = (img)(_p2##x,_n1##y,z,v), I[169] = (img)(_p1##x,_n1##y,z,v), I[170] = (img)(x,_n1##y,z,v), I[171] = (img)(_n1##x,_n1##y,z,v), I[172] = (img)(_n2##x,_n1##y,z,v), I[173] = (img)(_n3##x,_n1##y,z,v), I[174] = (img)(_n4##x,_n1##y,z,v), I[175] = (img)(_n5##x,_n1##y,z,v), I[176] = (img)(_n6##x,_n1##y,z,v), I[177] = (img)(_n7##x,_n1##y,z,v), I[178] = (img)(_n8##x,_n1##y,z,v), I[179] = (img)(_n9##x,_n1##y,z,v), \ |
philpem@5 | 4168 | I[180] = (img)(_p8##x,_n2##y,z,v), I[181] = (img)(_p7##x,_n2##y,z,v), I[182] = (img)(_p6##x,_n2##y,z,v), I[183] = (img)(_p5##x,_n2##y,z,v), I[184] = (img)(_p4##x,_n2##y,z,v), I[185] = (img)(_p3##x,_n2##y,z,v), I[186] = (img)(_p2##x,_n2##y,z,v), I[187] = (img)(_p1##x,_n2##y,z,v), I[188] = (img)(x,_n2##y,z,v), I[189] = (img)(_n1##x,_n2##y,z,v), I[190] = (img)(_n2##x,_n2##y,z,v), I[191] = (img)(_n3##x,_n2##y,z,v), I[192] = (img)(_n4##x,_n2##y,z,v), I[193] = (img)(_n5##x,_n2##y,z,v), I[194] = (img)(_n6##x,_n2##y,z,v), I[195] = (img)(_n7##x,_n2##y,z,v), I[196] = (img)(_n8##x,_n2##y,z,v), I[197] = (img)(_n9##x,_n2##y,z,v), \ |
philpem@5 | 4169 | I[198] = (img)(_p8##x,_n3##y,z,v), I[199] = (img)(_p7##x,_n3##y,z,v), I[200] = (img)(_p6##x,_n3##y,z,v), I[201] = (img)(_p5##x,_n3##y,z,v), I[202] = (img)(_p4##x,_n3##y,z,v), I[203] = (img)(_p3##x,_n3##y,z,v), I[204] = (img)(_p2##x,_n3##y,z,v), I[205] = (img)(_p1##x,_n3##y,z,v), I[206] = (img)(x,_n3##y,z,v), I[207] = (img)(_n1##x,_n3##y,z,v), I[208] = (img)(_n2##x,_n3##y,z,v), I[209] = (img)(_n3##x,_n3##y,z,v), I[210] = (img)(_n4##x,_n3##y,z,v), I[211] = (img)(_n5##x,_n3##y,z,v), I[212] = (img)(_n6##x,_n3##y,z,v), I[213] = (img)(_n7##x,_n3##y,z,v), I[214] = (img)(_n8##x,_n3##y,z,v), I[215] = (img)(_n9##x,_n3##y,z,v), \ |
philpem@5 | 4170 | I[216] = (img)(_p8##x,_n4##y,z,v), I[217] = (img)(_p7##x,_n4##y,z,v), I[218] = (img)(_p6##x,_n4##y,z,v), I[219] = (img)(_p5##x,_n4##y,z,v), I[220] = (img)(_p4##x,_n4##y,z,v), I[221] = (img)(_p3##x,_n4##y,z,v), I[222] = (img)(_p2##x,_n4##y,z,v), I[223] = (img)(_p1##x,_n4##y,z,v), I[224] = (img)(x,_n4##y,z,v), I[225] = (img)(_n1##x,_n4##y,z,v), I[226] = (img)(_n2##x,_n4##y,z,v), I[227] = (img)(_n3##x,_n4##y,z,v), I[228] = (img)(_n4##x,_n4##y,z,v), I[229] = (img)(_n5##x,_n4##y,z,v), I[230] = (img)(_n6##x,_n4##y,z,v), I[231] = (img)(_n7##x,_n4##y,z,v), I[232] = (img)(_n8##x,_n4##y,z,v), I[233] = (img)(_n9##x,_n4##y,z,v), \ |
philpem@5 | 4171 | I[234] = (img)(_p8##x,_n5##y,z,v), I[235] = (img)(_p7##x,_n5##y,z,v), I[236] = (img)(_p6##x,_n5##y,z,v), I[237] = (img)(_p5##x,_n5##y,z,v), I[238] = (img)(_p4##x,_n5##y,z,v), I[239] = (img)(_p3##x,_n5##y,z,v), I[240] = (img)(_p2##x,_n5##y,z,v), I[241] = (img)(_p1##x,_n5##y,z,v), I[242] = (img)(x,_n5##y,z,v), I[243] = (img)(_n1##x,_n5##y,z,v), I[244] = (img)(_n2##x,_n5##y,z,v), I[245] = (img)(_n3##x,_n5##y,z,v), I[246] = (img)(_n4##x,_n5##y,z,v), I[247] = (img)(_n5##x,_n5##y,z,v), I[248] = (img)(_n6##x,_n5##y,z,v), I[249] = (img)(_n7##x,_n5##y,z,v), I[250] = (img)(_n8##x,_n5##y,z,v), I[251] = (img)(_n9##x,_n5##y,z,v), \ |
philpem@5 | 4172 | I[252] = (img)(_p8##x,_n6##y,z,v), I[253] = (img)(_p7##x,_n6##y,z,v), I[254] = (img)(_p6##x,_n6##y,z,v), I[255] = (img)(_p5##x,_n6##y,z,v), I[256] = (img)(_p4##x,_n6##y,z,v), I[257] = (img)(_p3##x,_n6##y,z,v), I[258] = (img)(_p2##x,_n6##y,z,v), I[259] = (img)(_p1##x,_n6##y,z,v), I[260] = (img)(x,_n6##y,z,v), I[261] = (img)(_n1##x,_n6##y,z,v), I[262] = (img)(_n2##x,_n6##y,z,v), I[263] = (img)(_n3##x,_n6##y,z,v), I[264] = (img)(_n4##x,_n6##y,z,v), I[265] = (img)(_n5##x,_n6##y,z,v), I[266] = (img)(_n6##x,_n6##y,z,v), I[267] = (img)(_n7##x,_n6##y,z,v), I[268] = (img)(_n8##x,_n6##y,z,v), I[269] = (img)(_n9##x,_n6##y,z,v), \ |
philpem@5 | 4173 | I[270] = (img)(_p8##x,_n7##y,z,v), I[271] = (img)(_p7##x,_n7##y,z,v), I[272] = (img)(_p6##x,_n7##y,z,v), I[273] = (img)(_p5##x,_n7##y,z,v), I[274] = (img)(_p4##x,_n7##y,z,v), I[275] = (img)(_p3##x,_n7##y,z,v), I[276] = (img)(_p2##x,_n7##y,z,v), I[277] = (img)(_p1##x,_n7##y,z,v), I[278] = (img)(x,_n7##y,z,v), I[279] = (img)(_n1##x,_n7##y,z,v), I[280] = (img)(_n2##x,_n7##y,z,v), I[281] = (img)(_n3##x,_n7##y,z,v), I[282] = (img)(_n4##x,_n7##y,z,v), I[283] = (img)(_n5##x,_n7##y,z,v), I[284] = (img)(_n6##x,_n7##y,z,v), I[285] = (img)(_n7##x,_n7##y,z,v), I[286] = (img)(_n8##x,_n7##y,z,v), I[287] = (img)(_n9##x,_n7##y,z,v), \ |
philpem@5 | 4174 | I[288] = (img)(_p8##x,_n8##y,z,v), I[289] = (img)(_p7##x,_n8##y,z,v), I[290] = (img)(_p6##x,_n8##y,z,v), I[291] = (img)(_p5##x,_n8##y,z,v), I[292] = (img)(_p4##x,_n8##y,z,v), I[293] = (img)(_p3##x,_n8##y,z,v), I[294] = (img)(_p2##x,_n8##y,z,v), I[295] = (img)(_p1##x,_n8##y,z,v), I[296] = (img)(x,_n8##y,z,v), I[297] = (img)(_n1##x,_n8##y,z,v), I[298] = (img)(_n2##x,_n8##y,z,v), I[299] = (img)(_n3##x,_n8##y,z,v), I[300] = (img)(_n4##x,_n8##y,z,v), I[301] = (img)(_n5##x,_n8##y,z,v), I[302] = (img)(_n6##x,_n8##y,z,v), I[303] = (img)(_n7##x,_n8##y,z,v), I[304] = (img)(_n8##x,_n8##y,z,v), I[305] = (img)(_n9##x,_n8##y,z,v), \ |
philpem@5 | 4175 | I[306] = (img)(_p8##x,_n9##y,z,v), I[307] = (img)(_p7##x,_n9##y,z,v), I[308] = (img)(_p6##x,_n9##y,z,v), I[309] = (img)(_p5##x,_n9##y,z,v), I[310] = (img)(_p4##x,_n9##y,z,v), I[311] = (img)(_p3##x,_n9##y,z,v), I[312] = (img)(_p2##x,_n9##y,z,v), I[313] = (img)(_p1##x,_n9##y,z,v), I[314] = (img)(x,_n9##y,z,v), I[315] = (img)(_n1##x,_n9##y,z,v), I[316] = (img)(_n2##x,_n9##y,z,v), I[317] = (img)(_n3##x,_n9##y,z,v), I[318] = (img)(_n4##x,_n9##y,z,v), I[319] = (img)(_n5##x,_n9##y,z,v), I[320] = (img)(_n6##x,_n9##y,z,v), I[321] = (img)(_n7##x,_n9##y,z,v), I[322] = (img)(_n8##x,_n9##y,z,v), I[323] = (img)(_n9##x,_n9##y,z,v); |
philpem@5 | 4176 | |
philpem@5 | 4177 | // Define 19x19 loop macros for CImg |
philpem@5 | 4178 | //---------------------------------- |
philpem@5 | 4179 | #define cimg_for19(bound,i) for (int i = 0, \ |
philpem@5 | 4180 | _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \ |
philpem@5 | 4181 | _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \ |
philpem@5 | 4182 | _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \ |
philpem@5 | 4183 | _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \ |
philpem@5 | 4184 | _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \ |
philpem@5 | 4185 | _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \ |
philpem@5 | 4186 | _n6##i = 6>=(int)(bound)?(int)(bound)-1:6, \ |
philpem@5 | 4187 | _n7##i = 7>=(int)(bound)?(int)(bound)-1:7, \ |
philpem@5 | 4188 | _n8##i = 8>=(int)(bound)?(int)(bound)-1:8, \ |
philpem@5 | 4189 | _n9##i = 9>=(int)(bound)?(int)(bound)-1:9; \ |
philpem@5 | 4190 | _n9##i<(int)(bound) || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 4191 | i==(_n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \ |
philpem@5 | 4192 | _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 4193 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i) |
philpem@5 | 4194 | |
philpem@5 | 4195 | #define cimg_for19X(img,x) cimg_for19((img).width,x) |
philpem@5 | 4196 | #define cimg_for19Y(img,y) cimg_for19((img).height,y) |
philpem@5 | 4197 | #define cimg_for19Z(img,z) cimg_for19((img).depth,z) |
philpem@5 | 4198 | #define cimg_for19V(img,v) cimg_for19((img).dim,v) |
philpem@5 | 4199 | #define cimg_for19XY(img,x,y) cimg_for19Y(img,y) cimg_for19X(img,x) |
philpem@5 | 4200 | #define cimg_for19XZ(img,x,z) cimg_for19Z(img,z) cimg_for19X(img,x) |
philpem@5 | 4201 | #define cimg_for19XV(img,x,v) cimg_for19V(img,v) cimg_for19X(img,x) |
philpem@5 | 4202 | #define cimg_for19YZ(img,y,z) cimg_for19Z(img,z) cimg_for19Y(img,y) |
philpem@5 | 4203 | #define cimg_for19YV(img,y,v) cimg_for19V(img,v) cimg_for19Y(img,y) |
philpem@5 | 4204 | #define cimg_for19ZV(img,z,v) cimg_for19V(img,v) cimg_for19Z(img,z) |
philpem@5 | 4205 | #define cimg_for19XYZ(img,x,y,z) cimg_for19Z(img,z) cimg_for19XY(img,x,y) |
philpem@5 | 4206 | #define cimg_for19XZV(img,x,z,v) cimg_for19V(img,v) cimg_for19XZ(img,x,z) |
philpem@5 | 4207 | #define cimg_for19YZV(img,y,z,v) cimg_for19V(img,v) cimg_for19YZ(img,y,z) |
philpem@5 | 4208 | #define cimg_for19XYZV(img,x,y,z,v) cimg_for19V(img,v) cimg_for19XYZ(img,x,y,z) |
philpem@5 | 4209 | |
philpem@5 | 4210 | #define cimg_for_in19(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \ |
philpem@5 | 4211 | _p9##i = i-9<0?0:i-9, \ |
philpem@5 | 4212 | _p8##i = i-8<0?0:i-8, \ |
philpem@5 | 4213 | _p7##i = i-7<0?0:i-7, \ |
philpem@5 | 4214 | _p6##i = i-6<0?0:i-6, \ |
philpem@5 | 4215 | _p5##i = i-5<0?0:i-5, \ |
philpem@5 | 4216 | _p4##i = i-4<0?0:i-4, \ |
philpem@5 | 4217 | _p3##i = i-3<0?0:i-3, \ |
philpem@5 | 4218 | _p2##i = i-2<0?0:i-2, \ |
philpem@5 | 4219 | _p1##i = i-1<0?0:i-1, \ |
philpem@5 | 4220 | _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \ |
philpem@5 | 4221 | _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \ |
philpem@5 | 4222 | _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \ |
philpem@5 | 4223 | _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \ |
philpem@5 | 4224 | _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \ |
philpem@5 | 4225 | _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6, \ |
philpem@5 | 4226 | _n7##i = i+7>=(int)(bound)?(int)(bound)-1:i+7, \ |
philpem@5 | 4227 | _n8##i = i+8>=(int)(bound)?(int)(bound)-1:i+8, \ |
philpem@5 | 4228 | _n9##i = i+9>=(int)(bound)?(int)(bound)-1:i+9; \ |
philpem@5 | 4229 | i<=(int)(i1) && (_n9##i<(int)(bound) || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 4230 | i==(_n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \ |
philpem@5 | 4231 | _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 4232 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i) |
philpem@5 | 4233 | |
philpem@5 | 4234 | #define cimg_for_in19X(img,x0,x1,x) cimg_for_in19((img).width,x0,x1,x) |
philpem@5 | 4235 | #define cimg_for_in19Y(img,y0,y1,y) cimg_for_in19((img).height,y0,y1,y) |
philpem@5 | 4236 | #define cimg_for_in19Z(img,z0,z1,z) cimg_for_in19((img).depth,z0,z1,z) |
philpem@5 | 4237 | #define cimg_for_in19V(img,v0,v1,v) cimg_for_in19((img).dim,v0,v1,v) |
philpem@5 | 4238 | #define cimg_for_in19XY(img,x0,y0,x1,y1,x,y) cimg_for_in19Y(img,y0,y1,y) cimg_for_in19X(img,x0,x1,x) |
philpem@5 | 4239 | #define cimg_for_in19XZ(img,x0,z0,x1,z1,x,z) cimg_for_in19Z(img,z0,z1,z) cimg_for_in19X(img,x0,x1,x) |
philpem@5 | 4240 | #define cimg_for_in19XV(img,x0,v0,x1,v1,x,v) cimg_for_in19V(img,v0,v1,v) cimg_for_in19X(img,x0,x1,x) |
philpem@5 | 4241 | #define cimg_for_in19YZ(img,y0,z0,y1,z1,y,z) cimg_for_in19Z(img,z0,z1,z) cimg_for_in19Y(img,y0,y1,y) |
philpem@5 | 4242 | #define cimg_for_in19YV(img,y0,v0,y1,v1,y,v) cimg_for_in19V(img,v0,v1,v) cimg_for_in19Y(img,y0,y1,y) |
philpem@5 | 4243 | #define cimg_for_in19ZV(img,z0,v0,z1,v1,z,v) cimg_for_in19V(img,v0,v1,v) cimg_for_in19Z(img,z0,z1,z) |
philpem@5 | 4244 | #define cimg_for_in19XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in19Z(img,z0,z1,z) cimg_for_in19XY(img,x0,y0,x1,y1,x,y) |
philpem@5 | 4245 | #define cimg_for_in19XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in19V(img,v0,v1,v) cimg_for_in19XZ(img,x0,y0,x1,y1,x,z) |
philpem@5 | 4246 | #define cimg_for_in19YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in19V(img,v0,v1,v) cimg_for_in19YZ(img,y0,z0,y1,z1,y,z) |
philpem@5 | 4247 | #define cimg_for_in19XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in19V(img,v0,v1,v) cimg_for_in19XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) |
philpem@5 | 4248 | |
philpem@5 | 4249 | #define cimg_for19x19(img,x,y,z,v,I) \ |
philpem@5 | 4250 | cimg_for19((img).height,y) for (int x = 0, \ |
philpem@5 | 4251 | _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \ |
philpem@5 | 4252 | _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \ |
philpem@5 | 4253 | _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \ |
philpem@5 | 4254 | _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \ |
philpem@5 | 4255 | _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \ |
philpem@5 | 4256 | _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \ |
philpem@5 | 4257 | _n6##x = 6>=((img).width)?(int)((img).width)-1:6, \ |
philpem@5 | 4258 | _n7##x = 7>=((img).width)?(int)((img).width)-1:7, \ |
philpem@5 | 4259 | _n8##x = 8>=((img).width)?(int)((img).width)-1:8, \ |
philpem@5 | 4260 | _n9##x = (int)( \ |
philpem@5 | 4261 | (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = (img)(0,_p9##y,z,v)), \ |
philpem@5 | 4262 | (I[19] = I[20] = I[21] = I[22] = I[23] = I[24] = I[25] = I[26] = I[27] = I[28] = (img)(0,_p8##y,z,v)), \ |
philpem@5 | 4263 | (I[38] = I[39] = I[40] = I[41] = I[42] = I[43] = I[44] = I[45] = I[46] = I[47] = (img)(0,_p7##y,z,v)), \ |
philpem@5 | 4264 | (I[57] = I[58] = I[59] = I[60] = I[61] = I[62] = I[63] = I[64] = I[65] = I[66] = (img)(0,_p6##y,z,v)), \ |
philpem@5 | 4265 | (I[76] = I[77] = I[78] = I[79] = I[80] = I[81] = I[82] = I[83] = I[84] = I[85] = (img)(0,_p5##y,z,v)), \ |
philpem@5 | 4266 | (I[95] = I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = I[104] = (img)(0,_p4##y,z,v)), \ |
philpem@5 | 4267 | (I[114] = I[115] = I[116] = I[117] = I[118] = I[119] = I[120] = I[121] = I[122] = I[123] = (img)(0,_p3##y,z,v)), \ |
philpem@5 | 4268 | (I[133] = I[134] = I[135] = I[136] = I[137] = I[138] = I[139] = I[140] = I[141] = I[142] = (img)(0,_p2##y,z,v)), \ |
philpem@5 | 4269 | (I[152] = I[153] = I[154] = I[155] = I[156] = I[157] = I[158] = I[159] = I[160] = I[161] = (img)(0,_p1##y,z,v)), \ |
philpem@5 | 4270 | (I[171] = I[172] = I[173] = I[174] = I[175] = I[176] = I[177] = I[178] = I[179] = I[180] = (img)(0,y,z,v)), \ |
philpem@5 | 4271 | (I[190] = I[191] = I[192] = I[193] = I[194] = I[195] = I[196] = I[197] = I[198] = I[199] = (img)(0,_n1##y,z,v)), \ |
philpem@5 | 4272 | (I[209] = I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = I[216] = I[217] = I[218] = (img)(0,_n2##y,z,v)), \ |
philpem@5 | 4273 | (I[228] = I[229] = I[230] = I[231] = I[232] = I[233] = I[234] = I[235] = I[236] = I[237] = (img)(0,_n3##y,z,v)), \ |
philpem@5 | 4274 | (I[247] = I[248] = I[249] = I[250] = I[251] = I[252] = I[253] = I[254] = I[255] = I[256] = (img)(0,_n4##y,z,v)), \ |
philpem@5 | 4275 | (I[266] = I[267] = I[268] = I[269] = I[270] = I[271] = I[272] = I[273] = I[274] = I[275] = (img)(0,_n5##y,z,v)), \ |
philpem@5 | 4276 | (I[285] = I[286] = I[287] = I[288] = I[289] = I[290] = I[291] = I[292] = I[293] = I[294] = (img)(0,_n6##y,z,v)), \ |
philpem@5 | 4277 | (I[304] = I[305] = I[306] = I[307] = I[308] = I[309] = I[310] = I[311] = I[312] = I[313] = (img)(0,_n7##y,z,v)), \ |
philpem@5 | 4278 | (I[323] = I[324] = I[325] = I[326] = I[327] = I[328] = I[329] = I[330] = I[331] = I[332] = (img)(0,_n8##y,z,v)), \ |
philpem@5 | 4279 | (I[342] = I[343] = I[344] = I[345] = I[346] = I[347] = I[348] = I[349] = I[350] = I[351] = (img)(0,_n9##y,z,v)), \ |
philpem@5 | 4280 | (I[10] = (img)(_n1##x,_p9##y,z,v)), \ |
philpem@5 | 4281 | (I[29] = (img)(_n1##x,_p8##y,z,v)), \ |
philpem@5 | 4282 | (I[48] = (img)(_n1##x,_p7##y,z,v)), \ |
philpem@5 | 4283 | (I[67] = (img)(_n1##x,_p6##y,z,v)), \ |
philpem@5 | 4284 | (I[86] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 4285 | (I[105] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 4286 | (I[124] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 4287 | (I[143] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 4288 | (I[162] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 4289 | (I[181] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 4290 | (I[200] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 4291 | (I[219] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 4292 | (I[238] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 4293 | (I[257] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 4294 | (I[276] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 4295 | (I[295] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 4296 | (I[314] = (img)(_n1##x,_n7##y,z,v)), \ |
philpem@5 | 4297 | (I[333] = (img)(_n1##x,_n8##y,z,v)), \ |
philpem@5 | 4298 | (I[352] = (img)(_n1##x,_n9##y,z,v)), \ |
philpem@5 | 4299 | (I[11] = (img)(_n2##x,_p9##y,z,v)), \ |
philpem@5 | 4300 | (I[30] = (img)(_n2##x,_p8##y,z,v)), \ |
philpem@5 | 4301 | (I[49] = (img)(_n2##x,_p7##y,z,v)), \ |
philpem@5 | 4302 | (I[68] = (img)(_n2##x,_p6##y,z,v)), \ |
philpem@5 | 4303 | (I[87] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 4304 | (I[106] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 4305 | (I[125] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 4306 | (I[144] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 4307 | (I[163] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 4308 | (I[182] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 4309 | (I[201] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 4310 | (I[220] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 4311 | (I[239] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 4312 | (I[258] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 4313 | (I[277] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 4314 | (I[296] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 4315 | (I[315] = (img)(_n2##x,_n7##y,z,v)), \ |
philpem@5 | 4316 | (I[334] = (img)(_n2##x,_n8##y,z,v)), \ |
philpem@5 | 4317 | (I[353] = (img)(_n2##x,_n9##y,z,v)), \ |
philpem@5 | 4318 | (I[12] = (img)(_n3##x,_p9##y,z,v)), \ |
philpem@5 | 4319 | (I[31] = (img)(_n3##x,_p8##y,z,v)), \ |
philpem@5 | 4320 | (I[50] = (img)(_n3##x,_p7##y,z,v)), \ |
philpem@5 | 4321 | (I[69] = (img)(_n3##x,_p6##y,z,v)), \ |
philpem@5 | 4322 | (I[88] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 4323 | (I[107] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 4324 | (I[126] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 4325 | (I[145] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 4326 | (I[164] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 4327 | (I[183] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 4328 | (I[202] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 4329 | (I[221] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 4330 | (I[240] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 4331 | (I[259] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 4332 | (I[278] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 4333 | (I[297] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 4334 | (I[316] = (img)(_n3##x,_n7##y,z,v)), \ |
philpem@5 | 4335 | (I[335] = (img)(_n3##x,_n8##y,z,v)), \ |
philpem@5 | 4336 | (I[354] = (img)(_n3##x,_n9##y,z,v)), \ |
philpem@5 | 4337 | (I[13] = (img)(_n4##x,_p9##y,z,v)), \ |
philpem@5 | 4338 | (I[32] = (img)(_n4##x,_p8##y,z,v)), \ |
philpem@5 | 4339 | (I[51] = (img)(_n4##x,_p7##y,z,v)), \ |
philpem@5 | 4340 | (I[70] = (img)(_n4##x,_p6##y,z,v)), \ |
philpem@5 | 4341 | (I[89] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 4342 | (I[108] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 4343 | (I[127] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 4344 | (I[146] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 4345 | (I[165] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 4346 | (I[184] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 4347 | (I[203] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 4348 | (I[222] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 4349 | (I[241] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 4350 | (I[260] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 4351 | (I[279] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 4352 | (I[298] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 4353 | (I[317] = (img)(_n4##x,_n7##y,z,v)), \ |
philpem@5 | 4354 | (I[336] = (img)(_n4##x,_n8##y,z,v)), \ |
philpem@5 | 4355 | (I[355] = (img)(_n4##x,_n9##y,z,v)), \ |
philpem@5 | 4356 | (I[14] = (img)(_n5##x,_p9##y,z,v)), \ |
philpem@5 | 4357 | (I[33] = (img)(_n5##x,_p8##y,z,v)), \ |
philpem@5 | 4358 | (I[52] = (img)(_n5##x,_p7##y,z,v)), \ |
philpem@5 | 4359 | (I[71] = (img)(_n5##x,_p6##y,z,v)), \ |
philpem@5 | 4360 | (I[90] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 4361 | (I[109] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 4362 | (I[128] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 4363 | (I[147] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 4364 | (I[166] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 4365 | (I[185] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 4366 | (I[204] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 4367 | (I[223] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 4368 | (I[242] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 4369 | (I[261] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 4370 | (I[280] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 4371 | (I[299] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 4372 | (I[318] = (img)(_n5##x,_n7##y,z,v)), \ |
philpem@5 | 4373 | (I[337] = (img)(_n5##x,_n8##y,z,v)), \ |
philpem@5 | 4374 | (I[356] = (img)(_n5##x,_n9##y,z,v)), \ |
philpem@5 | 4375 | (I[15] = (img)(_n6##x,_p9##y,z,v)), \ |
philpem@5 | 4376 | (I[34] = (img)(_n6##x,_p8##y,z,v)), \ |
philpem@5 | 4377 | (I[53] = (img)(_n6##x,_p7##y,z,v)), \ |
philpem@5 | 4378 | (I[72] = (img)(_n6##x,_p6##y,z,v)), \ |
philpem@5 | 4379 | (I[91] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 4380 | (I[110] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 4381 | (I[129] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 4382 | (I[148] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 4383 | (I[167] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 4384 | (I[186] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 4385 | (I[205] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 4386 | (I[224] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 4387 | (I[243] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 4388 | (I[262] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 4389 | (I[281] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 4390 | (I[300] = (img)(_n6##x,_n6##y,z,v)), \ |
philpem@5 | 4391 | (I[319] = (img)(_n6##x,_n7##y,z,v)), \ |
philpem@5 | 4392 | (I[338] = (img)(_n6##x,_n8##y,z,v)), \ |
philpem@5 | 4393 | (I[357] = (img)(_n6##x,_n9##y,z,v)), \ |
philpem@5 | 4394 | (I[16] = (img)(_n7##x,_p9##y,z,v)), \ |
philpem@5 | 4395 | (I[35] = (img)(_n7##x,_p8##y,z,v)), \ |
philpem@5 | 4396 | (I[54] = (img)(_n7##x,_p7##y,z,v)), \ |
philpem@5 | 4397 | (I[73] = (img)(_n7##x,_p6##y,z,v)), \ |
philpem@5 | 4398 | (I[92] = (img)(_n7##x,_p5##y,z,v)), \ |
philpem@5 | 4399 | (I[111] = (img)(_n7##x,_p4##y,z,v)), \ |
philpem@5 | 4400 | (I[130] = (img)(_n7##x,_p3##y,z,v)), \ |
philpem@5 | 4401 | (I[149] = (img)(_n7##x,_p2##y,z,v)), \ |
philpem@5 | 4402 | (I[168] = (img)(_n7##x,_p1##y,z,v)), \ |
philpem@5 | 4403 | (I[187] = (img)(_n7##x,y,z,v)), \ |
philpem@5 | 4404 | (I[206] = (img)(_n7##x,_n1##y,z,v)), \ |
philpem@5 | 4405 | (I[225] = (img)(_n7##x,_n2##y,z,v)), \ |
philpem@5 | 4406 | (I[244] = (img)(_n7##x,_n3##y,z,v)), \ |
philpem@5 | 4407 | (I[263] = (img)(_n7##x,_n4##y,z,v)), \ |
philpem@5 | 4408 | (I[282] = (img)(_n7##x,_n5##y,z,v)), \ |
philpem@5 | 4409 | (I[301] = (img)(_n7##x,_n6##y,z,v)), \ |
philpem@5 | 4410 | (I[320] = (img)(_n7##x,_n7##y,z,v)), \ |
philpem@5 | 4411 | (I[339] = (img)(_n7##x,_n8##y,z,v)), \ |
philpem@5 | 4412 | (I[358] = (img)(_n7##x,_n9##y,z,v)), \ |
philpem@5 | 4413 | (I[17] = (img)(_n8##x,_p9##y,z,v)), \ |
philpem@5 | 4414 | (I[36] = (img)(_n8##x,_p8##y,z,v)), \ |
philpem@5 | 4415 | (I[55] = (img)(_n8##x,_p7##y,z,v)), \ |
philpem@5 | 4416 | (I[74] = (img)(_n8##x,_p6##y,z,v)), \ |
philpem@5 | 4417 | (I[93] = (img)(_n8##x,_p5##y,z,v)), \ |
philpem@5 | 4418 | (I[112] = (img)(_n8##x,_p4##y,z,v)), \ |
philpem@5 | 4419 | (I[131] = (img)(_n8##x,_p3##y,z,v)), \ |
philpem@5 | 4420 | (I[150] = (img)(_n8##x,_p2##y,z,v)), \ |
philpem@5 | 4421 | (I[169] = (img)(_n8##x,_p1##y,z,v)), \ |
philpem@5 | 4422 | (I[188] = (img)(_n8##x,y,z,v)), \ |
philpem@5 | 4423 | (I[207] = (img)(_n8##x,_n1##y,z,v)), \ |
philpem@5 | 4424 | (I[226] = (img)(_n8##x,_n2##y,z,v)), \ |
philpem@5 | 4425 | (I[245] = (img)(_n8##x,_n3##y,z,v)), \ |
philpem@5 | 4426 | (I[264] = (img)(_n8##x,_n4##y,z,v)), \ |
philpem@5 | 4427 | (I[283] = (img)(_n8##x,_n5##y,z,v)), \ |
philpem@5 | 4428 | (I[302] = (img)(_n8##x,_n6##y,z,v)), \ |
philpem@5 | 4429 | (I[321] = (img)(_n8##x,_n7##y,z,v)), \ |
philpem@5 | 4430 | (I[340] = (img)(_n8##x,_n8##y,z,v)), \ |
philpem@5 | 4431 | (I[359] = (img)(_n8##x,_n9##y,z,v)), \ |
philpem@5 | 4432 | 9>=((img).width)?(int)((img).width)-1:9); \ |
philpem@5 | 4433 | (_n9##x<(int)((img).width) && ( \ |
philpem@5 | 4434 | (I[18] = (img)(_n9##x,_p9##y,z,v)), \ |
philpem@5 | 4435 | (I[37] = (img)(_n9##x,_p8##y,z,v)), \ |
philpem@5 | 4436 | (I[56] = (img)(_n9##x,_p7##y,z,v)), \ |
philpem@5 | 4437 | (I[75] = (img)(_n9##x,_p6##y,z,v)), \ |
philpem@5 | 4438 | (I[94] = (img)(_n9##x,_p5##y,z,v)), \ |
philpem@5 | 4439 | (I[113] = (img)(_n9##x,_p4##y,z,v)), \ |
philpem@5 | 4440 | (I[132] = (img)(_n9##x,_p3##y,z,v)), \ |
philpem@5 | 4441 | (I[151] = (img)(_n9##x,_p2##y,z,v)), \ |
philpem@5 | 4442 | (I[170] = (img)(_n9##x,_p1##y,z,v)), \ |
philpem@5 | 4443 | (I[189] = (img)(_n9##x,y,z,v)), \ |
philpem@5 | 4444 | (I[208] = (img)(_n9##x,_n1##y,z,v)), \ |
philpem@5 | 4445 | (I[227] = (img)(_n9##x,_n2##y,z,v)), \ |
philpem@5 | 4446 | (I[246] = (img)(_n9##x,_n3##y,z,v)), \ |
philpem@5 | 4447 | (I[265] = (img)(_n9##x,_n4##y,z,v)), \ |
philpem@5 | 4448 | (I[284] = (img)(_n9##x,_n5##y,z,v)), \ |
philpem@5 | 4449 | (I[303] = (img)(_n9##x,_n6##y,z,v)), \ |
philpem@5 | 4450 | (I[322] = (img)(_n9##x,_n7##y,z,v)), \ |
philpem@5 | 4451 | (I[341] = (img)(_n9##x,_n8##y,z,v)), \ |
philpem@5 | 4452 | (I[360] = (img)(_n9##x,_n9##y,z,v)),1)) || \ |
philpem@5 | 4453 | _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \ |
philpem@5 | 4454 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], \ |
philpem@5 | 4455 | I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], \ |
philpem@5 | 4456 | I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], \ |
philpem@5 | 4457 | I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], \ |
philpem@5 | 4458 | I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], \ |
philpem@5 | 4459 | I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], \ |
philpem@5 | 4460 | I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], \ |
philpem@5 | 4461 | I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], \ |
philpem@5 | 4462 | I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], \ |
philpem@5 | 4463 | I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], \ |
philpem@5 | 4464 | I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], \ |
philpem@5 | 4465 | I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], \ |
philpem@5 | 4466 | I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], \ |
philpem@5 | 4467 | I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], \ |
philpem@5 | 4468 | I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], \ |
philpem@5 | 4469 | I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], \ |
philpem@5 | 4470 | I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], \ |
philpem@5 | 4471 | I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], \ |
philpem@5 | 4472 | I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], \ |
philpem@5 | 4473 | _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x) |
philpem@5 | 4474 | |
philpem@5 | 4475 | #define cimg_for_in19x19(img,x0,y0,x1,y1,x,y,z,v,I) \ |
philpem@5 | 4476 | cimg_for_in19((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ |
philpem@5 | 4477 | _p9##x = x-9<0?0:x-9, \ |
philpem@5 | 4478 | _p8##x = x-8<0?0:x-8, \ |
philpem@5 | 4479 | _p7##x = x-7<0?0:x-7, \ |
philpem@5 | 4480 | _p6##x = x-6<0?0:x-6, \ |
philpem@5 | 4481 | _p5##x = x-5<0?0:x-5, \ |
philpem@5 | 4482 | _p4##x = x-4<0?0:x-4, \ |
philpem@5 | 4483 | _p3##x = x-3<0?0:x-3, \ |
philpem@5 | 4484 | _p2##x = x-2<0?0:x-2, \ |
philpem@5 | 4485 | _p1##x = x-1<0?0:x-1, \ |
philpem@5 | 4486 | _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \ |
philpem@5 | 4487 | _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \ |
philpem@5 | 4488 | _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \ |
philpem@5 | 4489 | _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \ |
philpem@5 | 4490 | _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \ |
philpem@5 | 4491 | _n6##x = x+6>=(int)((img).width)?(int)((img).width)-1:x+6, \ |
philpem@5 | 4492 | _n7##x = x+7>=(int)((img).width)?(int)((img).width)-1:x+7, \ |
philpem@5 | 4493 | _n8##x = x+8>=(int)((img).width)?(int)((img).width)-1:x+8, \ |
philpem@5 | 4494 | _n9##x = (int)( \ |
philpem@5 | 4495 | (I[0] = (img)(_p9##x,_p9##y,z,v)), \ |
philpem@5 | 4496 | (I[19] = (img)(_p9##x,_p8##y,z,v)), \ |
philpem@5 | 4497 | (I[38] = (img)(_p9##x,_p7##y,z,v)), \ |
philpem@5 | 4498 | (I[57] = (img)(_p9##x,_p6##y,z,v)), \ |
philpem@5 | 4499 | (I[76] = (img)(_p9##x,_p5##y,z,v)), \ |
philpem@5 | 4500 | (I[95] = (img)(_p9##x,_p4##y,z,v)), \ |
philpem@5 | 4501 | (I[114] = (img)(_p9##x,_p3##y,z,v)), \ |
philpem@5 | 4502 | (I[133] = (img)(_p9##x,_p2##y,z,v)), \ |
philpem@5 | 4503 | (I[152] = (img)(_p9##x,_p1##y,z,v)), \ |
philpem@5 | 4504 | (I[171] = (img)(_p9##x,y,z,v)), \ |
philpem@5 | 4505 | (I[190] = (img)(_p9##x,_n1##y,z,v)), \ |
philpem@5 | 4506 | (I[209] = (img)(_p9##x,_n2##y,z,v)), \ |
philpem@5 | 4507 | (I[228] = (img)(_p9##x,_n3##y,z,v)), \ |
philpem@5 | 4508 | (I[247] = (img)(_p9##x,_n4##y,z,v)), \ |
philpem@5 | 4509 | (I[266] = (img)(_p9##x,_n5##y,z,v)), \ |
philpem@5 | 4510 | (I[285] = (img)(_p9##x,_n6##y,z,v)), \ |
philpem@5 | 4511 | (I[304] = (img)(_p9##x,_n7##y,z,v)), \ |
philpem@5 | 4512 | (I[323] = (img)(_p9##x,_n8##y,z,v)), \ |
philpem@5 | 4513 | (I[342] = (img)(_p9##x,_n9##y,z,v)), \ |
philpem@5 | 4514 | (I[1] = (img)(_p8##x,_p9##y,z,v)), \ |
philpem@5 | 4515 | (I[20] = (img)(_p8##x,_p8##y,z,v)), \ |
philpem@5 | 4516 | (I[39] = (img)(_p8##x,_p7##y,z,v)), \ |
philpem@5 | 4517 | (I[58] = (img)(_p8##x,_p6##y,z,v)), \ |
philpem@5 | 4518 | (I[77] = (img)(_p8##x,_p5##y,z,v)), \ |
philpem@5 | 4519 | (I[96] = (img)(_p8##x,_p4##y,z,v)), \ |
philpem@5 | 4520 | (I[115] = (img)(_p8##x,_p3##y,z,v)), \ |
philpem@5 | 4521 | (I[134] = (img)(_p8##x,_p2##y,z,v)), \ |
philpem@5 | 4522 | (I[153] = (img)(_p8##x,_p1##y,z,v)), \ |
philpem@5 | 4523 | (I[172] = (img)(_p8##x,y,z,v)), \ |
philpem@5 | 4524 | (I[191] = (img)(_p8##x,_n1##y,z,v)), \ |
philpem@5 | 4525 | (I[210] = (img)(_p8##x,_n2##y,z,v)), \ |
philpem@5 | 4526 | (I[229] = (img)(_p8##x,_n3##y,z,v)), \ |
philpem@5 | 4527 | (I[248] = (img)(_p8##x,_n4##y,z,v)), \ |
philpem@5 | 4528 | (I[267] = (img)(_p8##x,_n5##y,z,v)), \ |
philpem@5 | 4529 | (I[286] = (img)(_p8##x,_n6##y,z,v)), \ |
philpem@5 | 4530 | (I[305] = (img)(_p8##x,_n7##y,z,v)), \ |
philpem@5 | 4531 | (I[324] = (img)(_p8##x,_n8##y,z,v)), \ |
philpem@5 | 4532 | (I[343] = (img)(_p8##x,_n9##y,z,v)), \ |
philpem@5 | 4533 | (I[2] = (img)(_p7##x,_p9##y,z,v)), \ |
philpem@5 | 4534 | (I[21] = (img)(_p7##x,_p8##y,z,v)), \ |
philpem@5 | 4535 | (I[40] = (img)(_p7##x,_p7##y,z,v)), \ |
philpem@5 | 4536 | (I[59] = (img)(_p7##x,_p6##y,z,v)), \ |
philpem@5 | 4537 | (I[78] = (img)(_p7##x,_p5##y,z,v)), \ |
philpem@5 | 4538 | (I[97] = (img)(_p7##x,_p4##y,z,v)), \ |
philpem@5 | 4539 | (I[116] = (img)(_p7##x,_p3##y,z,v)), \ |
philpem@5 | 4540 | (I[135] = (img)(_p7##x,_p2##y,z,v)), \ |
philpem@5 | 4541 | (I[154] = (img)(_p7##x,_p1##y,z,v)), \ |
philpem@5 | 4542 | (I[173] = (img)(_p7##x,y,z,v)), \ |
philpem@5 | 4543 | (I[192] = (img)(_p7##x,_n1##y,z,v)), \ |
philpem@5 | 4544 | (I[211] = (img)(_p7##x,_n2##y,z,v)), \ |
philpem@5 | 4545 | (I[230] = (img)(_p7##x,_n3##y,z,v)), \ |
philpem@5 | 4546 | (I[249] = (img)(_p7##x,_n4##y,z,v)), \ |
philpem@5 | 4547 | (I[268] = (img)(_p7##x,_n5##y,z,v)), \ |
philpem@5 | 4548 | (I[287] = (img)(_p7##x,_n6##y,z,v)), \ |
philpem@5 | 4549 | (I[306] = (img)(_p7##x,_n7##y,z,v)), \ |
philpem@5 | 4550 | (I[325] = (img)(_p7##x,_n8##y,z,v)), \ |
philpem@5 | 4551 | (I[344] = (img)(_p7##x,_n9##y,z,v)), \ |
philpem@5 | 4552 | (I[3] = (img)(_p6##x,_p9##y,z,v)), \ |
philpem@5 | 4553 | (I[22] = (img)(_p6##x,_p8##y,z,v)), \ |
philpem@5 | 4554 | (I[41] = (img)(_p6##x,_p7##y,z,v)), \ |
philpem@5 | 4555 | (I[60] = (img)(_p6##x,_p6##y,z,v)), \ |
philpem@5 | 4556 | (I[79] = (img)(_p6##x,_p5##y,z,v)), \ |
philpem@5 | 4557 | (I[98] = (img)(_p6##x,_p4##y,z,v)), \ |
philpem@5 | 4558 | (I[117] = (img)(_p6##x,_p3##y,z,v)), \ |
philpem@5 | 4559 | (I[136] = (img)(_p6##x,_p2##y,z,v)), \ |
philpem@5 | 4560 | (I[155] = (img)(_p6##x,_p1##y,z,v)), \ |
philpem@5 | 4561 | (I[174] = (img)(_p6##x,y,z,v)), \ |
philpem@5 | 4562 | (I[193] = (img)(_p6##x,_n1##y,z,v)), \ |
philpem@5 | 4563 | (I[212] = (img)(_p6##x,_n2##y,z,v)), \ |
philpem@5 | 4564 | (I[231] = (img)(_p6##x,_n3##y,z,v)), \ |
philpem@5 | 4565 | (I[250] = (img)(_p6##x,_n4##y,z,v)), \ |
philpem@5 | 4566 | (I[269] = (img)(_p6##x,_n5##y,z,v)), \ |
philpem@5 | 4567 | (I[288] = (img)(_p6##x,_n6##y,z,v)), \ |
philpem@5 | 4568 | (I[307] = (img)(_p6##x,_n7##y,z,v)), \ |
philpem@5 | 4569 | (I[326] = (img)(_p6##x,_n8##y,z,v)), \ |
philpem@5 | 4570 | (I[345] = (img)(_p6##x,_n9##y,z,v)), \ |
philpem@5 | 4571 | (I[4] = (img)(_p5##x,_p9##y,z,v)), \ |
philpem@5 | 4572 | (I[23] = (img)(_p5##x,_p8##y,z,v)), \ |
philpem@5 | 4573 | (I[42] = (img)(_p5##x,_p7##y,z,v)), \ |
philpem@5 | 4574 | (I[61] = (img)(_p5##x,_p6##y,z,v)), \ |
philpem@5 | 4575 | (I[80] = (img)(_p5##x,_p5##y,z,v)), \ |
philpem@5 | 4576 | (I[99] = (img)(_p5##x,_p4##y,z,v)), \ |
philpem@5 | 4577 | (I[118] = (img)(_p5##x,_p3##y,z,v)), \ |
philpem@5 | 4578 | (I[137] = (img)(_p5##x,_p2##y,z,v)), \ |
philpem@5 | 4579 | (I[156] = (img)(_p5##x,_p1##y,z,v)), \ |
philpem@5 | 4580 | (I[175] = (img)(_p5##x,y,z,v)), \ |
philpem@5 | 4581 | (I[194] = (img)(_p5##x,_n1##y,z,v)), \ |
philpem@5 | 4582 | (I[213] = (img)(_p5##x,_n2##y,z,v)), \ |
philpem@5 | 4583 | (I[232] = (img)(_p5##x,_n3##y,z,v)), \ |
philpem@5 | 4584 | (I[251] = (img)(_p5##x,_n4##y,z,v)), \ |
philpem@5 | 4585 | (I[270] = (img)(_p5##x,_n5##y,z,v)), \ |
philpem@5 | 4586 | (I[289] = (img)(_p5##x,_n6##y,z,v)), \ |
philpem@5 | 4587 | (I[308] = (img)(_p5##x,_n7##y,z,v)), \ |
philpem@5 | 4588 | (I[327] = (img)(_p5##x,_n8##y,z,v)), \ |
philpem@5 | 4589 | (I[346] = (img)(_p5##x,_n9##y,z,v)), \ |
philpem@5 | 4590 | (I[5] = (img)(_p4##x,_p9##y,z,v)), \ |
philpem@5 | 4591 | (I[24] = (img)(_p4##x,_p8##y,z,v)), \ |
philpem@5 | 4592 | (I[43] = (img)(_p4##x,_p7##y,z,v)), \ |
philpem@5 | 4593 | (I[62] = (img)(_p4##x,_p6##y,z,v)), \ |
philpem@5 | 4594 | (I[81] = (img)(_p4##x,_p5##y,z,v)), \ |
philpem@5 | 4595 | (I[100] = (img)(_p4##x,_p4##y,z,v)), \ |
philpem@5 | 4596 | (I[119] = (img)(_p4##x,_p3##y,z,v)), \ |
philpem@5 | 4597 | (I[138] = (img)(_p4##x,_p2##y,z,v)), \ |
philpem@5 | 4598 | (I[157] = (img)(_p4##x,_p1##y,z,v)), \ |
philpem@5 | 4599 | (I[176] = (img)(_p4##x,y,z,v)), \ |
philpem@5 | 4600 | (I[195] = (img)(_p4##x,_n1##y,z,v)), \ |
philpem@5 | 4601 | (I[214] = (img)(_p4##x,_n2##y,z,v)), \ |
philpem@5 | 4602 | (I[233] = (img)(_p4##x,_n3##y,z,v)), \ |
philpem@5 | 4603 | (I[252] = (img)(_p4##x,_n4##y,z,v)), \ |
philpem@5 | 4604 | (I[271] = (img)(_p4##x,_n5##y,z,v)), \ |
philpem@5 | 4605 | (I[290] = (img)(_p4##x,_n6##y,z,v)), \ |
philpem@5 | 4606 | (I[309] = (img)(_p4##x,_n7##y,z,v)), \ |
philpem@5 | 4607 | (I[328] = (img)(_p4##x,_n8##y,z,v)), \ |
philpem@5 | 4608 | (I[347] = (img)(_p4##x,_n9##y,z,v)), \ |
philpem@5 | 4609 | (I[6] = (img)(_p3##x,_p9##y,z,v)), \ |
philpem@5 | 4610 | (I[25] = (img)(_p3##x,_p8##y,z,v)), \ |
philpem@5 | 4611 | (I[44] = (img)(_p3##x,_p7##y,z,v)), \ |
philpem@5 | 4612 | (I[63] = (img)(_p3##x,_p6##y,z,v)), \ |
philpem@5 | 4613 | (I[82] = (img)(_p3##x,_p5##y,z,v)), \ |
philpem@5 | 4614 | (I[101] = (img)(_p3##x,_p4##y,z,v)), \ |
philpem@5 | 4615 | (I[120] = (img)(_p3##x,_p3##y,z,v)), \ |
philpem@5 | 4616 | (I[139] = (img)(_p3##x,_p2##y,z,v)), \ |
philpem@5 | 4617 | (I[158] = (img)(_p3##x,_p1##y,z,v)), \ |
philpem@5 | 4618 | (I[177] = (img)(_p3##x,y,z,v)), \ |
philpem@5 | 4619 | (I[196] = (img)(_p3##x,_n1##y,z,v)), \ |
philpem@5 | 4620 | (I[215] = (img)(_p3##x,_n2##y,z,v)), \ |
philpem@5 | 4621 | (I[234] = (img)(_p3##x,_n3##y,z,v)), \ |
philpem@5 | 4622 | (I[253] = (img)(_p3##x,_n4##y,z,v)), \ |
philpem@5 | 4623 | (I[272] = (img)(_p3##x,_n5##y,z,v)), \ |
philpem@5 | 4624 | (I[291] = (img)(_p3##x,_n6##y,z,v)), \ |
philpem@5 | 4625 | (I[310] = (img)(_p3##x,_n7##y,z,v)), \ |
philpem@5 | 4626 | (I[329] = (img)(_p3##x,_n8##y,z,v)), \ |
philpem@5 | 4627 | (I[348] = (img)(_p3##x,_n9##y,z,v)), \ |
philpem@5 | 4628 | (I[7] = (img)(_p2##x,_p9##y,z,v)), \ |
philpem@5 | 4629 | (I[26] = (img)(_p2##x,_p8##y,z,v)), \ |
philpem@5 | 4630 | (I[45] = (img)(_p2##x,_p7##y,z,v)), \ |
philpem@5 | 4631 | (I[64] = (img)(_p2##x,_p6##y,z,v)), \ |
philpem@5 | 4632 | (I[83] = (img)(_p2##x,_p5##y,z,v)), \ |
philpem@5 | 4633 | (I[102] = (img)(_p2##x,_p4##y,z,v)), \ |
philpem@5 | 4634 | (I[121] = (img)(_p2##x,_p3##y,z,v)), \ |
philpem@5 | 4635 | (I[140] = (img)(_p2##x,_p2##y,z,v)), \ |
philpem@5 | 4636 | (I[159] = (img)(_p2##x,_p1##y,z,v)), \ |
philpem@5 | 4637 | (I[178] = (img)(_p2##x,y,z,v)), \ |
philpem@5 | 4638 | (I[197] = (img)(_p2##x,_n1##y,z,v)), \ |
philpem@5 | 4639 | (I[216] = (img)(_p2##x,_n2##y,z,v)), \ |
philpem@5 | 4640 | (I[235] = (img)(_p2##x,_n3##y,z,v)), \ |
philpem@5 | 4641 | (I[254] = (img)(_p2##x,_n4##y,z,v)), \ |
philpem@5 | 4642 | (I[273] = (img)(_p2##x,_n5##y,z,v)), \ |
philpem@5 | 4643 | (I[292] = (img)(_p2##x,_n6##y,z,v)), \ |
philpem@5 | 4644 | (I[311] = (img)(_p2##x,_n7##y,z,v)), \ |
philpem@5 | 4645 | (I[330] = (img)(_p2##x,_n8##y,z,v)), \ |
philpem@5 | 4646 | (I[349] = (img)(_p2##x,_n9##y,z,v)), \ |
philpem@5 | 4647 | (I[8] = (img)(_p1##x,_p9##y,z,v)), \ |
philpem@5 | 4648 | (I[27] = (img)(_p1##x,_p8##y,z,v)), \ |
philpem@5 | 4649 | (I[46] = (img)(_p1##x,_p7##y,z,v)), \ |
philpem@5 | 4650 | (I[65] = (img)(_p1##x,_p6##y,z,v)), \ |
philpem@5 | 4651 | (I[84] = (img)(_p1##x,_p5##y,z,v)), \ |
philpem@5 | 4652 | (I[103] = (img)(_p1##x,_p4##y,z,v)), \ |
philpem@5 | 4653 | (I[122] = (img)(_p1##x,_p3##y,z,v)), \ |
philpem@5 | 4654 | (I[141] = (img)(_p1##x,_p2##y,z,v)), \ |
philpem@5 | 4655 | (I[160] = (img)(_p1##x,_p1##y,z,v)), \ |
philpem@5 | 4656 | (I[179] = (img)(_p1##x,y,z,v)), \ |
philpem@5 | 4657 | (I[198] = (img)(_p1##x,_n1##y,z,v)), \ |
philpem@5 | 4658 | (I[217] = (img)(_p1##x,_n2##y,z,v)), \ |
philpem@5 | 4659 | (I[236] = (img)(_p1##x,_n3##y,z,v)), \ |
philpem@5 | 4660 | (I[255] = (img)(_p1##x,_n4##y,z,v)), \ |
philpem@5 | 4661 | (I[274] = (img)(_p1##x,_n5##y,z,v)), \ |
philpem@5 | 4662 | (I[293] = (img)(_p1##x,_n6##y,z,v)), \ |
philpem@5 | 4663 | (I[312] = (img)(_p1##x,_n7##y,z,v)), \ |
philpem@5 | 4664 | (I[331] = (img)(_p1##x,_n8##y,z,v)), \ |
philpem@5 | 4665 | (I[350] = (img)(_p1##x,_n9##y,z,v)), \ |
philpem@5 | 4666 | (I[9] = (img)(x,_p9##y,z,v)), \ |
philpem@5 | 4667 | (I[28] = (img)(x,_p8##y,z,v)), \ |
philpem@5 | 4668 | (I[47] = (img)(x,_p7##y,z,v)), \ |
philpem@5 | 4669 | (I[66] = (img)(x,_p6##y,z,v)), \ |
philpem@5 | 4670 | (I[85] = (img)(x,_p5##y,z,v)), \ |
philpem@5 | 4671 | (I[104] = (img)(x,_p4##y,z,v)), \ |
philpem@5 | 4672 | (I[123] = (img)(x,_p3##y,z,v)), \ |
philpem@5 | 4673 | (I[142] = (img)(x,_p2##y,z,v)), \ |
philpem@5 | 4674 | (I[161] = (img)(x,_p1##y,z,v)), \ |
philpem@5 | 4675 | (I[180] = (img)(x,y,z,v)), \ |
philpem@5 | 4676 | (I[199] = (img)(x,_n1##y,z,v)), \ |
philpem@5 | 4677 | (I[218] = (img)(x,_n2##y,z,v)), \ |
philpem@5 | 4678 | (I[237] = (img)(x,_n3##y,z,v)), \ |
philpem@5 | 4679 | (I[256] = (img)(x,_n4##y,z,v)), \ |
philpem@5 | 4680 | (I[275] = (img)(x,_n5##y,z,v)), \ |
philpem@5 | 4681 | (I[294] = (img)(x,_n6##y,z,v)), \ |
philpem@5 | 4682 | (I[313] = (img)(x,_n7##y,z,v)), \ |
philpem@5 | 4683 | (I[332] = (img)(x,_n8##y,z,v)), \ |
philpem@5 | 4684 | (I[351] = (img)(x,_n9##y,z,v)), \ |
philpem@5 | 4685 | (I[10] = (img)(_n1##x,_p9##y,z,v)), \ |
philpem@5 | 4686 | (I[29] = (img)(_n1##x,_p8##y,z,v)), \ |
philpem@5 | 4687 | (I[48] = (img)(_n1##x,_p7##y,z,v)), \ |
philpem@5 | 4688 | (I[67] = (img)(_n1##x,_p6##y,z,v)), \ |
philpem@5 | 4689 | (I[86] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 4690 | (I[105] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 4691 | (I[124] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 4692 | (I[143] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 4693 | (I[162] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 4694 | (I[181] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 4695 | (I[200] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 4696 | (I[219] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 4697 | (I[238] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 4698 | (I[257] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 4699 | (I[276] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 4700 | (I[295] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 4701 | (I[314] = (img)(_n1##x,_n7##y,z,v)), \ |
philpem@5 | 4702 | (I[333] = (img)(_n1##x,_n8##y,z,v)), \ |
philpem@5 | 4703 | (I[352] = (img)(_n1##x,_n9##y,z,v)), \ |
philpem@5 | 4704 | (I[11] = (img)(_n2##x,_p9##y,z,v)), \ |
philpem@5 | 4705 | (I[30] = (img)(_n2##x,_p8##y,z,v)), \ |
philpem@5 | 4706 | (I[49] = (img)(_n2##x,_p7##y,z,v)), \ |
philpem@5 | 4707 | (I[68] = (img)(_n2##x,_p6##y,z,v)), \ |
philpem@5 | 4708 | (I[87] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 4709 | (I[106] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 4710 | (I[125] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 4711 | (I[144] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 4712 | (I[163] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 4713 | (I[182] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 4714 | (I[201] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 4715 | (I[220] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 4716 | (I[239] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 4717 | (I[258] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 4718 | (I[277] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 4719 | (I[296] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 4720 | (I[315] = (img)(_n2##x,_n7##y,z,v)), \ |
philpem@5 | 4721 | (I[334] = (img)(_n2##x,_n8##y,z,v)), \ |
philpem@5 | 4722 | (I[353] = (img)(_n2##x,_n9##y,z,v)), \ |
philpem@5 | 4723 | (I[12] = (img)(_n3##x,_p9##y,z,v)), \ |
philpem@5 | 4724 | (I[31] = (img)(_n3##x,_p8##y,z,v)), \ |
philpem@5 | 4725 | (I[50] = (img)(_n3##x,_p7##y,z,v)), \ |
philpem@5 | 4726 | (I[69] = (img)(_n3##x,_p6##y,z,v)), \ |
philpem@5 | 4727 | (I[88] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 4728 | (I[107] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 4729 | (I[126] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 4730 | (I[145] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 4731 | (I[164] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 4732 | (I[183] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 4733 | (I[202] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 4734 | (I[221] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 4735 | (I[240] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 4736 | (I[259] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 4737 | (I[278] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 4738 | (I[297] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 4739 | (I[316] = (img)(_n3##x,_n7##y,z,v)), \ |
philpem@5 | 4740 | (I[335] = (img)(_n3##x,_n8##y,z,v)), \ |
philpem@5 | 4741 | (I[354] = (img)(_n3##x,_n9##y,z,v)), \ |
philpem@5 | 4742 | (I[13] = (img)(_n4##x,_p9##y,z,v)), \ |
philpem@5 | 4743 | (I[32] = (img)(_n4##x,_p8##y,z,v)), \ |
philpem@5 | 4744 | (I[51] = (img)(_n4##x,_p7##y,z,v)), \ |
philpem@5 | 4745 | (I[70] = (img)(_n4##x,_p6##y,z,v)), \ |
philpem@5 | 4746 | (I[89] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 4747 | (I[108] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 4748 | (I[127] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 4749 | (I[146] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 4750 | (I[165] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 4751 | (I[184] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 4752 | (I[203] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 4753 | (I[222] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 4754 | (I[241] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 4755 | (I[260] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 4756 | (I[279] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 4757 | (I[298] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 4758 | (I[317] = (img)(_n4##x,_n7##y,z,v)), \ |
philpem@5 | 4759 | (I[336] = (img)(_n4##x,_n8##y,z,v)), \ |
philpem@5 | 4760 | (I[355] = (img)(_n4##x,_n9##y,z,v)), \ |
philpem@5 | 4761 | (I[14] = (img)(_n5##x,_p9##y,z,v)), \ |
philpem@5 | 4762 | (I[33] = (img)(_n5##x,_p8##y,z,v)), \ |
philpem@5 | 4763 | (I[52] = (img)(_n5##x,_p7##y,z,v)), \ |
philpem@5 | 4764 | (I[71] = (img)(_n5##x,_p6##y,z,v)), \ |
philpem@5 | 4765 | (I[90] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 4766 | (I[109] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 4767 | (I[128] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 4768 | (I[147] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 4769 | (I[166] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 4770 | (I[185] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 4771 | (I[204] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 4772 | (I[223] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 4773 | (I[242] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 4774 | (I[261] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 4775 | (I[280] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 4776 | (I[299] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 4777 | (I[318] = (img)(_n5##x,_n7##y,z,v)), \ |
philpem@5 | 4778 | (I[337] = (img)(_n5##x,_n8##y,z,v)), \ |
philpem@5 | 4779 | (I[356] = (img)(_n5##x,_n9##y,z,v)), \ |
philpem@5 | 4780 | (I[15] = (img)(_n6##x,_p9##y,z,v)), \ |
philpem@5 | 4781 | (I[34] = (img)(_n6##x,_p8##y,z,v)), \ |
philpem@5 | 4782 | (I[53] = (img)(_n6##x,_p7##y,z,v)), \ |
philpem@5 | 4783 | (I[72] = (img)(_n6##x,_p6##y,z,v)), \ |
philpem@5 | 4784 | (I[91] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 4785 | (I[110] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 4786 | (I[129] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 4787 | (I[148] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 4788 | (I[167] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 4789 | (I[186] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 4790 | (I[205] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 4791 | (I[224] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 4792 | (I[243] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 4793 | (I[262] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 4794 | (I[281] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 4795 | (I[300] = (img)(_n6##x,_n6##y,z,v)), \ |
philpem@5 | 4796 | (I[319] = (img)(_n6##x,_n7##y,z,v)), \ |
philpem@5 | 4797 | (I[338] = (img)(_n6##x,_n8##y,z,v)), \ |
philpem@5 | 4798 | (I[357] = (img)(_n6##x,_n9##y,z,v)), \ |
philpem@5 | 4799 | (I[16] = (img)(_n7##x,_p9##y,z,v)), \ |
philpem@5 | 4800 | (I[35] = (img)(_n7##x,_p8##y,z,v)), \ |
philpem@5 | 4801 | (I[54] = (img)(_n7##x,_p7##y,z,v)), \ |
philpem@5 | 4802 | (I[73] = (img)(_n7##x,_p6##y,z,v)), \ |
philpem@5 | 4803 | (I[92] = (img)(_n7##x,_p5##y,z,v)), \ |
philpem@5 | 4804 | (I[111] = (img)(_n7##x,_p4##y,z,v)), \ |
philpem@5 | 4805 | (I[130] = (img)(_n7##x,_p3##y,z,v)), \ |
philpem@5 | 4806 | (I[149] = (img)(_n7##x,_p2##y,z,v)), \ |
philpem@5 | 4807 | (I[168] = (img)(_n7##x,_p1##y,z,v)), \ |
philpem@5 | 4808 | (I[187] = (img)(_n7##x,y,z,v)), \ |
philpem@5 | 4809 | (I[206] = (img)(_n7##x,_n1##y,z,v)), \ |
philpem@5 | 4810 | (I[225] = (img)(_n7##x,_n2##y,z,v)), \ |
philpem@5 | 4811 | (I[244] = (img)(_n7##x,_n3##y,z,v)), \ |
philpem@5 | 4812 | (I[263] = (img)(_n7##x,_n4##y,z,v)), \ |
philpem@5 | 4813 | (I[282] = (img)(_n7##x,_n5##y,z,v)), \ |
philpem@5 | 4814 | (I[301] = (img)(_n7##x,_n6##y,z,v)), \ |
philpem@5 | 4815 | (I[320] = (img)(_n7##x,_n7##y,z,v)), \ |
philpem@5 | 4816 | (I[339] = (img)(_n7##x,_n8##y,z,v)), \ |
philpem@5 | 4817 | (I[358] = (img)(_n7##x,_n9##y,z,v)), \ |
philpem@5 | 4818 | (I[17] = (img)(_n8##x,_p9##y,z,v)), \ |
philpem@5 | 4819 | (I[36] = (img)(_n8##x,_p8##y,z,v)), \ |
philpem@5 | 4820 | (I[55] = (img)(_n8##x,_p7##y,z,v)), \ |
philpem@5 | 4821 | (I[74] = (img)(_n8##x,_p6##y,z,v)), \ |
philpem@5 | 4822 | (I[93] = (img)(_n8##x,_p5##y,z,v)), \ |
philpem@5 | 4823 | (I[112] = (img)(_n8##x,_p4##y,z,v)), \ |
philpem@5 | 4824 | (I[131] = (img)(_n8##x,_p3##y,z,v)), \ |
philpem@5 | 4825 | (I[150] = (img)(_n8##x,_p2##y,z,v)), \ |
philpem@5 | 4826 | (I[169] = (img)(_n8##x,_p1##y,z,v)), \ |
philpem@5 | 4827 | (I[188] = (img)(_n8##x,y,z,v)), \ |
philpem@5 | 4828 | (I[207] = (img)(_n8##x,_n1##y,z,v)), \ |
philpem@5 | 4829 | (I[226] = (img)(_n8##x,_n2##y,z,v)), \ |
philpem@5 | 4830 | (I[245] = (img)(_n8##x,_n3##y,z,v)), \ |
philpem@5 | 4831 | (I[264] = (img)(_n8##x,_n4##y,z,v)), \ |
philpem@5 | 4832 | (I[283] = (img)(_n8##x,_n5##y,z,v)), \ |
philpem@5 | 4833 | (I[302] = (img)(_n8##x,_n6##y,z,v)), \ |
philpem@5 | 4834 | (I[321] = (img)(_n8##x,_n7##y,z,v)), \ |
philpem@5 | 4835 | (I[340] = (img)(_n8##x,_n8##y,z,v)), \ |
philpem@5 | 4836 | (I[359] = (img)(_n8##x,_n9##y,z,v)), \ |
philpem@5 | 4837 | x+9>=(int)((img).width)?(int)((img).width)-1:x+9); \ |
philpem@5 | 4838 | x<=(int)(x1) && ((_n9##x<(int)((img).width) && ( \ |
philpem@5 | 4839 | (I[18] = (img)(_n9##x,_p9##y,z,v)), \ |
philpem@5 | 4840 | (I[37] = (img)(_n9##x,_p8##y,z,v)), \ |
philpem@5 | 4841 | (I[56] = (img)(_n9##x,_p7##y,z,v)), \ |
philpem@5 | 4842 | (I[75] = (img)(_n9##x,_p6##y,z,v)), \ |
philpem@5 | 4843 | (I[94] = (img)(_n9##x,_p5##y,z,v)), \ |
philpem@5 | 4844 | (I[113] = (img)(_n9##x,_p4##y,z,v)), \ |
philpem@5 | 4845 | (I[132] = (img)(_n9##x,_p3##y,z,v)), \ |
philpem@5 | 4846 | (I[151] = (img)(_n9##x,_p2##y,z,v)), \ |
philpem@5 | 4847 | (I[170] = (img)(_n9##x,_p1##y,z,v)), \ |
philpem@5 | 4848 | (I[189] = (img)(_n9##x,y,z,v)), \ |
philpem@5 | 4849 | (I[208] = (img)(_n9##x,_n1##y,z,v)), \ |
philpem@5 | 4850 | (I[227] = (img)(_n9##x,_n2##y,z,v)), \ |
philpem@5 | 4851 | (I[246] = (img)(_n9##x,_n3##y,z,v)), \ |
philpem@5 | 4852 | (I[265] = (img)(_n9##x,_n4##y,z,v)), \ |
philpem@5 | 4853 | (I[284] = (img)(_n9##x,_n5##y,z,v)), \ |
philpem@5 | 4854 | (I[303] = (img)(_n9##x,_n6##y,z,v)), \ |
philpem@5 | 4855 | (I[322] = (img)(_n9##x,_n7##y,z,v)), \ |
philpem@5 | 4856 | (I[341] = (img)(_n9##x,_n8##y,z,v)), \ |
philpem@5 | 4857 | (I[360] = (img)(_n9##x,_n9##y,z,v)),1)) || \ |
philpem@5 | 4858 | _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \ |
philpem@5 | 4859 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], \ |
philpem@5 | 4860 | I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], \ |
philpem@5 | 4861 | I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], \ |
philpem@5 | 4862 | I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], \ |
philpem@5 | 4863 | I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], \ |
philpem@5 | 4864 | I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], \ |
philpem@5 | 4865 | I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], \ |
philpem@5 | 4866 | I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], \ |
philpem@5 | 4867 | I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], \ |
philpem@5 | 4868 | I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], \ |
philpem@5 | 4869 | I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], \ |
philpem@5 | 4870 | I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], \ |
philpem@5 | 4871 | I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], \ |
philpem@5 | 4872 | I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], \ |
philpem@5 | 4873 | I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], \ |
philpem@5 | 4874 | I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], \ |
philpem@5 | 4875 | I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], \ |
philpem@5 | 4876 | I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], \ |
philpem@5 | 4877 | I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], \ |
philpem@5 | 4878 | _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x) |
philpem@5 | 4879 | |
philpem@5 | 4880 | #define cimg_get19x19(img,x,y,z,v,I) \ |
philpem@5 | 4881 | I[0] = (img)(_p9##x,_p9##y,z,v), I[1] = (img)(_p8##x,_p9##y,z,v), I[2] = (img)(_p7##x,_p9##y,z,v), I[3] = (img)(_p6##x,_p9##y,z,v), I[4] = (img)(_p5##x,_p9##y,z,v), I[5] = (img)(_p4##x,_p9##y,z,v), I[6] = (img)(_p3##x,_p9##y,z,v), I[7] = (img)(_p2##x,_p9##y,z,v), I[8] = (img)(_p1##x,_p9##y,z,v), I[9] = (img)(x,_p9##y,z,v), I[10] = (img)(_n1##x,_p9##y,z,v), I[11] = (img)(_n2##x,_p9##y,z,v), I[12] = (img)(_n3##x,_p9##y,z,v), I[13] = (img)(_n4##x,_p9##y,z,v), I[14] = (img)(_n5##x,_p9##y,z,v), I[15] = (img)(_n6##x,_p9##y,z,v), I[16] = (img)(_n7##x,_p9##y,z,v), I[17] = (img)(_n8##x,_p9##y,z,v), I[18] = (img)(_n9##x,_p9##y,z,v), \ |
philpem@5 | 4882 | I[19] = (img)(_p9##x,_p8##y,z,v), I[20] = (img)(_p8##x,_p8##y,z,v), I[21] = (img)(_p7##x,_p8##y,z,v), I[22] = (img)(_p6##x,_p8##y,z,v), I[23] = (img)(_p5##x,_p8##y,z,v), I[24] = (img)(_p4##x,_p8##y,z,v), I[25] = (img)(_p3##x,_p8##y,z,v), I[26] = (img)(_p2##x,_p8##y,z,v), I[27] = (img)(_p1##x,_p8##y,z,v), I[28] = (img)(x,_p8##y,z,v), I[29] = (img)(_n1##x,_p8##y,z,v), I[30] = (img)(_n2##x,_p8##y,z,v), I[31] = (img)(_n3##x,_p8##y,z,v), I[32] = (img)(_n4##x,_p8##y,z,v), I[33] = (img)(_n5##x,_p8##y,z,v), I[34] = (img)(_n6##x,_p8##y,z,v), I[35] = (img)(_n7##x,_p8##y,z,v), I[36] = (img)(_n8##x,_p8##y,z,v), I[37] = (img)(_n9##x,_p8##y,z,v), \ |
philpem@5 | 4883 | I[38] = (img)(_p9##x,_p7##y,z,v), I[39] = (img)(_p8##x,_p7##y,z,v), I[40] = (img)(_p7##x,_p7##y,z,v), I[41] = (img)(_p6##x,_p7##y,z,v), I[42] = (img)(_p5##x,_p7##y,z,v), I[43] = (img)(_p4##x,_p7##y,z,v), I[44] = (img)(_p3##x,_p7##y,z,v), I[45] = (img)(_p2##x,_p7##y,z,v), I[46] = (img)(_p1##x,_p7##y,z,v), I[47] = (img)(x,_p7##y,z,v), I[48] = (img)(_n1##x,_p7##y,z,v), I[49] = (img)(_n2##x,_p7##y,z,v), I[50] = (img)(_n3##x,_p7##y,z,v), I[51] = (img)(_n4##x,_p7##y,z,v), I[52] = (img)(_n5##x,_p7##y,z,v), I[53] = (img)(_n6##x,_p7##y,z,v), I[54] = (img)(_n7##x,_p7##y,z,v), I[55] = (img)(_n8##x,_p7##y,z,v), I[56] = (img)(_n9##x,_p7##y,z,v), \ |
philpem@5 | 4884 | I[57] = (img)(_p9##x,_p6##y,z,v), I[58] = (img)(_p8##x,_p6##y,z,v), I[59] = (img)(_p7##x,_p6##y,z,v), I[60] = (img)(_p6##x,_p6##y,z,v), I[61] = (img)(_p5##x,_p6##y,z,v), I[62] = (img)(_p4##x,_p6##y,z,v), I[63] = (img)(_p3##x,_p6##y,z,v), I[64] = (img)(_p2##x,_p6##y,z,v), I[65] = (img)(_p1##x,_p6##y,z,v), I[66] = (img)(x,_p6##y,z,v), I[67] = (img)(_n1##x,_p6##y,z,v), I[68] = (img)(_n2##x,_p6##y,z,v), I[69] = (img)(_n3##x,_p6##y,z,v), I[70] = (img)(_n4##x,_p6##y,z,v), I[71] = (img)(_n5##x,_p6##y,z,v), I[72] = (img)(_n6##x,_p6##y,z,v), I[73] = (img)(_n7##x,_p6##y,z,v), I[74] = (img)(_n8##x,_p6##y,z,v), I[75] = (img)(_n9##x,_p6##y,z,v), \ |
philpem@5 | 4885 | I[76] = (img)(_p9##x,_p5##y,z,v), I[77] = (img)(_p8##x,_p5##y,z,v), I[78] = (img)(_p7##x,_p5##y,z,v), I[79] = (img)(_p6##x,_p5##y,z,v), I[80] = (img)(_p5##x,_p5##y,z,v), I[81] = (img)(_p4##x,_p5##y,z,v), I[82] = (img)(_p3##x,_p5##y,z,v), I[83] = (img)(_p2##x,_p5##y,z,v), I[84] = (img)(_p1##x,_p5##y,z,v), I[85] = (img)(x,_p5##y,z,v), I[86] = (img)(_n1##x,_p5##y,z,v), I[87] = (img)(_n2##x,_p5##y,z,v), I[88] = (img)(_n3##x,_p5##y,z,v), I[89] = (img)(_n4##x,_p5##y,z,v), I[90] = (img)(_n5##x,_p5##y,z,v), I[91] = (img)(_n6##x,_p5##y,z,v), I[92] = (img)(_n7##x,_p5##y,z,v), I[93] = (img)(_n8##x,_p5##y,z,v), I[94] = (img)(_n9##x,_p5##y,z,v), \ |
philpem@5 | 4886 | I[95] = (img)(_p9##x,_p4##y,z,v), I[96] = (img)(_p8##x,_p4##y,z,v), I[97] = (img)(_p7##x,_p4##y,z,v), I[98] = (img)(_p6##x,_p4##y,z,v), I[99] = (img)(_p5##x,_p4##y,z,v), I[100] = (img)(_p4##x,_p4##y,z,v), I[101] = (img)(_p3##x,_p4##y,z,v), I[102] = (img)(_p2##x,_p4##y,z,v), I[103] = (img)(_p1##x,_p4##y,z,v), I[104] = (img)(x,_p4##y,z,v), I[105] = (img)(_n1##x,_p4##y,z,v), I[106] = (img)(_n2##x,_p4##y,z,v), I[107] = (img)(_n3##x,_p4##y,z,v), I[108] = (img)(_n4##x,_p4##y,z,v), I[109] = (img)(_n5##x,_p4##y,z,v), I[110] = (img)(_n6##x,_p4##y,z,v), I[111] = (img)(_n7##x,_p4##y,z,v), I[112] = (img)(_n8##x,_p4##y,z,v), I[113] = (img)(_n9##x,_p4##y,z,v), \ |
philpem@5 | 4887 | I[114] = (img)(_p9##x,_p3##y,z,v), I[115] = (img)(_p8##x,_p3##y,z,v), I[116] = (img)(_p7##x,_p3##y,z,v), I[117] = (img)(_p6##x,_p3##y,z,v), I[118] = (img)(_p5##x,_p3##y,z,v), I[119] = (img)(_p4##x,_p3##y,z,v), I[120] = (img)(_p3##x,_p3##y,z,v), I[121] = (img)(_p2##x,_p3##y,z,v), I[122] = (img)(_p1##x,_p3##y,z,v), I[123] = (img)(x,_p3##y,z,v), I[124] = (img)(_n1##x,_p3##y,z,v), I[125] = (img)(_n2##x,_p3##y,z,v), I[126] = (img)(_n3##x,_p3##y,z,v), I[127] = (img)(_n4##x,_p3##y,z,v), I[128] = (img)(_n5##x,_p3##y,z,v), I[129] = (img)(_n6##x,_p3##y,z,v), I[130] = (img)(_n7##x,_p3##y,z,v), I[131] = (img)(_n8##x,_p3##y,z,v), I[132] = (img)(_n9##x,_p3##y,z,v), \ |
philpem@5 | 4888 | I[133] = (img)(_p9##x,_p2##y,z,v), I[134] = (img)(_p8##x,_p2##y,z,v), I[135] = (img)(_p7##x,_p2##y,z,v), I[136] = (img)(_p6##x,_p2##y,z,v), I[137] = (img)(_p5##x,_p2##y,z,v), I[138] = (img)(_p4##x,_p2##y,z,v), I[139] = (img)(_p3##x,_p2##y,z,v), I[140] = (img)(_p2##x,_p2##y,z,v), I[141] = (img)(_p1##x,_p2##y,z,v), I[142] = (img)(x,_p2##y,z,v), I[143] = (img)(_n1##x,_p2##y,z,v), I[144] = (img)(_n2##x,_p2##y,z,v), I[145] = (img)(_n3##x,_p2##y,z,v), I[146] = (img)(_n4##x,_p2##y,z,v), I[147] = (img)(_n5##x,_p2##y,z,v), I[148] = (img)(_n6##x,_p2##y,z,v), I[149] = (img)(_n7##x,_p2##y,z,v), I[150] = (img)(_n8##x,_p2##y,z,v), I[151] = (img)(_n9##x,_p2##y,z,v), \ |
philpem@5 | 4889 | I[152] = (img)(_p9##x,_p1##y,z,v), I[153] = (img)(_p8##x,_p1##y,z,v), I[154] = (img)(_p7##x,_p1##y,z,v), I[155] = (img)(_p6##x,_p1##y,z,v), I[156] = (img)(_p5##x,_p1##y,z,v), I[157] = (img)(_p4##x,_p1##y,z,v), I[158] = (img)(_p3##x,_p1##y,z,v), I[159] = (img)(_p2##x,_p1##y,z,v), I[160] = (img)(_p1##x,_p1##y,z,v), I[161] = (img)(x,_p1##y,z,v), I[162] = (img)(_n1##x,_p1##y,z,v), I[163] = (img)(_n2##x,_p1##y,z,v), I[164] = (img)(_n3##x,_p1##y,z,v), I[165] = (img)(_n4##x,_p1##y,z,v), I[166] = (img)(_n5##x,_p1##y,z,v), I[167] = (img)(_n6##x,_p1##y,z,v), I[168] = (img)(_n7##x,_p1##y,z,v), I[169] = (img)(_n8##x,_p1##y,z,v), I[170] = (img)(_n9##x,_p1##y,z,v), \ |
philpem@5 | 4890 | I[171] = (img)(_p9##x,y,z,v), I[172] = (img)(_p8##x,y,z,v), I[173] = (img)(_p7##x,y,z,v), I[174] = (img)(_p6##x,y,z,v), I[175] = (img)(_p5##x,y,z,v), I[176] = (img)(_p4##x,y,z,v), I[177] = (img)(_p3##x,y,z,v), I[178] = (img)(_p2##x,y,z,v), I[179] = (img)(_p1##x,y,z,v), I[180] = (img)(x,y,z,v), I[181] = (img)(_n1##x,y,z,v), I[182] = (img)(_n2##x,y,z,v), I[183] = (img)(_n3##x,y,z,v), I[184] = (img)(_n4##x,y,z,v), I[185] = (img)(_n5##x,y,z,v), I[186] = (img)(_n6##x,y,z,v), I[187] = (img)(_n7##x,y,z,v), I[188] = (img)(_n8##x,y,z,v), I[189] = (img)(_n9##x,y,z,v), \ |
philpem@5 | 4891 | I[190] = (img)(_p9##x,_n1##y,z,v), I[191] = (img)(_p8##x,_n1##y,z,v), I[192] = (img)(_p7##x,_n1##y,z,v), I[193] = (img)(_p6##x,_n1##y,z,v), I[194] = (img)(_p5##x,_n1##y,z,v), I[195] = (img)(_p4##x,_n1##y,z,v), I[196] = (img)(_p3##x,_n1##y,z,v), I[197] = (img)(_p2##x,_n1##y,z,v), I[198] = (img)(_p1##x,_n1##y,z,v), I[199] = (img)(x,_n1##y,z,v), I[200] = (img)(_n1##x,_n1##y,z,v), I[201] = (img)(_n2##x,_n1##y,z,v), I[202] = (img)(_n3##x,_n1##y,z,v), I[203] = (img)(_n4##x,_n1##y,z,v), I[204] = (img)(_n5##x,_n1##y,z,v), I[205] = (img)(_n6##x,_n1##y,z,v), I[206] = (img)(_n7##x,_n1##y,z,v), I[207] = (img)(_n8##x,_n1##y,z,v), I[208] = (img)(_n9##x,_n1##y,z,v), \ |
philpem@5 | 4892 | I[209] = (img)(_p9##x,_n2##y,z,v), I[210] = (img)(_p8##x,_n2##y,z,v), I[211] = (img)(_p7##x,_n2##y,z,v), I[212] = (img)(_p6##x,_n2##y,z,v), I[213] = (img)(_p5##x,_n2##y,z,v), I[214] = (img)(_p4##x,_n2##y,z,v), I[215] = (img)(_p3##x,_n2##y,z,v), I[216] = (img)(_p2##x,_n2##y,z,v), I[217] = (img)(_p1##x,_n2##y,z,v), I[218] = (img)(x,_n2##y,z,v), I[219] = (img)(_n1##x,_n2##y,z,v), I[220] = (img)(_n2##x,_n2##y,z,v), I[221] = (img)(_n3##x,_n2##y,z,v), I[222] = (img)(_n4##x,_n2##y,z,v), I[223] = (img)(_n5##x,_n2##y,z,v), I[224] = (img)(_n6##x,_n2##y,z,v), I[225] = (img)(_n7##x,_n2##y,z,v), I[226] = (img)(_n8##x,_n2##y,z,v), I[227] = (img)(_n9##x,_n2##y,z,v), \ |
philpem@5 | 4893 | I[228] = (img)(_p9##x,_n3##y,z,v), I[229] = (img)(_p8##x,_n3##y,z,v), I[230] = (img)(_p7##x,_n3##y,z,v), I[231] = (img)(_p6##x,_n3##y,z,v), I[232] = (img)(_p5##x,_n3##y,z,v), I[233] = (img)(_p4##x,_n3##y,z,v), I[234] = (img)(_p3##x,_n3##y,z,v), I[235] = (img)(_p2##x,_n3##y,z,v), I[236] = (img)(_p1##x,_n3##y,z,v), I[237] = (img)(x,_n3##y,z,v), I[238] = (img)(_n1##x,_n3##y,z,v), I[239] = (img)(_n2##x,_n3##y,z,v), I[240] = (img)(_n3##x,_n3##y,z,v), I[241] = (img)(_n4##x,_n3##y,z,v), I[242] = (img)(_n5##x,_n3##y,z,v), I[243] = (img)(_n6##x,_n3##y,z,v), I[244] = (img)(_n7##x,_n3##y,z,v), I[245] = (img)(_n8##x,_n3##y,z,v), I[246] = (img)(_n9##x,_n3##y,z,v), \ |
philpem@5 | 4894 | I[247] = (img)(_p9##x,_n4##y,z,v), I[248] = (img)(_p8##x,_n4##y,z,v), I[249] = (img)(_p7##x,_n4##y,z,v), I[250] = (img)(_p6##x,_n4##y,z,v), I[251] = (img)(_p5##x,_n4##y,z,v), I[252] = (img)(_p4##x,_n4##y,z,v), I[253] = (img)(_p3##x,_n4##y,z,v), I[254] = (img)(_p2##x,_n4##y,z,v), I[255] = (img)(_p1##x,_n4##y,z,v), I[256] = (img)(x,_n4##y,z,v), I[257] = (img)(_n1##x,_n4##y,z,v), I[258] = (img)(_n2##x,_n4##y,z,v), I[259] = (img)(_n3##x,_n4##y,z,v), I[260] = (img)(_n4##x,_n4##y,z,v), I[261] = (img)(_n5##x,_n4##y,z,v), I[262] = (img)(_n6##x,_n4##y,z,v), I[263] = (img)(_n7##x,_n4##y,z,v), I[264] = (img)(_n8##x,_n4##y,z,v), I[265] = (img)(_n9##x,_n4##y,z,v), \ |
philpem@5 | 4895 | I[266] = (img)(_p9##x,_n5##y,z,v), I[267] = (img)(_p8##x,_n5##y,z,v), I[268] = (img)(_p7##x,_n5##y,z,v), I[269] = (img)(_p6##x,_n5##y,z,v), I[270] = (img)(_p5##x,_n5##y,z,v), I[271] = (img)(_p4##x,_n5##y,z,v), I[272] = (img)(_p3##x,_n5##y,z,v), I[273] = (img)(_p2##x,_n5##y,z,v), I[274] = (img)(_p1##x,_n5##y,z,v), I[275] = (img)(x,_n5##y,z,v), I[276] = (img)(_n1##x,_n5##y,z,v), I[277] = (img)(_n2##x,_n5##y,z,v), I[278] = (img)(_n3##x,_n5##y,z,v), I[279] = (img)(_n4##x,_n5##y,z,v), I[280] = (img)(_n5##x,_n5##y,z,v), I[281] = (img)(_n6##x,_n5##y,z,v), I[282] = (img)(_n7##x,_n5##y,z,v), I[283] = (img)(_n8##x,_n5##y,z,v), I[284] = (img)(_n9##x,_n5##y,z,v), \ |
philpem@5 | 4896 | I[285] = (img)(_p9##x,_n6##y,z,v), I[286] = (img)(_p8##x,_n6##y,z,v), I[287] = (img)(_p7##x,_n6##y,z,v), I[288] = (img)(_p6##x,_n6##y,z,v), I[289] = (img)(_p5##x,_n6##y,z,v), I[290] = (img)(_p4##x,_n6##y,z,v), I[291] = (img)(_p3##x,_n6##y,z,v), I[292] = (img)(_p2##x,_n6##y,z,v), I[293] = (img)(_p1##x,_n6##y,z,v), I[294] = (img)(x,_n6##y,z,v), I[295] = (img)(_n1##x,_n6##y,z,v), I[296] = (img)(_n2##x,_n6##y,z,v), I[297] = (img)(_n3##x,_n6##y,z,v), I[298] = (img)(_n4##x,_n6##y,z,v), I[299] = (img)(_n5##x,_n6##y,z,v), I[300] = (img)(_n6##x,_n6##y,z,v), I[301] = (img)(_n7##x,_n6##y,z,v), I[302] = (img)(_n8##x,_n6##y,z,v), I[303] = (img)(_n9##x,_n6##y,z,v), \ |
philpem@5 | 4897 | I[304] = (img)(_p9##x,_n7##y,z,v), I[305] = (img)(_p8##x,_n7##y,z,v), I[306] = (img)(_p7##x,_n7##y,z,v), I[307] = (img)(_p6##x,_n7##y,z,v), I[308] = (img)(_p5##x,_n7##y,z,v), I[309] = (img)(_p4##x,_n7##y,z,v), I[310] = (img)(_p3##x,_n7##y,z,v), I[311] = (img)(_p2##x,_n7##y,z,v), I[312] = (img)(_p1##x,_n7##y,z,v), I[313] = (img)(x,_n7##y,z,v), I[314] = (img)(_n1##x,_n7##y,z,v), I[315] = (img)(_n2##x,_n7##y,z,v), I[316] = (img)(_n3##x,_n7##y,z,v), I[317] = (img)(_n4##x,_n7##y,z,v), I[318] = (img)(_n5##x,_n7##y,z,v), I[319] = (img)(_n6##x,_n7##y,z,v), I[320] = (img)(_n7##x,_n7##y,z,v), I[321] = (img)(_n8##x,_n7##y,z,v), I[322] = (img)(_n9##x,_n7##y,z,v), \ |
philpem@5 | 4898 | I[323] = (img)(_p9##x,_n8##y,z,v), I[324] = (img)(_p8##x,_n8##y,z,v), I[325] = (img)(_p7##x,_n8##y,z,v), I[326] = (img)(_p6##x,_n8##y,z,v), I[327] = (img)(_p5##x,_n8##y,z,v), I[328] = (img)(_p4##x,_n8##y,z,v), I[329] = (img)(_p3##x,_n8##y,z,v), I[330] = (img)(_p2##x,_n8##y,z,v), I[331] = (img)(_p1##x,_n8##y,z,v), I[332] = (img)(x,_n8##y,z,v), I[333] = (img)(_n1##x,_n8##y,z,v), I[334] = (img)(_n2##x,_n8##y,z,v), I[335] = (img)(_n3##x,_n8##y,z,v), I[336] = (img)(_n4##x,_n8##y,z,v), I[337] = (img)(_n5##x,_n8##y,z,v), I[338] = (img)(_n6##x,_n8##y,z,v), I[339] = (img)(_n7##x,_n8##y,z,v), I[340] = (img)(_n8##x,_n8##y,z,v), I[341] = (img)(_n9##x,_n8##y,z,v), \ |
philpem@5 | 4899 | I[342] = (img)(_p9##x,_n9##y,z,v), I[343] = (img)(_p8##x,_n9##y,z,v), I[344] = (img)(_p7##x,_n9##y,z,v), I[345] = (img)(_p6##x,_n9##y,z,v), I[346] = (img)(_p5##x,_n9##y,z,v), I[347] = (img)(_p4##x,_n9##y,z,v), I[348] = (img)(_p3##x,_n9##y,z,v), I[349] = (img)(_p2##x,_n9##y,z,v), I[350] = (img)(_p1##x,_n9##y,z,v), I[351] = (img)(x,_n9##y,z,v), I[352] = (img)(_n1##x,_n9##y,z,v), I[353] = (img)(_n2##x,_n9##y,z,v), I[354] = (img)(_n3##x,_n9##y,z,v), I[355] = (img)(_n4##x,_n9##y,z,v), I[356] = (img)(_n5##x,_n9##y,z,v), I[357] = (img)(_n6##x,_n9##y,z,v), I[358] = (img)(_n7##x,_n9##y,z,v), I[359] = (img)(_n8##x,_n9##y,z,v), I[360] = (img)(_n9##x,_n9##y,z,v); |
philpem@5 | 4900 | |
philpem@5 | 4901 | // Define 20x20 loop macros for CImg |
philpem@5 | 4902 | //---------------------------------- |
philpem@5 | 4903 | #define cimg_for20(bound,i) for (int i = 0, \ |
philpem@5 | 4904 | _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \ |
philpem@5 | 4905 | _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \ |
philpem@5 | 4906 | _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \ |
philpem@5 | 4907 | _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \ |
philpem@5 | 4908 | _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \ |
philpem@5 | 4909 | _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \ |
philpem@5 | 4910 | _n6##i = 6>=(int)(bound)?(int)(bound)-1:6, \ |
philpem@5 | 4911 | _n7##i = 7>=(int)(bound)?(int)(bound)-1:7, \ |
philpem@5 | 4912 | _n8##i = 8>=(int)(bound)?(int)(bound)-1:8, \ |
philpem@5 | 4913 | _n9##i = 9>=(int)(bound)?(int)(bound)-1:9, \ |
philpem@5 | 4914 | _n10##i = 10>=(int)(bound)?(int)(bound)-1:10; \ |
philpem@5 | 4915 | _n10##i<(int)(bound) || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 4916 | i==(_n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \ |
philpem@5 | 4917 | _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 4918 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i) |
philpem@5 | 4919 | |
philpem@5 | 4920 | #define cimg_for20X(img,x) cimg_for20((img).width,x) |
philpem@5 | 4921 | #define cimg_for20Y(img,y) cimg_for20((img).height,y) |
philpem@5 | 4922 | #define cimg_for20Z(img,z) cimg_for20((img).depth,z) |
philpem@5 | 4923 | #define cimg_for20V(img,v) cimg_for20((img).dim,v) |
philpem@5 | 4924 | #define cimg_for20XY(img,x,y) cimg_for20Y(img,y) cimg_for20X(img,x) |
philpem@5 | 4925 | #define cimg_for20XZ(img,x,z) cimg_for20Z(img,z) cimg_for20X(img,x) |
philpem@5 | 4926 | #define cimg_for20XV(img,x,v) cimg_for20V(img,v) cimg_for20X(img,x) |
philpem@5 | 4927 | #define cimg_for20YZ(img,y,z) cimg_for20Z(img,z) cimg_for20Y(img,y) |
philpem@5 | 4928 | #define cimg_for20YV(img,y,v) cimg_for20V(img,v) cimg_for20Y(img,y) |
philpem@5 | 4929 | #define cimg_for20ZV(img,z,v) cimg_for20V(img,v) cimg_for20Z(img,z) |
philpem@5 | 4930 | #define cimg_for20XYZ(img,x,y,z) cimg_for20Z(img,z) cimg_for20XY(img,x,y) |
philpem@5 | 4931 | #define cimg_for20XZV(img,x,z,v) cimg_for20V(img,v) cimg_for20XZ(img,x,z) |
philpem@5 | 4932 | #define cimg_for20YZV(img,y,z,v) cimg_for20V(img,v) cimg_for20YZ(img,y,z) |
philpem@5 | 4933 | #define cimg_for20XYZV(img,x,y,z,v) cimg_for20V(img,v) cimg_for20XYZ(img,x,y,z) |
philpem@5 | 4934 | |
philpem@5 | 4935 | #define cimg_for_in20(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \ |
philpem@5 | 4936 | _p9##i = i-9<0?0:i-9, \ |
philpem@5 | 4937 | _p8##i = i-8<0?0:i-8, \ |
philpem@5 | 4938 | _p7##i = i-7<0?0:i-7, \ |
philpem@5 | 4939 | _p6##i = i-6<0?0:i-6, \ |
philpem@5 | 4940 | _p5##i = i-5<0?0:i-5, \ |
philpem@5 | 4941 | _p4##i = i-4<0?0:i-4, \ |
philpem@5 | 4942 | _p3##i = i-3<0?0:i-3, \ |
philpem@5 | 4943 | _p2##i = i-2<0?0:i-2, \ |
philpem@5 | 4944 | _p1##i = i-1<0?0:i-1, \ |
philpem@5 | 4945 | _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \ |
philpem@5 | 4946 | _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \ |
philpem@5 | 4947 | _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \ |
philpem@5 | 4948 | _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \ |
philpem@5 | 4949 | _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \ |
philpem@5 | 4950 | _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6, \ |
philpem@5 | 4951 | _n7##i = i+7>=(int)(bound)?(int)(bound)-1:i+7, \ |
philpem@5 | 4952 | _n8##i = i+8>=(int)(bound)?(int)(bound)-1:i+8, \ |
philpem@5 | 4953 | _n9##i = i+9>=(int)(bound)?(int)(bound)-1:i+9, \ |
philpem@5 | 4954 | _n10##i = i+10>=(int)(bound)?(int)(bound)-1:i+10; \ |
philpem@5 | 4955 | i<=(int)(i1) && (_n10##i<(int)(bound) || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 4956 | i==(_n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \ |
philpem@5 | 4957 | _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 4958 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i) |
philpem@5 | 4959 | |
philpem@5 | 4960 | #define cimg_for_in20X(img,x0,x1,x) cimg_for_in20((img).width,x0,x1,x) |
philpem@5 | 4961 | #define cimg_for_in20Y(img,y0,y1,y) cimg_for_in20((img).height,y0,y1,y) |
philpem@5 | 4962 | #define cimg_for_in20Z(img,z0,z1,z) cimg_for_in20((img).depth,z0,z1,z) |
philpem@5 | 4963 | #define cimg_for_in20V(img,v0,v1,v) cimg_for_in20((img).dim,v0,v1,v) |
philpem@5 | 4964 | #define cimg_for_in20XY(img,x0,y0,x1,y1,x,y) cimg_for_in20Y(img,y0,y1,y) cimg_for_in20X(img,x0,x1,x) |
philpem@5 | 4965 | #define cimg_for_in20XZ(img,x0,z0,x1,z1,x,z) cimg_for_in20Z(img,z0,z1,z) cimg_for_in20X(img,x0,x1,x) |
philpem@5 | 4966 | #define cimg_for_in20XV(img,x0,v0,x1,v1,x,v) cimg_for_in20V(img,v0,v1,v) cimg_for_in20X(img,x0,x1,x) |
philpem@5 | 4967 | #define cimg_for_in20YZ(img,y0,z0,y1,z1,y,z) cimg_for_in20Z(img,z0,z1,z) cimg_for_in20Y(img,y0,y1,y) |
philpem@5 | 4968 | #define cimg_for_in20YV(img,y0,v0,y1,v1,y,v) cimg_for_in20V(img,v0,v1,v) cimg_for_in20Y(img,y0,y1,y) |
philpem@5 | 4969 | #define cimg_for_in20ZV(img,z0,v0,z1,v1,z,v) cimg_for_in20V(img,v0,v1,v) cimg_for_in20Z(img,z0,z1,z) |
philpem@5 | 4970 | #define cimg_for_in20XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in20Z(img,z0,z1,z) cimg_for_in20XY(img,x0,y0,x1,y1,x,y) |
philpem@5 | 4971 | #define cimg_for_in20XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in20V(img,v0,v1,v) cimg_for_in20XZ(img,x0,y0,x1,y1,x,z) |
philpem@5 | 4972 | #define cimg_for_in20YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in20V(img,v0,v1,v) cimg_for_in20YZ(img,y0,z0,y1,z1,y,z) |
philpem@5 | 4973 | #define cimg_for_in20XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in20V(img,v0,v1,v) cimg_for_in20XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) |
philpem@5 | 4974 | |
philpem@5 | 4975 | #define cimg_for20x20(img,x,y,z,v,I) \ |
philpem@5 | 4976 | cimg_for20((img).height,y) for (int x = 0, \ |
philpem@5 | 4977 | _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \ |
philpem@5 | 4978 | _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \ |
philpem@5 | 4979 | _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \ |
philpem@5 | 4980 | _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \ |
philpem@5 | 4981 | _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \ |
philpem@5 | 4982 | _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \ |
philpem@5 | 4983 | _n6##x = 6>=((img).width)?(int)((img).width)-1:6, \ |
philpem@5 | 4984 | _n7##x = 7>=((img).width)?(int)((img).width)-1:7, \ |
philpem@5 | 4985 | _n8##x = 8>=((img).width)?(int)((img).width)-1:8, \ |
philpem@5 | 4986 | _n9##x = 9>=((img).width)?(int)((img).width)-1:9, \ |
philpem@5 | 4987 | _n10##x = (int)( \ |
philpem@5 | 4988 | (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = (img)(0,_p9##y,z,v)), \ |
philpem@5 | 4989 | (I[20] = I[21] = I[22] = I[23] = I[24] = I[25] = I[26] = I[27] = I[28] = I[29] = (img)(0,_p8##y,z,v)), \ |
philpem@5 | 4990 | (I[40] = I[41] = I[42] = I[43] = I[44] = I[45] = I[46] = I[47] = I[48] = I[49] = (img)(0,_p7##y,z,v)), \ |
philpem@5 | 4991 | (I[60] = I[61] = I[62] = I[63] = I[64] = I[65] = I[66] = I[67] = I[68] = I[69] = (img)(0,_p6##y,z,v)), \ |
philpem@5 | 4992 | (I[80] = I[81] = I[82] = I[83] = I[84] = I[85] = I[86] = I[87] = I[88] = I[89] = (img)(0,_p5##y,z,v)), \ |
philpem@5 | 4993 | (I[100] = I[101] = I[102] = I[103] = I[104] = I[105] = I[106] = I[107] = I[108] = I[109] = (img)(0,_p4##y,z,v)), \ |
philpem@5 | 4994 | (I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = I[126] = I[127] = I[128] = I[129] = (img)(0,_p3##y,z,v)), \ |
philpem@5 | 4995 | (I[140] = I[141] = I[142] = I[143] = I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = (img)(0,_p2##y,z,v)), \ |
philpem@5 | 4996 | (I[160] = I[161] = I[162] = I[163] = I[164] = I[165] = I[166] = I[167] = I[168] = I[169] = (img)(0,_p1##y,z,v)), \ |
philpem@5 | 4997 | (I[180] = I[181] = I[182] = I[183] = I[184] = I[185] = I[186] = I[187] = I[188] = I[189] = (img)(0,y,z,v)), \ |
philpem@5 | 4998 | (I[200] = I[201] = I[202] = I[203] = I[204] = I[205] = I[206] = I[207] = I[208] = I[209] = (img)(0,_n1##y,z,v)), \ |
philpem@5 | 4999 | (I[220] = I[221] = I[222] = I[223] = I[224] = I[225] = I[226] = I[227] = I[228] = I[229] = (img)(0,_n2##y,z,v)), \ |
philpem@5 | 5000 | (I[240] = I[241] = I[242] = I[243] = I[244] = I[245] = I[246] = I[247] = I[248] = I[249] = (img)(0,_n3##y,z,v)), \ |
philpem@5 | 5001 | (I[260] = I[261] = I[262] = I[263] = I[264] = I[265] = I[266] = I[267] = I[268] = I[269] = (img)(0,_n4##y,z,v)), \ |
philpem@5 | 5002 | (I[280] = I[281] = I[282] = I[283] = I[284] = I[285] = I[286] = I[287] = I[288] = I[289] = (img)(0,_n5##y,z,v)), \ |
philpem@5 | 5003 | (I[300] = I[301] = I[302] = I[303] = I[304] = I[305] = I[306] = I[307] = I[308] = I[309] = (img)(0,_n6##y,z,v)), \ |
philpem@5 | 5004 | (I[320] = I[321] = I[322] = I[323] = I[324] = I[325] = I[326] = I[327] = I[328] = I[329] = (img)(0,_n7##y,z,v)), \ |
philpem@5 | 5005 | (I[340] = I[341] = I[342] = I[343] = I[344] = I[345] = I[346] = I[347] = I[348] = I[349] = (img)(0,_n8##y,z,v)), \ |
philpem@5 | 5006 | (I[360] = I[361] = I[362] = I[363] = I[364] = I[365] = I[366] = I[367] = I[368] = I[369] = (img)(0,_n9##y,z,v)), \ |
philpem@5 | 5007 | (I[380] = I[381] = I[382] = I[383] = I[384] = I[385] = I[386] = I[387] = I[388] = I[389] = (img)(0,_n10##y,z,v)), \ |
philpem@5 | 5008 | (I[10] = (img)(_n1##x,_p9##y,z,v)), \ |
philpem@5 | 5009 | (I[30] = (img)(_n1##x,_p8##y,z,v)), \ |
philpem@5 | 5010 | (I[50] = (img)(_n1##x,_p7##y,z,v)), \ |
philpem@5 | 5011 | (I[70] = (img)(_n1##x,_p6##y,z,v)), \ |
philpem@5 | 5012 | (I[90] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 5013 | (I[110] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 5014 | (I[130] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 5015 | (I[150] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 5016 | (I[170] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 5017 | (I[190] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 5018 | (I[210] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 5019 | (I[230] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 5020 | (I[250] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 5021 | (I[270] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 5022 | (I[290] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 5023 | (I[310] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 5024 | (I[330] = (img)(_n1##x,_n7##y,z,v)), \ |
philpem@5 | 5025 | (I[350] = (img)(_n1##x,_n8##y,z,v)), \ |
philpem@5 | 5026 | (I[370] = (img)(_n1##x,_n9##y,z,v)), \ |
philpem@5 | 5027 | (I[390] = (img)(_n1##x,_n10##y,z,v)), \ |
philpem@5 | 5028 | (I[11] = (img)(_n2##x,_p9##y,z,v)), \ |
philpem@5 | 5029 | (I[31] = (img)(_n2##x,_p8##y,z,v)), \ |
philpem@5 | 5030 | (I[51] = (img)(_n2##x,_p7##y,z,v)), \ |
philpem@5 | 5031 | (I[71] = (img)(_n2##x,_p6##y,z,v)), \ |
philpem@5 | 5032 | (I[91] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 5033 | (I[111] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 5034 | (I[131] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 5035 | (I[151] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 5036 | (I[171] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 5037 | (I[191] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 5038 | (I[211] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 5039 | (I[231] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 5040 | (I[251] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 5041 | (I[271] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 5042 | (I[291] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 5043 | (I[311] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 5044 | (I[331] = (img)(_n2##x,_n7##y,z,v)), \ |
philpem@5 | 5045 | (I[351] = (img)(_n2##x,_n8##y,z,v)), \ |
philpem@5 | 5046 | (I[371] = (img)(_n2##x,_n9##y,z,v)), \ |
philpem@5 | 5047 | (I[391] = (img)(_n2##x,_n10##y,z,v)), \ |
philpem@5 | 5048 | (I[12] = (img)(_n3##x,_p9##y,z,v)), \ |
philpem@5 | 5049 | (I[32] = (img)(_n3##x,_p8##y,z,v)), \ |
philpem@5 | 5050 | (I[52] = (img)(_n3##x,_p7##y,z,v)), \ |
philpem@5 | 5051 | (I[72] = (img)(_n3##x,_p6##y,z,v)), \ |
philpem@5 | 5052 | (I[92] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 5053 | (I[112] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 5054 | (I[132] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 5055 | (I[152] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 5056 | (I[172] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 5057 | (I[192] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 5058 | (I[212] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 5059 | (I[232] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 5060 | (I[252] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 5061 | (I[272] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 5062 | (I[292] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 5063 | (I[312] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 5064 | (I[332] = (img)(_n3##x,_n7##y,z,v)), \ |
philpem@5 | 5065 | (I[352] = (img)(_n3##x,_n8##y,z,v)), \ |
philpem@5 | 5066 | (I[372] = (img)(_n3##x,_n9##y,z,v)), \ |
philpem@5 | 5067 | (I[392] = (img)(_n3##x,_n10##y,z,v)), \ |
philpem@5 | 5068 | (I[13] = (img)(_n4##x,_p9##y,z,v)), \ |
philpem@5 | 5069 | (I[33] = (img)(_n4##x,_p8##y,z,v)), \ |
philpem@5 | 5070 | (I[53] = (img)(_n4##x,_p7##y,z,v)), \ |
philpem@5 | 5071 | (I[73] = (img)(_n4##x,_p6##y,z,v)), \ |
philpem@5 | 5072 | (I[93] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 5073 | (I[113] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 5074 | (I[133] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 5075 | (I[153] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 5076 | (I[173] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 5077 | (I[193] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 5078 | (I[213] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 5079 | (I[233] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 5080 | (I[253] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 5081 | (I[273] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 5082 | (I[293] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 5083 | (I[313] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 5084 | (I[333] = (img)(_n4##x,_n7##y,z,v)), \ |
philpem@5 | 5085 | (I[353] = (img)(_n4##x,_n8##y,z,v)), \ |
philpem@5 | 5086 | (I[373] = (img)(_n4##x,_n9##y,z,v)), \ |
philpem@5 | 5087 | (I[393] = (img)(_n4##x,_n10##y,z,v)), \ |
philpem@5 | 5088 | (I[14] = (img)(_n5##x,_p9##y,z,v)), \ |
philpem@5 | 5089 | (I[34] = (img)(_n5##x,_p8##y,z,v)), \ |
philpem@5 | 5090 | (I[54] = (img)(_n5##x,_p7##y,z,v)), \ |
philpem@5 | 5091 | (I[74] = (img)(_n5##x,_p6##y,z,v)), \ |
philpem@5 | 5092 | (I[94] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 5093 | (I[114] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 5094 | (I[134] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 5095 | (I[154] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 5096 | (I[174] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 5097 | (I[194] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 5098 | (I[214] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 5099 | (I[234] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 5100 | (I[254] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 5101 | (I[274] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 5102 | (I[294] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 5103 | (I[314] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 5104 | (I[334] = (img)(_n5##x,_n7##y,z,v)), \ |
philpem@5 | 5105 | (I[354] = (img)(_n5##x,_n8##y,z,v)), \ |
philpem@5 | 5106 | (I[374] = (img)(_n5##x,_n9##y,z,v)), \ |
philpem@5 | 5107 | (I[394] = (img)(_n5##x,_n10##y,z,v)), \ |
philpem@5 | 5108 | (I[15] = (img)(_n6##x,_p9##y,z,v)), \ |
philpem@5 | 5109 | (I[35] = (img)(_n6##x,_p8##y,z,v)), \ |
philpem@5 | 5110 | (I[55] = (img)(_n6##x,_p7##y,z,v)), \ |
philpem@5 | 5111 | (I[75] = (img)(_n6##x,_p6##y,z,v)), \ |
philpem@5 | 5112 | (I[95] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 5113 | (I[115] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 5114 | (I[135] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 5115 | (I[155] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 5116 | (I[175] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 5117 | (I[195] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 5118 | (I[215] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 5119 | (I[235] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 5120 | (I[255] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 5121 | (I[275] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 5122 | (I[295] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 5123 | (I[315] = (img)(_n6##x,_n6##y,z,v)), \ |
philpem@5 | 5124 | (I[335] = (img)(_n6##x,_n7##y,z,v)), \ |
philpem@5 | 5125 | (I[355] = (img)(_n6##x,_n8##y,z,v)), \ |
philpem@5 | 5126 | (I[375] = (img)(_n6##x,_n9##y,z,v)), \ |
philpem@5 | 5127 | (I[395] = (img)(_n6##x,_n10##y,z,v)), \ |
philpem@5 | 5128 | (I[16] = (img)(_n7##x,_p9##y,z,v)), \ |
philpem@5 | 5129 | (I[36] = (img)(_n7##x,_p8##y,z,v)), \ |
philpem@5 | 5130 | (I[56] = (img)(_n7##x,_p7##y,z,v)), \ |
philpem@5 | 5131 | (I[76] = (img)(_n7##x,_p6##y,z,v)), \ |
philpem@5 | 5132 | (I[96] = (img)(_n7##x,_p5##y,z,v)), \ |
philpem@5 | 5133 | (I[116] = (img)(_n7##x,_p4##y,z,v)), \ |
philpem@5 | 5134 | (I[136] = (img)(_n7##x,_p3##y,z,v)), \ |
philpem@5 | 5135 | (I[156] = (img)(_n7##x,_p2##y,z,v)), \ |
philpem@5 | 5136 | (I[176] = (img)(_n7##x,_p1##y,z,v)), \ |
philpem@5 | 5137 | (I[196] = (img)(_n7##x,y,z,v)), \ |
philpem@5 | 5138 | (I[216] = (img)(_n7##x,_n1##y,z,v)), \ |
philpem@5 | 5139 | (I[236] = (img)(_n7##x,_n2##y,z,v)), \ |
philpem@5 | 5140 | (I[256] = (img)(_n7##x,_n3##y,z,v)), \ |
philpem@5 | 5141 | (I[276] = (img)(_n7##x,_n4##y,z,v)), \ |
philpem@5 | 5142 | (I[296] = (img)(_n7##x,_n5##y,z,v)), \ |
philpem@5 | 5143 | (I[316] = (img)(_n7##x,_n6##y,z,v)), \ |
philpem@5 | 5144 | (I[336] = (img)(_n7##x,_n7##y,z,v)), \ |
philpem@5 | 5145 | (I[356] = (img)(_n7##x,_n8##y,z,v)), \ |
philpem@5 | 5146 | (I[376] = (img)(_n7##x,_n9##y,z,v)), \ |
philpem@5 | 5147 | (I[396] = (img)(_n7##x,_n10##y,z,v)), \ |
philpem@5 | 5148 | (I[17] = (img)(_n8##x,_p9##y,z,v)), \ |
philpem@5 | 5149 | (I[37] = (img)(_n8##x,_p8##y,z,v)), \ |
philpem@5 | 5150 | (I[57] = (img)(_n8##x,_p7##y,z,v)), \ |
philpem@5 | 5151 | (I[77] = (img)(_n8##x,_p6##y,z,v)), \ |
philpem@5 | 5152 | (I[97] = (img)(_n8##x,_p5##y,z,v)), \ |
philpem@5 | 5153 | (I[117] = (img)(_n8##x,_p4##y,z,v)), \ |
philpem@5 | 5154 | (I[137] = (img)(_n8##x,_p3##y,z,v)), \ |
philpem@5 | 5155 | (I[157] = (img)(_n8##x,_p2##y,z,v)), \ |
philpem@5 | 5156 | (I[177] = (img)(_n8##x,_p1##y,z,v)), \ |
philpem@5 | 5157 | (I[197] = (img)(_n8##x,y,z,v)), \ |
philpem@5 | 5158 | (I[217] = (img)(_n8##x,_n1##y,z,v)), \ |
philpem@5 | 5159 | (I[237] = (img)(_n8##x,_n2##y,z,v)), \ |
philpem@5 | 5160 | (I[257] = (img)(_n8##x,_n3##y,z,v)), \ |
philpem@5 | 5161 | (I[277] = (img)(_n8##x,_n4##y,z,v)), \ |
philpem@5 | 5162 | (I[297] = (img)(_n8##x,_n5##y,z,v)), \ |
philpem@5 | 5163 | (I[317] = (img)(_n8##x,_n6##y,z,v)), \ |
philpem@5 | 5164 | (I[337] = (img)(_n8##x,_n7##y,z,v)), \ |
philpem@5 | 5165 | (I[357] = (img)(_n8##x,_n8##y,z,v)), \ |
philpem@5 | 5166 | (I[377] = (img)(_n8##x,_n9##y,z,v)), \ |
philpem@5 | 5167 | (I[397] = (img)(_n8##x,_n10##y,z,v)), \ |
philpem@5 | 5168 | (I[18] = (img)(_n9##x,_p9##y,z,v)), \ |
philpem@5 | 5169 | (I[38] = (img)(_n9##x,_p8##y,z,v)), \ |
philpem@5 | 5170 | (I[58] = (img)(_n9##x,_p7##y,z,v)), \ |
philpem@5 | 5171 | (I[78] = (img)(_n9##x,_p6##y,z,v)), \ |
philpem@5 | 5172 | (I[98] = (img)(_n9##x,_p5##y,z,v)), \ |
philpem@5 | 5173 | (I[118] = (img)(_n9##x,_p4##y,z,v)), \ |
philpem@5 | 5174 | (I[138] = (img)(_n9##x,_p3##y,z,v)), \ |
philpem@5 | 5175 | (I[158] = (img)(_n9##x,_p2##y,z,v)), \ |
philpem@5 | 5176 | (I[178] = (img)(_n9##x,_p1##y,z,v)), \ |
philpem@5 | 5177 | (I[198] = (img)(_n9##x,y,z,v)), \ |
philpem@5 | 5178 | (I[218] = (img)(_n9##x,_n1##y,z,v)), \ |
philpem@5 | 5179 | (I[238] = (img)(_n9##x,_n2##y,z,v)), \ |
philpem@5 | 5180 | (I[258] = (img)(_n9##x,_n3##y,z,v)), \ |
philpem@5 | 5181 | (I[278] = (img)(_n9##x,_n4##y,z,v)), \ |
philpem@5 | 5182 | (I[298] = (img)(_n9##x,_n5##y,z,v)), \ |
philpem@5 | 5183 | (I[318] = (img)(_n9##x,_n6##y,z,v)), \ |
philpem@5 | 5184 | (I[338] = (img)(_n9##x,_n7##y,z,v)), \ |
philpem@5 | 5185 | (I[358] = (img)(_n9##x,_n8##y,z,v)), \ |
philpem@5 | 5186 | (I[378] = (img)(_n9##x,_n9##y,z,v)), \ |
philpem@5 | 5187 | (I[398] = (img)(_n9##x,_n10##y,z,v)), \ |
philpem@5 | 5188 | 10>=((img).width)?(int)((img).width)-1:10); \ |
philpem@5 | 5189 | (_n10##x<(int)((img).width) && ( \ |
philpem@5 | 5190 | (I[19] = (img)(_n10##x,_p9##y,z,v)), \ |
philpem@5 | 5191 | (I[39] = (img)(_n10##x,_p8##y,z,v)), \ |
philpem@5 | 5192 | (I[59] = (img)(_n10##x,_p7##y,z,v)), \ |
philpem@5 | 5193 | (I[79] = (img)(_n10##x,_p6##y,z,v)), \ |
philpem@5 | 5194 | (I[99] = (img)(_n10##x,_p5##y,z,v)), \ |
philpem@5 | 5195 | (I[119] = (img)(_n10##x,_p4##y,z,v)), \ |
philpem@5 | 5196 | (I[139] = (img)(_n10##x,_p3##y,z,v)), \ |
philpem@5 | 5197 | (I[159] = (img)(_n10##x,_p2##y,z,v)), \ |
philpem@5 | 5198 | (I[179] = (img)(_n10##x,_p1##y,z,v)), \ |
philpem@5 | 5199 | (I[199] = (img)(_n10##x,y,z,v)), \ |
philpem@5 | 5200 | (I[219] = (img)(_n10##x,_n1##y,z,v)), \ |
philpem@5 | 5201 | (I[239] = (img)(_n10##x,_n2##y,z,v)), \ |
philpem@5 | 5202 | (I[259] = (img)(_n10##x,_n3##y,z,v)), \ |
philpem@5 | 5203 | (I[279] = (img)(_n10##x,_n4##y,z,v)), \ |
philpem@5 | 5204 | (I[299] = (img)(_n10##x,_n5##y,z,v)), \ |
philpem@5 | 5205 | (I[319] = (img)(_n10##x,_n6##y,z,v)), \ |
philpem@5 | 5206 | (I[339] = (img)(_n10##x,_n7##y,z,v)), \ |
philpem@5 | 5207 | (I[359] = (img)(_n10##x,_n8##y,z,v)), \ |
philpem@5 | 5208 | (I[379] = (img)(_n10##x,_n9##y,z,v)), \ |
philpem@5 | 5209 | (I[399] = (img)(_n10##x,_n10##y,z,v)),1)) || \ |
philpem@5 | 5210 | _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \ |
philpem@5 | 5211 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \ |
philpem@5 | 5212 | I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \ |
philpem@5 | 5213 | I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \ |
philpem@5 | 5214 | I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \ |
philpem@5 | 5215 | I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \ |
philpem@5 | 5216 | I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \ |
philpem@5 | 5217 | I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \ |
philpem@5 | 5218 | I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \ |
philpem@5 | 5219 | I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \ |
philpem@5 | 5220 | I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], \ |
philpem@5 | 5221 | I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], \ |
philpem@5 | 5222 | I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \ |
philpem@5 | 5223 | I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], \ |
philpem@5 | 5224 | I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \ |
philpem@5 | 5225 | I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], \ |
philpem@5 | 5226 | I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], \ |
philpem@5 | 5227 | I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], \ |
philpem@5 | 5228 | I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \ |
philpem@5 | 5229 | I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], \ |
philpem@5 | 5230 | I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], \ |
philpem@5 | 5231 | _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x) |
philpem@5 | 5232 | |
philpem@5 | 5233 | #define cimg_for_in20x20(img,x0,y0,x1,y1,x,y,z,v,I) \ |
philpem@5 | 5234 | cimg_for_in20((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ |
philpem@5 | 5235 | _p9##x = x-9<0?0:x-9, \ |
philpem@5 | 5236 | _p8##x = x-8<0?0:x-8, \ |
philpem@5 | 5237 | _p7##x = x-7<0?0:x-7, \ |
philpem@5 | 5238 | _p6##x = x-6<0?0:x-6, \ |
philpem@5 | 5239 | _p5##x = x-5<0?0:x-5, \ |
philpem@5 | 5240 | _p4##x = x-4<0?0:x-4, \ |
philpem@5 | 5241 | _p3##x = x-3<0?0:x-3, \ |
philpem@5 | 5242 | _p2##x = x-2<0?0:x-2, \ |
philpem@5 | 5243 | _p1##x = x-1<0?0:x-1, \ |
philpem@5 | 5244 | _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \ |
philpem@5 | 5245 | _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \ |
philpem@5 | 5246 | _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \ |
philpem@5 | 5247 | _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \ |
philpem@5 | 5248 | _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \ |
philpem@5 | 5249 | _n6##x = x+6>=(int)((img).width)?(int)((img).width)-1:x+6, \ |
philpem@5 | 5250 | _n7##x = x+7>=(int)((img).width)?(int)((img).width)-1:x+7, \ |
philpem@5 | 5251 | _n8##x = x+8>=(int)((img).width)?(int)((img).width)-1:x+8, \ |
philpem@5 | 5252 | _n9##x = x+9>=(int)((img).width)?(int)((img).width)-1:x+9, \ |
philpem@5 | 5253 | _n10##x = (int)( \ |
philpem@5 | 5254 | (I[0] = (img)(_p9##x,_p9##y,z,v)), \ |
philpem@5 | 5255 | (I[20] = (img)(_p9##x,_p8##y,z,v)), \ |
philpem@5 | 5256 | (I[40] = (img)(_p9##x,_p7##y,z,v)), \ |
philpem@5 | 5257 | (I[60] = (img)(_p9##x,_p6##y,z,v)), \ |
philpem@5 | 5258 | (I[80] = (img)(_p9##x,_p5##y,z,v)), \ |
philpem@5 | 5259 | (I[100] = (img)(_p9##x,_p4##y,z,v)), \ |
philpem@5 | 5260 | (I[120] = (img)(_p9##x,_p3##y,z,v)), \ |
philpem@5 | 5261 | (I[140] = (img)(_p9##x,_p2##y,z,v)), \ |
philpem@5 | 5262 | (I[160] = (img)(_p9##x,_p1##y,z,v)), \ |
philpem@5 | 5263 | (I[180] = (img)(_p9##x,y,z,v)), \ |
philpem@5 | 5264 | (I[200] = (img)(_p9##x,_n1##y,z,v)), \ |
philpem@5 | 5265 | (I[220] = (img)(_p9##x,_n2##y,z,v)), \ |
philpem@5 | 5266 | (I[240] = (img)(_p9##x,_n3##y,z,v)), \ |
philpem@5 | 5267 | (I[260] = (img)(_p9##x,_n4##y,z,v)), \ |
philpem@5 | 5268 | (I[280] = (img)(_p9##x,_n5##y,z,v)), \ |
philpem@5 | 5269 | (I[300] = (img)(_p9##x,_n6##y,z,v)), \ |
philpem@5 | 5270 | (I[320] = (img)(_p9##x,_n7##y,z,v)), \ |
philpem@5 | 5271 | (I[340] = (img)(_p9##x,_n8##y,z,v)), \ |
philpem@5 | 5272 | (I[360] = (img)(_p9##x,_n9##y,z,v)), \ |
philpem@5 | 5273 | (I[380] = (img)(_p9##x,_n10##y,z,v)), \ |
philpem@5 | 5274 | (I[1] = (img)(_p8##x,_p9##y,z,v)), \ |
philpem@5 | 5275 | (I[21] = (img)(_p8##x,_p8##y,z,v)), \ |
philpem@5 | 5276 | (I[41] = (img)(_p8##x,_p7##y,z,v)), \ |
philpem@5 | 5277 | (I[61] = (img)(_p8##x,_p6##y,z,v)), \ |
philpem@5 | 5278 | (I[81] = (img)(_p8##x,_p5##y,z,v)), \ |
philpem@5 | 5279 | (I[101] = (img)(_p8##x,_p4##y,z,v)), \ |
philpem@5 | 5280 | (I[121] = (img)(_p8##x,_p3##y,z,v)), \ |
philpem@5 | 5281 | (I[141] = (img)(_p8##x,_p2##y,z,v)), \ |
philpem@5 | 5282 | (I[161] = (img)(_p8##x,_p1##y,z,v)), \ |
philpem@5 | 5283 | (I[181] = (img)(_p8##x,y,z,v)), \ |
philpem@5 | 5284 | (I[201] = (img)(_p8##x,_n1##y,z,v)), \ |
philpem@5 | 5285 | (I[221] = (img)(_p8##x,_n2##y,z,v)), \ |
philpem@5 | 5286 | (I[241] = (img)(_p8##x,_n3##y,z,v)), \ |
philpem@5 | 5287 | (I[261] = (img)(_p8##x,_n4##y,z,v)), \ |
philpem@5 | 5288 | (I[281] = (img)(_p8##x,_n5##y,z,v)), \ |
philpem@5 | 5289 | (I[301] = (img)(_p8##x,_n6##y,z,v)), \ |
philpem@5 | 5290 | (I[321] = (img)(_p8##x,_n7##y,z,v)), \ |
philpem@5 | 5291 | (I[341] = (img)(_p8##x,_n8##y,z,v)), \ |
philpem@5 | 5292 | (I[361] = (img)(_p8##x,_n9##y,z,v)), \ |
philpem@5 | 5293 | (I[381] = (img)(_p8##x,_n10##y,z,v)), \ |
philpem@5 | 5294 | (I[2] = (img)(_p7##x,_p9##y,z,v)), \ |
philpem@5 | 5295 | (I[22] = (img)(_p7##x,_p8##y,z,v)), \ |
philpem@5 | 5296 | (I[42] = (img)(_p7##x,_p7##y,z,v)), \ |
philpem@5 | 5297 | (I[62] = (img)(_p7##x,_p6##y,z,v)), \ |
philpem@5 | 5298 | (I[82] = (img)(_p7##x,_p5##y,z,v)), \ |
philpem@5 | 5299 | (I[102] = (img)(_p7##x,_p4##y,z,v)), \ |
philpem@5 | 5300 | (I[122] = (img)(_p7##x,_p3##y,z,v)), \ |
philpem@5 | 5301 | (I[142] = (img)(_p7##x,_p2##y,z,v)), \ |
philpem@5 | 5302 | (I[162] = (img)(_p7##x,_p1##y,z,v)), \ |
philpem@5 | 5303 | (I[182] = (img)(_p7##x,y,z,v)), \ |
philpem@5 | 5304 | (I[202] = (img)(_p7##x,_n1##y,z,v)), \ |
philpem@5 | 5305 | (I[222] = (img)(_p7##x,_n2##y,z,v)), \ |
philpem@5 | 5306 | (I[242] = (img)(_p7##x,_n3##y,z,v)), \ |
philpem@5 | 5307 | (I[262] = (img)(_p7##x,_n4##y,z,v)), \ |
philpem@5 | 5308 | (I[282] = (img)(_p7##x,_n5##y,z,v)), \ |
philpem@5 | 5309 | (I[302] = (img)(_p7##x,_n6##y,z,v)), \ |
philpem@5 | 5310 | (I[322] = (img)(_p7##x,_n7##y,z,v)), \ |
philpem@5 | 5311 | (I[342] = (img)(_p7##x,_n8##y,z,v)), \ |
philpem@5 | 5312 | (I[362] = (img)(_p7##x,_n9##y,z,v)), \ |
philpem@5 | 5313 | (I[382] = (img)(_p7##x,_n10##y,z,v)), \ |
philpem@5 | 5314 | (I[3] = (img)(_p6##x,_p9##y,z,v)), \ |
philpem@5 | 5315 | (I[23] = (img)(_p6##x,_p8##y,z,v)), \ |
philpem@5 | 5316 | (I[43] = (img)(_p6##x,_p7##y,z,v)), \ |
philpem@5 | 5317 | (I[63] = (img)(_p6##x,_p6##y,z,v)), \ |
philpem@5 | 5318 | (I[83] = (img)(_p6##x,_p5##y,z,v)), \ |
philpem@5 | 5319 | (I[103] = (img)(_p6##x,_p4##y,z,v)), \ |
philpem@5 | 5320 | (I[123] = (img)(_p6##x,_p3##y,z,v)), \ |
philpem@5 | 5321 | (I[143] = (img)(_p6##x,_p2##y,z,v)), \ |
philpem@5 | 5322 | (I[163] = (img)(_p6##x,_p1##y,z,v)), \ |
philpem@5 | 5323 | (I[183] = (img)(_p6##x,y,z,v)), \ |
philpem@5 | 5324 | (I[203] = (img)(_p6##x,_n1##y,z,v)), \ |
philpem@5 | 5325 | (I[223] = (img)(_p6##x,_n2##y,z,v)), \ |
philpem@5 | 5326 | (I[243] = (img)(_p6##x,_n3##y,z,v)), \ |
philpem@5 | 5327 | (I[263] = (img)(_p6##x,_n4##y,z,v)), \ |
philpem@5 | 5328 | (I[283] = (img)(_p6##x,_n5##y,z,v)), \ |
philpem@5 | 5329 | (I[303] = (img)(_p6##x,_n6##y,z,v)), \ |
philpem@5 | 5330 | (I[323] = (img)(_p6##x,_n7##y,z,v)), \ |
philpem@5 | 5331 | (I[343] = (img)(_p6##x,_n8##y,z,v)), \ |
philpem@5 | 5332 | (I[363] = (img)(_p6##x,_n9##y,z,v)), \ |
philpem@5 | 5333 | (I[383] = (img)(_p6##x,_n10##y,z,v)), \ |
philpem@5 | 5334 | (I[4] = (img)(_p5##x,_p9##y,z,v)), \ |
philpem@5 | 5335 | (I[24] = (img)(_p5##x,_p8##y,z,v)), \ |
philpem@5 | 5336 | (I[44] = (img)(_p5##x,_p7##y,z,v)), \ |
philpem@5 | 5337 | (I[64] = (img)(_p5##x,_p6##y,z,v)), \ |
philpem@5 | 5338 | (I[84] = (img)(_p5##x,_p5##y,z,v)), \ |
philpem@5 | 5339 | (I[104] = (img)(_p5##x,_p4##y,z,v)), \ |
philpem@5 | 5340 | (I[124] = (img)(_p5##x,_p3##y,z,v)), \ |
philpem@5 | 5341 | (I[144] = (img)(_p5##x,_p2##y,z,v)), \ |
philpem@5 | 5342 | (I[164] = (img)(_p5##x,_p1##y,z,v)), \ |
philpem@5 | 5343 | (I[184] = (img)(_p5##x,y,z,v)), \ |
philpem@5 | 5344 | (I[204] = (img)(_p5##x,_n1##y,z,v)), \ |
philpem@5 | 5345 | (I[224] = (img)(_p5##x,_n2##y,z,v)), \ |
philpem@5 | 5346 | (I[244] = (img)(_p5##x,_n3##y,z,v)), \ |
philpem@5 | 5347 | (I[264] = (img)(_p5##x,_n4##y,z,v)), \ |
philpem@5 | 5348 | (I[284] = (img)(_p5##x,_n5##y,z,v)), \ |
philpem@5 | 5349 | (I[304] = (img)(_p5##x,_n6##y,z,v)), \ |
philpem@5 | 5350 | (I[324] = (img)(_p5##x,_n7##y,z,v)), \ |
philpem@5 | 5351 | (I[344] = (img)(_p5##x,_n8##y,z,v)), \ |
philpem@5 | 5352 | (I[364] = (img)(_p5##x,_n9##y,z,v)), \ |
philpem@5 | 5353 | (I[384] = (img)(_p5##x,_n10##y,z,v)), \ |
philpem@5 | 5354 | (I[5] = (img)(_p4##x,_p9##y,z,v)), \ |
philpem@5 | 5355 | (I[25] = (img)(_p4##x,_p8##y,z,v)), \ |
philpem@5 | 5356 | (I[45] = (img)(_p4##x,_p7##y,z,v)), \ |
philpem@5 | 5357 | (I[65] = (img)(_p4##x,_p6##y,z,v)), \ |
philpem@5 | 5358 | (I[85] = (img)(_p4##x,_p5##y,z,v)), \ |
philpem@5 | 5359 | (I[105] = (img)(_p4##x,_p4##y,z,v)), \ |
philpem@5 | 5360 | (I[125] = (img)(_p4##x,_p3##y,z,v)), \ |
philpem@5 | 5361 | (I[145] = (img)(_p4##x,_p2##y,z,v)), \ |
philpem@5 | 5362 | (I[165] = (img)(_p4##x,_p1##y,z,v)), \ |
philpem@5 | 5363 | (I[185] = (img)(_p4##x,y,z,v)), \ |
philpem@5 | 5364 | (I[205] = (img)(_p4##x,_n1##y,z,v)), \ |
philpem@5 | 5365 | (I[225] = (img)(_p4##x,_n2##y,z,v)), \ |
philpem@5 | 5366 | (I[245] = (img)(_p4##x,_n3##y,z,v)), \ |
philpem@5 | 5367 | (I[265] = (img)(_p4##x,_n4##y,z,v)), \ |
philpem@5 | 5368 | (I[285] = (img)(_p4##x,_n5##y,z,v)), \ |
philpem@5 | 5369 | (I[305] = (img)(_p4##x,_n6##y,z,v)), \ |
philpem@5 | 5370 | (I[325] = (img)(_p4##x,_n7##y,z,v)), \ |
philpem@5 | 5371 | (I[345] = (img)(_p4##x,_n8##y,z,v)), \ |
philpem@5 | 5372 | (I[365] = (img)(_p4##x,_n9##y,z,v)), \ |
philpem@5 | 5373 | (I[385] = (img)(_p4##x,_n10##y,z,v)), \ |
philpem@5 | 5374 | (I[6] = (img)(_p3##x,_p9##y,z,v)), \ |
philpem@5 | 5375 | (I[26] = (img)(_p3##x,_p8##y,z,v)), \ |
philpem@5 | 5376 | (I[46] = (img)(_p3##x,_p7##y,z,v)), \ |
philpem@5 | 5377 | (I[66] = (img)(_p3##x,_p6##y,z,v)), \ |
philpem@5 | 5378 | (I[86] = (img)(_p3##x,_p5##y,z,v)), \ |
philpem@5 | 5379 | (I[106] = (img)(_p3##x,_p4##y,z,v)), \ |
philpem@5 | 5380 | (I[126] = (img)(_p3##x,_p3##y,z,v)), \ |
philpem@5 | 5381 | (I[146] = (img)(_p3##x,_p2##y,z,v)), \ |
philpem@5 | 5382 | (I[166] = (img)(_p3##x,_p1##y,z,v)), \ |
philpem@5 | 5383 | (I[186] = (img)(_p3##x,y,z,v)), \ |
philpem@5 | 5384 | (I[206] = (img)(_p3##x,_n1##y,z,v)), \ |
philpem@5 | 5385 | (I[226] = (img)(_p3##x,_n2##y,z,v)), \ |
philpem@5 | 5386 | (I[246] = (img)(_p3##x,_n3##y,z,v)), \ |
philpem@5 | 5387 | (I[266] = (img)(_p3##x,_n4##y,z,v)), \ |
philpem@5 | 5388 | (I[286] = (img)(_p3##x,_n5##y,z,v)), \ |
philpem@5 | 5389 | (I[306] = (img)(_p3##x,_n6##y,z,v)), \ |
philpem@5 | 5390 | (I[326] = (img)(_p3##x,_n7##y,z,v)), \ |
philpem@5 | 5391 | (I[346] = (img)(_p3##x,_n8##y,z,v)), \ |
philpem@5 | 5392 | (I[366] = (img)(_p3##x,_n9##y,z,v)), \ |
philpem@5 | 5393 | (I[386] = (img)(_p3##x,_n10##y,z,v)), \ |
philpem@5 | 5394 | (I[7] = (img)(_p2##x,_p9##y,z,v)), \ |
philpem@5 | 5395 | (I[27] = (img)(_p2##x,_p8##y,z,v)), \ |
philpem@5 | 5396 | (I[47] = (img)(_p2##x,_p7##y,z,v)), \ |
philpem@5 | 5397 | (I[67] = (img)(_p2##x,_p6##y,z,v)), \ |
philpem@5 | 5398 | (I[87] = (img)(_p2##x,_p5##y,z,v)), \ |
philpem@5 | 5399 | (I[107] = (img)(_p2##x,_p4##y,z,v)), \ |
philpem@5 | 5400 | (I[127] = (img)(_p2##x,_p3##y,z,v)), \ |
philpem@5 | 5401 | (I[147] = (img)(_p2##x,_p2##y,z,v)), \ |
philpem@5 | 5402 | (I[167] = (img)(_p2##x,_p1##y,z,v)), \ |
philpem@5 | 5403 | (I[187] = (img)(_p2##x,y,z,v)), \ |
philpem@5 | 5404 | (I[207] = (img)(_p2##x,_n1##y,z,v)), \ |
philpem@5 | 5405 | (I[227] = (img)(_p2##x,_n2##y,z,v)), \ |
philpem@5 | 5406 | (I[247] = (img)(_p2##x,_n3##y,z,v)), \ |
philpem@5 | 5407 | (I[267] = (img)(_p2##x,_n4##y,z,v)), \ |
philpem@5 | 5408 | (I[287] = (img)(_p2##x,_n5##y,z,v)), \ |
philpem@5 | 5409 | (I[307] = (img)(_p2##x,_n6##y,z,v)), \ |
philpem@5 | 5410 | (I[327] = (img)(_p2##x,_n7##y,z,v)), \ |
philpem@5 | 5411 | (I[347] = (img)(_p2##x,_n8##y,z,v)), \ |
philpem@5 | 5412 | (I[367] = (img)(_p2##x,_n9##y,z,v)), \ |
philpem@5 | 5413 | (I[387] = (img)(_p2##x,_n10##y,z,v)), \ |
philpem@5 | 5414 | (I[8] = (img)(_p1##x,_p9##y,z,v)), \ |
philpem@5 | 5415 | (I[28] = (img)(_p1##x,_p8##y,z,v)), \ |
philpem@5 | 5416 | (I[48] = (img)(_p1##x,_p7##y,z,v)), \ |
philpem@5 | 5417 | (I[68] = (img)(_p1##x,_p6##y,z,v)), \ |
philpem@5 | 5418 | (I[88] = (img)(_p1##x,_p5##y,z,v)), \ |
philpem@5 | 5419 | (I[108] = (img)(_p1##x,_p4##y,z,v)), \ |
philpem@5 | 5420 | (I[128] = (img)(_p1##x,_p3##y,z,v)), \ |
philpem@5 | 5421 | (I[148] = (img)(_p1##x,_p2##y,z,v)), \ |
philpem@5 | 5422 | (I[168] = (img)(_p1##x,_p1##y,z,v)), \ |
philpem@5 | 5423 | (I[188] = (img)(_p1##x,y,z,v)), \ |
philpem@5 | 5424 | (I[208] = (img)(_p1##x,_n1##y,z,v)), \ |
philpem@5 | 5425 | (I[228] = (img)(_p1##x,_n2##y,z,v)), \ |
philpem@5 | 5426 | (I[248] = (img)(_p1##x,_n3##y,z,v)), \ |
philpem@5 | 5427 | (I[268] = (img)(_p1##x,_n4##y,z,v)), \ |
philpem@5 | 5428 | (I[288] = (img)(_p1##x,_n5##y,z,v)), \ |
philpem@5 | 5429 | (I[308] = (img)(_p1##x,_n6##y,z,v)), \ |
philpem@5 | 5430 | (I[328] = (img)(_p1##x,_n7##y,z,v)), \ |
philpem@5 | 5431 | (I[348] = (img)(_p1##x,_n8##y,z,v)), \ |
philpem@5 | 5432 | (I[368] = (img)(_p1##x,_n9##y,z,v)), \ |
philpem@5 | 5433 | (I[388] = (img)(_p1##x,_n10##y,z,v)), \ |
philpem@5 | 5434 | (I[9] = (img)(x,_p9##y,z,v)), \ |
philpem@5 | 5435 | (I[29] = (img)(x,_p8##y,z,v)), \ |
philpem@5 | 5436 | (I[49] = (img)(x,_p7##y,z,v)), \ |
philpem@5 | 5437 | (I[69] = (img)(x,_p6##y,z,v)), \ |
philpem@5 | 5438 | (I[89] = (img)(x,_p5##y,z,v)), \ |
philpem@5 | 5439 | (I[109] = (img)(x,_p4##y,z,v)), \ |
philpem@5 | 5440 | (I[129] = (img)(x,_p3##y,z,v)), \ |
philpem@5 | 5441 | (I[149] = (img)(x,_p2##y,z,v)), \ |
philpem@5 | 5442 | (I[169] = (img)(x,_p1##y,z,v)), \ |
philpem@5 | 5443 | (I[189] = (img)(x,y,z,v)), \ |
philpem@5 | 5444 | (I[209] = (img)(x,_n1##y,z,v)), \ |
philpem@5 | 5445 | (I[229] = (img)(x,_n2##y,z,v)), \ |
philpem@5 | 5446 | (I[249] = (img)(x,_n3##y,z,v)), \ |
philpem@5 | 5447 | (I[269] = (img)(x,_n4##y,z,v)), \ |
philpem@5 | 5448 | (I[289] = (img)(x,_n5##y,z,v)), \ |
philpem@5 | 5449 | (I[309] = (img)(x,_n6##y,z,v)), \ |
philpem@5 | 5450 | (I[329] = (img)(x,_n7##y,z,v)), \ |
philpem@5 | 5451 | (I[349] = (img)(x,_n8##y,z,v)), \ |
philpem@5 | 5452 | (I[369] = (img)(x,_n9##y,z,v)), \ |
philpem@5 | 5453 | (I[389] = (img)(x,_n10##y,z,v)), \ |
philpem@5 | 5454 | (I[10] = (img)(_n1##x,_p9##y,z,v)), \ |
philpem@5 | 5455 | (I[30] = (img)(_n1##x,_p8##y,z,v)), \ |
philpem@5 | 5456 | (I[50] = (img)(_n1##x,_p7##y,z,v)), \ |
philpem@5 | 5457 | (I[70] = (img)(_n1##x,_p6##y,z,v)), \ |
philpem@5 | 5458 | (I[90] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 5459 | (I[110] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 5460 | (I[130] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 5461 | (I[150] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 5462 | (I[170] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 5463 | (I[190] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 5464 | (I[210] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 5465 | (I[230] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 5466 | (I[250] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 5467 | (I[270] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 5468 | (I[290] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 5469 | (I[310] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 5470 | (I[330] = (img)(_n1##x,_n7##y,z,v)), \ |
philpem@5 | 5471 | (I[350] = (img)(_n1##x,_n8##y,z,v)), \ |
philpem@5 | 5472 | (I[370] = (img)(_n1##x,_n9##y,z,v)), \ |
philpem@5 | 5473 | (I[390] = (img)(_n1##x,_n10##y,z,v)), \ |
philpem@5 | 5474 | (I[11] = (img)(_n2##x,_p9##y,z,v)), \ |
philpem@5 | 5475 | (I[31] = (img)(_n2##x,_p8##y,z,v)), \ |
philpem@5 | 5476 | (I[51] = (img)(_n2##x,_p7##y,z,v)), \ |
philpem@5 | 5477 | (I[71] = (img)(_n2##x,_p6##y,z,v)), \ |
philpem@5 | 5478 | (I[91] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 5479 | (I[111] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 5480 | (I[131] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 5481 | (I[151] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 5482 | (I[171] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 5483 | (I[191] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 5484 | (I[211] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 5485 | (I[231] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 5486 | (I[251] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 5487 | (I[271] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 5488 | (I[291] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 5489 | (I[311] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 5490 | (I[331] = (img)(_n2##x,_n7##y,z,v)), \ |
philpem@5 | 5491 | (I[351] = (img)(_n2##x,_n8##y,z,v)), \ |
philpem@5 | 5492 | (I[371] = (img)(_n2##x,_n9##y,z,v)), \ |
philpem@5 | 5493 | (I[391] = (img)(_n2##x,_n10##y,z,v)), \ |
philpem@5 | 5494 | (I[12] = (img)(_n3##x,_p9##y,z,v)), \ |
philpem@5 | 5495 | (I[32] = (img)(_n3##x,_p8##y,z,v)), \ |
philpem@5 | 5496 | (I[52] = (img)(_n3##x,_p7##y,z,v)), \ |
philpem@5 | 5497 | (I[72] = (img)(_n3##x,_p6##y,z,v)), \ |
philpem@5 | 5498 | (I[92] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 5499 | (I[112] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 5500 | (I[132] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 5501 | (I[152] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 5502 | (I[172] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 5503 | (I[192] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 5504 | (I[212] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 5505 | (I[232] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 5506 | (I[252] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 5507 | (I[272] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 5508 | (I[292] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 5509 | (I[312] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 5510 | (I[332] = (img)(_n3##x,_n7##y,z,v)), \ |
philpem@5 | 5511 | (I[352] = (img)(_n3##x,_n8##y,z,v)), \ |
philpem@5 | 5512 | (I[372] = (img)(_n3##x,_n9##y,z,v)), \ |
philpem@5 | 5513 | (I[392] = (img)(_n3##x,_n10##y,z,v)), \ |
philpem@5 | 5514 | (I[13] = (img)(_n4##x,_p9##y,z,v)), \ |
philpem@5 | 5515 | (I[33] = (img)(_n4##x,_p8##y,z,v)), \ |
philpem@5 | 5516 | (I[53] = (img)(_n4##x,_p7##y,z,v)), \ |
philpem@5 | 5517 | (I[73] = (img)(_n4##x,_p6##y,z,v)), \ |
philpem@5 | 5518 | (I[93] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 5519 | (I[113] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 5520 | (I[133] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 5521 | (I[153] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 5522 | (I[173] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 5523 | (I[193] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 5524 | (I[213] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 5525 | (I[233] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 5526 | (I[253] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 5527 | (I[273] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 5528 | (I[293] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 5529 | (I[313] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 5530 | (I[333] = (img)(_n4##x,_n7##y,z,v)), \ |
philpem@5 | 5531 | (I[353] = (img)(_n4##x,_n8##y,z,v)), \ |
philpem@5 | 5532 | (I[373] = (img)(_n4##x,_n9##y,z,v)), \ |
philpem@5 | 5533 | (I[393] = (img)(_n4##x,_n10##y,z,v)), \ |
philpem@5 | 5534 | (I[14] = (img)(_n5##x,_p9##y,z,v)), \ |
philpem@5 | 5535 | (I[34] = (img)(_n5##x,_p8##y,z,v)), \ |
philpem@5 | 5536 | (I[54] = (img)(_n5##x,_p7##y,z,v)), \ |
philpem@5 | 5537 | (I[74] = (img)(_n5##x,_p6##y,z,v)), \ |
philpem@5 | 5538 | (I[94] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 5539 | (I[114] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 5540 | (I[134] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 5541 | (I[154] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 5542 | (I[174] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 5543 | (I[194] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 5544 | (I[214] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 5545 | (I[234] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 5546 | (I[254] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 5547 | (I[274] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 5548 | (I[294] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 5549 | (I[314] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 5550 | (I[334] = (img)(_n5##x,_n7##y,z,v)), \ |
philpem@5 | 5551 | (I[354] = (img)(_n5##x,_n8##y,z,v)), \ |
philpem@5 | 5552 | (I[374] = (img)(_n5##x,_n9##y,z,v)), \ |
philpem@5 | 5553 | (I[394] = (img)(_n5##x,_n10##y,z,v)), \ |
philpem@5 | 5554 | (I[15] = (img)(_n6##x,_p9##y,z,v)), \ |
philpem@5 | 5555 | (I[35] = (img)(_n6##x,_p8##y,z,v)), \ |
philpem@5 | 5556 | (I[55] = (img)(_n6##x,_p7##y,z,v)), \ |
philpem@5 | 5557 | (I[75] = (img)(_n6##x,_p6##y,z,v)), \ |
philpem@5 | 5558 | (I[95] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 5559 | (I[115] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 5560 | (I[135] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 5561 | (I[155] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 5562 | (I[175] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 5563 | (I[195] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 5564 | (I[215] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 5565 | (I[235] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 5566 | (I[255] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 5567 | (I[275] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 5568 | (I[295] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 5569 | (I[315] = (img)(_n6##x,_n6##y,z,v)), \ |
philpem@5 | 5570 | (I[335] = (img)(_n6##x,_n7##y,z,v)), \ |
philpem@5 | 5571 | (I[355] = (img)(_n6##x,_n8##y,z,v)), \ |
philpem@5 | 5572 | (I[375] = (img)(_n6##x,_n9##y,z,v)), \ |
philpem@5 | 5573 | (I[395] = (img)(_n6##x,_n10##y,z,v)), \ |
philpem@5 | 5574 | (I[16] = (img)(_n7##x,_p9##y,z,v)), \ |
philpem@5 | 5575 | (I[36] = (img)(_n7##x,_p8##y,z,v)), \ |
philpem@5 | 5576 | (I[56] = (img)(_n7##x,_p7##y,z,v)), \ |
philpem@5 | 5577 | (I[76] = (img)(_n7##x,_p6##y,z,v)), \ |
philpem@5 | 5578 | (I[96] = (img)(_n7##x,_p5##y,z,v)), \ |
philpem@5 | 5579 | (I[116] = (img)(_n7##x,_p4##y,z,v)), \ |
philpem@5 | 5580 | (I[136] = (img)(_n7##x,_p3##y,z,v)), \ |
philpem@5 | 5581 | (I[156] = (img)(_n7##x,_p2##y,z,v)), \ |
philpem@5 | 5582 | (I[176] = (img)(_n7##x,_p1##y,z,v)), \ |
philpem@5 | 5583 | (I[196] = (img)(_n7##x,y,z,v)), \ |
philpem@5 | 5584 | (I[216] = (img)(_n7##x,_n1##y,z,v)), \ |
philpem@5 | 5585 | (I[236] = (img)(_n7##x,_n2##y,z,v)), \ |
philpem@5 | 5586 | (I[256] = (img)(_n7##x,_n3##y,z,v)), \ |
philpem@5 | 5587 | (I[276] = (img)(_n7##x,_n4##y,z,v)), \ |
philpem@5 | 5588 | (I[296] = (img)(_n7##x,_n5##y,z,v)), \ |
philpem@5 | 5589 | (I[316] = (img)(_n7##x,_n6##y,z,v)), \ |
philpem@5 | 5590 | (I[336] = (img)(_n7##x,_n7##y,z,v)), \ |
philpem@5 | 5591 | (I[356] = (img)(_n7##x,_n8##y,z,v)), \ |
philpem@5 | 5592 | (I[376] = (img)(_n7##x,_n9##y,z,v)), \ |
philpem@5 | 5593 | (I[396] = (img)(_n7##x,_n10##y,z,v)), \ |
philpem@5 | 5594 | (I[17] = (img)(_n8##x,_p9##y,z,v)), \ |
philpem@5 | 5595 | (I[37] = (img)(_n8##x,_p8##y,z,v)), \ |
philpem@5 | 5596 | (I[57] = (img)(_n8##x,_p7##y,z,v)), \ |
philpem@5 | 5597 | (I[77] = (img)(_n8##x,_p6##y,z,v)), \ |
philpem@5 | 5598 | (I[97] = (img)(_n8##x,_p5##y,z,v)), \ |
philpem@5 | 5599 | (I[117] = (img)(_n8##x,_p4##y,z,v)), \ |
philpem@5 | 5600 | (I[137] = (img)(_n8##x,_p3##y,z,v)), \ |
philpem@5 | 5601 | (I[157] = (img)(_n8##x,_p2##y,z,v)), \ |
philpem@5 | 5602 | (I[177] = (img)(_n8##x,_p1##y,z,v)), \ |
philpem@5 | 5603 | (I[197] = (img)(_n8##x,y,z,v)), \ |
philpem@5 | 5604 | (I[217] = (img)(_n8##x,_n1##y,z,v)), \ |
philpem@5 | 5605 | (I[237] = (img)(_n8##x,_n2##y,z,v)), \ |
philpem@5 | 5606 | (I[257] = (img)(_n8##x,_n3##y,z,v)), \ |
philpem@5 | 5607 | (I[277] = (img)(_n8##x,_n4##y,z,v)), \ |
philpem@5 | 5608 | (I[297] = (img)(_n8##x,_n5##y,z,v)), \ |
philpem@5 | 5609 | (I[317] = (img)(_n8##x,_n6##y,z,v)), \ |
philpem@5 | 5610 | (I[337] = (img)(_n8##x,_n7##y,z,v)), \ |
philpem@5 | 5611 | (I[357] = (img)(_n8##x,_n8##y,z,v)), \ |
philpem@5 | 5612 | (I[377] = (img)(_n8##x,_n9##y,z,v)), \ |
philpem@5 | 5613 | (I[397] = (img)(_n8##x,_n10##y,z,v)), \ |
philpem@5 | 5614 | (I[18] = (img)(_n9##x,_p9##y,z,v)), \ |
philpem@5 | 5615 | (I[38] = (img)(_n9##x,_p8##y,z,v)), \ |
philpem@5 | 5616 | (I[58] = (img)(_n9##x,_p7##y,z,v)), \ |
philpem@5 | 5617 | (I[78] = (img)(_n9##x,_p6##y,z,v)), \ |
philpem@5 | 5618 | (I[98] = (img)(_n9##x,_p5##y,z,v)), \ |
philpem@5 | 5619 | (I[118] = (img)(_n9##x,_p4##y,z,v)), \ |
philpem@5 | 5620 | (I[138] = (img)(_n9##x,_p3##y,z,v)), \ |
philpem@5 | 5621 | (I[158] = (img)(_n9##x,_p2##y,z,v)), \ |
philpem@5 | 5622 | (I[178] = (img)(_n9##x,_p1##y,z,v)), \ |
philpem@5 | 5623 | (I[198] = (img)(_n9##x,y,z,v)), \ |
philpem@5 | 5624 | (I[218] = (img)(_n9##x,_n1##y,z,v)), \ |
philpem@5 | 5625 | (I[238] = (img)(_n9##x,_n2##y,z,v)), \ |
philpem@5 | 5626 | (I[258] = (img)(_n9##x,_n3##y,z,v)), \ |
philpem@5 | 5627 | (I[278] = (img)(_n9##x,_n4##y,z,v)), \ |
philpem@5 | 5628 | (I[298] = (img)(_n9##x,_n5##y,z,v)), \ |
philpem@5 | 5629 | (I[318] = (img)(_n9##x,_n6##y,z,v)), \ |
philpem@5 | 5630 | (I[338] = (img)(_n9##x,_n7##y,z,v)), \ |
philpem@5 | 5631 | (I[358] = (img)(_n9##x,_n8##y,z,v)), \ |
philpem@5 | 5632 | (I[378] = (img)(_n9##x,_n9##y,z,v)), \ |
philpem@5 | 5633 | (I[398] = (img)(_n9##x,_n10##y,z,v)), \ |
philpem@5 | 5634 | x+10>=(int)((img).width)?(int)((img).width)-1:x+10); \ |
philpem@5 | 5635 | x<=(int)(x1) && ((_n10##x<(int)((img).width) && ( \ |
philpem@5 | 5636 | (I[19] = (img)(_n10##x,_p9##y,z,v)), \ |
philpem@5 | 5637 | (I[39] = (img)(_n10##x,_p8##y,z,v)), \ |
philpem@5 | 5638 | (I[59] = (img)(_n10##x,_p7##y,z,v)), \ |
philpem@5 | 5639 | (I[79] = (img)(_n10##x,_p6##y,z,v)), \ |
philpem@5 | 5640 | (I[99] = (img)(_n10##x,_p5##y,z,v)), \ |
philpem@5 | 5641 | (I[119] = (img)(_n10##x,_p4##y,z,v)), \ |
philpem@5 | 5642 | (I[139] = (img)(_n10##x,_p3##y,z,v)), \ |
philpem@5 | 5643 | (I[159] = (img)(_n10##x,_p2##y,z,v)), \ |
philpem@5 | 5644 | (I[179] = (img)(_n10##x,_p1##y,z,v)), \ |
philpem@5 | 5645 | (I[199] = (img)(_n10##x,y,z,v)), \ |
philpem@5 | 5646 | (I[219] = (img)(_n10##x,_n1##y,z,v)), \ |
philpem@5 | 5647 | (I[239] = (img)(_n10##x,_n2##y,z,v)), \ |
philpem@5 | 5648 | (I[259] = (img)(_n10##x,_n3##y,z,v)), \ |
philpem@5 | 5649 | (I[279] = (img)(_n10##x,_n4##y,z,v)), \ |
philpem@5 | 5650 | (I[299] = (img)(_n10##x,_n5##y,z,v)), \ |
philpem@5 | 5651 | (I[319] = (img)(_n10##x,_n6##y,z,v)), \ |
philpem@5 | 5652 | (I[339] = (img)(_n10##x,_n7##y,z,v)), \ |
philpem@5 | 5653 | (I[359] = (img)(_n10##x,_n8##y,z,v)), \ |
philpem@5 | 5654 | (I[379] = (img)(_n10##x,_n9##y,z,v)), \ |
philpem@5 | 5655 | (I[399] = (img)(_n10##x,_n10##y,z,v)),1)) || \ |
philpem@5 | 5656 | _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \ |
philpem@5 | 5657 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \ |
philpem@5 | 5658 | I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \ |
philpem@5 | 5659 | I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \ |
philpem@5 | 5660 | I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \ |
philpem@5 | 5661 | I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \ |
philpem@5 | 5662 | I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \ |
philpem@5 | 5663 | I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \ |
philpem@5 | 5664 | I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \ |
philpem@5 | 5665 | I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \ |
philpem@5 | 5666 | I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], \ |
philpem@5 | 5667 | I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], \ |
philpem@5 | 5668 | I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \ |
philpem@5 | 5669 | I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], \ |
philpem@5 | 5670 | I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \ |
philpem@5 | 5671 | I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], \ |
philpem@5 | 5672 | I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], \ |
philpem@5 | 5673 | I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], \ |
philpem@5 | 5674 | I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \ |
philpem@5 | 5675 | I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], \ |
philpem@5 | 5676 | I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], \ |
philpem@5 | 5677 | _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x) |
philpem@5 | 5678 | |
philpem@5 | 5679 | #define cimg_get20x20(img,x,y,z,v,I) \ |
philpem@5 | 5680 | I[0] = (img)(_p9##x,_p9##y,z,v), I[1] = (img)(_p8##x,_p9##y,z,v), I[2] = (img)(_p7##x,_p9##y,z,v), I[3] = (img)(_p6##x,_p9##y,z,v), I[4] = (img)(_p5##x,_p9##y,z,v), I[5] = (img)(_p4##x,_p9##y,z,v), I[6] = (img)(_p3##x,_p9##y,z,v), I[7] = (img)(_p2##x,_p9##y,z,v), I[8] = (img)(_p1##x,_p9##y,z,v), I[9] = (img)(x,_p9##y,z,v), I[10] = (img)(_n1##x,_p9##y,z,v), I[11] = (img)(_n2##x,_p9##y,z,v), I[12] = (img)(_n3##x,_p9##y,z,v), I[13] = (img)(_n4##x,_p9##y,z,v), I[14] = (img)(_n5##x,_p9##y,z,v), I[15] = (img)(_n6##x,_p9##y,z,v), I[16] = (img)(_n7##x,_p9##y,z,v), I[17] = (img)(_n8##x,_p9##y,z,v), I[18] = (img)(_n9##x,_p9##y,z,v), I[19] = (img)(_n10##x,_p9##y,z,v), \ |
philpem@5 | 5681 | I[20] = (img)(_p9##x,_p8##y,z,v), I[21] = (img)(_p8##x,_p8##y,z,v), I[22] = (img)(_p7##x,_p8##y,z,v), I[23] = (img)(_p6##x,_p8##y,z,v), I[24] = (img)(_p5##x,_p8##y,z,v), I[25] = (img)(_p4##x,_p8##y,z,v), I[26] = (img)(_p3##x,_p8##y,z,v), I[27] = (img)(_p2##x,_p8##y,z,v), I[28] = (img)(_p1##x,_p8##y,z,v), I[29] = (img)(x,_p8##y,z,v), I[30] = (img)(_n1##x,_p8##y,z,v), I[31] = (img)(_n2##x,_p8##y,z,v), I[32] = (img)(_n3##x,_p8##y,z,v), I[33] = (img)(_n4##x,_p8##y,z,v), I[34] = (img)(_n5##x,_p8##y,z,v), I[35] = (img)(_n6##x,_p8##y,z,v), I[36] = (img)(_n7##x,_p8##y,z,v), I[37] = (img)(_n8##x,_p8##y,z,v), I[38] = (img)(_n9##x,_p8##y,z,v), I[39] = (img)(_n10##x,_p8##y,z,v), \ |
philpem@5 | 5682 | I[40] = (img)(_p9##x,_p7##y,z,v), I[41] = (img)(_p8##x,_p7##y,z,v), I[42] = (img)(_p7##x,_p7##y,z,v), I[43] = (img)(_p6##x,_p7##y,z,v), I[44] = (img)(_p5##x,_p7##y,z,v), I[45] = (img)(_p4##x,_p7##y,z,v), I[46] = (img)(_p3##x,_p7##y,z,v), I[47] = (img)(_p2##x,_p7##y,z,v), I[48] = (img)(_p1##x,_p7##y,z,v), I[49] = (img)(x,_p7##y,z,v), I[50] = (img)(_n1##x,_p7##y,z,v), I[51] = (img)(_n2##x,_p7##y,z,v), I[52] = (img)(_n3##x,_p7##y,z,v), I[53] = (img)(_n4##x,_p7##y,z,v), I[54] = (img)(_n5##x,_p7##y,z,v), I[55] = (img)(_n6##x,_p7##y,z,v), I[56] = (img)(_n7##x,_p7##y,z,v), I[57] = (img)(_n8##x,_p7##y,z,v), I[58] = (img)(_n9##x,_p7##y,z,v), I[59] = (img)(_n10##x,_p7##y,z,v), \ |
philpem@5 | 5683 | I[60] = (img)(_p9##x,_p6##y,z,v), I[61] = (img)(_p8##x,_p6##y,z,v), I[62] = (img)(_p7##x,_p6##y,z,v), I[63] = (img)(_p6##x,_p6##y,z,v), I[64] = (img)(_p5##x,_p6##y,z,v), I[65] = (img)(_p4##x,_p6##y,z,v), I[66] = (img)(_p3##x,_p6##y,z,v), I[67] = (img)(_p2##x,_p6##y,z,v), I[68] = (img)(_p1##x,_p6##y,z,v), I[69] = (img)(x,_p6##y,z,v), I[70] = (img)(_n1##x,_p6##y,z,v), I[71] = (img)(_n2##x,_p6##y,z,v), I[72] = (img)(_n3##x,_p6##y,z,v), I[73] = (img)(_n4##x,_p6##y,z,v), I[74] = (img)(_n5##x,_p6##y,z,v), I[75] = (img)(_n6##x,_p6##y,z,v), I[76] = (img)(_n7##x,_p6##y,z,v), I[77] = (img)(_n8##x,_p6##y,z,v), I[78] = (img)(_n9##x,_p6##y,z,v), I[79] = (img)(_n10##x,_p6##y,z,v), \ |
philpem@5 | 5684 | I[80] = (img)(_p9##x,_p5##y,z,v), I[81] = (img)(_p8##x,_p5##y,z,v), I[82] = (img)(_p7##x,_p5##y,z,v), I[83] = (img)(_p6##x,_p5##y,z,v), I[84] = (img)(_p5##x,_p5##y,z,v), I[85] = (img)(_p4##x,_p5##y,z,v), I[86] = (img)(_p3##x,_p5##y,z,v), I[87] = (img)(_p2##x,_p5##y,z,v), I[88] = (img)(_p1##x,_p5##y,z,v), I[89] = (img)(x,_p5##y,z,v), I[90] = (img)(_n1##x,_p5##y,z,v), I[91] = (img)(_n2##x,_p5##y,z,v), I[92] = (img)(_n3##x,_p5##y,z,v), I[93] = (img)(_n4##x,_p5##y,z,v), I[94] = (img)(_n5##x,_p5##y,z,v), I[95] = (img)(_n6##x,_p5##y,z,v), I[96] = (img)(_n7##x,_p5##y,z,v), I[97] = (img)(_n8##x,_p5##y,z,v), I[98] = (img)(_n9##x,_p5##y,z,v), I[99] = (img)(_n10##x,_p5##y,z,v), \ |
philpem@5 | 5685 | I[100] = (img)(_p9##x,_p4##y,z,v), I[101] = (img)(_p8##x,_p4##y,z,v), I[102] = (img)(_p7##x,_p4##y,z,v), I[103] = (img)(_p6##x,_p4##y,z,v), I[104] = (img)(_p5##x,_p4##y,z,v), I[105] = (img)(_p4##x,_p4##y,z,v), I[106] = (img)(_p3##x,_p4##y,z,v), I[107] = (img)(_p2##x,_p4##y,z,v), I[108] = (img)(_p1##x,_p4##y,z,v), I[109] = (img)(x,_p4##y,z,v), I[110] = (img)(_n1##x,_p4##y,z,v), I[111] = (img)(_n2##x,_p4##y,z,v), I[112] = (img)(_n3##x,_p4##y,z,v), I[113] = (img)(_n4##x,_p4##y,z,v), I[114] = (img)(_n5##x,_p4##y,z,v), I[115] = (img)(_n6##x,_p4##y,z,v), I[116] = (img)(_n7##x,_p4##y,z,v), I[117] = (img)(_n8##x,_p4##y,z,v), I[118] = (img)(_n9##x,_p4##y,z,v), I[119] = (img)(_n10##x,_p4##y,z,v), \ |
philpem@5 | 5686 | I[120] = (img)(_p9##x,_p3##y,z,v), I[121] = (img)(_p8##x,_p3##y,z,v), I[122] = (img)(_p7##x,_p3##y,z,v), I[123] = (img)(_p6##x,_p3##y,z,v), I[124] = (img)(_p5##x,_p3##y,z,v), I[125] = (img)(_p4##x,_p3##y,z,v), I[126] = (img)(_p3##x,_p3##y,z,v), I[127] = (img)(_p2##x,_p3##y,z,v), I[128] = (img)(_p1##x,_p3##y,z,v), I[129] = (img)(x,_p3##y,z,v), I[130] = (img)(_n1##x,_p3##y,z,v), I[131] = (img)(_n2##x,_p3##y,z,v), I[132] = (img)(_n3##x,_p3##y,z,v), I[133] = (img)(_n4##x,_p3##y,z,v), I[134] = (img)(_n5##x,_p3##y,z,v), I[135] = (img)(_n6##x,_p3##y,z,v), I[136] = (img)(_n7##x,_p3##y,z,v), I[137] = (img)(_n8##x,_p3##y,z,v), I[138] = (img)(_n9##x,_p3##y,z,v), I[139] = (img)(_n10##x,_p3##y,z,v), \ |
philpem@5 | 5687 | I[140] = (img)(_p9##x,_p2##y,z,v), I[141] = (img)(_p8##x,_p2##y,z,v), I[142] = (img)(_p7##x,_p2##y,z,v), I[143] = (img)(_p6##x,_p2##y,z,v), I[144] = (img)(_p5##x,_p2##y,z,v), I[145] = (img)(_p4##x,_p2##y,z,v), I[146] = (img)(_p3##x,_p2##y,z,v), I[147] = (img)(_p2##x,_p2##y,z,v), I[148] = (img)(_p1##x,_p2##y,z,v), I[149] = (img)(x,_p2##y,z,v), I[150] = (img)(_n1##x,_p2##y,z,v), I[151] = (img)(_n2##x,_p2##y,z,v), I[152] = (img)(_n3##x,_p2##y,z,v), I[153] = (img)(_n4##x,_p2##y,z,v), I[154] = (img)(_n5##x,_p2##y,z,v), I[155] = (img)(_n6##x,_p2##y,z,v), I[156] = (img)(_n7##x,_p2##y,z,v), I[157] = (img)(_n8##x,_p2##y,z,v), I[158] = (img)(_n9##x,_p2##y,z,v), I[159] = (img)(_n10##x,_p2##y,z,v), \ |
philpem@5 | 5688 | I[160] = (img)(_p9##x,_p1##y,z,v), I[161] = (img)(_p8##x,_p1##y,z,v), I[162] = (img)(_p7##x,_p1##y,z,v), I[163] = (img)(_p6##x,_p1##y,z,v), I[164] = (img)(_p5##x,_p1##y,z,v), I[165] = (img)(_p4##x,_p1##y,z,v), I[166] = (img)(_p3##x,_p1##y,z,v), I[167] = (img)(_p2##x,_p1##y,z,v), I[168] = (img)(_p1##x,_p1##y,z,v), I[169] = (img)(x,_p1##y,z,v), I[170] = (img)(_n1##x,_p1##y,z,v), I[171] = (img)(_n2##x,_p1##y,z,v), I[172] = (img)(_n3##x,_p1##y,z,v), I[173] = (img)(_n4##x,_p1##y,z,v), I[174] = (img)(_n5##x,_p1##y,z,v), I[175] = (img)(_n6##x,_p1##y,z,v), I[176] = (img)(_n7##x,_p1##y,z,v), I[177] = (img)(_n8##x,_p1##y,z,v), I[178] = (img)(_n9##x,_p1##y,z,v), I[179] = (img)(_n10##x,_p1##y,z,v), \ |
philpem@5 | 5689 | I[180] = (img)(_p9##x,y,z,v), I[181] = (img)(_p8##x,y,z,v), I[182] = (img)(_p7##x,y,z,v), I[183] = (img)(_p6##x,y,z,v), I[184] = (img)(_p5##x,y,z,v), I[185] = (img)(_p4##x,y,z,v), I[186] = (img)(_p3##x,y,z,v), I[187] = (img)(_p2##x,y,z,v), I[188] = (img)(_p1##x,y,z,v), I[189] = (img)(x,y,z,v), I[190] = (img)(_n1##x,y,z,v), I[191] = (img)(_n2##x,y,z,v), I[192] = (img)(_n3##x,y,z,v), I[193] = (img)(_n4##x,y,z,v), I[194] = (img)(_n5##x,y,z,v), I[195] = (img)(_n6##x,y,z,v), I[196] = (img)(_n7##x,y,z,v), I[197] = (img)(_n8##x,y,z,v), I[198] = (img)(_n9##x,y,z,v), I[199] = (img)(_n10##x,y,z,v), \ |
philpem@5 | 5690 | I[200] = (img)(_p9##x,_n1##y,z,v), I[201] = (img)(_p8##x,_n1##y,z,v), I[202] = (img)(_p7##x,_n1##y,z,v), I[203] = (img)(_p6##x,_n1##y,z,v), I[204] = (img)(_p5##x,_n1##y,z,v), I[205] = (img)(_p4##x,_n1##y,z,v), I[206] = (img)(_p3##x,_n1##y,z,v), I[207] = (img)(_p2##x,_n1##y,z,v), I[208] = (img)(_p1##x,_n1##y,z,v), I[209] = (img)(x,_n1##y,z,v), I[210] = (img)(_n1##x,_n1##y,z,v), I[211] = (img)(_n2##x,_n1##y,z,v), I[212] = (img)(_n3##x,_n1##y,z,v), I[213] = (img)(_n4##x,_n1##y,z,v), I[214] = (img)(_n5##x,_n1##y,z,v), I[215] = (img)(_n6##x,_n1##y,z,v), I[216] = (img)(_n7##x,_n1##y,z,v), I[217] = (img)(_n8##x,_n1##y,z,v), I[218] = (img)(_n9##x,_n1##y,z,v), I[219] = (img)(_n10##x,_n1##y,z,v), \ |
philpem@5 | 5691 | I[220] = (img)(_p9##x,_n2##y,z,v), I[221] = (img)(_p8##x,_n2##y,z,v), I[222] = (img)(_p7##x,_n2##y,z,v), I[223] = (img)(_p6##x,_n2##y,z,v), I[224] = (img)(_p5##x,_n2##y,z,v), I[225] = (img)(_p4##x,_n2##y,z,v), I[226] = (img)(_p3##x,_n2##y,z,v), I[227] = (img)(_p2##x,_n2##y,z,v), I[228] = (img)(_p1##x,_n2##y,z,v), I[229] = (img)(x,_n2##y,z,v), I[230] = (img)(_n1##x,_n2##y,z,v), I[231] = (img)(_n2##x,_n2##y,z,v), I[232] = (img)(_n3##x,_n2##y,z,v), I[233] = (img)(_n4##x,_n2##y,z,v), I[234] = (img)(_n5##x,_n2##y,z,v), I[235] = (img)(_n6##x,_n2##y,z,v), I[236] = (img)(_n7##x,_n2##y,z,v), I[237] = (img)(_n8##x,_n2##y,z,v), I[238] = (img)(_n9##x,_n2##y,z,v), I[239] = (img)(_n10##x,_n2##y,z,v), \ |
philpem@5 | 5692 | I[240] = (img)(_p9##x,_n3##y,z,v), I[241] = (img)(_p8##x,_n3##y,z,v), I[242] = (img)(_p7##x,_n3##y,z,v), I[243] = (img)(_p6##x,_n3##y,z,v), I[244] = (img)(_p5##x,_n3##y,z,v), I[245] = (img)(_p4##x,_n3##y,z,v), I[246] = (img)(_p3##x,_n3##y,z,v), I[247] = (img)(_p2##x,_n3##y,z,v), I[248] = (img)(_p1##x,_n3##y,z,v), I[249] = (img)(x,_n3##y,z,v), I[250] = (img)(_n1##x,_n3##y,z,v), I[251] = (img)(_n2##x,_n3##y,z,v), I[252] = (img)(_n3##x,_n3##y,z,v), I[253] = (img)(_n4##x,_n3##y,z,v), I[254] = (img)(_n5##x,_n3##y,z,v), I[255] = (img)(_n6##x,_n3##y,z,v), I[256] = (img)(_n7##x,_n3##y,z,v), I[257] = (img)(_n8##x,_n3##y,z,v), I[258] = (img)(_n9##x,_n3##y,z,v), I[259] = (img)(_n10##x,_n3##y,z,v), \ |
philpem@5 | 5693 | I[260] = (img)(_p9##x,_n4##y,z,v), I[261] = (img)(_p8##x,_n4##y,z,v), I[262] = (img)(_p7##x,_n4##y,z,v), I[263] = (img)(_p6##x,_n4##y,z,v), I[264] = (img)(_p5##x,_n4##y,z,v), I[265] = (img)(_p4##x,_n4##y,z,v), I[266] = (img)(_p3##x,_n4##y,z,v), I[267] = (img)(_p2##x,_n4##y,z,v), I[268] = (img)(_p1##x,_n4##y,z,v), I[269] = (img)(x,_n4##y,z,v), I[270] = (img)(_n1##x,_n4##y,z,v), I[271] = (img)(_n2##x,_n4##y,z,v), I[272] = (img)(_n3##x,_n4##y,z,v), I[273] = (img)(_n4##x,_n4##y,z,v), I[274] = (img)(_n5##x,_n4##y,z,v), I[275] = (img)(_n6##x,_n4##y,z,v), I[276] = (img)(_n7##x,_n4##y,z,v), I[277] = (img)(_n8##x,_n4##y,z,v), I[278] = (img)(_n9##x,_n4##y,z,v), I[279] = (img)(_n10##x,_n4##y,z,v), \ |
philpem@5 | 5694 | I[280] = (img)(_p9##x,_n5##y,z,v), I[281] = (img)(_p8##x,_n5##y,z,v), I[282] = (img)(_p7##x,_n5##y,z,v), I[283] = (img)(_p6##x,_n5##y,z,v), I[284] = (img)(_p5##x,_n5##y,z,v), I[285] = (img)(_p4##x,_n5##y,z,v), I[286] = (img)(_p3##x,_n5##y,z,v), I[287] = (img)(_p2##x,_n5##y,z,v), I[288] = (img)(_p1##x,_n5##y,z,v), I[289] = (img)(x,_n5##y,z,v), I[290] = (img)(_n1##x,_n5##y,z,v), I[291] = (img)(_n2##x,_n5##y,z,v), I[292] = (img)(_n3##x,_n5##y,z,v), I[293] = (img)(_n4##x,_n5##y,z,v), I[294] = (img)(_n5##x,_n5##y,z,v), I[295] = (img)(_n6##x,_n5##y,z,v), I[296] = (img)(_n7##x,_n5##y,z,v), I[297] = (img)(_n8##x,_n5##y,z,v), I[298] = (img)(_n9##x,_n5##y,z,v), I[299] = (img)(_n10##x,_n5##y,z,v), \ |
philpem@5 | 5695 | I[300] = (img)(_p9##x,_n6##y,z,v), I[301] = (img)(_p8##x,_n6##y,z,v), I[302] = (img)(_p7##x,_n6##y,z,v), I[303] = (img)(_p6##x,_n6##y,z,v), I[304] = (img)(_p5##x,_n6##y,z,v), I[305] = (img)(_p4##x,_n6##y,z,v), I[306] = (img)(_p3##x,_n6##y,z,v), I[307] = (img)(_p2##x,_n6##y,z,v), I[308] = (img)(_p1##x,_n6##y,z,v), I[309] = (img)(x,_n6##y,z,v), I[310] = (img)(_n1##x,_n6##y,z,v), I[311] = (img)(_n2##x,_n6##y,z,v), I[312] = (img)(_n3##x,_n6##y,z,v), I[313] = (img)(_n4##x,_n6##y,z,v), I[314] = (img)(_n5##x,_n6##y,z,v), I[315] = (img)(_n6##x,_n6##y,z,v), I[316] = (img)(_n7##x,_n6##y,z,v), I[317] = (img)(_n8##x,_n6##y,z,v), I[318] = (img)(_n9##x,_n6##y,z,v), I[319] = (img)(_n10##x,_n6##y,z,v), \ |
philpem@5 | 5696 | I[320] = (img)(_p9##x,_n7##y,z,v), I[321] = (img)(_p8##x,_n7##y,z,v), I[322] = (img)(_p7##x,_n7##y,z,v), I[323] = (img)(_p6##x,_n7##y,z,v), I[324] = (img)(_p5##x,_n7##y,z,v), I[325] = (img)(_p4##x,_n7##y,z,v), I[326] = (img)(_p3##x,_n7##y,z,v), I[327] = (img)(_p2##x,_n7##y,z,v), I[328] = (img)(_p1##x,_n7##y,z,v), I[329] = (img)(x,_n7##y,z,v), I[330] = (img)(_n1##x,_n7##y,z,v), I[331] = (img)(_n2##x,_n7##y,z,v), I[332] = (img)(_n3##x,_n7##y,z,v), I[333] = (img)(_n4##x,_n7##y,z,v), I[334] = (img)(_n5##x,_n7##y,z,v), I[335] = (img)(_n6##x,_n7##y,z,v), I[336] = (img)(_n7##x,_n7##y,z,v), I[337] = (img)(_n8##x,_n7##y,z,v), I[338] = (img)(_n9##x,_n7##y,z,v), I[339] = (img)(_n10##x,_n7##y,z,v), \ |
philpem@5 | 5697 | I[340] = (img)(_p9##x,_n8##y,z,v), I[341] = (img)(_p8##x,_n8##y,z,v), I[342] = (img)(_p7##x,_n8##y,z,v), I[343] = (img)(_p6##x,_n8##y,z,v), I[344] = (img)(_p5##x,_n8##y,z,v), I[345] = (img)(_p4##x,_n8##y,z,v), I[346] = (img)(_p3##x,_n8##y,z,v), I[347] = (img)(_p2##x,_n8##y,z,v), I[348] = (img)(_p1##x,_n8##y,z,v), I[349] = (img)(x,_n8##y,z,v), I[350] = (img)(_n1##x,_n8##y,z,v), I[351] = (img)(_n2##x,_n8##y,z,v), I[352] = (img)(_n3##x,_n8##y,z,v), I[353] = (img)(_n4##x,_n8##y,z,v), I[354] = (img)(_n5##x,_n8##y,z,v), I[355] = (img)(_n6##x,_n8##y,z,v), I[356] = (img)(_n7##x,_n8##y,z,v), I[357] = (img)(_n8##x,_n8##y,z,v), I[358] = (img)(_n9##x,_n8##y,z,v), I[359] = (img)(_n10##x,_n8##y,z,v), \ |
philpem@5 | 5698 | I[360] = (img)(_p9##x,_n9##y,z,v), I[361] = (img)(_p8##x,_n9##y,z,v), I[362] = (img)(_p7##x,_n9##y,z,v), I[363] = (img)(_p6##x,_n9##y,z,v), I[364] = (img)(_p5##x,_n9##y,z,v), I[365] = (img)(_p4##x,_n9##y,z,v), I[366] = (img)(_p3##x,_n9##y,z,v), I[367] = (img)(_p2##x,_n9##y,z,v), I[368] = (img)(_p1##x,_n9##y,z,v), I[369] = (img)(x,_n9##y,z,v), I[370] = (img)(_n1##x,_n9##y,z,v), I[371] = (img)(_n2##x,_n9##y,z,v), I[372] = (img)(_n3##x,_n9##y,z,v), I[373] = (img)(_n4##x,_n9##y,z,v), I[374] = (img)(_n5##x,_n9##y,z,v), I[375] = (img)(_n6##x,_n9##y,z,v), I[376] = (img)(_n7##x,_n9##y,z,v), I[377] = (img)(_n8##x,_n9##y,z,v), I[378] = (img)(_n9##x,_n9##y,z,v), I[379] = (img)(_n10##x,_n9##y,z,v), \ |
philpem@5 | 5699 | I[380] = (img)(_p9##x,_n10##y,z,v), I[381] = (img)(_p8##x,_n10##y,z,v), I[382] = (img)(_p7##x,_n10##y,z,v), I[383] = (img)(_p6##x,_n10##y,z,v), I[384] = (img)(_p5##x,_n10##y,z,v), I[385] = (img)(_p4##x,_n10##y,z,v), I[386] = (img)(_p3##x,_n10##y,z,v), I[387] = (img)(_p2##x,_n10##y,z,v), I[388] = (img)(_p1##x,_n10##y,z,v), I[389] = (img)(x,_n10##y,z,v), I[390] = (img)(_n1##x,_n10##y,z,v), I[391] = (img)(_n2##x,_n10##y,z,v), I[392] = (img)(_n3##x,_n10##y,z,v), I[393] = (img)(_n4##x,_n10##y,z,v), I[394] = (img)(_n5##x,_n10##y,z,v), I[395] = (img)(_n6##x,_n10##y,z,v), I[396] = (img)(_n7##x,_n10##y,z,v), I[397] = (img)(_n8##x,_n10##y,z,v), I[398] = (img)(_n9##x,_n10##y,z,v), I[399] = (img)(_n10##x,_n10##y,z,v); |
philpem@5 | 5700 | |
philpem@5 | 5701 | // Define 21x21 loop macros for CImg |
philpem@5 | 5702 | //---------------------------------- |
philpem@5 | 5703 | #define cimg_for21(bound,i) for (int i = 0, \ |
philpem@5 | 5704 | _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \ |
philpem@5 | 5705 | _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \ |
philpem@5 | 5706 | _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \ |
philpem@5 | 5707 | _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \ |
philpem@5 | 5708 | _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \ |
philpem@5 | 5709 | _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \ |
philpem@5 | 5710 | _n6##i = 6>=(int)(bound)?(int)(bound)-1:6, \ |
philpem@5 | 5711 | _n7##i = 7>=(int)(bound)?(int)(bound)-1:7, \ |
philpem@5 | 5712 | _n8##i = 8>=(int)(bound)?(int)(bound)-1:8, \ |
philpem@5 | 5713 | _n9##i = 9>=(int)(bound)?(int)(bound)-1:9, \ |
philpem@5 | 5714 | _n10##i = 10>=(int)(bound)?(int)(bound)-1:10; \ |
philpem@5 | 5715 | _n10##i<(int)(bound) || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 5716 | i==(_n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \ |
philpem@5 | 5717 | _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 5718 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i) |
philpem@5 | 5719 | |
philpem@5 | 5720 | #define cimg_for21X(img,x) cimg_for21((img).width,x) |
philpem@5 | 5721 | #define cimg_for21Y(img,y) cimg_for21((img).height,y) |
philpem@5 | 5722 | #define cimg_for21Z(img,z) cimg_for21((img).depth,z) |
philpem@5 | 5723 | #define cimg_for21V(img,v) cimg_for21((img).dim,v) |
philpem@5 | 5724 | #define cimg_for21XY(img,x,y) cimg_for21Y(img,y) cimg_for21X(img,x) |
philpem@5 | 5725 | #define cimg_for21XZ(img,x,z) cimg_for21Z(img,z) cimg_for21X(img,x) |
philpem@5 | 5726 | #define cimg_for21XV(img,x,v) cimg_for21V(img,v) cimg_for21X(img,x) |
philpem@5 | 5727 | #define cimg_for21YZ(img,y,z) cimg_for21Z(img,z) cimg_for21Y(img,y) |
philpem@5 | 5728 | #define cimg_for21YV(img,y,v) cimg_for21V(img,v) cimg_for21Y(img,y) |
philpem@5 | 5729 | #define cimg_for21ZV(img,z,v) cimg_for21V(img,v) cimg_for21Z(img,z) |
philpem@5 | 5730 | #define cimg_for21XYZ(img,x,y,z) cimg_for21Z(img,z) cimg_for21XY(img,x,y) |
philpem@5 | 5731 | #define cimg_for21XZV(img,x,z,v) cimg_for21V(img,v) cimg_for21XZ(img,x,z) |
philpem@5 | 5732 | #define cimg_for21YZV(img,y,z,v) cimg_for21V(img,v) cimg_for21YZ(img,y,z) |
philpem@5 | 5733 | #define cimg_for21XYZV(img,x,y,z,v) cimg_for21V(img,v) cimg_for21XYZ(img,x,y,z) |
philpem@5 | 5734 | |
philpem@5 | 5735 | #define cimg_for_in21(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \ |
philpem@5 | 5736 | _p10##i = i-10<0?0:i-10, \ |
philpem@5 | 5737 | _p9##i = i-9<0?0:i-9, \ |
philpem@5 | 5738 | _p8##i = i-8<0?0:i-8, \ |
philpem@5 | 5739 | _p7##i = i-7<0?0:i-7, \ |
philpem@5 | 5740 | _p6##i = i-6<0?0:i-6, \ |
philpem@5 | 5741 | _p5##i = i-5<0?0:i-5, \ |
philpem@5 | 5742 | _p4##i = i-4<0?0:i-4, \ |
philpem@5 | 5743 | _p3##i = i-3<0?0:i-3, \ |
philpem@5 | 5744 | _p2##i = i-2<0?0:i-2, \ |
philpem@5 | 5745 | _p1##i = i-1<0?0:i-1, \ |
philpem@5 | 5746 | _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \ |
philpem@5 | 5747 | _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \ |
philpem@5 | 5748 | _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \ |
philpem@5 | 5749 | _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \ |
philpem@5 | 5750 | _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \ |
philpem@5 | 5751 | _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6, \ |
philpem@5 | 5752 | _n7##i = i+7>=(int)(bound)?(int)(bound)-1:i+7, \ |
philpem@5 | 5753 | _n8##i = i+8>=(int)(bound)?(int)(bound)-1:i+8, \ |
philpem@5 | 5754 | _n9##i = i+9>=(int)(bound)?(int)(bound)-1:i+9, \ |
philpem@5 | 5755 | _n10##i = i+10>=(int)(bound)?(int)(bound)-1:i+10; \ |
philpem@5 | 5756 | i<=(int)(i1) && (_n10##i<(int)(bound) || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 5757 | i==(_n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \ |
philpem@5 | 5758 | _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 5759 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i) |
philpem@5 | 5760 | |
philpem@5 | 5761 | #define cimg_for_in21X(img,x0,x1,x) cimg_for_in21((img).width,x0,x1,x) |
philpem@5 | 5762 | #define cimg_for_in21Y(img,y0,y1,y) cimg_for_in21((img).height,y0,y1,y) |
philpem@5 | 5763 | #define cimg_for_in21Z(img,z0,z1,z) cimg_for_in21((img).depth,z0,z1,z) |
philpem@5 | 5764 | #define cimg_for_in21V(img,v0,v1,v) cimg_for_in21((img).dim,v0,v1,v) |
philpem@5 | 5765 | #define cimg_for_in21XY(img,x0,y0,x1,y1,x,y) cimg_for_in21Y(img,y0,y1,y) cimg_for_in21X(img,x0,x1,x) |
philpem@5 | 5766 | #define cimg_for_in21XZ(img,x0,z0,x1,z1,x,z) cimg_for_in21Z(img,z0,z1,z) cimg_for_in21X(img,x0,x1,x) |
philpem@5 | 5767 | #define cimg_for_in21XV(img,x0,v0,x1,v1,x,v) cimg_for_in21V(img,v0,v1,v) cimg_for_in21X(img,x0,x1,x) |
philpem@5 | 5768 | #define cimg_for_in21YZ(img,y0,z0,y1,z1,y,z) cimg_for_in21Z(img,z0,z1,z) cimg_for_in21Y(img,y0,y1,y) |
philpem@5 | 5769 | #define cimg_for_in21YV(img,y0,v0,y1,v1,y,v) cimg_for_in21V(img,v0,v1,v) cimg_for_in21Y(img,y0,y1,y) |
philpem@5 | 5770 | #define cimg_for_in21ZV(img,z0,v0,z1,v1,z,v) cimg_for_in21V(img,v0,v1,v) cimg_for_in21Z(img,z0,z1,z) |
philpem@5 | 5771 | #define cimg_for_in21XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in21Z(img,z0,z1,z) cimg_for_in21XY(img,x0,y0,x1,y1,x,y) |
philpem@5 | 5772 | #define cimg_for_in21XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in21V(img,v0,v1,v) cimg_for_in21XZ(img,x0,y0,x1,y1,x,z) |
philpem@5 | 5773 | #define cimg_for_in21YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in21V(img,v0,v1,v) cimg_for_in21YZ(img,y0,z0,y1,z1,y,z) |
philpem@5 | 5774 | #define cimg_for_in21XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in21V(img,v0,v1,v) cimg_for_in21XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) |
philpem@5 | 5775 | |
philpem@5 | 5776 | #define cimg_for21x21(img,x,y,z,v,I) \ |
philpem@5 | 5777 | cimg_for21((img).height,y) for (int x = 0, \ |
philpem@5 | 5778 | _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \ |
philpem@5 | 5779 | _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \ |
philpem@5 | 5780 | _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \ |
philpem@5 | 5781 | _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \ |
philpem@5 | 5782 | _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \ |
philpem@5 | 5783 | _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \ |
philpem@5 | 5784 | _n6##x = 6>=((img).width)?(int)((img).width)-1:6, \ |
philpem@5 | 5785 | _n7##x = 7>=((img).width)?(int)((img).width)-1:7, \ |
philpem@5 | 5786 | _n8##x = 8>=((img).width)?(int)((img).width)-1:8, \ |
philpem@5 | 5787 | _n9##x = 9>=((img).width)?(int)((img).width)-1:9, \ |
philpem@5 | 5788 | _n10##x = (int)( \ |
philpem@5 | 5789 | (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = (img)(0,_p10##y,z,v)), \ |
philpem@5 | 5790 | (I[21] = I[22] = I[23] = I[24] = I[25] = I[26] = I[27] = I[28] = I[29] = I[30] = I[31] = (img)(0,_p9##y,z,v)), \ |
philpem@5 | 5791 | (I[42] = I[43] = I[44] = I[45] = I[46] = I[47] = I[48] = I[49] = I[50] = I[51] = I[52] = (img)(0,_p8##y,z,v)), \ |
philpem@5 | 5792 | (I[63] = I[64] = I[65] = I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = I[72] = I[73] = (img)(0,_p7##y,z,v)), \ |
philpem@5 | 5793 | (I[84] = I[85] = I[86] = I[87] = I[88] = I[89] = I[90] = I[91] = I[92] = I[93] = I[94] = (img)(0,_p6##y,z,v)), \ |
philpem@5 | 5794 | (I[105] = I[106] = I[107] = I[108] = I[109] = I[110] = I[111] = I[112] = I[113] = I[114] = I[115] = (img)(0,_p5##y,z,v)), \ |
philpem@5 | 5795 | (I[126] = I[127] = I[128] = I[129] = I[130] = I[131] = I[132] = I[133] = I[134] = I[135] = I[136] = (img)(0,_p4##y,z,v)), \ |
philpem@5 | 5796 | (I[147] = I[148] = I[149] = I[150] = I[151] = I[152] = I[153] = I[154] = I[155] = I[156] = I[157] = (img)(0,_p3##y,z,v)), \ |
philpem@5 | 5797 | (I[168] = I[169] = I[170] = I[171] = I[172] = I[173] = I[174] = I[175] = I[176] = I[177] = I[178] = (img)(0,_p2##y,z,v)), \ |
philpem@5 | 5798 | (I[189] = I[190] = I[191] = I[192] = I[193] = I[194] = I[195] = I[196] = I[197] = I[198] = I[199] = (img)(0,_p1##y,z,v)), \ |
philpem@5 | 5799 | (I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = I[216] = I[217] = I[218] = I[219] = I[220] = (img)(0,y,z,v)), \ |
philpem@5 | 5800 | (I[231] = I[232] = I[233] = I[234] = I[235] = I[236] = I[237] = I[238] = I[239] = I[240] = I[241] = (img)(0,_n1##y,z,v)), \ |
philpem@5 | 5801 | (I[252] = I[253] = I[254] = I[255] = I[256] = I[257] = I[258] = I[259] = I[260] = I[261] = I[262] = (img)(0,_n2##y,z,v)), \ |
philpem@5 | 5802 | (I[273] = I[274] = I[275] = I[276] = I[277] = I[278] = I[279] = I[280] = I[281] = I[282] = I[283] = (img)(0,_n3##y,z,v)), \ |
philpem@5 | 5803 | (I[294] = I[295] = I[296] = I[297] = I[298] = I[299] = I[300] = I[301] = I[302] = I[303] = I[304] = (img)(0,_n4##y,z,v)), \ |
philpem@5 | 5804 | (I[315] = I[316] = I[317] = I[318] = I[319] = I[320] = I[321] = I[322] = I[323] = I[324] = I[325] = (img)(0,_n5##y,z,v)), \ |
philpem@5 | 5805 | (I[336] = I[337] = I[338] = I[339] = I[340] = I[341] = I[342] = I[343] = I[344] = I[345] = I[346] = (img)(0,_n6##y,z,v)), \ |
philpem@5 | 5806 | (I[357] = I[358] = I[359] = I[360] = I[361] = I[362] = I[363] = I[364] = I[365] = I[366] = I[367] = (img)(0,_n7##y,z,v)), \ |
philpem@5 | 5807 | (I[378] = I[379] = I[380] = I[381] = I[382] = I[383] = I[384] = I[385] = I[386] = I[387] = I[388] = (img)(0,_n8##y,z,v)), \ |
philpem@5 | 5808 | (I[399] = I[400] = I[401] = I[402] = I[403] = I[404] = I[405] = I[406] = I[407] = I[408] = I[409] = (img)(0,_n9##y,z,v)), \ |
philpem@5 | 5809 | (I[420] = I[421] = I[422] = I[423] = I[424] = I[425] = I[426] = I[427] = I[428] = I[429] = I[430] = (img)(0,_n10##y,z,v)), \ |
philpem@5 | 5810 | (I[11] = (img)(_n1##x,_p10##y,z,v)), \ |
philpem@5 | 5811 | (I[32] = (img)(_n1##x,_p9##y,z,v)), \ |
philpem@5 | 5812 | (I[53] = (img)(_n1##x,_p8##y,z,v)), \ |
philpem@5 | 5813 | (I[74] = (img)(_n1##x,_p7##y,z,v)), \ |
philpem@5 | 5814 | (I[95] = (img)(_n1##x,_p6##y,z,v)), \ |
philpem@5 | 5815 | (I[116] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 5816 | (I[137] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 5817 | (I[158] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 5818 | (I[179] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 5819 | (I[200] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 5820 | (I[221] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 5821 | (I[242] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 5822 | (I[263] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 5823 | (I[284] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 5824 | (I[305] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 5825 | (I[326] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 5826 | (I[347] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 5827 | (I[368] = (img)(_n1##x,_n7##y,z,v)), \ |
philpem@5 | 5828 | (I[389] = (img)(_n1##x,_n8##y,z,v)), \ |
philpem@5 | 5829 | (I[410] = (img)(_n1##x,_n9##y,z,v)), \ |
philpem@5 | 5830 | (I[431] = (img)(_n1##x,_n10##y,z,v)), \ |
philpem@5 | 5831 | (I[12] = (img)(_n2##x,_p10##y,z,v)), \ |
philpem@5 | 5832 | (I[33] = (img)(_n2##x,_p9##y,z,v)), \ |
philpem@5 | 5833 | (I[54] = (img)(_n2##x,_p8##y,z,v)), \ |
philpem@5 | 5834 | (I[75] = (img)(_n2##x,_p7##y,z,v)), \ |
philpem@5 | 5835 | (I[96] = (img)(_n2##x,_p6##y,z,v)), \ |
philpem@5 | 5836 | (I[117] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 5837 | (I[138] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 5838 | (I[159] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 5839 | (I[180] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 5840 | (I[201] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 5841 | (I[222] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 5842 | (I[243] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 5843 | (I[264] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 5844 | (I[285] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 5845 | (I[306] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 5846 | (I[327] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 5847 | (I[348] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 5848 | (I[369] = (img)(_n2##x,_n7##y,z,v)), \ |
philpem@5 | 5849 | (I[390] = (img)(_n2##x,_n8##y,z,v)), \ |
philpem@5 | 5850 | (I[411] = (img)(_n2##x,_n9##y,z,v)), \ |
philpem@5 | 5851 | (I[432] = (img)(_n2##x,_n10##y,z,v)), \ |
philpem@5 | 5852 | (I[13] = (img)(_n3##x,_p10##y,z,v)), \ |
philpem@5 | 5853 | (I[34] = (img)(_n3##x,_p9##y,z,v)), \ |
philpem@5 | 5854 | (I[55] = (img)(_n3##x,_p8##y,z,v)), \ |
philpem@5 | 5855 | (I[76] = (img)(_n3##x,_p7##y,z,v)), \ |
philpem@5 | 5856 | (I[97] = (img)(_n3##x,_p6##y,z,v)), \ |
philpem@5 | 5857 | (I[118] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 5858 | (I[139] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 5859 | (I[160] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 5860 | (I[181] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 5861 | (I[202] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 5862 | (I[223] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 5863 | (I[244] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 5864 | (I[265] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 5865 | (I[286] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 5866 | (I[307] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 5867 | (I[328] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 5868 | (I[349] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 5869 | (I[370] = (img)(_n3##x,_n7##y,z,v)), \ |
philpem@5 | 5870 | (I[391] = (img)(_n3##x,_n8##y,z,v)), \ |
philpem@5 | 5871 | (I[412] = (img)(_n3##x,_n9##y,z,v)), \ |
philpem@5 | 5872 | (I[433] = (img)(_n3##x,_n10##y,z,v)), \ |
philpem@5 | 5873 | (I[14] = (img)(_n4##x,_p10##y,z,v)), \ |
philpem@5 | 5874 | (I[35] = (img)(_n4##x,_p9##y,z,v)), \ |
philpem@5 | 5875 | (I[56] = (img)(_n4##x,_p8##y,z,v)), \ |
philpem@5 | 5876 | (I[77] = (img)(_n4##x,_p7##y,z,v)), \ |
philpem@5 | 5877 | (I[98] = (img)(_n4##x,_p6##y,z,v)), \ |
philpem@5 | 5878 | (I[119] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 5879 | (I[140] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 5880 | (I[161] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 5881 | (I[182] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 5882 | (I[203] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 5883 | (I[224] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 5884 | (I[245] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 5885 | (I[266] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 5886 | (I[287] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 5887 | (I[308] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 5888 | (I[329] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 5889 | (I[350] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 5890 | (I[371] = (img)(_n4##x,_n7##y,z,v)), \ |
philpem@5 | 5891 | (I[392] = (img)(_n4##x,_n8##y,z,v)), \ |
philpem@5 | 5892 | (I[413] = (img)(_n4##x,_n9##y,z,v)), \ |
philpem@5 | 5893 | (I[434] = (img)(_n4##x,_n10##y,z,v)), \ |
philpem@5 | 5894 | (I[15] = (img)(_n5##x,_p10##y,z,v)), \ |
philpem@5 | 5895 | (I[36] = (img)(_n5##x,_p9##y,z,v)), \ |
philpem@5 | 5896 | (I[57] = (img)(_n5##x,_p8##y,z,v)), \ |
philpem@5 | 5897 | (I[78] = (img)(_n5##x,_p7##y,z,v)), \ |
philpem@5 | 5898 | (I[99] = (img)(_n5##x,_p6##y,z,v)), \ |
philpem@5 | 5899 | (I[120] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 5900 | (I[141] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 5901 | (I[162] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 5902 | (I[183] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 5903 | (I[204] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 5904 | (I[225] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 5905 | (I[246] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 5906 | (I[267] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 5907 | (I[288] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 5908 | (I[309] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 5909 | (I[330] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 5910 | (I[351] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 5911 | (I[372] = (img)(_n5##x,_n7##y,z,v)), \ |
philpem@5 | 5912 | (I[393] = (img)(_n5##x,_n8##y,z,v)), \ |
philpem@5 | 5913 | (I[414] = (img)(_n5##x,_n9##y,z,v)), \ |
philpem@5 | 5914 | (I[435] = (img)(_n5##x,_n10##y,z,v)), \ |
philpem@5 | 5915 | (I[16] = (img)(_n6##x,_p10##y,z,v)), \ |
philpem@5 | 5916 | (I[37] = (img)(_n6##x,_p9##y,z,v)), \ |
philpem@5 | 5917 | (I[58] = (img)(_n6##x,_p8##y,z,v)), \ |
philpem@5 | 5918 | (I[79] = (img)(_n6##x,_p7##y,z,v)), \ |
philpem@5 | 5919 | (I[100] = (img)(_n6##x,_p6##y,z,v)), \ |
philpem@5 | 5920 | (I[121] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 5921 | (I[142] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 5922 | (I[163] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 5923 | (I[184] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 5924 | (I[205] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 5925 | (I[226] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 5926 | (I[247] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 5927 | (I[268] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 5928 | (I[289] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 5929 | (I[310] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 5930 | (I[331] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 5931 | (I[352] = (img)(_n6##x,_n6##y,z,v)), \ |
philpem@5 | 5932 | (I[373] = (img)(_n6##x,_n7##y,z,v)), \ |
philpem@5 | 5933 | (I[394] = (img)(_n6##x,_n8##y,z,v)), \ |
philpem@5 | 5934 | (I[415] = (img)(_n6##x,_n9##y,z,v)), \ |
philpem@5 | 5935 | (I[436] = (img)(_n6##x,_n10##y,z,v)), \ |
philpem@5 | 5936 | (I[17] = (img)(_n7##x,_p10##y,z,v)), \ |
philpem@5 | 5937 | (I[38] = (img)(_n7##x,_p9##y,z,v)), \ |
philpem@5 | 5938 | (I[59] = (img)(_n7##x,_p8##y,z,v)), \ |
philpem@5 | 5939 | (I[80] = (img)(_n7##x,_p7##y,z,v)), \ |
philpem@5 | 5940 | (I[101] = (img)(_n7##x,_p6##y,z,v)), \ |
philpem@5 | 5941 | (I[122] = (img)(_n7##x,_p5##y,z,v)), \ |
philpem@5 | 5942 | (I[143] = (img)(_n7##x,_p4##y,z,v)), \ |
philpem@5 | 5943 | (I[164] = (img)(_n7##x,_p3##y,z,v)), \ |
philpem@5 | 5944 | (I[185] = (img)(_n7##x,_p2##y,z,v)), \ |
philpem@5 | 5945 | (I[206] = (img)(_n7##x,_p1##y,z,v)), \ |
philpem@5 | 5946 | (I[227] = (img)(_n7##x,y,z,v)), \ |
philpem@5 | 5947 | (I[248] = (img)(_n7##x,_n1##y,z,v)), \ |
philpem@5 | 5948 | (I[269] = (img)(_n7##x,_n2##y,z,v)), \ |
philpem@5 | 5949 | (I[290] = (img)(_n7##x,_n3##y,z,v)), \ |
philpem@5 | 5950 | (I[311] = (img)(_n7##x,_n4##y,z,v)), \ |
philpem@5 | 5951 | (I[332] = (img)(_n7##x,_n5##y,z,v)), \ |
philpem@5 | 5952 | (I[353] = (img)(_n7##x,_n6##y,z,v)), \ |
philpem@5 | 5953 | (I[374] = (img)(_n7##x,_n7##y,z,v)), \ |
philpem@5 | 5954 | (I[395] = (img)(_n7##x,_n8##y,z,v)), \ |
philpem@5 | 5955 | (I[416] = (img)(_n7##x,_n9##y,z,v)), \ |
philpem@5 | 5956 | (I[437] = (img)(_n7##x,_n10##y,z,v)), \ |
philpem@5 | 5957 | (I[18] = (img)(_n8##x,_p10##y,z,v)), \ |
philpem@5 | 5958 | (I[39] = (img)(_n8##x,_p9##y,z,v)), \ |
philpem@5 | 5959 | (I[60] = (img)(_n8##x,_p8##y,z,v)), \ |
philpem@5 | 5960 | (I[81] = (img)(_n8##x,_p7##y,z,v)), \ |
philpem@5 | 5961 | (I[102] = (img)(_n8##x,_p6##y,z,v)), \ |
philpem@5 | 5962 | (I[123] = (img)(_n8##x,_p5##y,z,v)), \ |
philpem@5 | 5963 | (I[144] = (img)(_n8##x,_p4##y,z,v)), \ |
philpem@5 | 5964 | (I[165] = (img)(_n8##x,_p3##y,z,v)), \ |
philpem@5 | 5965 | (I[186] = (img)(_n8##x,_p2##y,z,v)), \ |
philpem@5 | 5966 | (I[207] = (img)(_n8##x,_p1##y,z,v)), \ |
philpem@5 | 5967 | (I[228] = (img)(_n8##x,y,z,v)), \ |
philpem@5 | 5968 | (I[249] = (img)(_n8##x,_n1##y,z,v)), \ |
philpem@5 | 5969 | (I[270] = (img)(_n8##x,_n2##y,z,v)), \ |
philpem@5 | 5970 | (I[291] = (img)(_n8##x,_n3##y,z,v)), \ |
philpem@5 | 5971 | (I[312] = (img)(_n8##x,_n4##y,z,v)), \ |
philpem@5 | 5972 | (I[333] = (img)(_n8##x,_n5##y,z,v)), \ |
philpem@5 | 5973 | (I[354] = (img)(_n8##x,_n6##y,z,v)), \ |
philpem@5 | 5974 | (I[375] = (img)(_n8##x,_n7##y,z,v)), \ |
philpem@5 | 5975 | (I[396] = (img)(_n8##x,_n8##y,z,v)), \ |
philpem@5 | 5976 | (I[417] = (img)(_n8##x,_n9##y,z,v)), \ |
philpem@5 | 5977 | (I[438] = (img)(_n8##x,_n10##y,z,v)), \ |
philpem@5 | 5978 | (I[19] = (img)(_n9##x,_p10##y,z,v)), \ |
philpem@5 | 5979 | (I[40] = (img)(_n9##x,_p9##y,z,v)), \ |
philpem@5 | 5980 | (I[61] = (img)(_n9##x,_p8##y,z,v)), \ |
philpem@5 | 5981 | (I[82] = (img)(_n9##x,_p7##y,z,v)), \ |
philpem@5 | 5982 | (I[103] = (img)(_n9##x,_p6##y,z,v)), \ |
philpem@5 | 5983 | (I[124] = (img)(_n9##x,_p5##y,z,v)), \ |
philpem@5 | 5984 | (I[145] = (img)(_n9##x,_p4##y,z,v)), \ |
philpem@5 | 5985 | (I[166] = (img)(_n9##x,_p3##y,z,v)), \ |
philpem@5 | 5986 | (I[187] = (img)(_n9##x,_p2##y,z,v)), \ |
philpem@5 | 5987 | (I[208] = (img)(_n9##x,_p1##y,z,v)), \ |
philpem@5 | 5988 | (I[229] = (img)(_n9##x,y,z,v)), \ |
philpem@5 | 5989 | (I[250] = (img)(_n9##x,_n1##y,z,v)), \ |
philpem@5 | 5990 | (I[271] = (img)(_n9##x,_n2##y,z,v)), \ |
philpem@5 | 5991 | (I[292] = (img)(_n9##x,_n3##y,z,v)), \ |
philpem@5 | 5992 | (I[313] = (img)(_n9##x,_n4##y,z,v)), \ |
philpem@5 | 5993 | (I[334] = (img)(_n9##x,_n5##y,z,v)), \ |
philpem@5 | 5994 | (I[355] = (img)(_n9##x,_n6##y,z,v)), \ |
philpem@5 | 5995 | (I[376] = (img)(_n9##x,_n7##y,z,v)), \ |
philpem@5 | 5996 | (I[397] = (img)(_n9##x,_n8##y,z,v)), \ |
philpem@5 | 5997 | (I[418] = (img)(_n9##x,_n9##y,z,v)), \ |
philpem@5 | 5998 | (I[439] = (img)(_n9##x,_n10##y,z,v)), \ |
philpem@5 | 5999 | 10>=((img).width)?(int)((img).width)-1:10); \ |
philpem@5 | 6000 | (_n10##x<(int)((img).width) && ( \ |
philpem@5 | 6001 | (I[20] = (img)(_n10##x,_p10##y,z,v)), \ |
philpem@5 | 6002 | (I[41] = (img)(_n10##x,_p9##y,z,v)), \ |
philpem@5 | 6003 | (I[62] = (img)(_n10##x,_p8##y,z,v)), \ |
philpem@5 | 6004 | (I[83] = (img)(_n10##x,_p7##y,z,v)), \ |
philpem@5 | 6005 | (I[104] = (img)(_n10##x,_p6##y,z,v)), \ |
philpem@5 | 6006 | (I[125] = (img)(_n10##x,_p5##y,z,v)), \ |
philpem@5 | 6007 | (I[146] = (img)(_n10##x,_p4##y,z,v)), \ |
philpem@5 | 6008 | (I[167] = (img)(_n10##x,_p3##y,z,v)), \ |
philpem@5 | 6009 | (I[188] = (img)(_n10##x,_p2##y,z,v)), \ |
philpem@5 | 6010 | (I[209] = (img)(_n10##x,_p1##y,z,v)), \ |
philpem@5 | 6011 | (I[230] = (img)(_n10##x,y,z,v)), \ |
philpem@5 | 6012 | (I[251] = (img)(_n10##x,_n1##y,z,v)), \ |
philpem@5 | 6013 | (I[272] = (img)(_n10##x,_n2##y,z,v)), \ |
philpem@5 | 6014 | (I[293] = (img)(_n10##x,_n3##y,z,v)), \ |
philpem@5 | 6015 | (I[314] = (img)(_n10##x,_n4##y,z,v)), \ |
philpem@5 | 6016 | (I[335] = (img)(_n10##x,_n5##y,z,v)), \ |
philpem@5 | 6017 | (I[356] = (img)(_n10##x,_n6##y,z,v)), \ |
philpem@5 | 6018 | (I[377] = (img)(_n10##x,_n7##y,z,v)), \ |
philpem@5 | 6019 | (I[398] = (img)(_n10##x,_n8##y,z,v)), \ |
philpem@5 | 6020 | (I[419] = (img)(_n10##x,_n9##y,z,v)), \ |
philpem@5 | 6021 | (I[440] = (img)(_n10##x,_n10##y,z,v)),1)) || \ |
philpem@5 | 6022 | _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \ |
philpem@5 | 6023 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], \ |
philpem@5 | 6024 | I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \ |
philpem@5 | 6025 | I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], \ |
philpem@5 | 6026 | I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \ |
philpem@5 | 6027 | I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \ |
philpem@5 | 6028 | I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \ |
philpem@5 | 6029 | I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], \ |
philpem@5 | 6030 | I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \ |
philpem@5 | 6031 | I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], \ |
philpem@5 | 6032 | I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \ |
philpem@5 | 6033 | I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], \ |
philpem@5 | 6034 | I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \ |
philpem@5 | 6035 | I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], \ |
philpem@5 | 6036 | I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], \ |
philpem@5 | 6037 | I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], \ |
philpem@5 | 6038 | I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \ |
philpem@5 | 6039 | I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], \ |
philpem@5 | 6040 | I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], \ |
philpem@5 | 6041 | I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], \ |
philpem@5 | 6042 | I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], \ |
philpem@5 | 6043 | I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], \ |
philpem@5 | 6044 | _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x) |
philpem@5 | 6045 | |
philpem@5 | 6046 | #define cimg_for_in21x21(img,x0,y0,x1,y1,x,y,z,v,I) \ |
philpem@5 | 6047 | cimg_for_in21((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ |
philpem@5 | 6048 | _p10##x = x-10<0?0:x-10, \ |
philpem@5 | 6049 | _p9##x = x-9<0?0:x-9, \ |
philpem@5 | 6050 | _p8##x = x-8<0?0:x-8, \ |
philpem@5 | 6051 | _p7##x = x-7<0?0:x-7, \ |
philpem@5 | 6052 | _p6##x = x-6<0?0:x-6, \ |
philpem@5 | 6053 | _p5##x = x-5<0?0:x-5, \ |
philpem@5 | 6054 | _p4##x = x-4<0?0:x-4, \ |
philpem@5 | 6055 | _p3##x = x-3<0?0:x-3, \ |
philpem@5 | 6056 | _p2##x = x-2<0?0:x-2, \ |
philpem@5 | 6057 | _p1##x = x-1<0?0:x-1, \ |
philpem@5 | 6058 | _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \ |
philpem@5 | 6059 | _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \ |
philpem@5 | 6060 | _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \ |
philpem@5 | 6061 | _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \ |
philpem@5 | 6062 | _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \ |
philpem@5 | 6063 | _n6##x = x+6>=(int)((img).width)?(int)((img).width)-1:x+6, \ |
philpem@5 | 6064 | _n7##x = x+7>=(int)((img).width)?(int)((img).width)-1:x+7, \ |
philpem@5 | 6065 | _n8##x = x+8>=(int)((img).width)?(int)((img).width)-1:x+8, \ |
philpem@5 | 6066 | _n9##x = x+9>=(int)((img).width)?(int)((img).width)-1:x+9, \ |
philpem@5 | 6067 | _n10##x = (int)( \ |
philpem@5 | 6068 | (I[0] = (img)(_p10##x,_p10##y,z,v)), \ |
philpem@5 | 6069 | (I[21] = (img)(_p10##x,_p9##y,z,v)), \ |
philpem@5 | 6070 | (I[42] = (img)(_p10##x,_p8##y,z,v)), \ |
philpem@5 | 6071 | (I[63] = (img)(_p10##x,_p7##y,z,v)), \ |
philpem@5 | 6072 | (I[84] = (img)(_p10##x,_p6##y,z,v)), \ |
philpem@5 | 6073 | (I[105] = (img)(_p10##x,_p5##y,z,v)), \ |
philpem@5 | 6074 | (I[126] = (img)(_p10##x,_p4##y,z,v)), \ |
philpem@5 | 6075 | (I[147] = (img)(_p10##x,_p3##y,z,v)), \ |
philpem@5 | 6076 | (I[168] = (img)(_p10##x,_p2##y,z,v)), \ |
philpem@5 | 6077 | (I[189] = (img)(_p10##x,_p1##y,z,v)), \ |
philpem@5 | 6078 | (I[210] = (img)(_p10##x,y,z,v)), \ |
philpem@5 | 6079 | (I[231] = (img)(_p10##x,_n1##y,z,v)), \ |
philpem@5 | 6080 | (I[252] = (img)(_p10##x,_n2##y,z,v)), \ |
philpem@5 | 6081 | (I[273] = (img)(_p10##x,_n3##y,z,v)), \ |
philpem@5 | 6082 | (I[294] = (img)(_p10##x,_n4##y,z,v)), \ |
philpem@5 | 6083 | (I[315] = (img)(_p10##x,_n5##y,z,v)), \ |
philpem@5 | 6084 | (I[336] = (img)(_p10##x,_n6##y,z,v)), \ |
philpem@5 | 6085 | (I[357] = (img)(_p10##x,_n7##y,z,v)), \ |
philpem@5 | 6086 | (I[378] = (img)(_p10##x,_n8##y,z,v)), \ |
philpem@5 | 6087 | (I[399] = (img)(_p10##x,_n9##y,z,v)), \ |
philpem@5 | 6088 | (I[420] = (img)(_p10##x,_n10##y,z,v)), \ |
philpem@5 | 6089 | (I[1] = (img)(_p9##x,_p10##y,z,v)), \ |
philpem@5 | 6090 | (I[22] = (img)(_p9##x,_p9##y,z,v)), \ |
philpem@5 | 6091 | (I[43] = (img)(_p9##x,_p8##y,z,v)), \ |
philpem@5 | 6092 | (I[64] = (img)(_p9##x,_p7##y,z,v)), \ |
philpem@5 | 6093 | (I[85] = (img)(_p9##x,_p6##y,z,v)), \ |
philpem@5 | 6094 | (I[106] = (img)(_p9##x,_p5##y,z,v)), \ |
philpem@5 | 6095 | (I[127] = (img)(_p9##x,_p4##y,z,v)), \ |
philpem@5 | 6096 | (I[148] = (img)(_p9##x,_p3##y,z,v)), \ |
philpem@5 | 6097 | (I[169] = (img)(_p9##x,_p2##y,z,v)), \ |
philpem@5 | 6098 | (I[190] = (img)(_p9##x,_p1##y,z,v)), \ |
philpem@5 | 6099 | (I[211] = (img)(_p9##x,y,z,v)), \ |
philpem@5 | 6100 | (I[232] = (img)(_p9##x,_n1##y,z,v)), \ |
philpem@5 | 6101 | (I[253] = (img)(_p9##x,_n2##y,z,v)), \ |
philpem@5 | 6102 | (I[274] = (img)(_p9##x,_n3##y,z,v)), \ |
philpem@5 | 6103 | (I[295] = (img)(_p9##x,_n4##y,z,v)), \ |
philpem@5 | 6104 | (I[316] = (img)(_p9##x,_n5##y,z,v)), \ |
philpem@5 | 6105 | (I[337] = (img)(_p9##x,_n6##y,z,v)), \ |
philpem@5 | 6106 | (I[358] = (img)(_p9##x,_n7##y,z,v)), \ |
philpem@5 | 6107 | (I[379] = (img)(_p9##x,_n8##y,z,v)), \ |
philpem@5 | 6108 | (I[400] = (img)(_p9##x,_n9##y,z,v)), \ |
philpem@5 | 6109 | (I[421] = (img)(_p9##x,_n10##y,z,v)), \ |
philpem@5 | 6110 | (I[2] = (img)(_p8##x,_p10##y,z,v)), \ |
philpem@5 | 6111 | (I[23] = (img)(_p8##x,_p9##y,z,v)), \ |
philpem@5 | 6112 | (I[44] = (img)(_p8##x,_p8##y,z,v)), \ |
philpem@5 | 6113 | (I[65] = (img)(_p8##x,_p7##y,z,v)), \ |
philpem@5 | 6114 | (I[86] = (img)(_p8##x,_p6##y,z,v)), \ |
philpem@5 | 6115 | (I[107] = (img)(_p8##x,_p5##y,z,v)), \ |
philpem@5 | 6116 | (I[128] = (img)(_p8##x,_p4##y,z,v)), \ |
philpem@5 | 6117 | (I[149] = (img)(_p8##x,_p3##y,z,v)), \ |
philpem@5 | 6118 | (I[170] = (img)(_p8##x,_p2##y,z,v)), \ |
philpem@5 | 6119 | (I[191] = (img)(_p8##x,_p1##y,z,v)), \ |
philpem@5 | 6120 | (I[212] = (img)(_p8##x,y,z,v)), \ |
philpem@5 | 6121 | (I[233] = (img)(_p8##x,_n1##y,z,v)), \ |
philpem@5 | 6122 | (I[254] = (img)(_p8##x,_n2##y,z,v)), \ |
philpem@5 | 6123 | (I[275] = (img)(_p8##x,_n3##y,z,v)), \ |
philpem@5 | 6124 | (I[296] = (img)(_p8##x,_n4##y,z,v)), \ |
philpem@5 | 6125 | (I[317] = (img)(_p8##x,_n5##y,z,v)), \ |
philpem@5 | 6126 | (I[338] = (img)(_p8##x,_n6##y,z,v)), \ |
philpem@5 | 6127 | (I[359] = (img)(_p8##x,_n7##y,z,v)), \ |
philpem@5 | 6128 | (I[380] = (img)(_p8##x,_n8##y,z,v)), \ |
philpem@5 | 6129 | (I[401] = (img)(_p8##x,_n9##y,z,v)), \ |
philpem@5 | 6130 | (I[422] = (img)(_p8##x,_n10##y,z,v)), \ |
philpem@5 | 6131 | (I[3] = (img)(_p7##x,_p10##y,z,v)), \ |
philpem@5 | 6132 | (I[24] = (img)(_p7##x,_p9##y,z,v)), \ |
philpem@5 | 6133 | (I[45] = (img)(_p7##x,_p8##y,z,v)), \ |
philpem@5 | 6134 | (I[66] = (img)(_p7##x,_p7##y,z,v)), \ |
philpem@5 | 6135 | (I[87] = (img)(_p7##x,_p6##y,z,v)), \ |
philpem@5 | 6136 | (I[108] = (img)(_p7##x,_p5##y,z,v)), \ |
philpem@5 | 6137 | (I[129] = (img)(_p7##x,_p4##y,z,v)), \ |
philpem@5 | 6138 | (I[150] = (img)(_p7##x,_p3##y,z,v)), \ |
philpem@5 | 6139 | (I[171] = (img)(_p7##x,_p2##y,z,v)), \ |
philpem@5 | 6140 | (I[192] = (img)(_p7##x,_p1##y,z,v)), \ |
philpem@5 | 6141 | (I[213] = (img)(_p7##x,y,z,v)), \ |
philpem@5 | 6142 | (I[234] = (img)(_p7##x,_n1##y,z,v)), \ |
philpem@5 | 6143 | (I[255] = (img)(_p7##x,_n2##y,z,v)), \ |
philpem@5 | 6144 | (I[276] = (img)(_p7##x,_n3##y,z,v)), \ |
philpem@5 | 6145 | (I[297] = (img)(_p7##x,_n4##y,z,v)), \ |
philpem@5 | 6146 | (I[318] = (img)(_p7##x,_n5##y,z,v)), \ |
philpem@5 | 6147 | (I[339] = (img)(_p7##x,_n6##y,z,v)), \ |
philpem@5 | 6148 | (I[360] = (img)(_p7##x,_n7##y,z,v)), \ |
philpem@5 | 6149 | (I[381] = (img)(_p7##x,_n8##y,z,v)), \ |
philpem@5 | 6150 | (I[402] = (img)(_p7##x,_n9##y,z,v)), \ |
philpem@5 | 6151 | (I[423] = (img)(_p7##x,_n10##y,z,v)), \ |
philpem@5 | 6152 | (I[4] = (img)(_p6##x,_p10##y,z,v)), \ |
philpem@5 | 6153 | (I[25] = (img)(_p6##x,_p9##y,z,v)), \ |
philpem@5 | 6154 | (I[46] = (img)(_p6##x,_p8##y,z,v)), \ |
philpem@5 | 6155 | (I[67] = (img)(_p6##x,_p7##y,z,v)), \ |
philpem@5 | 6156 | (I[88] = (img)(_p6##x,_p6##y,z,v)), \ |
philpem@5 | 6157 | (I[109] = (img)(_p6##x,_p5##y,z,v)), \ |
philpem@5 | 6158 | (I[130] = (img)(_p6##x,_p4##y,z,v)), \ |
philpem@5 | 6159 | (I[151] = (img)(_p6##x,_p3##y,z,v)), \ |
philpem@5 | 6160 | (I[172] = (img)(_p6##x,_p2##y,z,v)), \ |
philpem@5 | 6161 | (I[193] = (img)(_p6##x,_p1##y,z,v)), \ |
philpem@5 | 6162 | (I[214] = (img)(_p6##x,y,z,v)), \ |
philpem@5 | 6163 | (I[235] = (img)(_p6##x,_n1##y,z,v)), \ |
philpem@5 | 6164 | (I[256] = (img)(_p6##x,_n2##y,z,v)), \ |
philpem@5 | 6165 | (I[277] = (img)(_p6##x,_n3##y,z,v)), \ |
philpem@5 | 6166 | (I[298] = (img)(_p6##x,_n4##y,z,v)), \ |
philpem@5 | 6167 | (I[319] = (img)(_p6##x,_n5##y,z,v)), \ |
philpem@5 | 6168 | (I[340] = (img)(_p6##x,_n6##y,z,v)), \ |
philpem@5 | 6169 | (I[361] = (img)(_p6##x,_n7##y,z,v)), \ |
philpem@5 | 6170 | (I[382] = (img)(_p6##x,_n8##y,z,v)), \ |
philpem@5 | 6171 | (I[403] = (img)(_p6##x,_n9##y,z,v)), \ |
philpem@5 | 6172 | (I[424] = (img)(_p6##x,_n10##y,z,v)), \ |
philpem@5 | 6173 | (I[5] = (img)(_p5##x,_p10##y,z,v)), \ |
philpem@5 | 6174 | (I[26] = (img)(_p5##x,_p9##y,z,v)), \ |
philpem@5 | 6175 | (I[47] = (img)(_p5##x,_p8##y,z,v)), \ |
philpem@5 | 6176 | (I[68] = (img)(_p5##x,_p7##y,z,v)), \ |
philpem@5 | 6177 | (I[89] = (img)(_p5##x,_p6##y,z,v)), \ |
philpem@5 | 6178 | (I[110] = (img)(_p5##x,_p5##y,z,v)), \ |
philpem@5 | 6179 | (I[131] = (img)(_p5##x,_p4##y,z,v)), \ |
philpem@5 | 6180 | (I[152] = (img)(_p5##x,_p3##y,z,v)), \ |
philpem@5 | 6181 | (I[173] = (img)(_p5##x,_p2##y,z,v)), \ |
philpem@5 | 6182 | (I[194] = (img)(_p5##x,_p1##y,z,v)), \ |
philpem@5 | 6183 | (I[215] = (img)(_p5##x,y,z,v)), \ |
philpem@5 | 6184 | (I[236] = (img)(_p5##x,_n1##y,z,v)), \ |
philpem@5 | 6185 | (I[257] = (img)(_p5##x,_n2##y,z,v)), \ |
philpem@5 | 6186 | (I[278] = (img)(_p5##x,_n3##y,z,v)), \ |
philpem@5 | 6187 | (I[299] = (img)(_p5##x,_n4##y,z,v)), \ |
philpem@5 | 6188 | (I[320] = (img)(_p5##x,_n5##y,z,v)), \ |
philpem@5 | 6189 | (I[341] = (img)(_p5##x,_n6##y,z,v)), \ |
philpem@5 | 6190 | (I[362] = (img)(_p5##x,_n7##y,z,v)), \ |
philpem@5 | 6191 | (I[383] = (img)(_p5##x,_n8##y,z,v)), \ |
philpem@5 | 6192 | (I[404] = (img)(_p5##x,_n9##y,z,v)), \ |
philpem@5 | 6193 | (I[425] = (img)(_p5##x,_n10##y,z,v)), \ |
philpem@5 | 6194 | (I[6] = (img)(_p4##x,_p10##y,z,v)), \ |
philpem@5 | 6195 | (I[27] = (img)(_p4##x,_p9##y,z,v)), \ |
philpem@5 | 6196 | (I[48] = (img)(_p4##x,_p8##y,z,v)), \ |
philpem@5 | 6197 | (I[69] = (img)(_p4##x,_p7##y,z,v)), \ |
philpem@5 | 6198 | (I[90] = (img)(_p4##x,_p6##y,z,v)), \ |
philpem@5 | 6199 | (I[111] = (img)(_p4##x,_p5##y,z,v)), \ |
philpem@5 | 6200 | (I[132] = (img)(_p4##x,_p4##y,z,v)), \ |
philpem@5 | 6201 | (I[153] = (img)(_p4##x,_p3##y,z,v)), \ |
philpem@5 | 6202 | (I[174] = (img)(_p4##x,_p2##y,z,v)), \ |
philpem@5 | 6203 | (I[195] = (img)(_p4##x,_p1##y,z,v)), \ |
philpem@5 | 6204 | (I[216] = (img)(_p4##x,y,z,v)), \ |
philpem@5 | 6205 | (I[237] = (img)(_p4##x,_n1##y,z,v)), \ |
philpem@5 | 6206 | (I[258] = (img)(_p4##x,_n2##y,z,v)), \ |
philpem@5 | 6207 | (I[279] = (img)(_p4##x,_n3##y,z,v)), \ |
philpem@5 | 6208 | (I[300] = (img)(_p4##x,_n4##y,z,v)), \ |
philpem@5 | 6209 | (I[321] = (img)(_p4##x,_n5##y,z,v)), \ |
philpem@5 | 6210 | (I[342] = (img)(_p4##x,_n6##y,z,v)), \ |
philpem@5 | 6211 | (I[363] = (img)(_p4##x,_n7##y,z,v)), \ |
philpem@5 | 6212 | (I[384] = (img)(_p4##x,_n8##y,z,v)), \ |
philpem@5 | 6213 | (I[405] = (img)(_p4##x,_n9##y,z,v)), \ |
philpem@5 | 6214 | (I[426] = (img)(_p4##x,_n10##y,z,v)), \ |
philpem@5 | 6215 | (I[7] = (img)(_p3##x,_p10##y,z,v)), \ |
philpem@5 | 6216 | (I[28] = (img)(_p3##x,_p9##y,z,v)), \ |
philpem@5 | 6217 | (I[49] = (img)(_p3##x,_p8##y,z,v)), \ |
philpem@5 | 6218 | (I[70] = (img)(_p3##x,_p7##y,z,v)), \ |
philpem@5 | 6219 | (I[91] = (img)(_p3##x,_p6##y,z,v)), \ |
philpem@5 | 6220 | (I[112] = (img)(_p3##x,_p5##y,z,v)), \ |
philpem@5 | 6221 | (I[133] = (img)(_p3##x,_p4##y,z,v)), \ |
philpem@5 | 6222 | (I[154] = (img)(_p3##x,_p3##y,z,v)), \ |
philpem@5 | 6223 | (I[175] = (img)(_p3##x,_p2##y,z,v)), \ |
philpem@5 | 6224 | (I[196] = (img)(_p3##x,_p1##y,z,v)), \ |
philpem@5 | 6225 | (I[217] = (img)(_p3##x,y,z,v)), \ |
philpem@5 | 6226 | (I[238] = (img)(_p3##x,_n1##y,z,v)), \ |
philpem@5 | 6227 | (I[259] = (img)(_p3##x,_n2##y,z,v)), \ |
philpem@5 | 6228 | (I[280] = (img)(_p3##x,_n3##y,z,v)), \ |
philpem@5 | 6229 | (I[301] = (img)(_p3##x,_n4##y,z,v)), \ |
philpem@5 | 6230 | (I[322] = (img)(_p3##x,_n5##y,z,v)), \ |
philpem@5 | 6231 | (I[343] = (img)(_p3##x,_n6##y,z,v)), \ |
philpem@5 | 6232 | (I[364] = (img)(_p3##x,_n7##y,z,v)), \ |
philpem@5 | 6233 | (I[385] = (img)(_p3##x,_n8##y,z,v)), \ |
philpem@5 | 6234 | (I[406] = (img)(_p3##x,_n9##y,z,v)), \ |
philpem@5 | 6235 | (I[427] = (img)(_p3##x,_n10##y,z,v)), \ |
philpem@5 | 6236 | (I[8] = (img)(_p2##x,_p10##y,z,v)), \ |
philpem@5 | 6237 | (I[29] = (img)(_p2##x,_p9##y,z,v)), \ |
philpem@5 | 6238 | (I[50] = (img)(_p2##x,_p8##y,z,v)), \ |
philpem@5 | 6239 | (I[71] = (img)(_p2##x,_p7##y,z,v)), \ |
philpem@5 | 6240 | (I[92] = (img)(_p2##x,_p6##y,z,v)), \ |
philpem@5 | 6241 | (I[113] = (img)(_p2##x,_p5##y,z,v)), \ |
philpem@5 | 6242 | (I[134] = (img)(_p2##x,_p4##y,z,v)), \ |
philpem@5 | 6243 | (I[155] = (img)(_p2##x,_p3##y,z,v)), \ |
philpem@5 | 6244 | (I[176] = (img)(_p2##x,_p2##y,z,v)), \ |
philpem@5 | 6245 | (I[197] = (img)(_p2##x,_p1##y,z,v)), \ |
philpem@5 | 6246 | (I[218] = (img)(_p2##x,y,z,v)), \ |
philpem@5 | 6247 | (I[239] = (img)(_p2##x,_n1##y,z,v)), \ |
philpem@5 | 6248 | (I[260] = (img)(_p2##x,_n2##y,z,v)), \ |
philpem@5 | 6249 | (I[281] = (img)(_p2##x,_n3##y,z,v)), \ |
philpem@5 | 6250 | (I[302] = (img)(_p2##x,_n4##y,z,v)), \ |
philpem@5 | 6251 | (I[323] = (img)(_p2##x,_n5##y,z,v)), \ |
philpem@5 | 6252 | (I[344] = (img)(_p2##x,_n6##y,z,v)), \ |
philpem@5 | 6253 | (I[365] = (img)(_p2##x,_n7##y,z,v)), \ |
philpem@5 | 6254 | (I[386] = (img)(_p2##x,_n8##y,z,v)), \ |
philpem@5 | 6255 | (I[407] = (img)(_p2##x,_n9##y,z,v)), \ |
philpem@5 | 6256 | (I[428] = (img)(_p2##x,_n10##y,z,v)), \ |
philpem@5 | 6257 | (I[9] = (img)(_p1##x,_p10##y,z,v)), \ |
philpem@5 | 6258 | (I[30] = (img)(_p1##x,_p9##y,z,v)), \ |
philpem@5 | 6259 | (I[51] = (img)(_p1##x,_p8##y,z,v)), \ |
philpem@5 | 6260 | (I[72] = (img)(_p1##x,_p7##y,z,v)), \ |
philpem@5 | 6261 | (I[93] = (img)(_p1##x,_p6##y,z,v)), \ |
philpem@5 | 6262 | (I[114] = (img)(_p1##x,_p5##y,z,v)), \ |
philpem@5 | 6263 | (I[135] = (img)(_p1##x,_p4##y,z,v)), \ |
philpem@5 | 6264 | (I[156] = (img)(_p1##x,_p3##y,z,v)), \ |
philpem@5 | 6265 | (I[177] = (img)(_p1##x,_p2##y,z,v)), \ |
philpem@5 | 6266 | (I[198] = (img)(_p1##x,_p1##y,z,v)), \ |
philpem@5 | 6267 | (I[219] = (img)(_p1##x,y,z,v)), \ |
philpem@5 | 6268 | (I[240] = (img)(_p1##x,_n1##y,z,v)), \ |
philpem@5 | 6269 | (I[261] = (img)(_p1##x,_n2##y,z,v)), \ |
philpem@5 | 6270 | (I[282] = (img)(_p1##x,_n3##y,z,v)), \ |
philpem@5 | 6271 | (I[303] = (img)(_p1##x,_n4##y,z,v)), \ |
philpem@5 | 6272 | (I[324] = (img)(_p1##x,_n5##y,z,v)), \ |
philpem@5 | 6273 | (I[345] = (img)(_p1##x,_n6##y,z,v)), \ |
philpem@5 | 6274 | (I[366] = (img)(_p1##x,_n7##y,z,v)), \ |
philpem@5 | 6275 | (I[387] = (img)(_p1##x,_n8##y,z,v)), \ |
philpem@5 | 6276 | (I[408] = (img)(_p1##x,_n9##y,z,v)), \ |
philpem@5 | 6277 | (I[429] = (img)(_p1##x,_n10##y,z,v)), \ |
philpem@5 | 6278 | (I[10] = (img)(x,_p10##y,z,v)), \ |
philpem@5 | 6279 | (I[31] = (img)(x,_p9##y,z,v)), \ |
philpem@5 | 6280 | (I[52] = (img)(x,_p8##y,z,v)), \ |
philpem@5 | 6281 | (I[73] = (img)(x,_p7##y,z,v)), \ |
philpem@5 | 6282 | (I[94] = (img)(x,_p6##y,z,v)), \ |
philpem@5 | 6283 | (I[115] = (img)(x,_p5##y,z,v)), \ |
philpem@5 | 6284 | (I[136] = (img)(x,_p4##y,z,v)), \ |
philpem@5 | 6285 | (I[157] = (img)(x,_p3##y,z,v)), \ |
philpem@5 | 6286 | (I[178] = (img)(x,_p2##y,z,v)), \ |
philpem@5 | 6287 | (I[199] = (img)(x,_p1##y,z,v)), \ |
philpem@5 | 6288 | (I[220] = (img)(x,y,z,v)), \ |
philpem@5 | 6289 | (I[241] = (img)(x,_n1##y,z,v)), \ |
philpem@5 | 6290 | (I[262] = (img)(x,_n2##y,z,v)), \ |
philpem@5 | 6291 | (I[283] = (img)(x,_n3##y,z,v)), \ |
philpem@5 | 6292 | (I[304] = (img)(x,_n4##y,z,v)), \ |
philpem@5 | 6293 | (I[325] = (img)(x,_n5##y,z,v)), \ |
philpem@5 | 6294 | (I[346] = (img)(x,_n6##y,z,v)), \ |
philpem@5 | 6295 | (I[367] = (img)(x,_n7##y,z,v)), \ |
philpem@5 | 6296 | (I[388] = (img)(x,_n8##y,z,v)), \ |
philpem@5 | 6297 | (I[409] = (img)(x,_n9##y,z,v)), \ |
philpem@5 | 6298 | (I[430] = (img)(x,_n10##y,z,v)), \ |
philpem@5 | 6299 | (I[11] = (img)(_n1##x,_p10##y,z,v)), \ |
philpem@5 | 6300 | (I[32] = (img)(_n1##x,_p9##y,z,v)), \ |
philpem@5 | 6301 | (I[53] = (img)(_n1##x,_p8##y,z,v)), \ |
philpem@5 | 6302 | (I[74] = (img)(_n1##x,_p7##y,z,v)), \ |
philpem@5 | 6303 | (I[95] = (img)(_n1##x,_p6##y,z,v)), \ |
philpem@5 | 6304 | (I[116] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 6305 | (I[137] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 6306 | (I[158] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 6307 | (I[179] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 6308 | (I[200] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 6309 | (I[221] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 6310 | (I[242] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 6311 | (I[263] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 6312 | (I[284] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 6313 | (I[305] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 6314 | (I[326] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 6315 | (I[347] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 6316 | (I[368] = (img)(_n1##x,_n7##y,z,v)), \ |
philpem@5 | 6317 | (I[389] = (img)(_n1##x,_n8##y,z,v)), \ |
philpem@5 | 6318 | (I[410] = (img)(_n1##x,_n9##y,z,v)), \ |
philpem@5 | 6319 | (I[431] = (img)(_n1##x,_n10##y,z,v)), \ |
philpem@5 | 6320 | (I[12] = (img)(_n2##x,_p10##y,z,v)), \ |
philpem@5 | 6321 | (I[33] = (img)(_n2##x,_p9##y,z,v)), \ |
philpem@5 | 6322 | (I[54] = (img)(_n2##x,_p8##y,z,v)), \ |
philpem@5 | 6323 | (I[75] = (img)(_n2##x,_p7##y,z,v)), \ |
philpem@5 | 6324 | (I[96] = (img)(_n2##x,_p6##y,z,v)), \ |
philpem@5 | 6325 | (I[117] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 6326 | (I[138] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 6327 | (I[159] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 6328 | (I[180] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 6329 | (I[201] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 6330 | (I[222] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 6331 | (I[243] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 6332 | (I[264] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 6333 | (I[285] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 6334 | (I[306] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 6335 | (I[327] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 6336 | (I[348] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 6337 | (I[369] = (img)(_n2##x,_n7##y,z,v)), \ |
philpem@5 | 6338 | (I[390] = (img)(_n2##x,_n8##y,z,v)), \ |
philpem@5 | 6339 | (I[411] = (img)(_n2##x,_n9##y,z,v)), \ |
philpem@5 | 6340 | (I[432] = (img)(_n2##x,_n10##y,z,v)), \ |
philpem@5 | 6341 | (I[13] = (img)(_n3##x,_p10##y,z,v)), \ |
philpem@5 | 6342 | (I[34] = (img)(_n3##x,_p9##y,z,v)), \ |
philpem@5 | 6343 | (I[55] = (img)(_n3##x,_p8##y,z,v)), \ |
philpem@5 | 6344 | (I[76] = (img)(_n3##x,_p7##y,z,v)), \ |
philpem@5 | 6345 | (I[97] = (img)(_n3##x,_p6##y,z,v)), \ |
philpem@5 | 6346 | (I[118] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 6347 | (I[139] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 6348 | (I[160] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 6349 | (I[181] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 6350 | (I[202] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 6351 | (I[223] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 6352 | (I[244] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 6353 | (I[265] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 6354 | (I[286] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 6355 | (I[307] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 6356 | (I[328] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 6357 | (I[349] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 6358 | (I[370] = (img)(_n3##x,_n7##y,z,v)), \ |
philpem@5 | 6359 | (I[391] = (img)(_n3##x,_n8##y,z,v)), \ |
philpem@5 | 6360 | (I[412] = (img)(_n3##x,_n9##y,z,v)), \ |
philpem@5 | 6361 | (I[433] = (img)(_n3##x,_n10##y,z,v)), \ |
philpem@5 | 6362 | (I[14] = (img)(_n4##x,_p10##y,z,v)), \ |
philpem@5 | 6363 | (I[35] = (img)(_n4##x,_p9##y,z,v)), \ |
philpem@5 | 6364 | (I[56] = (img)(_n4##x,_p8##y,z,v)), \ |
philpem@5 | 6365 | (I[77] = (img)(_n4##x,_p7##y,z,v)), \ |
philpem@5 | 6366 | (I[98] = (img)(_n4##x,_p6##y,z,v)), \ |
philpem@5 | 6367 | (I[119] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 6368 | (I[140] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 6369 | (I[161] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 6370 | (I[182] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 6371 | (I[203] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 6372 | (I[224] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 6373 | (I[245] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 6374 | (I[266] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 6375 | (I[287] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 6376 | (I[308] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 6377 | (I[329] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 6378 | (I[350] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 6379 | (I[371] = (img)(_n4##x,_n7##y,z,v)), \ |
philpem@5 | 6380 | (I[392] = (img)(_n4##x,_n8##y,z,v)), \ |
philpem@5 | 6381 | (I[413] = (img)(_n4##x,_n9##y,z,v)), \ |
philpem@5 | 6382 | (I[434] = (img)(_n4##x,_n10##y,z,v)), \ |
philpem@5 | 6383 | (I[15] = (img)(_n5##x,_p10##y,z,v)), \ |
philpem@5 | 6384 | (I[36] = (img)(_n5##x,_p9##y,z,v)), \ |
philpem@5 | 6385 | (I[57] = (img)(_n5##x,_p8##y,z,v)), \ |
philpem@5 | 6386 | (I[78] = (img)(_n5##x,_p7##y,z,v)), \ |
philpem@5 | 6387 | (I[99] = (img)(_n5##x,_p6##y,z,v)), \ |
philpem@5 | 6388 | (I[120] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 6389 | (I[141] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 6390 | (I[162] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 6391 | (I[183] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 6392 | (I[204] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 6393 | (I[225] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 6394 | (I[246] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 6395 | (I[267] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 6396 | (I[288] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 6397 | (I[309] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 6398 | (I[330] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 6399 | (I[351] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 6400 | (I[372] = (img)(_n5##x,_n7##y,z,v)), \ |
philpem@5 | 6401 | (I[393] = (img)(_n5##x,_n8##y,z,v)), \ |
philpem@5 | 6402 | (I[414] = (img)(_n5##x,_n9##y,z,v)), \ |
philpem@5 | 6403 | (I[435] = (img)(_n5##x,_n10##y,z,v)), \ |
philpem@5 | 6404 | (I[16] = (img)(_n6##x,_p10##y,z,v)), \ |
philpem@5 | 6405 | (I[37] = (img)(_n6##x,_p9##y,z,v)), \ |
philpem@5 | 6406 | (I[58] = (img)(_n6##x,_p8##y,z,v)), \ |
philpem@5 | 6407 | (I[79] = (img)(_n6##x,_p7##y,z,v)), \ |
philpem@5 | 6408 | (I[100] = (img)(_n6##x,_p6##y,z,v)), \ |
philpem@5 | 6409 | (I[121] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 6410 | (I[142] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 6411 | (I[163] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 6412 | (I[184] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 6413 | (I[205] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 6414 | (I[226] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 6415 | (I[247] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 6416 | (I[268] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 6417 | (I[289] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 6418 | (I[310] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 6419 | (I[331] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 6420 | (I[352] = (img)(_n6##x,_n6##y,z,v)), \ |
philpem@5 | 6421 | (I[373] = (img)(_n6##x,_n7##y,z,v)), \ |
philpem@5 | 6422 | (I[394] = (img)(_n6##x,_n8##y,z,v)), \ |
philpem@5 | 6423 | (I[415] = (img)(_n6##x,_n9##y,z,v)), \ |
philpem@5 | 6424 | (I[436] = (img)(_n6##x,_n10##y,z,v)), \ |
philpem@5 | 6425 | (I[17] = (img)(_n7##x,_p10##y,z,v)), \ |
philpem@5 | 6426 | (I[38] = (img)(_n7##x,_p9##y,z,v)), \ |
philpem@5 | 6427 | (I[59] = (img)(_n7##x,_p8##y,z,v)), \ |
philpem@5 | 6428 | (I[80] = (img)(_n7##x,_p7##y,z,v)), \ |
philpem@5 | 6429 | (I[101] = (img)(_n7##x,_p6##y,z,v)), \ |
philpem@5 | 6430 | (I[122] = (img)(_n7##x,_p5##y,z,v)), \ |
philpem@5 | 6431 | (I[143] = (img)(_n7##x,_p4##y,z,v)), \ |
philpem@5 | 6432 | (I[164] = (img)(_n7##x,_p3##y,z,v)), \ |
philpem@5 | 6433 | (I[185] = (img)(_n7##x,_p2##y,z,v)), \ |
philpem@5 | 6434 | (I[206] = (img)(_n7##x,_p1##y,z,v)), \ |
philpem@5 | 6435 | (I[227] = (img)(_n7##x,y,z,v)), \ |
philpem@5 | 6436 | (I[248] = (img)(_n7##x,_n1##y,z,v)), \ |
philpem@5 | 6437 | (I[269] = (img)(_n7##x,_n2##y,z,v)), \ |
philpem@5 | 6438 | (I[290] = (img)(_n7##x,_n3##y,z,v)), \ |
philpem@5 | 6439 | (I[311] = (img)(_n7##x,_n4##y,z,v)), \ |
philpem@5 | 6440 | (I[332] = (img)(_n7##x,_n5##y,z,v)), \ |
philpem@5 | 6441 | (I[353] = (img)(_n7##x,_n6##y,z,v)), \ |
philpem@5 | 6442 | (I[374] = (img)(_n7##x,_n7##y,z,v)), \ |
philpem@5 | 6443 | (I[395] = (img)(_n7##x,_n8##y,z,v)), \ |
philpem@5 | 6444 | (I[416] = (img)(_n7##x,_n9##y,z,v)), \ |
philpem@5 | 6445 | (I[437] = (img)(_n7##x,_n10##y,z,v)), \ |
philpem@5 | 6446 | (I[18] = (img)(_n8##x,_p10##y,z,v)), \ |
philpem@5 | 6447 | (I[39] = (img)(_n8##x,_p9##y,z,v)), \ |
philpem@5 | 6448 | (I[60] = (img)(_n8##x,_p8##y,z,v)), \ |
philpem@5 | 6449 | (I[81] = (img)(_n8##x,_p7##y,z,v)), \ |
philpem@5 | 6450 | (I[102] = (img)(_n8##x,_p6##y,z,v)), \ |
philpem@5 | 6451 | (I[123] = (img)(_n8##x,_p5##y,z,v)), \ |
philpem@5 | 6452 | (I[144] = (img)(_n8##x,_p4##y,z,v)), \ |
philpem@5 | 6453 | (I[165] = (img)(_n8##x,_p3##y,z,v)), \ |
philpem@5 | 6454 | (I[186] = (img)(_n8##x,_p2##y,z,v)), \ |
philpem@5 | 6455 | (I[207] = (img)(_n8##x,_p1##y,z,v)), \ |
philpem@5 | 6456 | (I[228] = (img)(_n8##x,y,z,v)), \ |
philpem@5 | 6457 | (I[249] = (img)(_n8##x,_n1##y,z,v)), \ |
philpem@5 | 6458 | (I[270] = (img)(_n8##x,_n2##y,z,v)), \ |
philpem@5 | 6459 | (I[291] = (img)(_n8##x,_n3##y,z,v)), \ |
philpem@5 | 6460 | (I[312] = (img)(_n8##x,_n4##y,z,v)), \ |
philpem@5 | 6461 | (I[333] = (img)(_n8##x,_n5##y,z,v)), \ |
philpem@5 | 6462 | (I[354] = (img)(_n8##x,_n6##y,z,v)), \ |
philpem@5 | 6463 | (I[375] = (img)(_n8##x,_n7##y,z,v)), \ |
philpem@5 | 6464 | (I[396] = (img)(_n8##x,_n8##y,z,v)), \ |
philpem@5 | 6465 | (I[417] = (img)(_n8##x,_n9##y,z,v)), \ |
philpem@5 | 6466 | (I[438] = (img)(_n8##x,_n10##y,z,v)), \ |
philpem@5 | 6467 | (I[19] = (img)(_n9##x,_p10##y,z,v)), \ |
philpem@5 | 6468 | (I[40] = (img)(_n9##x,_p9##y,z,v)), \ |
philpem@5 | 6469 | (I[61] = (img)(_n9##x,_p8##y,z,v)), \ |
philpem@5 | 6470 | (I[82] = (img)(_n9##x,_p7##y,z,v)), \ |
philpem@5 | 6471 | (I[103] = (img)(_n9##x,_p6##y,z,v)), \ |
philpem@5 | 6472 | (I[124] = (img)(_n9##x,_p5##y,z,v)), \ |
philpem@5 | 6473 | (I[145] = (img)(_n9##x,_p4##y,z,v)), \ |
philpem@5 | 6474 | (I[166] = (img)(_n9##x,_p3##y,z,v)), \ |
philpem@5 | 6475 | (I[187] = (img)(_n9##x,_p2##y,z,v)), \ |
philpem@5 | 6476 | (I[208] = (img)(_n9##x,_p1##y,z,v)), \ |
philpem@5 | 6477 | (I[229] = (img)(_n9##x,y,z,v)), \ |
philpem@5 | 6478 | (I[250] = (img)(_n9##x,_n1##y,z,v)), \ |
philpem@5 | 6479 | (I[271] = (img)(_n9##x,_n2##y,z,v)), \ |
philpem@5 | 6480 | (I[292] = (img)(_n9##x,_n3##y,z,v)), \ |
philpem@5 | 6481 | (I[313] = (img)(_n9##x,_n4##y,z,v)), \ |
philpem@5 | 6482 | (I[334] = (img)(_n9##x,_n5##y,z,v)), \ |
philpem@5 | 6483 | (I[355] = (img)(_n9##x,_n6##y,z,v)), \ |
philpem@5 | 6484 | (I[376] = (img)(_n9##x,_n7##y,z,v)), \ |
philpem@5 | 6485 | (I[397] = (img)(_n9##x,_n8##y,z,v)), \ |
philpem@5 | 6486 | (I[418] = (img)(_n9##x,_n9##y,z,v)), \ |
philpem@5 | 6487 | (I[439] = (img)(_n9##x,_n10##y,z,v)), \ |
philpem@5 | 6488 | x+10>=(int)((img).width)?(int)((img).width)-1:x+10); \ |
philpem@5 | 6489 | x<=(int)(x1) && ((_n10##x<(int)((img).width) && ( \ |
philpem@5 | 6490 | (I[20] = (img)(_n10##x,_p10##y,z,v)), \ |
philpem@5 | 6491 | (I[41] = (img)(_n10##x,_p9##y,z,v)), \ |
philpem@5 | 6492 | (I[62] = (img)(_n10##x,_p8##y,z,v)), \ |
philpem@5 | 6493 | (I[83] = (img)(_n10##x,_p7##y,z,v)), \ |
philpem@5 | 6494 | (I[104] = (img)(_n10##x,_p6##y,z,v)), \ |
philpem@5 | 6495 | (I[125] = (img)(_n10##x,_p5##y,z,v)), \ |
philpem@5 | 6496 | (I[146] = (img)(_n10##x,_p4##y,z,v)), \ |
philpem@5 | 6497 | (I[167] = (img)(_n10##x,_p3##y,z,v)), \ |
philpem@5 | 6498 | (I[188] = (img)(_n10##x,_p2##y,z,v)), \ |
philpem@5 | 6499 | (I[209] = (img)(_n10##x,_p1##y,z,v)), \ |
philpem@5 | 6500 | (I[230] = (img)(_n10##x,y,z,v)), \ |
philpem@5 | 6501 | (I[251] = (img)(_n10##x,_n1##y,z,v)), \ |
philpem@5 | 6502 | (I[272] = (img)(_n10##x,_n2##y,z,v)), \ |
philpem@5 | 6503 | (I[293] = (img)(_n10##x,_n3##y,z,v)), \ |
philpem@5 | 6504 | (I[314] = (img)(_n10##x,_n4##y,z,v)), \ |
philpem@5 | 6505 | (I[335] = (img)(_n10##x,_n5##y,z,v)), \ |
philpem@5 | 6506 | (I[356] = (img)(_n10##x,_n6##y,z,v)), \ |
philpem@5 | 6507 | (I[377] = (img)(_n10##x,_n7##y,z,v)), \ |
philpem@5 | 6508 | (I[398] = (img)(_n10##x,_n8##y,z,v)), \ |
philpem@5 | 6509 | (I[419] = (img)(_n10##x,_n9##y,z,v)), \ |
philpem@5 | 6510 | (I[440] = (img)(_n10##x,_n10##y,z,v)),1)) || \ |
philpem@5 | 6511 | _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \ |
philpem@5 | 6512 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], \ |
philpem@5 | 6513 | I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \ |
philpem@5 | 6514 | I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], \ |
philpem@5 | 6515 | I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \ |
philpem@5 | 6516 | I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \ |
philpem@5 | 6517 | I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \ |
philpem@5 | 6518 | I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], \ |
philpem@5 | 6519 | I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \ |
philpem@5 | 6520 | I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], \ |
philpem@5 | 6521 | I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \ |
philpem@5 | 6522 | I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], \ |
philpem@5 | 6523 | I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \ |
philpem@5 | 6524 | I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], \ |
philpem@5 | 6525 | I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], \ |
philpem@5 | 6526 | I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], \ |
philpem@5 | 6527 | I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \ |
philpem@5 | 6528 | I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], \ |
philpem@5 | 6529 | I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], \ |
philpem@5 | 6530 | I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], \ |
philpem@5 | 6531 | I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], \ |
philpem@5 | 6532 | I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], \ |
philpem@5 | 6533 | _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x) |
philpem@5 | 6534 | |
philpem@5 | 6535 | #define cimg_get21x21(img,x,y,z,v,I) \ |
philpem@5 | 6536 | I[0] = (img)(_p10##x,_p10##y,z,v), I[1] = (img)(_p9##x,_p10##y,z,v), I[2] = (img)(_p8##x,_p10##y,z,v), I[3] = (img)(_p7##x,_p10##y,z,v), I[4] = (img)(_p6##x,_p10##y,z,v), I[5] = (img)(_p5##x,_p10##y,z,v), I[6] = (img)(_p4##x,_p10##y,z,v), I[7] = (img)(_p3##x,_p10##y,z,v), I[8] = (img)(_p2##x,_p10##y,z,v), I[9] = (img)(_p1##x,_p10##y,z,v), I[10] = (img)(x,_p10##y,z,v), I[11] = (img)(_n1##x,_p10##y,z,v), I[12] = (img)(_n2##x,_p10##y,z,v), I[13] = (img)(_n3##x,_p10##y,z,v), I[14] = (img)(_n4##x,_p10##y,z,v), I[15] = (img)(_n5##x,_p10##y,z,v), I[16] = (img)(_n6##x,_p10##y,z,v), I[17] = (img)(_n7##x,_p10##y,z,v), I[18] = (img)(_n8##x,_p10##y,z,v), I[19] = (img)(_n9##x,_p10##y,z,v), I[20] = (img)(_n10##x,_p10##y,z,v), \ |
philpem@5 | 6537 | I[21] = (img)(_p10##x,_p9##y,z,v), I[22] = (img)(_p9##x,_p9##y,z,v), I[23] = (img)(_p8##x,_p9##y,z,v), I[24] = (img)(_p7##x,_p9##y,z,v), I[25] = (img)(_p6##x,_p9##y,z,v), I[26] = (img)(_p5##x,_p9##y,z,v), I[27] = (img)(_p4##x,_p9##y,z,v), I[28] = (img)(_p3##x,_p9##y,z,v), I[29] = (img)(_p2##x,_p9##y,z,v), I[30] = (img)(_p1##x,_p9##y,z,v), I[31] = (img)(x,_p9##y,z,v), I[32] = (img)(_n1##x,_p9##y,z,v), I[33] = (img)(_n2##x,_p9##y,z,v), I[34] = (img)(_n3##x,_p9##y,z,v), I[35] = (img)(_n4##x,_p9##y,z,v), I[36] = (img)(_n5##x,_p9##y,z,v), I[37] = (img)(_n6##x,_p9##y,z,v), I[38] = (img)(_n7##x,_p9##y,z,v), I[39] = (img)(_n8##x,_p9##y,z,v), I[40] = (img)(_n9##x,_p9##y,z,v), I[41] = (img)(_n10##x,_p9##y,z,v), \ |
philpem@5 | 6538 | I[42] = (img)(_p10##x,_p8##y,z,v), I[43] = (img)(_p9##x,_p8##y,z,v), I[44] = (img)(_p8##x,_p8##y,z,v), I[45] = (img)(_p7##x,_p8##y,z,v), I[46] = (img)(_p6##x,_p8##y,z,v), I[47] = (img)(_p5##x,_p8##y,z,v), I[48] = (img)(_p4##x,_p8##y,z,v), I[49] = (img)(_p3##x,_p8##y,z,v), I[50] = (img)(_p2##x,_p8##y,z,v), I[51] = (img)(_p1##x,_p8##y,z,v), I[52] = (img)(x,_p8##y,z,v), I[53] = (img)(_n1##x,_p8##y,z,v), I[54] = (img)(_n2##x,_p8##y,z,v), I[55] = (img)(_n3##x,_p8##y,z,v), I[56] = (img)(_n4##x,_p8##y,z,v), I[57] = (img)(_n5##x,_p8##y,z,v), I[58] = (img)(_n6##x,_p8##y,z,v), I[59] = (img)(_n7##x,_p8##y,z,v), I[60] = (img)(_n8##x,_p8##y,z,v), I[61] = (img)(_n9##x,_p8##y,z,v), I[62] = (img)(_n10##x,_p8##y,z,v), \ |
philpem@5 | 6539 | I[63] = (img)(_p10##x,_p7##y,z,v), I[64] = (img)(_p9##x,_p7##y,z,v), I[65] = (img)(_p8##x,_p7##y,z,v), I[66] = (img)(_p7##x,_p7##y,z,v), I[67] = (img)(_p6##x,_p7##y,z,v), I[68] = (img)(_p5##x,_p7##y,z,v), I[69] = (img)(_p4##x,_p7##y,z,v), I[70] = (img)(_p3##x,_p7##y,z,v), I[71] = (img)(_p2##x,_p7##y,z,v), I[72] = (img)(_p1##x,_p7##y,z,v), I[73] = (img)(x,_p7##y,z,v), I[74] = (img)(_n1##x,_p7##y,z,v), I[75] = (img)(_n2##x,_p7##y,z,v), I[76] = (img)(_n3##x,_p7##y,z,v), I[77] = (img)(_n4##x,_p7##y,z,v), I[78] = (img)(_n5##x,_p7##y,z,v), I[79] = (img)(_n6##x,_p7##y,z,v), I[80] = (img)(_n7##x,_p7##y,z,v), I[81] = (img)(_n8##x,_p7##y,z,v), I[82] = (img)(_n9##x,_p7##y,z,v), I[83] = (img)(_n10##x,_p7##y,z,v), \ |
philpem@5 | 6540 | I[84] = (img)(_p10##x,_p6##y,z,v), I[85] = (img)(_p9##x,_p6##y,z,v), I[86] = (img)(_p8##x,_p6##y,z,v), I[87] = (img)(_p7##x,_p6##y,z,v), I[88] = (img)(_p6##x,_p6##y,z,v), I[89] = (img)(_p5##x,_p6##y,z,v), I[90] = (img)(_p4##x,_p6##y,z,v), I[91] = (img)(_p3##x,_p6##y,z,v), I[92] = (img)(_p2##x,_p6##y,z,v), I[93] = (img)(_p1##x,_p6##y,z,v), I[94] = (img)(x,_p6##y,z,v), I[95] = (img)(_n1##x,_p6##y,z,v), I[96] = (img)(_n2##x,_p6##y,z,v), I[97] = (img)(_n3##x,_p6##y,z,v), I[98] = (img)(_n4##x,_p6##y,z,v), I[99] = (img)(_n5##x,_p6##y,z,v), I[100] = (img)(_n6##x,_p6##y,z,v), I[101] = (img)(_n7##x,_p6##y,z,v), I[102] = (img)(_n8##x,_p6##y,z,v), I[103] = (img)(_n9##x,_p6##y,z,v), I[104] = (img)(_n10##x,_p6##y,z,v), \ |
philpem@5 | 6541 | I[105] = (img)(_p10##x,_p5##y,z,v), I[106] = (img)(_p9##x,_p5##y,z,v), I[107] = (img)(_p8##x,_p5##y,z,v), I[108] = (img)(_p7##x,_p5##y,z,v), I[109] = (img)(_p6##x,_p5##y,z,v), I[110] = (img)(_p5##x,_p5##y,z,v), I[111] = (img)(_p4##x,_p5##y,z,v), I[112] = (img)(_p3##x,_p5##y,z,v), I[113] = (img)(_p2##x,_p5##y,z,v), I[114] = (img)(_p1##x,_p5##y,z,v), I[115] = (img)(x,_p5##y,z,v), I[116] = (img)(_n1##x,_p5##y,z,v), I[117] = (img)(_n2##x,_p5##y,z,v), I[118] = (img)(_n3##x,_p5##y,z,v), I[119] = (img)(_n4##x,_p5##y,z,v), I[120] = (img)(_n5##x,_p5##y,z,v), I[121] = (img)(_n6##x,_p5##y,z,v), I[122] = (img)(_n7##x,_p5##y,z,v), I[123] = (img)(_n8##x,_p5##y,z,v), I[124] = (img)(_n9##x,_p5##y,z,v), I[125] = (img)(_n10##x,_p5##y,z,v), \ |
philpem@5 | 6542 | I[126] = (img)(_p10##x,_p4##y,z,v), I[127] = (img)(_p9##x,_p4##y,z,v), I[128] = (img)(_p8##x,_p4##y,z,v), I[129] = (img)(_p7##x,_p4##y,z,v), I[130] = (img)(_p6##x,_p4##y,z,v), I[131] = (img)(_p5##x,_p4##y,z,v), I[132] = (img)(_p4##x,_p4##y,z,v), I[133] = (img)(_p3##x,_p4##y,z,v), I[134] = (img)(_p2##x,_p4##y,z,v), I[135] = (img)(_p1##x,_p4##y,z,v), I[136] = (img)(x,_p4##y,z,v), I[137] = (img)(_n1##x,_p4##y,z,v), I[138] = (img)(_n2##x,_p4##y,z,v), I[139] = (img)(_n3##x,_p4##y,z,v), I[140] = (img)(_n4##x,_p4##y,z,v), I[141] = (img)(_n5##x,_p4##y,z,v), I[142] = (img)(_n6##x,_p4##y,z,v), I[143] = (img)(_n7##x,_p4##y,z,v), I[144] = (img)(_n8##x,_p4##y,z,v), I[145] = (img)(_n9##x,_p4##y,z,v), I[146] = (img)(_n10##x,_p4##y,z,v), \ |
philpem@5 | 6543 | I[147] = (img)(_p10##x,_p3##y,z,v), I[148] = (img)(_p9##x,_p3##y,z,v), I[149] = (img)(_p8##x,_p3##y,z,v), I[150] = (img)(_p7##x,_p3##y,z,v), I[151] = (img)(_p6##x,_p3##y,z,v), I[152] = (img)(_p5##x,_p3##y,z,v), I[153] = (img)(_p4##x,_p3##y,z,v), I[154] = (img)(_p3##x,_p3##y,z,v), I[155] = (img)(_p2##x,_p3##y,z,v), I[156] = (img)(_p1##x,_p3##y,z,v), I[157] = (img)(x,_p3##y,z,v), I[158] = (img)(_n1##x,_p3##y,z,v), I[159] = (img)(_n2##x,_p3##y,z,v), I[160] = (img)(_n3##x,_p3##y,z,v), I[161] = (img)(_n4##x,_p3##y,z,v), I[162] = (img)(_n5##x,_p3##y,z,v), I[163] = (img)(_n6##x,_p3##y,z,v), I[164] = (img)(_n7##x,_p3##y,z,v), I[165] = (img)(_n8##x,_p3##y,z,v), I[166] = (img)(_n9##x,_p3##y,z,v), I[167] = (img)(_n10##x,_p3##y,z,v), \ |
philpem@5 | 6544 | I[168] = (img)(_p10##x,_p2##y,z,v), I[169] = (img)(_p9##x,_p2##y,z,v), I[170] = (img)(_p8##x,_p2##y,z,v), I[171] = (img)(_p7##x,_p2##y,z,v), I[172] = (img)(_p6##x,_p2##y,z,v), I[173] = (img)(_p5##x,_p2##y,z,v), I[174] = (img)(_p4##x,_p2##y,z,v), I[175] = (img)(_p3##x,_p2##y,z,v), I[176] = (img)(_p2##x,_p2##y,z,v), I[177] = (img)(_p1##x,_p2##y,z,v), I[178] = (img)(x,_p2##y,z,v), I[179] = (img)(_n1##x,_p2##y,z,v), I[180] = (img)(_n2##x,_p2##y,z,v), I[181] = (img)(_n3##x,_p2##y,z,v), I[182] = (img)(_n4##x,_p2##y,z,v), I[183] = (img)(_n5##x,_p2##y,z,v), I[184] = (img)(_n6##x,_p2##y,z,v), I[185] = (img)(_n7##x,_p2##y,z,v), I[186] = (img)(_n8##x,_p2##y,z,v), I[187] = (img)(_n9##x,_p2##y,z,v), I[188] = (img)(_n10##x,_p2##y,z,v), \ |
philpem@5 | 6545 | I[189] = (img)(_p10##x,_p1##y,z,v), I[190] = (img)(_p9##x,_p1##y,z,v), I[191] = (img)(_p8##x,_p1##y,z,v), I[192] = (img)(_p7##x,_p1##y,z,v), I[193] = (img)(_p6##x,_p1##y,z,v), I[194] = (img)(_p5##x,_p1##y,z,v), I[195] = (img)(_p4##x,_p1##y,z,v), I[196] = (img)(_p3##x,_p1##y,z,v), I[197] = (img)(_p2##x,_p1##y,z,v), I[198] = (img)(_p1##x,_p1##y,z,v), I[199] = (img)(x,_p1##y,z,v), I[200] = (img)(_n1##x,_p1##y,z,v), I[201] = (img)(_n2##x,_p1##y,z,v), I[202] = (img)(_n3##x,_p1##y,z,v), I[203] = (img)(_n4##x,_p1##y,z,v), I[204] = (img)(_n5##x,_p1##y,z,v), I[205] = (img)(_n6##x,_p1##y,z,v), I[206] = (img)(_n7##x,_p1##y,z,v), I[207] = (img)(_n8##x,_p1##y,z,v), I[208] = (img)(_n9##x,_p1##y,z,v), I[209] = (img)(_n10##x,_p1##y,z,v), \ |
philpem@5 | 6546 | I[210] = (img)(_p10##x,y,z,v), I[211] = (img)(_p9##x,y,z,v), I[212] = (img)(_p8##x,y,z,v), I[213] = (img)(_p7##x,y,z,v), I[214] = (img)(_p6##x,y,z,v), I[215] = (img)(_p5##x,y,z,v), I[216] = (img)(_p4##x,y,z,v), I[217] = (img)(_p3##x,y,z,v), I[218] = (img)(_p2##x,y,z,v), I[219] = (img)(_p1##x,y,z,v), I[220] = (img)(x,y,z,v), I[221] = (img)(_n1##x,y,z,v), I[222] = (img)(_n2##x,y,z,v), I[223] = (img)(_n3##x,y,z,v), I[224] = (img)(_n4##x,y,z,v), I[225] = (img)(_n5##x,y,z,v), I[226] = (img)(_n6##x,y,z,v), I[227] = (img)(_n7##x,y,z,v), I[228] = (img)(_n8##x,y,z,v), I[229] = (img)(_n9##x,y,z,v), I[230] = (img)(_n10##x,y,z,v), \ |
philpem@5 | 6547 | I[231] = (img)(_p10##x,_n1##y,z,v), I[232] = (img)(_p9##x,_n1##y,z,v), I[233] = (img)(_p8##x,_n1##y,z,v), I[234] = (img)(_p7##x,_n1##y,z,v), I[235] = (img)(_p6##x,_n1##y,z,v), I[236] = (img)(_p5##x,_n1##y,z,v), I[237] = (img)(_p4##x,_n1##y,z,v), I[238] = (img)(_p3##x,_n1##y,z,v), I[239] = (img)(_p2##x,_n1##y,z,v), I[240] = (img)(_p1##x,_n1##y,z,v), I[241] = (img)(x,_n1##y,z,v), I[242] = (img)(_n1##x,_n1##y,z,v), I[243] = (img)(_n2##x,_n1##y,z,v), I[244] = (img)(_n3##x,_n1##y,z,v), I[245] = (img)(_n4##x,_n1##y,z,v), I[246] = (img)(_n5##x,_n1##y,z,v), I[247] = (img)(_n6##x,_n1##y,z,v), I[248] = (img)(_n7##x,_n1##y,z,v), I[249] = (img)(_n8##x,_n1##y,z,v), I[250] = (img)(_n9##x,_n1##y,z,v), I[251] = (img)(_n10##x,_n1##y,z,v), \ |
philpem@5 | 6548 | I[252] = (img)(_p10##x,_n2##y,z,v), I[253] = (img)(_p9##x,_n2##y,z,v), I[254] = (img)(_p8##x,_n2##y,z,v), I[255] = (img)(_p7##x,_n2##y,z,v), I[256] = (img)(_p6##x,_n2##y,z,v), I[257] = (img)(_p5##x,_n2##y,z,v), I[258] = (img)(_p4##x,_n2##y,z,v), I[259] = (img)(_p3##x,_n2##y,z,v), I[260] = (img)(_p2##x,_n2##y,z,v), I[261] = (img)(_p1##x,_n2##y,z,v), I[262] = (img)(x,_n2##y,z,v), I[263] = (img)(_n1##x,_n2##y,z,v), I[264] = (img)(_n2##x,_n2##y,z,v), I[265] = (img)(_n3##x,_n2##y,z,v), I[266] = (img)(_n4##x,_n2##y,z,v), I[267] = (img)(_n5##x,_n2##y,z,v), I[268] = (img)(_n6##x,_n2##y,z,v), I[269] = (img)(_n7##x,_n2##y,z,v), I[270] = (img)(_n8##x,_n2##y,z,v), I[271] = (img)(_n9##x,_n2##y,z,v), I[272] = (img)(_n10##x,_n2##y,z,v), \ |
philpem@5 | 6549 | I[273] = (img)(_p10##x,_n3##y,z,v), I[274] = (img)(_p9##x,_n3##y,z,v), I[275] = (img)(_p8##x,_n3##y,z,v), I[276] = (img)(_p7##x,_n3##y,z,v), I[277] = (img)(_p6##x,_n3##y,z,v), I[278] = (img)(_p5##x,_n3##y,z,v), I[279] = (img)(_p4##x,_n3##y,z,v), I[280] = (img)(_p3##x,_n3##y,z,v), I[281] = (img)(_p2##x,_n3##y,z,v), I[282] = (img)(_p1##x,_n3##y,z,v), I[283] = (img)(x,_n3##y,z,v), I[284] = (img)(_n1##x,_n3##y,z,v), I[285] = (img)(_n2##x,_n3##y,z,v), I[286] = (img)(_n3##x,_n3##y,z,v), I[287] = (img)(_n4##x,_n3##y,z,v), I[288] = (img)(_n5##x,_n3##y,z,v), I[289] = (img)(_n6##x,_n3##y,z,v), I[290] = (img)(_n7##x,_n3##y,z,v), I[291] = (img)(_n8##x,_n3##y,z,v), I[292] = (img)(_n9##x,_n3##y,z,v), I[293] = (img)(_n10##x,_n3##y,z,v), \ |
philpem@5 | 6550 | I[294] = (img)(_p10##x,_n4##y,z,v), I[295] = (img)(_p9##x,_n4##y,z,v), I[296] = (img)(_p8##x,_n4##y,z,v), I[297] = (img)(_p7##x,_n4##y,z,v), I[298] = (img)(_p6##x,_n4##y,z,v), I[299] = (img)(_p5##x,_n4##y,z,v), I[300] = (img)(_p4##x,_n4##y,z,v), I[301] = (img)(_p3##x,_n4##y,z,v), I[302] = (img)(_p2##x,_n4##y,z,v), I[303] = (img)(_p1##x,_n4##y,z,v), I[304] = (img)(x,_n4##y,z,v), I[305] = (img)(_n1##x,_n4##y,z,v), I[306] = (img)(_n2##x,_n4##y,z,v), I[307] = (img)(_n3##x,_n4##y,z,v), I[308] = (img)(_n4##x,_n4##y,z,v), I[309] = (img)(_n5##x,_n4##y,z,v), I[310] = (img)(_n6##x,_n4##y,z,v), I[311] = (img)(_n7##x,_n4##y,z,v), I[312] = (img)(_n8##x,_n4##y,z,v), I[313] = (img)(_n9##x,_n4##y,z,v), I[314] = (img)(_n10##x,_n4##y,z,v), \ |
philpem@5 | 6551 | I[315] = (img)(_p10##x,_n5##y,z,v), I[316] = (img)(_p9##x,_n5##y,z,v), I[317] = (img)(_p8##x,_n5##y,z,v), I[318] = (img)(_p7##x,_n5##y,z,v), I[319] = (img)(_p6##x,_n5##y,z,v), I[320] = (img)(_p5##x,_n5##y,z,v), I[321] = (img)(_p4##x,_n5##y,z,v), I[322] = (img)(_p3##x,_n5##y,z,v), I[323] = (img)(_p2##x,_n5##y,z,v), I[324] = (img)(_p1##x,_n5##y,z,v), I[325] = (img)(x,_n5##y,z,v), I[326] = (img)(_n1##x,_n5##y,z,v), I[327] = (img)(_n2##x,_n5##y,z,v), I[328] = (img)(_n3##x,_n5##y,z,v), I[329] = (img)(_n4##x,_n5##y,z,v), I[330] = (img)(_n5##x,_n5##y,z,v), I[331] = (img)(_n6##x,_n5##y,z,v), I[332] = (img)(_n7##x,_n5##y,z,v), I[333] = (img)(_n8##x,_n5##y,z,v), I[334] = (img)(_n9##x,_n5##y,z,v), I[335] = (img)(_n10##x,_n5##y,z,v), \ |
philpem@5 | 6552 | I[336] = (img)(_p10##x,_n6##y,z,v), I[337] = (img)(_p9##x,_n6##y,z,v), I[338] = (img)(_p8##x,_n6##y,z,v), I[339] = (img)(_p7##x,_n6##y,z,v), I[340] = (img)(_p6##x,_n6##y,z,v), I[341] = (img)(_p5##x,_n6##y,z,v), I[342] = (img)(_p4##x,_n6##y,z,v), I[343] = (img)(_p3##x,_n6##y,z,v), I[344] = (img)(_p2##x,_n6##y,z,v), I[345] = (img)(_p1##x,_n6##y,z,v), I[346] = (img)(x,_n6##y,z,v), I[347] = (img)(_n1##x,_n6##y,z,v), I[348] = (img)(_n2##x,_n6##y,z,v), I[349] = (img)(_n3##x,_n6##y,z,v), I[350] = (img)(_n4##x,_n6##y,z,v), I[351] = (img)(_n5##x,_n6##y,z,v), I[352] = (img)(_n6##x,_n6##y,z,v), I[353] = (img)(_n7##x,_n6##y,z,v), I[354] = (img)(_n8##x,_n6##y,z,v), I[355] = (img)(_n9##x,_n6##y,z,v), I[356] = (img)(_n10##x,_n6##y,z,v), \ |
philpem@5 | 6553 | I[357] = (img)(_p10##x,_n7##y,z,v), I[358] = (img)(_p9##x,_n7##y,z,v), I[359] = (img)(_p8##x,_n7##y,z,v), I[360] = (img)(_p7##x,_n7##y,z,v), I[361] = (img)(_p6##x,_n7##y,z,v), I[362] = (img)(_p5##x,_n7##y,z,v), I[363] = (img)(_p4##x,_n7##y,z,v), I[364] = (img)(_p3##x,_n7##y,z,v), I[365] = (img)(_p2##x,_n7##y,z,v), I[366] = (img)(_p1##x,_n7##y,z,v), I[367] = (img)(x,_n7##y,z,v), I[368] = (img)(_n1##x,_n7##y,z,v), I[369] = (img)(_n2##x,_n7##y,z,v), I[370] = (img)(_n3##x,_n7##y,z,v), I[371] = (img)(_n4##x,_n7##y,z,v), I[372] = (img)(_n5##x,_n7##y,z,v), I[373] = (img)(_n6##x,_n7##y,z,v), I[374] = (img)(_n7##x,_n7##y,z,v), I[375] = (img)(_n8##x,_n7##y,z,v), I[376] = (img)(_n9##x,_n7##y,z,v), I[377] = (img)(_n10##x,_n7##y,z,v), \ |
philpem@5 | 6554 | I[378] = (img)(_p10##x,_n8##y,z,v), I[379] = (img)(_p9##x,_n8##y,z,v), I[380] = (img)(_p8##x,_n8##y,z,v), I[381] = (img)(_p7##x,_n8##y,z,v), I[382] = (img)(_p6##x,_n8##y,z,v), I[383] = (img)(_p5##x,_n8##y,z,v), I[384] = (img)(_p4##x,_n8##y,z,v), I[385] = (img)(_p3##x,_n8##y,z,v), I[386] = (img)(_p2##x,_n8##y,z,v), I[387] = (img)(_p1##x,_n8##y,z,v), I[388] = (img)(x,_n8##y,z,v), I[389] = (img)(_n1##x,_n8##y,z,v), I[390] = (img)(_n2##x,_n8##y,z,v), I[391] = (img)(_n3##x,_n8##y,z,v), I[392] = (img)(_n4##x,_n8##y,z,v), I[393] = (img)(_n5##x,_n8##y,z,v), I[394] = (img)(_n6##x,_n8##y,z,v), I[395] = (img)(_n7##x,_n8##y,z,v), I[396] = (img)(_n8##x,_n8##y,z,v), I[397] = (img)(_n9##x,_n8##y,z,v), I[398] = (img)(_n10##x,_n8##y,z,v), \ |
philpem@5 | 6555 | I[399] = (img)(_p10##x,_n9##y,z,v), I[400] = (img)(_p9##x,_n9##y,z,v), I[401] = (img)(_p8##x,_n9##y,z,v), I[402] = (img)(_p7##x,_n9##y,z,v), I[403] = (img)(_p6##x,_n9##y,z,v), I[404] = (img)(_p5##x,_n9##y,z,v), I[405] = (img)(_p4##x,_n9##y,z,v), I[406] = (img)(_p3##x,_n9##y,z,v), I[407] = (img)(_p2##x,_n9##y,z,v), I[408] = (img)(_p1##x,_n9##y,z,v), I[409] = (img)(x,_n9##y,z,v), I[410] = (img)(_n1##x,_n9##y,z,v), I[411] = (img)(_n2##x,_n9##y,z,v), I[412] = (img)(_n3##x,_n9##y,z,v), I[413] = (img)(_n4##x,_n9##y,z,v), I[414] = (img)(_n5##x,_n9##y,z,v), I[415] = (img)(_n6##x,_n9##y,z,v), I[416] = (img)(_n7##x,_n9##y,z,v), I[417] = (img)(_n8##x,_n9##y,z,v), I[418] = (img)(_n9##x,_n9##y,z,v), I[419] = (img)(_n10##x,_n9##y,z,v), \ |
philpem@5 | 6556 | I[420] = (img)(_p10##x,_n10##y,z,v), I[421] = (img)(_p9##x,_n10##y,z,v), I[422] = (img)(_p8##x,_n10##y,z,v), I[423] = (img)(_p7##x,_n10##y,z,v), I[424] = (img)(_p6##x,_n10##y,z,v), I[425] = (img)(_p5##x,_n10##y,z,v), I[426] = (img)(_p4##x,_n10##y,z,v), I[427] = (img)(_p3##x,_n10##y,z,v), I[428] = (img)(_p2##x,_n10##y,z,v), I[429] = (img)(_p1##x,_n10##y,z,v), I[430] = (img)(x,_n10##y,z,v), I[431] = (img)(_n1##x,_n10##y,z,v), I[432] = (img)(_n2##x,_n10##y,z,v), I[433] = (img)(_n3##x,_n10##y,z,v), I[434] = (img)(_n4##x,_n10##y,z,v), I[435] = (img)(_n5##x,_n10##y,z,v), I[436] = (img)(_n6##x,_n10##y,z,v), I[437] = (img)(_n7##x,_n10##y,z,v), I[438] = (img)(_n8##x,_n10##y,z,v), I[439] = (img)(_n9##x,_n10##y,z,v), I[440] = (img)(_n10##x,_n10##y,z,v); |
philpem@5 | 6557 | |
philpem@5 | 6558 | // Define 22x22 loop macros for CImg |
philpem@5 | 6559 | //---------------------------------- |
philpem@5 | 6560 | #define cimg_for22(bound,i) for (int i = 0, \ |
philpem@5 | 6561 | _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \ |
philpem@5 | 6562 | _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \ |
philpem@5 | 6563 | _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \ |
philpem@5 | 6564 | _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \ |
philpem@5 | 6565 | _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \ |
philpem@5 | 6566 | _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \ |
philpem@5 | 6567 | _n6##i = 6>=(int)(bound)?(int)(bound)-1:6, \ |
philpem@5 | 6568 | _n7##i = 7>=(int)(bound)?(int)(bound)-1:7, \ |
philpem@5 | 6569 | _n8##i = 8>=(int)(bound)?(int)(bound)-1:8, \ |
philpem@5 | 6570 | _n9##i = 9>=(int)(bound)?(int)(bound)-1:9, \ |
philpem@5 | 6571 | _n10##i = 10>=(int)(bound)?(int)(bound)-1:10, \ |
philpem@5 | 6572 | _n11##i = 11>=(int)(bound)?(int)(bound)-1:11; \ |
philpem@5 | 6573 | _n11##i<(int)(bound) || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 6574 | i==(_n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \ |
philpem@5 | 6575 | _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 6576 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i) |
philpem@5 | 6577 | |
philpem@5 | 6578 | #define cimg_for22X(img,x) cimg_for22((img).width,x) |
philpem@5 | 6579 | #define cimg_for22Y(img,y) cimg_for22((img).height,y) |
philpem@5 | 6580 | #define cimg_for22Z(img,z) cimg_for22((img).depth,z) |
philpem@5 | 6581 | #define cimg_for22V(img,v) cimg_for22((img).dim,v) |
philpem@5 | 6582 | #define cimg_for22XY(img,x,y) cimg_for22Y(img,y) cimg_for22X(img,x) |
philpem@5 | 6583 | #define cimg_for22XZ(img,x,z) cimg_for22Z(img,z) cimg_for22X(img,x) |
philpem@5 | 6584 | #define cimg_for22XV(img,x,v) cimg_for22V(img,v) cimg_for22X(img,x) |
philpem@5 | 6585 | #define cimg_for22YZ(img,y,z) cimg_for22Z(img,z) cimg_for22Y(img,y) |
philpem@5 | 6586 | #define cimg_for22YV(img,y,v) cimg_for22V(img,v) cimg_for22Y(img,y) |
philpem@5 | 6587 | #define cimg_for22ZV(img,z,v) cimg_for22V(img,v) cimg_for22Z(img,z) |
philpem@5 | 6588 | #define cimg_for22XYZ(img,x,y,z) cimg_for22Z(img,z) cimg_for22XY(img,x,y) |
philpem@5 | 6589 | #define cimg_for22XZV(img,x,z,v) cimg_for22V(img,v) cimg_for22XZ(img,x,z) |
philpem@5 | 6590 | #define cimg_for22YZV(img,y,z,v) cimg_for22V(img,v) cimg_for22YZ(img,y,z) |
philpem@5 | 6591 | #define cimg_for22XYZV(img,x,y,z,v) cimg_for22V(img,v) cimg_for22XYZ(img,x,y,z) |
philpem@5 | 6592 | |
philpem@5 | 6593 | #define cimg_for_in22(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \ |
philpem@5 | 6594 | _p10##i = i-10<0?0:i-10, \ |
philpem@5 | 6595 | _p9##i = i-9<0?0:i-9, \ |
philpem@5 | 6596 | _p8##i = i-8<0?0:i-8, \ |
philpem@5 | 6597 | _p7##i = i-7<0?0:i-7, \ |
philpem@5 | 6598 | _p6##i = i-6<0?0:i-6, \ |
philpem@5 | 6599 | _p5##i = i-5<0?0:i-5, \ |
philpem@5 | 6600 | _p4##i = i-4<0?0:i-4, \ |
philpem@5 | 6601 | _p3##i = i-3<0?0:i-3, \ |
philpem@5 | 6602 | _p2##i = i-2<0?0:i-2, \ |
philpem@5 | 6603 | _p1##i = i-1<0?0:i-1, \ |
philpem@5 | 6604 | _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \ |
philpem@5 | 6605 | _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \ |
philpem@5 | 6606 | _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \ |
philpem@5 | 6607 | _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \ |
philpem@5 | 6608 | _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \ |
philpem@5 | 6609 | _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6, \ |
philpem@5 | 6610 | _n7##i = i+7>=(int)(bound)?(int)(bound)-1:i+7, \ |
philpem@5 | 6611 | _n8##i = i+8>=(int)(bound)?(int)(bound)-1:i+8, \ |
philpem@5 | 6612 | _n9##i = i+9>=(int)(bound)?(int)(bound)-1:i+9, \ |
philpem@5 | 6613 | _n10##i = i+10>=(int)(bound)?(int)(bound)-1:i+10, \ |
philpem@5 | 6614 | _n11##i = i+11>=(int)(bound)?(int)(bound)-1:i+11; \ |
philpem@5 | 6615 | i<=(int)(i1) && (_n11##i<(int)(bound) || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 6616 | i==(_n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \ |
philpem@5 | 6617 | _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 6618 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i) |
philpem@5 | 6619 | |
philpem@5 | 6620 | #define cimg_for_in22X(img,x0,x1,x) cimg_for_in22((img).width,x0,x1,x) |
philpem@5 | 6621 | #define cimg_for_in22Y(img,y0,y1,y) cimg_for_in22((img).height,y0,y1,y) |
philpem@5 | 6622 | #define cimg_for_in22Z(img,z0,z1,z) cimg_for_in22((img).depth,z0,z1,z) |
philpem@5 | 6623 | #define cimg_for_in22V(img,v0,v1,v) cimg_for_in22((img).dim,v0,v1,v) |
philpem@5 | 6624 | #define cimg_for_in22XY(img,x0,y0,x1,y1,x,y) cimg_for_in22Y(img,y0,y1,y) cimg_for_in22X(img,x0,x1,x) |
philpem@5 | 6625 | #define cimg_for_in22XZ(img,x0,z0,x1,z1,x,z) cimg_for_in22Z(img,z0,z1,z) cimg_for_in22X(img,x0,x1,x) |
philpem@5 | 6626 | #define cimg_for_in22XV(img,x0,v0,x1,v1,x,v) cimg_for_in22V(img,v0,v1,v) cimg_for_in22X(img,x0,x1,x) |
philpem@5 | 6627 | #define cimg_for_in22YZ(img,y0,z0,y1,z1,y,z) cimg_for_in22Z(img,z0,z1,z) cimg_for_in22Y(img,y0,y1,y) |
philpem@5 | 6628 | #define cimg_for_in22YV(img,y0,v0,y1,v1,y,v) cimg_for_in22V(img,v0,v1,v) cimg_for_in22Y(img,y0,y1,y) |
philpem@5 | 6629 | #define cimg_for_in22ZV(img,z0,v0,z1,v1,z,v) cimg_for_in22V(img,v0,v1,v) cimg_for_in22Z(img,z0,z1,z) |
philpem@5 | 6630 | #define cimg_for_in22XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in22Z(img,z0,z1,z) cimg_for_in22XY(img,x0,y0,x1,y1,x,y) |
philpem@5 | 6631 | #define cimg_for_in22XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in22V(img,v0,v1,v) cimg_for_in22XZ(img,x0,y0,x1,y1,x,z) |
philpem@5 | 6632 | #define cimg_for_in22YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in22V(img,v0,v1,v) cimg_for_in22YZ(img,y0,z0,y1,z1,y,z) |
philpem@5 | 6633 | #define cimg_for_in22XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in22V(img,v0,v1,v) cimg_for_in22XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) |
philpem@5 | 6634 | |
philpem@5 | 6635 | #define cimg_for22x22(img,x,y,z,v,I) \ |
philpem@5 | 6636 | cimg_for22((img).height,y) for (int x = 0, \ |
philpem@5 | 6637 | _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \ |
philpem@5 | 6638 | _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \ |
philpem@5 | 6639 | _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \ |
philpem@5 | 6640 | _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \ |
philpem@5 | 6641 | _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \ |
philpem@5 | 6642 | _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \ |
philpem@5 | 6643 | _n6##x = 6>=((img).width)?(int)((img).width)-1:6, \ |
philpem@5 | 6644 | _n7##x = 7>=((img).width)?(int)((img).width)-1:7, \ |
philpem@5 | 6645 | _n8##x = 8>=((img).width)?(int)((img).width)-1:8, \ |
philpem@5 | 6646 | _n9##x = 9>=((img).width)?(int)((img).width)-1:9, \ |
philpem@5 | 6647 | _n10##x = 10>=((img).width)?(int)((img).width)-1:10, \ |
philpem@5 | 6648 | _n11##x = (int)( \ |
philpem@5 | 6649 | (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = (img)(0,_p10##y,z,v)), \ |
philpem@5 | 6650 | (I[22] = I[23] = I[24] = I[25] = I[26] = I[27] = I[28] = I[29] = I[30] = I[31] = I[32] = (img)(0,_p9##y,z,v)), \ |
philpem@5 | 6651 | (I[44] = I[45] = I[46] = I[47] = I[48] = I[49] = I[50] = I[51] = I[52] = I[53] = I[54] = (img)(0,_p8##y,z,v)), \ |
philpem@5 | 6652 | (I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = I[72] = I[73] = I[74] = I[75] = I[76] = (img)(0,_p7##y,z,v)), \ |
philpem@5 | 6653 | (I[88] = I[89] = I[90] = I[91] = I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = I[98] = (img)(0,_p6##y,z,v)), \ |
philpem@5 | 6654 | (I[110] = I[111] = I[112] = I[113] = I[114] = I[115] = I[116] = I[117] = I[118] = I[119] = I[120] = (img)(0,_p5##y,z,v)), \ |
philpem@5 | 6655 | (I[132] = I[133] = I[134] = I[135] = I[136] = I[137] = I[138] = I[139] = I[140] = I[141] = I[142] = (img)(0,_p4##y,z,v)), \ |
philpem@5 | 6656 | (I[154] = I[155] = I[156] = I[157] = I[158] = I[159] = I[160] = I[161] = I[162] = I[163] = I[164] = (img)(0,_p3##y,z,v)), \ |
philpem@5 | 6657 | (I[176] = I[177] = I[178] = I[179] = I[180] = I[181] = I[182] = I[183] = I[184] = I[185] = I[186] = (img)(0,_p2##y,z,v)), \ |
philpem@5 | 6658 | (I[198] = I[199] = I[200] = I[201] = I[202] = I[203] = I[204] = I[205] = I[206] = I[207] = I[208] = (img)(0,_p1##y,z,v)), \ |
philpem@5 | 6659 | (I[220] = I[221] = I[222] = I[223] = I[224] = I[225] = I[226] = I[227] = I[228] = I[229] = I[230] = (img)(0,y,z,v)), \ |
philpem@5 | 6660 | (I[242] = I[243] = I[244] = I[245] = I[246] = I[247] = I[248] = I[249] = I[250] = I[251] = I[252] = (img)(0,_n1##y,z,v)), \ |
philpem@5 | 6661 | (I[264] = I[265] = I[266] = I[267] = I[268] = I[269] = I[270] = I[271] = I[272] = I[273] = I[274] = (img)(0,_n2##y,z,v)), \ |
philpem@5 | 6662 | (I[286] = I[287] = I[288] = I[289] = I[290] = I[291] = I[292] = I[293] = I[294] = I[295] = I[296] = (img)(0,_n3##y,z,v)), \ |
philpem@5 | 6663 | (I[308] = I[309] = I[310] = I[311] = I[312] = I[313] = I[314] = I[315] = I[316] = I[317] = I[318] = (img)(0,_n4##y,z,v)), \ |
philpem@5 | 6664 | (I[330] = I[331] = I[332] = I[333] = I[334] = I[335] = I[336] = I[337] = I[338] = I[339] = I[340] = (img)(0,_n5##y,z,v)), \ |
philpem@5 | 6665 | (I[352] = I[353] = I[354] = I[355] = I[356] = I[357] = I[358] = I[359] = I[360] = I[361] = I[362] = (img)(0,_n6##y,z,v)), \ |
philpem@5 | 6666 | (I[374] = I[375] = I[376] = I[377] = I[378] = I[379] = I[380] = I[381] = I[382] = I[383] = I[384] = (img)(0,_n7##y,z,v)), \ |
philpem@5 | 6667 | (I[396] = I[397] = I[398] = I[399] = I[400] = I[401] = I[402] = I[403] = I[404] = I[405] = I[406] = (img)(0,_n8##y,z,v)), \ |
philpem@5 | 6668 | (I[418] = I[419] = I[420] = I[421] = I[422] = I[423] = I[424] = I[425] = I[426] = I[427] = I[428] = (img)(0,_n9##y,z,v)), \ |
philpem@5 | 6669 | (I[440] = I[441] = I[442] = I[443] = I[444] = I[445] = I[446] = I[447] = I[448] = I[449] = I[450] = (img)(0,_n10##y,z,v)), \ |
philpem@5 | 6670 | (I[462] = I[463] = I[464] = I[465] = I[466] = I[467] = I[468] = I[469] = I[470] = I[471] = I[472] = (img)(0,_n11##y,z,v)), \ |
philpem@5 | 6671 | (I[11] = (img)(_n1##x,_p10##y,z,v)), \ |
philpem@5 | 6672 | (I[33] = (img)(_n1##x,_p9##y,z,v)), \ |
philpem@5 | 6673 | (I[55] = (img)(_n1##x,_p8##y,z,v)), \ |
philpem@5 | 6674 | (I[77] = (img)(_n1##x,_p7##y,z,v)), \ |
philpem@5 | 6675 | (I[99] = (img)(_n1##x,_p6##y,z,v)), \ |
philpem@5 | 6676 | (I[121] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 6677 | (I[143] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 6678 | (I[165] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 6679 | (I[187] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 6680 | (I[209] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 6681 | (I[231] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 6682 | (I[253] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 6683 | (I[275] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 6684 | (I[297] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 6685 | (I[319] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 6686 | (I[341] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 6687 | (I[363] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 6688 | (I[385] = (img)(_n1##x,_n7##y,z,v)), \ |
philpem@5 | 6689 | (I[407] = (img)(_n1##x,_n8##y,z,v)), \ |
philpem@5 | 6690 | (I[429] = (img)(_n1##x,_n9##y,z,v)), \ |
philpem@5 | 6691 | (I[451] = (img)(_n1##x,_n10##y,z,v)), \ |
philpem@5 | 6692 | (I[473] = (img)(_n1##x,_n11##y,z,v)), \ |
philpem@5 | 6693 | (I[12] = (img)(_n2##x,_p10##y,z,v)), \ |
philpem@5 | 6694 | (I[34] = (img)(_n2##x,_p9##y,z,v)), \ |
philpem@5 | 6695 | (I[56] = (img)(_n2##x,_p8##y,z,v)), \ |
philpem@5 | 6696 | (I[78] = (img)(_n2##x,_p7##y,z,v)), \ |
philpem@5 | 6697 | (I[100] = (img)(_n2##x,_p6##y,z,v)), \ |
philpem@5 | 6698 | (I[122] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 6699 | (I[144] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 6700 | (I[166] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 6701 | (I[188] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 6702 | (I[210] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 6703 | (I[232] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 6704 | (I[254] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 6705 | (I[276] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 6706 | (I[298] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 6707 | (I[320] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 6708 | (I[342] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 6709 | (I[364] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 6710 | (I[386] = (img)(_n2##x,_n7##y,z,v)), \ |
philpem@5 | 6711 | (I[408] = (img)(_n2##x,_n8##y,z,v)), \ |
philpem@5 | 6712 | (I[430] = (img)(_n2##x,_n9##y,z,v)), \ |
philpem@5 | 6713 | (I[452] = (img)(_n2##x,_n10##y,z,v)), \ |
philpem@5 | 6714 | (I[474] = (img)(_n2##x,_n11##y,z,v)), \ |
philpem@5 | 6715 | (I[13] = (img)(_n3##x,_p10##y,z,v)), \ |
philpem@5 | 6716 | (I[35] = (img)(_n3##x,_p9##y,z,v)), \ |
philpem@5 | 6717 | (I[57] = (img)(_n3##x,_p8##y,z,v)), \ |
philpem@5 | 6718 | (I[79] = (img)(_n3##x,_p7##y,z,v)), \ |
philpem@5 | 6719 | (I[101] = (img)(_n3##x,_p6##y,z,v)), \ |
philpem@5 | 6720 | (I[123] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 6721 | (I[145] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 6722 | (I[167] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 6723 | (I[189] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 6724 | (I[211] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 6725 | (I[233] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 6726 | (I[255] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 6727 | (I[277] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 6728 | (I[299] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 6729 | (I[321] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 6730 | (I[343] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 6731 | (I[365] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 6732 | (I[387] = (img)(_n3##x,_n7##y,z,v)), \ |
philpem@5 | 6733 | (I[409] = (img)(_n3##x,_n8##y,z,v)), \ |
philpem@5 | 6734 | (I[431] = (img)(_n3##x,_n9##y,z,v)), \ |
philpem@5 | 6735 | (I[453] = (img)(_n3##x,_n10##y,z,v)), \ |
philpem@5 | 6736 | (I[475] = (img)(_n3##x,_n11##y,z,v)), \ |
philpem@5 | 6737 | (I[14] = (img)(_n4##x,_p10##y,z,v)), \ |
philpem@5 | 6738 | (I[36] = (img)(_n4##x,_p9##y,z,v)), \ |
philpem@5 | 6739 | (I[58] = (img)(_n4##x,_p8##y,z,v)), \ |
philpem@5 | 6740 | (I[80] = (img)(_n4##x,_p7##y,z,v)), \ |
philpem@5 | 6741 | (I[102] = (img)(_n4##x,_p6##y,z,v)), \ |
philpem@5 | 6742 | (I[124] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 6743 | (I[146] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 6744 | (I[168] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 6745 | (I[190] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 6746 | (I[212] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 6747 | (I[234] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 6748 | (I[256] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 6749 | (I[278] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 6750 | (I[300] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 6751 | (I[322] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 6752 | (I[344] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 6753 | (I[366] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 6754 | (I[388] = (img)(_n4##x,_n7##y,z,v)), \ |
philpem@5 | 6755 | (I[410] = (img)(_n4##x,_n8##y,z,v)), \ |
philpem@5 | 6756 | (I[432] = (img)(_n4##x,_n9##y,z,v)), \ |
philpem@5 | 6757 | (I[454] = (img)(_n4##x,_n10##y,z,v)), \ |
philpem@5 | 6758 | (I[476] = (img)(_n4##x,_n11##y,z,v)), \ |
philpem@5 | 6759 | (I[15] = (img)(_n5##x,_p10##y,z,v)), \ |
philpem@5 | 6760 | (I[37] = (img)(_n5##x,_p9##y,z,v)), \ |
philpem@5 | 6761 | (I[59] = (img)(_n5##x,_p8##y,z,v)), \ |
philpem@5 | 6762 | (I[81] = (img)(_n5##x,_p7##y,z,v)), \ |
philpem@5 | 6763 | (I[103] = (img)(_n5##x,_p6##y,z,v)), \ |
philpem@5 | 6764 | (I[125] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 6765 | (I[147] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 6766 | (I[169] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 6767 | (I[191] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 6768 | (I[213] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 6769 | (I[235] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 6770 | (I[257] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 6771 | (I[279] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 6772 | (I[301] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 6773 | (I[323] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 6774 | (I[345] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 6775 | (I[367] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 6776 | (I[389] = (img)(_n5##x,_n7##y,z,v)), \ |
philpem@5 | 6777 | (I[411] = (img)(_n5##x,_n8##y,z,v)), \ |
philpem@5 | 6778 | (I[433] = (img)(_n5##x,_n9##y,z,v)), \ |
philpem@5 | 6779 | (I[455] = (img)(_n5##x,_n10##y,z,v)), \ |
philpem@5 | 6780 | (I[477] = (img)(_n5##x,_n11##y,z,v)), \ |
philpem@5 | 6781 | (I[16] = (img)(_n6##x,_p10##y,z,v)), \ |
philpem@5 | 6782 | (I[38] = (img)(_n6##x,_p9##y,z,v)), \ |
philpem@5 | 6783 | (I[60] = (img)(_n6##x,_p8##y,z,v)), \ |
philpem@5 | 6784 | (I[82] = (img)(_n6##x,_p7##y,z,v)), \ |
philpem@5 | 6785 | (I[104] = (img)(_n6##x,_p6##y,z,v)), \ |
philpem@5 | 6786 | (I[126] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 6787 | (I[148] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 6788 | (I[170] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 6789 | (I[192] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 6790 | (I[214] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 6791 | (I[236] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 6792 | (I[258] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 6793 | (I[280] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 6794 | (I[302] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 6795 | (I[324] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 6796 | (I[346] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 6797 | (I[368] = (img)(_n6##x,_n6##y,z,v)), \ |
philpem@5 | 6798 | (I[390] = (img)(_n6##x,_n7##y,z,v)), \ |
philpem@5 | 6799 | (I[412] = (img)(_n6##x,_n8##y,z,v)), \ |
philpem@5 | 6800 | (I[434] = (img)(_n6##x,_n9##y,z,v)), \ |
philpem@5 | 6801 | (I[456] = (img)(_n6##x,_n10##y,z,v)), \ |
philpem@5 | 6802 | (I[478] = (img)(_n6##x,_n11##y,z,v)), \ |
philpem@5 | 6803 | (I[17] = (img)(_n7##x,_p10##y,z,v)), \ |
philpem@5 | 6804 | (I[39] = (img)(_n7##x,_p9##y,z,v)), \ |
philpem@5 | 6805 | (I[61] = (img)(_n7##x,_p8##y,z,v)), \ |
philpem@5 | 6806 | (I[83] = (img)(_n7##x,_p7##y,z,v)), \ |
philpem@5 | 6807 | (I[105] = (img)(_n7##x,_p6##y,z,v)), \ |
philpem@5 | 6808 | (I[127] = (img)(_n7##x,_p5##y,z,v)), \ |
philpem@5 | 6809 | (I[149] = (img)(_n7##x,_p4##y,z,v)), \ |
philpem@5 | 6810 | (I[171] = (img)(_n7##x,_p3##y,z,v)), \ |
philpem@5 | 6811 | (I[193] = (img)(_n7##x,_p2##y,z,v)), \ |
philpem@5 | 6812 | (I[215] = (img)(_n7##x,_p1##y,z,v)), \ |
philpem@5 | 6813 | (I[237] = (img)(_n7##x,y,z,v)), \ |
philpem@5 | 6814 | (I[259] = (img)(_n7##x,_n1##y,z,v)), \ |
philpem@5 | 6815 | (I[281] = (img)(_n7##x,_n2##y,z,v)), \ |
philpem@5 | 6816 | (I[303] = (img)(_n7##x,_n3##y,z,v)), \ |
philpem@5 | 6817 | (I[325] = (img)(_n7##x,_n4##y,z,v)), \ |
philpem@5 | 6818 | (I[347] = (img)(_n7##x,_n5##y,z,v)), \ |
philpem@5 | 6819 | (I[369] = (img)(_n7##x,_n6##y,z,v)), \ |
philpem@5 | 6820 | (I[391] = (img)(_n7##x,_n7##y,z,v)), \ |
philpem@5 | 6821 | (I[413] = (img)(_n7##x,_n8##y,z,v)), \ |
philpem@5 | 6822 | (I[435] = (img)(_n7##x,_n9##y,z,v)), \ |
philpem@5 | 6823 | (I[457] = (img)(_n7##x,_n10##y,z,v)), \ |
philpem@5 | 6824 | (I[479] = (img)(_n7##x,_n11##y,z,v)), \ |
philpem@5 | 6825 | (I[18] = (img)(_n8##x,_p10##y,z,v)), \ |
philpem@5 | 6826 | (I[40] = (img)(_n8##x,_p9##y,z,v)), \ |
philpem@5 | 6827 | (I[62] = (img)(_n8##x,_p8##y,z,v)), \ |
philpem@5 | 6828 | (I[84] = (img)(_n8##x,_p7##y,z,v)), \ |
philpem@5 | 6829 | (I[106] = (img)(_n8##x,_p6##y,z,v)), \ |
philpem@5 | 6830 | (I[128] = (img)(_n8##x,_p5##y,z,v)), \ |
philpem@5 | 6831 | (I[150] = (img)(_n8##x,_p4##y,z,v)), \ |
philpem@5 | 6832 | (I[172] = (img)(_n8##x,_p3##y,z,v)), \ |
philpem@5 | 6833 | (I[194] = (img)(_n8##x,_p2##y,z,v)), \ |
philpem@5 | 6834 | (I[216] = (img)(_n8##x,_p1##y,z,v)), \ |
philpem@5 | 6835 | (I[238] = (img)(_n8##x,y,z,v)), \ |
philpem@5 | 6836 | (I[260] = (img)(_n8##x,_n1##y,z,v)), \ |
philpem@5 | 6837 | (I[282] = (img)(_n8##x,_n2##y,z,v)), \ |
philpem@5 | 6838 | (I[304] = (img)(_n8##x,_n3##y,z,v)), \ |
philpem@5 | 6839 | (I[326] = (img)(_n8##x,_n4##y,z,v)), \ |
philpem@5 | 6840 | (I[348] = (img)(_n8##x,_n5##y,z,v)), \ |
philpem@5 | 6841 | (I[370] = (img)(_n8##x,_n6##y,z,v)), \ |
philpem@5 | 6842 | (I[392] = (img)(_n8##x,_n7##y,z,v)), \ |
philpem@5 | 6843 | (I[414] = (img)(_n8##x,_n8##y,z,v)), \ |
philpem@5 | 6844 | (I[436] = (img)(_n8##x,_n9##y,z,v)), \ |
philpem@5 | 6845 | (I[458] = (img)(_n8##x,_n10##y,z,v)), \ |
philpem@5 | 6846 | (I[480] = (img)(_n8##x,_n11##y,z,v)), \ |
philpem@5 | 6847 | (I[19] = (img)(_n9##x,_p10##y,z,v)), \ |
philpem@5 | 6848 | (I[41] = (img)(_n9##x,_p9##y,z,v)), \ |
philpem@5 | 6849 | (I[63] = (img)(_n9##x,_p8##y,z,v)), \ |
philpem@5 | 6850 | (I[85] = (img)(_n9##x,_p7##y,z,v)), \ |
philpem@5 | 6851 | (I[107] = (img)(_n9##x,_p6##y,z,v)), \ |
philpem@5 | 6852 | (I[129] = (img)(_n9##x,_p5##y,z,v)), \ |
philpem@5 | 6853 | (I[151] = (img)(_n9##x,_p4##y,z,v)), \ |
philpem@5 | 6854 | (I[173] = (img)(_n9##x,_p3##y,z,v)), \ |
philpem@5 | 6855 | (I[195] = (img)(_n9##x,_p2##y,z,v)), \ |
philpem@5 | 6856 | (I[217] = (img)(_n9##x,_p1##y,z,v)), \ |
philpem@5 | 6857 | (I[239] = (img)(_n9##x,y,z,v)), \ |
philpem@5 | 6858 | (I[261] = (img)(_n9##x,_n1##y,z,v)), \ |
philpem@5 | 6859 | (I[283] = (img)(_n9##x,_n2##y,z,v)), \ |
philpem@5 | 6860 | (I[305] = (img)(_n9##x,_n3##y,z,v)), \ |
philpem@5 | 6861 | (I[327] = (img)(_n9##x,_n4##y,z,v)), \ |
philpem@5 | 6862 | (I[349] = (img)(_n9##x,_n5##y,z,v)), \ |
philpem@5 | 6863 | (I[371] = (img)(_n9##x,_n6##y,z,v)), \ |
philpem@5 | 6864 | (I[393] = (img)(_n9##x,_n7##y,z,v)), \ |
philpem@5 | 6865 | (I[415] = (img)(_n9##x,_n8##y,z,v)), \ |
philpem@5 | 6866 | (I[437] = (img)(_n9##x,_n9##y,z,v)), \ |
philpem@5 | 6867 | (I[459] = (img)(_n9##x,_n10##y,z,v)), \ |
philpem@5 | 6868 | (I[481] = (img)(_n9##x,_n11##y,z,v)), \ |
philpem@5 | 6869 | (I[20] = (img)(_n10##x,_p10##y,z,v)), \ |
philpem@5 | 6870 | (I[42] = (img)(_n10##x,_p9##y,z,v)), \ |
philpem@5 | 6871 | (I[64] = (img)(_n10##x,_p8##y,z,v)), \ |
philpem@5 | 6872 | (I[86] = (img)(_n10##x,_p7##y,z,v)), \ |
philpem@5 | 6873 | (I[108] = (img)(_n10##x,_p6##y,z,v)), \ |
philpem@5 | 6874 | (I[130] = (img)(_n10##x,_p5##y,z,v)), \ |
philpem@5 | 6875 | (I[152] = (img)(_n10##x,_p4##y,z,v)), \ |
philpem@5 | 6876 | (I[174] = (img)(_n10##x,_p3##y,z,v)), \ |
philpem@5 | 6877 | (I[196] = (img)(_n10##x,_p2##y,z,v)), \ |
philpem@5 | 6878 | (I[218] = (img)(_n10##x,_p1##y,z,v)), \ |
philpem@5 | 6879 | (I[240] = (img)(_n10##x,y,z,v)), \ |
philpem@5 | 6880 | (I[262] = (img)(_n10##x,_n1##y,z,v)), \ |
philpem@5 | 6881 | (I[284] = (img)(_n10##x,_n2##y,z,v)), \ |
philpem@5 | 6882 | (I[306] = (img)(_n10##x,_n3##y,z,v)), \ |
philpem@5 | 6883 | (I[328] = (img)(_n10##x,_n4##y,z,v)), \ |
philpem@5 | 6884 | (I[350] = (img)(_n10##x,_n5##y,z,v)), \ |
philpem@5 | 6885 | (I[372] = (img)(_n10##x,_n6##y,z,v)), \ |
philpem@5 | 6886 | (I[394] = (img)(_n10##x,_n7##y,z,v)), \ |
philpem@5 | 6887 | (I[416] = (img)(_n10##x,_n8##y,z,v)), \ |
philpem@5 | 6888 | (I[438] = (img)(_n10##x,_n9##y,z,v)), \ |
philpem@5 | 6889 | (I[460] = (img)(_n10##x,_n10##y,z,v)), \ |
philpem@5 | 6890 | (I[482] = (img)(_n10##x,_n11##y,z,v)), \ |
philpem@5 | 6891 | 11>=((img).width)?(int)((img).width)-1:11); \ |
philpem@5 | 6892 | (_n11##x<(int)((img).width) && ( \ |
philpem@5 | 6893 | (I[21] = (img)(_n11##x,_p10##y,z,v)), \ |
philpem@5 | 6894 | (I[43] = (img)(_n11##x,_p9##y,z,v)), \ |
philpem@5 | 6895 | (I[65] = (img)(_n11##x,_p8##y,z,v)), \ |
philpem@5 | 6896 | (I[87] = (img)(_n11##x,_p7##y,z,v)), \ |
philpem@5 | 6897 | (I[109] = (img)(_n11##x,_p6##y,z,v)), \ |
philpem@5 | 6898 | (I[131] = (img)(_n11##x,_p5##y,z,v)), \ |
philpem@5 | 6899 | (I[153] = (img)(_n11##x,_p4##y,z,v)), \ |
philpem@5 | 6900 | (I[175] = (img)(_n11##x,_p3##y,z,v)), \ |
philpem@5 | 6901 | (I[197] = (img)(_n11##x,_p2##y,z,v)), \ |
philpem@5 | 6902 | (I[219] = (img)(_n11##x,_p1##y,z,v)), \ |
philpem@5 | 6903 | (I[241] = (img)(_n11##x,y,z,v)), \ |
philpem@5 | 6904 | (I[263] = (img)(_n11##x,_n1##y,z,v)), \ |
philpem@5 | 6905 | (I[285] = (img)(_n11##x,_n2##y,z,v)), \ |
philpem@5 | 6906 | (I[307] = (img)(_n11##x,_n3##y,z,v)), \ |
philpem@5 | 6907 | (I[329] = (img)(_n11##x,_n4##y,z,v)), \ |
philpem@5 | 6908 | (I[351] = (img)(_n11##x,_n5##y,z,v)), \ |
philpem@5 | 6909 | (I[373] = (img)(_n11##x,_n6##y,z,v)), \ |
philpem@5 | 6910 | (I[395] = (img)(_n11##x,_n7##y,z,v)), \ |
philpem@5 | 6911 | (I[417] = (img)(_n11##x,_n8##y,z,v)), \ |
philpem@5 | 6912 | (I[439] = (img)(_n11##x,_n9##y,z,v)), \ |
philpem@5 | 6913 | (I[461] = (img)(_n11##x,_n10##y,z,v)), \ |
philpem@5 | 6914 | (I[483] = (img)(_n11##x,_n11##y,z,v)),1)) || \ |
philpem@5 | 6915 | _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \ |
philpem@5 | 6916 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], \ |
philpem@5 | 6917 | I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], \ |
philpem@5 | 6918 | I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], \ |
philpem@5 | 6919 | I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], \ |
philpem@5 | 6920 | I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], \ |
philpem@5 | 6921 | I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], \ |
philpem@5 | 6922 | I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], \ |
philpem@5 | 6923 | I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], \ |
philpem@5 | 6924 | I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], \ |
philpem@5 | 6925 | I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], \ |
philpem@5 | 6926 | I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], \ |
philpem@5 | 6927 | I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], \ |
philpem@5 | 6928 | I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], \ |
philpem@5 | 6929 | I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], \ |
philpem@5 | 6930 | I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], \ |
philpem@5 | 6931 | I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], \ |
philpem@5 | 6932 | I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], \ |
philpem@5 | 6933 | I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], \ |
philpem@5 | 6934 | I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], \ |
philpem@5 | 6935 | I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], \ |
philpem@5 | 6936 | I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], \ |
philpem@5 | 6937 | I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], \ |
philpem@5 | 6938 | _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x) |
philpem@5 | 6939 | |
philpem@5 | 6940 | #define cimg_for_in22x22(img,x0,y0,x1,y1,x,y,z,v,I) \ |
philpem@5 | 6941 | cimg_for_in22((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ |
philpem@5 | 6942 | _p10##x = x-10<0?0:x-10, \ |
philpem@5 | 6943 | _p9##x = x-9<0?0:x-9, \ |
philpem@5 | 6944 | _p8##x = x-8<0?0:x-8, \ |
philpem@5 | 6945 | _p7##x = x-7<0?0:x-7, \ |
philpem@5 | 6946 | _p6##x = x-6<0?0:x-6, \ |
philpem@5 | 6947 | _p5##x = x-5<0?0:x-5, \ |
philpem@5 | 6948 | _p4##x = x-4<0?0:x-4, \ |
philpem@5 | 6949 | _p3##x = x-3<0?0:x-3, \ |
philpem@5 | 6950 | _p2##x = x-2<0?0:x-2, \ |
philpem@5 | 6951 | _p1##x = x-1<0?0:x-1, \ |
philpem@5 | 6952 | _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \ |
philpem@5 | 6953 | _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \ |
philpem@5 | 6954 | _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \ |
philpem@5 | 6955 | _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \ |
philpem@5 | 6956 | _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \ |
philpem@5 | 6957 | _n6##x = x+6>=(int)((img).width)?(int)((img).width)-1:x+6, \ |
philpem@5 | 6958 | _n7##x = x+7>=(int)((img).width)?(int)((img).width)-1:x+7, \ |
philpem@5 | 6959 | _n8##x = x+8>=(int)((img).width)?(int)((img).width)-1:x+8, \ |
philpem@5 | 6960 | _n9##x = x+9>=(int)((img).width)?(int)((img).width)-1:x+9, \ |
philpem@5 | 6961 | _n10##x = x+10>=(int)((img).width)?(int)((img).width)-1:x+10, \ |
philpem@5 | 6962 | _n11##x = (int)( \ |
philpem@5 | 6963 | (I[0] = (img)(_p10##x,_p10##y,z,v)), \ |
philpem@5 | 6964 | (I[22] = (img)(_p10##x,_p9##y,z,v)), \ |
philpem@5 | 6965 | (I[44] = (img)(_p10##x,_p8##y,z,v)), \ |
philpem@5 | 6966 | (I[66] = (img)(_p10##x,_p7##y,z,v)), \ |
philpem@5 | 6967 | (I[88] = (img)(_p10##x,_p6##y,z,v)), \ |
philpem@5 | 6968 | (I[110] = (img)(_p10##x,_p5##y,z,v)), \ |
philpem@5 | 6969 | (I[132] = (img)(_p10##x,_p4##y,z,v)), \ |
philpem@5 | 6970 | (I[154] = (img)(_p10##x,_p3##y,z,v)), \ |
philpem@5 | 6971 | (I[176] = (img)(_p10##x,_p2##y,z,v)), \ |
philpem@5 | 6972 | (I[198] = (img)(_p10##x,_p1##y,z,v)), \ |
philpem@5 | 6973 | (I[220] = (img)(_p10##x,y,z,v)), \ |
philpem@5 | 6974 | (I[242] = (img)(_p10##x,_n1##y,z,v)), \ |
philpem@5 | 6975 | (I[264] = (img)(_p10##x,_n2##y,z,v)), \ |
philpem@5 | 6976 | (I[286] = (img)(_p10##x,_n3##y,z,v)), \ |
philpem@5 | 6977 | (I[308] = (img)(_p10##x,_n4##y,z,v)), \ |
philpem@5 | 6978 | (I[330] = (img)(_p10##x,_n5##y,z,v)), \ |
philpem@5 | 6979 | (I[352] = (img)(_p10##x,_n6##y,z,v)), \ |
philpem@5 | 6980 | (I[374] = (img)(_p10##x,_n7##y,z,v)), \ |
philpem@5 | 6981 | (I[396] = (img)(_p10##x,_n8##y,z,v)), \ |
philpem@5 | 6982 | (I[418] = (img)(_p10##x,_n9##y,z,v)), \ |
philpem@5 | 6983 | (I[440] = (img)(_p10##x,_n10##y,z,v)), \ |
philpem@5 | 6984 | (I[462] = (img)(_p10##x,_n11##y,z,v)), \ |
philpem@5 | 6985 | (I[1] = (img)(_p9##x,_p10##y,z,v)), \ |
philpem@5 | 6986 | (I[23] = (img)(_p9##x,_p9##y,z,v)), \ |
philpem@5 | 6987 | (I[45] = (img)(_p9##x,_p8##y,z,v)), \ |
philpem@5 | 6988 | (I[67] = (img)(_p9##x,_p7##y,z,v)), \ |
philpem@5 | 6989 | (I[89] = (img)(_p9##x,_p6##y,z,v)), \ |
philpem@5 | 6990 | (I[111] = (img)(_p9##x,_p5##y,z,v)), \ |
philpem@5 | 6991 | (I[133] = (img)(_p9##x,_p4##y,z,v)), \ |
philpem@5 | 6992 | (I[155] = (img)(_p9##x,_p3##y,z,v)), \ |
philpem@5 | 6993 | (I[177] = (img)(_p9##x,_p2##y,z,v)), \ |
philpem@5 | 6994 | (I[199] = (img)(_p9##x,_p1##y,z,v)), \ |
philpem@5 | 6995 | (I[221] = (img)(_p9##x,y,z,v)), \ |
philpem@5 | 6996 | (I[243] = (img)(_p9##x,_n1##y,z,v)), \ |
philpem@5 | 6997 | (I[265] = (img)(_p9##x,_n2##y,z,v)), \ |
philpem@5 | 6998 | (I[287] = (img)(_p9##x,_n3##y,z,v)), \ |
philpem@5 | 6999 | (I[309] = (img)(_p9##x,_n4##y,z,v)), \ |
philpem@5 | 7000 | (I[331] = (img)(_p9##x,_n5##y,z,v)), \ |
philpem@5 | 7001 | (I[353] = (img)(_p9##x,_n6##y,z,v)), \ |
philpem@5 | 7002 | (I[375] = (img)(_p9##x,_n7##y,z,v)), \ |
philpem@5 | 7003 | (I[397] = (img)(_p9##x,_n8##y,z,v)), \ |
philpem@5 | 7004 | (I[419] = (img)(_p9##x,_n9##y,z,v)), \ |
philpem@5 | 7005 | (I[441] = (img)(_p9##x,_n10##y,z,v)), \ |
philpem@5 | 7006 | (I[463] = (img)(_p9##x,_n11##y,z,v)), \ |
philpem@5 | 7007 | (I[2] = (img)(_p8##x,_p10##y,z,v)), \ |
philpem@5 | 7008 | (I[24] = (img)(_p8##x,_p9##y,z,v)), \ |
philpem@5 | 7009 | (I[46] = (img)(_p8##x,_p8##y,z,v)), \ |
philpem@5 | 7010 | (I[68] = (img)(_p8##x,_p7##y,z,v)), \ |
philpem@5 | 7011 | (I[90] = (img)(_p8##x,_p6##y,z,v)), \ |
philpem@5 | 7012 | (I[112] = (img)(_p8##x,_p5##y,z,v)), \ |
philpem@5 | 7013 | (I[134] = (img)(_p8##x,_p4##y,z,v)), \ |
philpem@5 | 7014 | (I[156] = (img)(_p8##x,_p3##y,z,v)), \ |
philpem@5 | 7015 | (I[178] = (img)(_p8##x,_p2##y,z,v)), \ |
philpem@5 | 7016 | (I[200] = (img)(_p8##x,_p1##y,z,v)), \ |
philpem@5 | 7017 | (I[222] = (img)(_p8##x,y,z,v)), \ |
philpem@5 | 7018 | (I[244] = (img)(_p8##x,_n1##y,z,v)), \ |
philpem@5 | 7019 | (I[266] = (img)(_p8##x,_n2##y,z,v)), \ |
philpem@5 | 7020 | (I[288] = (img)(_p8##x,_n3##y,z,v)), \ |
philpem@5 | 7021 | (I[310] = (img)(_p8##x,_n4##y,z,v)), \ |
philpem@5 | 7022 | (I[332] = (img)(_p8##x,_n5##y,z,v)), \ |
philpem@5 | 7023 | (I[354] = (img)(_p8##x,_n6##y,z,v)), \ |
philpem@5 | 7024 | (I[376] = (img)(_p8##x,_n7##y,z,v)), \ |
philpem@5 | 7025 | (I[398] = (img)(_p8##x,_n8##y,z,v)), \ |
philpem@5 | 7026 | (I[420] = (img)(_p8##x,_n9##y,z,v)), \ |
philpem@5 | 7027 | (I[442] = (img)(_p8##x,_n10##y,z,v)), \ |
philpem@5 | 7028 | (I[464] = (img)(_p8##x,_n11##y,z,v)), \ |
philpem@5 | 7029 | (I[3] = (img)(_p7##x,_p10##y,z,v)), \ |
philpem@5 | 7030 | (I[25] = (img)(_p7##x,_p9##y,z,v)), \ |
philpem@5 | 7031 | (I[47] = (img)(_p7##x,_p8##y,z,v)), \ |
philpem@5 | 7032 | (I[69] = (img)(_p7##x,_p7##y,z,v)), \ |
philpem@5 | 7033 | (I[91] = (img)(_p7##x,_p6##y,z,v)), \ |
philpem@5 | 7034 | (I[113] = (img)(_p7##x,_p5##y,z,v)), \ |
philpem@5 | 7035 | (I[135] = (img)(_p7##x,_p4##y,z,v)), \ |
philpem@5 | 7036 | (I[157] = (img)(_p7##x,_p3##y,z,v)), \ |
philpem@5 | 7037 | (I[179] = (img)(_p7##x,_p2##y,z,v)), \ |
philpem@5 | 7038 | (I[201] = (img)(_p7##x,_p1##y,z,v)), \ |
philpem@5 | 7039 | (I[223] = (img)(_p7##x,y,z,v)), \ |
philpem@5 | 7040 | (I[245] = (img)(_p7##x,_n1##y,z,v)), \ |
philpem@5 | 7041 | (I[267] = (img)(_p7##x,_n2##y,z,v)), \ |
philpem@5 | 7042 | (I[289] = (img)(_p7##x,_n3##y,z,v)), \ |
philpem@5 | 7043 | (I[311] = (img)(_p7##x,_n4##y,z,v)), \ |
philpem@5 | 7044 | (I[333] = (img)(_p7##x,_n5##y,z,v)), \ |
philpem@5 | 7045 | (I[355] = (img)(_p7##x,_n6##y,z,v)), \ |
philpem@5 | 7046 | (I[377] = (img)(_p7##x,_n7##y,z,v)), \ |
philpem@5 | 7047 | (I[399] = (img)(_p7##x,_n8##y,z,v)), \ |
philpem@5 | 7048 | (I[421] = (img)(_p7##x,_n9##y,z,v)), \ |
philpem@5 | 7049 | (I[443] = (img)(_p7##x,_n10##y,z,v)), \ |
philpem@5 | 7050 | (I[465] = (img)(_p7##x,_n11##y,z,v)), \ |
philpem@5 | 7051 | (I[4] = (img)(_p6##x,_p10##y,z,v)), \ |
philpem@5 | 7052 | (I[26] = (img)(_p6##x,_p9##y,z,v)), \ |
philpem@5 | 7053 | (I[48] = (img)(_p6##x,_p8##y,z,v)), \ |
philpem@5 | 7054 | (I[70] = (img)(_p6##x,_p7##y,z,v)), \ |
philpem@5 | 7055 | (I[92] = (img)(_p6##x,_p6##y,z,v)), \ |
philpem@5 | 7056 | (I[114] = (img)(_p6##x,_p5##y,z,v)), \ |
philpem@5 | 7057 | (I[136] = (img)(_p6##x,_p4##y,z,v)), \ |
philpem@5 | 7058 | (I[158] = (img)(_p6##x,_p3##y,z,v)), \ |
philpem@5 | 7059 | (I[180] = (img)(_p6##x,_p2##y,z,v)), \ |
philpem@5 | 7060 | (I[202] = (img)(_p6##x,_p1##y,z,v)), \ |
philpem@5 | 7061 | (I[224] = (img)(_p6##x,y,z,v)), \ |
philpem@5 | 7062 | (I[246] = (img)(_p6##x,_n1##y,z,v)), \ |
philpem@5 | 7063 | (I[268] = (img)(_p6##x,_n2##y,z,v)), \ |
philpem@5 | 7064 | (I[290] = (img)(_p6##x,_n3##y,z,v)), \ |
philpem@5 | 7065 | (I[312] = (img)(_p6##x,_n4##y,z,v)), \ |
philpem@5 | 7066 | (I[334] = (img)(_p6##x,_n5##y,z,v)), \ |
philpem@5 | 7067 | (I[356] = (img)(_p6##x,_n6##y,z,v)), \ |
philpem@5 | 7068 | (I[378] = (img)(_p6##x,_n7##y,z,v)), \ |
philpem@5 | 7069 | (I[400] = (img)(_p6##x,_n8##y,z,v)), \ |
philpem@5 | 7070 | (I[422] = (img)(_p6##x,_n9##y,z,v)), \ |
philpem@5 | 7071 | (I[444] = (img)(_p6##x,_n10##y,z,v)), \ |
philpem@5 | 7072 | (I[466] = (img)(_p6##x,_n11##y,z,v)), \ |
philpem@5 | 7073 | (I[5] = (img)(_p5##x,_p10##y,z,v)), \ |
philpem@5 | 7074 | (I[27] = (img)(_p5##x,_p9##y,z,v)), \ |
philpem@5 | 7075 | (I[49] = (img)(_p5##x,_p8##y,z,v)), \ |
philpem@5 | 7076 | (I[71] = (img)(_p5##x,_p7##y,z,v)), \ |
philpem@5 | 7077 | (I[93] = (img)(_p5##x,_p6##y,z,v)), \ |
philpem@5 | 7078 | (I[115] = (img)(_p5##x,_p5##y,z,v)), \ |
philpem@5 | 7079 | (I[137] = (img)(_p5##x,_p4##y,z,v)), \ |
philpem@5 | 7080 | (I[159] = (img)(_p5##x,_p3##y,z,v)), \ |
philpem@5 | 7081 | (I[181] = (img)(_p5##x,_p2##y,z,v)), \ |
philpem@5 | 7082 | (I[203] = (img)(_p5##x,_p1##y,z,v)), \ |
philpem@5 | 7083 | (I[225] = (img)(_p5##x,y,z,v)), \ |
philpem@5 | 7084 | (I[247] = (img)(_p5##x,_n1##y,z,v)), \ |
philpem@5 | 7085 | (I[269] = (img)(_p5##x,_n2##y,z,v)), \ |
philpem@5 | 7086 | (I[291] = (img)(_p5##x,_n3##y,z,v)), \ |
philpem@5 | 7087 | (I[313] = (img)(_p5##x,_n4##y,z,v)), \ |
philpem@5 | 7088 | (I[335] = (img)(_p5##x,_n5##y,z,v)), \ |
philpem@5 | 7089 | (I[357] = (img)(_p5##x,_n6##y,z,v)), \ |
philpem@5 | 7090 | (I[379] = (img)(_p5##x,_n7##y,z,v)), \ |
philpem@5 | 7091 | (I[401] = (img)(_p5##x,_n8##y,z,v)), \ |
philpem@5 | 7092 | (I[423] = (img)(_p5##x,_n9##y,z,v)), \ |
philpem@5 | 7093 | (I[445] = (img)(_p5##x,_n10##y,z,v)), \ |
philpem@5 | 7094 | (I[467] = (img)(_p5##x,_n11##y,z,v)), \ |
philpem@5 | 7095 | (I[6] = (img)(_p4##x,_p10##y,z,v)), \ |
philpem@5 | 7096 | (I[28] = (img)(_p4##x,_p9##y,z,v)), \ |
philpem@5 | 7097 | (I[50] = (img)(_p4##x,_p8##y,z,v)), \ |
philpem@5 | 7098 | (I[72] = (img)(_p4##x,_p7##y,z,v)), \ |
philpem@5 | 7099 | (I[94] = (img)(_p4##x,_p6##y,z,v)), \ |
philpem@5 | 7100 | (I[116] = (img)(_p4##x,_p5##y,z,v)), \ |
philpem@5 | 7101 | (I[138] = (img)(_p4##x,_p4##y,z,v)), \ |
philpem@5 | 7102 | (I[160] = (img)(_p4##x,_p3##y,z,v)), \ |
philpem@5 | 7103 | (I[182] = (img)(_p4##x,_p2##y,z,v)), \ |
philpem@5 | 7104 | (I[204] = (img)(_p4##x,_p1##y,z,v)), \ |
philpem@5 | 7105 | (I[226] = (img)(_p4##x,y,z,v)), \ |
philpem@5 | 7106 | (I[248] = (img)(_p4##x,_n1##y,z,v)), \ |
philpem@5 | 7107 | (I[270] = (img)(_p4##x,_n2##y,z,v)), \ |
philpem@5 | 7108 | (I[292] = (img)(_p4##x,_n3##y,z,v)), \ |
philpem@5 | 7109 | (I[314] = (img)(_p4##x,_n4##y,z,v)), \ |
philpem@5 | 7110 | (I[336] = (img)(_p4##x,_n5##y,z,v)), \ |
philpem@5 | 7111 | (I[358] = (img)(_p4##x,_n6##y,z,v)), \ |
philpem@5 | 7112 | (I[380] = (img)(_p4##x,_n7##y,z,v)), \ |
philpem@5 | 7113 | (I[402] = (img)(_p4##x,_n8##y,z,v)), \ |
philpem@5 | 7114 | (I[424] = (img)(_p4##x,_n9##y,z,v)), \ |
philpem@5 | 7115 | (I[446] = (img)(_p4##x,_n10##y,z,v)), \ |
philpem@5 | 7116 | (I[468] = (img)(_p4##x,_n11##y,z,v)), \ |
philpem@5 | 7117 | (I[7] = (img)(_p3##x,_p10##y,z,v)), \ |
philpem@5 | 7118 | (I[29] = (img)(_p3##x,_p9##y,z,v)), \ |
philpem@5 | 7119 | (I[51] = (img)(_p3##x,_p8##y,z,v)), \ |
philpem@5 | 7120 | (I[73] = (img)(_p3##x,_p7##y,z,v)), \ |
philpem@5 | 7121 | (I[95] = (img)(_p3##x,_p6##y,z,v)), \ |
philpem@5 | 7122 | (I[117] = (img)(_p3##x,_p5##y,z,v)), \ |
philpem@5 | 7123 | (I[139] = (img)(_p3##x,_p4##y,z,v)), \ |
philpem@5 | 7124 | (I[161] = (img)(_p3##x,_p3##y,z,v)), \ |
philpem@5 | 7125 | (I[183] = (img)(_p3##x,_p2##y,z,v)), \ |
philpem@5 | 7126 | (I[205] = (img)(_p3##x,_p1##y,z,v)), \ |
philpem@5 | 7127 | (I[227] = (img)(_p3##x,y,z,v)), \ |
philpem@5 | 7128 | (I[249] = (img)(_p3##x,_n1##y,z,v)), \ |
philpem@5 | 7129 | (I[271] = (img)(_p3##x,_n2##y,z,v)), \ |
philpem@5 | 7130 | (I[293] = (img)(_p3##x,_n3##y,z,v)), \ |
philpem@5 | 7131 | (I[315] = (img)(_p3##x,_n4##y,z,v)), \ |
philpem@5 | 7132 | (I[337] = (img)(_p3##x,_n5##y,z,v)), \ |
philpem@5 | 7133 | (I[359] = (img)(_p3##x,_n6##y,z,v)), \ |
philpem@5 | 7134 | (I[381] = (img)(_p3##x,_n7##y,z,v)), \ |
philpem@5 | 7135 | (I[403] = (img)(_p3##x,_n8##y,z,v)), \ |
philpem@5 | 7136 | (I[425] = (img)(_p3##x,_n9##y,z,v)), \ |
philpem@5 | 7137 | (I[447] = (img)(_p3##x,_n10##y,z,v)), \ |
philpem@5 | 7138 | (I[469] = (img)(_p3##x,_n11##y,z,v)), \ |
philpem@5 | 7139 | (I[8] = (img)(_p2##x,_p10##y,z,v)), \ |
philpem@5 | 7140 | (I[30] = (img)(_p2##x,_p9##y,z,v)), \ |
philpem@5 | 7141 | (I[52] = (img)(_p2##x,_p8##y,z,v)), \ |
philpem@5 | 7142 | (I[74] = (img)(_p2##x,_p7##y,z,v)), \ |
philpem@5 | 7143 | (I[96] = (img)(_p2##x,_p6##y,z,v)), \ |
philpem@5 | 7144 | (I[118] = (img)(_p2##x,_p5##y,z,v)), \ |
philpem@5 | 7145 | (I[140] = (img)(_p2##x,_p4##y,z,v)), \ |
philpem@5 | 7146 | (I[162] = (img)(_p2##x,_p3##y,z,v)), \ |
philpem@5 | 7147 | (I[184] = (img)(_p2##x,_p2##y,z,v)), \ |
philpem@5 | 7148 | (I[206] = (img)(_p2##x,_p1##y,z,v)), \ |
philpem@5 | 7149 | (I[228] = (img)(_p2##x,y,z,v)), \ |
philpem@5 | 7150 | (I[250] = (img)(_p2##x,_n1##y,z,v)), \ |
philpem@5 | 7151 | (I[272] = (img)(_p2##x,_n2##y,z,v)), \ |
philpem@5 | 7152 | (I[294] = (img)(_p2##x,_n3##y,z,v)), \ |
philpem@5 | 7153 | (I[316] = (img)(_p2##x,_n4##y,z,v)), \ |
philpem@5 | 7154 | (I[338] = (img)(_p2##x,_n5##y,z,v)), \ |
philpem@5 | 7155 | (I[360] = (img)(_p2##x,_n6##y,z,v)), \ |
philpem@5 | 7156 | (I[382] = (img)(_p2##x,_n7##y,z,v)), \ |
philpem@5 | 7157 | (I[404] = (img)(_p2##x,_n8##y,z,v)), \ |
philpem@5 | 7158 | (I[426] = (img)(_p2##x,_n9##y,z,v)), \ |
philpem@5 | 7159 | (I[448] = (img)(_p2##x,_n10##y,z,v)), \ |
philpem@5 | 7160 | (I[470] = (img)(_p2##x,_n11##y,z,v)), \ |
philpem@5 | 7161 | (I[9] = (img)(_p1##x,_p10##y,z,v)), \ |
philpem@5 | 7162 | (I[31] = (img)(_p1##x,_p9##y,z,v)), \ |
philpem@5 | 7163 | (I[53] = (img)(_p1##x,_p8##y,z,v)), \ |
philpem@5 | 7164 | (I[75] = (img)(_p1##x,_p7##y,z,v)), \ |
philpem@5 | 7165 | (I[97] = (img)(_p1##x,_p6##y,z,v)), \ |
philpem@5 | 7166 | (I[119] = (img)(_p1##x,_p5##y,z,v)), \ |
philpem@5 | 7167 | (I[141] = (img)(_p1##x,_p4##y,z,v)), \ |
philpem@5 | 7168 | (I[163] = (img)(_p1##x,_p3##y,z,v)), \ |
philpem@5 | 7169 | (I[185] = (img)(_p1##x,_p2##y,z,v)), \ |
philpem@5 | 7170 | (I[207] = (img)(_p1##x,_p1##y,z,v)), \ |
philpem@5 | 7171 | (I[229] = (img)(_p1##x,y,z,v)), \ |
philpem@5 | 7172 | (I[251] = (img)(_p1##x,_n1##y,z,v)), \ |
philpem@5 | 7173 | (I[273] = (img)(_p1##x,_n2##y,z,v)), \ |
philpem@5 | 7174 | (I[295] = (img)(_p1##x,_n3##y,z,v)), \ |
philpem@5 | 7175 | (I[317] = (img)(_p1##x,_n4##y,z,v)), \ |
philpem@5 | 7176 | (I[339] = (img)(_p1##x,_n5##y,z,v)), \ |
philpem@5 | 7177 | (I[361] = (img)(_p1##x,_n6##y,z,v)), \ |
philpem@5 | 7178 | (I[383] = (img)(_p1##x,_n7##y,z,v)), \ |
philpem@5 | 7179 | (I[405] = (img)(_p1##x,_n8##y,z,v)), \ |
philpem@5 | 7180 | (I[427] = (img)(_p1##x,_n9##y,z,v)), \ |
philpem@5 | 7181 | (I[449] = (img)(_p1##x,_n10##y,z,v)), \ |
philpem@5 | 7182 | (I[471] = (img)(_p1##x,_n11##y,z,v)), \ |
philpem@5 | 7183 | (I[10] = (img)(x,_p10##y,z,v)), \ |
philpem@5 | 7184 | (I[32] = (img)(x,_p9##y,z,v)), \ |
philpem@5 | 7185 | (I[54] = (img)(x,_p8##y,z,v)), \ |
philpem@5 | 7186 | (I[76] = (img)(x,_p7##y,z,v)), \ |
philpem@5 | 7187 | (I[98] = (img)(x,_p6##y,z,v)), \ |
philpem@5 | 7188 | (I[120] = (img)(x,_p5##y,z,v)), \ |
philpem@5 | 7189 | (I[142] = (img)(x,_p4##y,z,v)), \ |
philpem@5 | 7190 | (I[164] = (img)(x,_p3##y,z,v)), \ |
philpem@5 | 7191 | (I[186] = (img)(x,_p2##y,z,v)), \ |
philpem@5 | 7192 | (I[208] = (img)(x,_p1##y,z,v)), \ |
philpem@5 | 7193 | (I[230] = (img)(x,y,z,v)), \ |
philpem@5 | 7194 | (I[252] = (img)(x,_n1##y,z,v)), \ |
philpem@5 | 7195 | (I[274] = (img)(x,_n2##y,z,v)), \ |
philpem@5 | 7196 | (I[296] = (img)(x,_n3##y,z,v)), \ |
philpem@5 | 7197 | (I[318] = (img)(x,_n4##y,z,v)), \ |
philpem@5 | 7198 | (I[340] = (img)(x,_n5##y,z,v)), \ |
philpem@5 | 7199 | (I[362] = (img)(x,_n6##y,z,v)), \ |
philpem@5 | 7200 | (I[384] = (img)(x,_n7##y,z,v)), \ |
philpem@5 | 7201 | (I[406] = (img)(x,_n8##y,z,v)), \ |
philpem@5 | 7202 | (I[428] = (img)(x,_n9##y,z,v)), \ |
philpem@5 | 7203 | (I[450] = (img)(x,_n10##y,z,v)), \ |
philpem@5 | 7204 | (I[472] = (img)(x,_n11##y,z,v)), \ |
philpem@5 | 7205 | (I[11] = (img)(_n1##x,_p10##y,z,v)), \ |
philpem@5 | 7206 | (I[33] = (img)(_n1##x,_p9##y,z,v)), \ |
philpem@5 | 7207 | (I[55] = (img)(_n1##x,_p8##y,z,v)), \ |
philpem@5 | 7208 | (I[77] = (img)(_n1##x,_p7##y,z,v)), \ |
philpem@5 | 7209 | (I[99] = (img)(_n1##x,_p6##y,z,v)), \ |
philpem@5 | 7210 | (I[121] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 7211 | (I[143] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 7212 | (I[165] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 7213 | (I[187] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 7214 | (I[209] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 7215 | (I[231] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 7216 | (I[253] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 7217 | (I[275] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 7218 | (I[297] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 7219 | (I[319] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 7220 | (I[341] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 7221 | (I[363] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 7222 | (I[385] = (img)(_n1##x,_n7##y,z,v)), \ |
philpem@5 | 7223 | (I[407] = (img)(_n1##x,_n8##y,z,v)), \ |
philpem@5 | 7224 | (I[429] = (img)(_n1##x,_n9##y,z,v)), \ |
philpem@5 | 7225 | (I[451] = (img)(_n1##x,_n10##y,z,v)), \ |
philpem@5 | 7226 | (I[473] = (img)(_n1##x,_n11##y,z,v)), \ |
philpem@5 | 7227 | (I[12] = (img)(_n2##x,_p10##y,z,v)), \ |
philpem@5 | 7228 | (I[34] = (img)(_n2##x,_p9##y,z,v)), \ |
philpem@5 | 7229 | (I[56] = (img)(_n2##x,_p8##y,z,v)), \ |
philpem@5 | 7230 | (I[78] = (img)(_n2##x,_p7##y,z,v)), \ |
philpem@5 | 7231 | (I[100] = (img)(_n2##x,_p6##y,z,v)), \ |
philpem@5 | 7232 | (I[122] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 7233 | (I[144] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 7234 | (I[166] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 7235 | (I[188] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 7236 | (I[210] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 7237 | (I[232] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 7238 | (I[254] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 7239 | (I[276] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 7240 | (I[298] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 7241 | (I[320] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 7242 | (I[342] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 7243 | (I[364] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 7244 | (I[386] = (img)(_n2##x,_n7##y,z,v)), \ |
philpem@5 | 7245 | (I[408] = (img)(_n2##x,_n8##y,z,v)), \ |
philpem@5 | 7246 | (I[430] = (img)(_n2##x,_n9##y,z,v)), \ |
philpem@5 | 7247 | (I[452] = (img)(_n2##x,_n10##y,z,v)), \ |
philpem@5 | 7248 | (I[474] = (img)(_n2##x,_n11##y,z,v)), \ |
philpem@5 | 7249 | (I[13] = (img)(_n3##x,_p10##y,z,v)), \ |
philpem@5 | 7250 | (I[35] = (img)(_n3##x,_p9##y,z,v)), \ |
philpem@5 | 7251 | (I[57] = (img)(_n3##x,_p8##y,z,v)), \ |
philpem@5 | 7252 | (I[79] = (img)(_n3##x,_p7##y,z,v)), \ |
philpem@5 | 7253 | (I[101] = (img)(_n3##x,_p6##y,z,v)), \ |
philpem@5 | 7254 | (I[123] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 7255 | (I[145] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 7256 | (I[167] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 7257 | (I[189] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 7258 | (I[211] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 7259 | (I[233] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 7260 | (I[255] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 7261 | (I[277] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 7262 | (I[299] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 7263 | (I[321] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 7264 | (I[343] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 7265 | (I[365] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 7266 | (I[387] = (img)(_n3##x,_n7##y,z,v)), \ |
philpem@5 | 7267 | (I[409] = (img)(_n3##x,_n8##y,z,v)), \ |
philpem@5 | 7268 | (I[431] = (img)(_n3##x,_n9##y,z,v)), \ |
philpem@5 | 7269 | (I[453] = (img)(_n3##x,_n10##y,z,v)), \ |
philpem@5 | 7270 | (I[475] = (img)(_n3##x,_n11##y,z,v)), \ |
philpem@5 | 7271 | (I[14] = (img)(_n4##x,_p10##y,z,v)), \ |
philpem@5 | 7272 | (I[36] = (img)(_n4##x,_p9##y,z,v)), \ |
philpem@5 | 7273 | (I[58] = (img)(_n4##x,_p8##y,z,v)), \ |
philpem@5 | 7274 | (I[80] = (img)(_n4##x,_p7##y,z,v)), \ |
philpem@5 | 7275 | (I[102] = (img)(_n4##x,_p6##y,z,v)), \ |
philpem@5 | 7276 | (I[124] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 7277 | (I[146] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 7278 | (I[168] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 7279 | (I[190] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 7280 | (I[212] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 7281 | (I[234] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 7282 | (I[256] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 7283 | (I[278] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 7284 | (I[300] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 7285 | (I[322] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 7286 | (I[344] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 7287 | (I[366] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 7288 | (I[388] = (img)(_n4##x,_n7##y,z,v)), \ |
philpem@5 | 7289 | (I[410] = (img)(_n4##x,_n8##y,z,v)), \ |
philpem@5 | 7290 | (I[432] = (img)(_n4##x,_n9##y,z,v)), \ |
philpem@5 | 7291 | (I[454] = (img)(_n4##x,_n10##y,z,v)), \ |
philpem@5 | 7292 | (I[476] = (img)(_n4##x,_n11##y,z,v)), \ |
philpem@5 | 7293 | (I[15] = (img)(_n5##x,_p10##y,z,v)), \ |
philpem@5 | 7294 | (I[37] = (img)(_n5##x,_p9##y,z,v)), \ |
philpem@5 | 7295 | (I[59] = (img)(_n5##x,_p8##y,z,v)), \ |
philpem@5 | 7296 | (I[81] = (img)(_n5##x,_p7##y,z,v)), \ |
philpem@5 | 7297 | (I[103] = (img)(_n5##x,_p6##y,z,v)), \ |
philpem@5 | 7298 | (I[125] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 7299 | (I[147] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 7300 | (I[169] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 7301 | (I[191] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 7302 | (I[213] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 7303 | (I[235] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 7304 | (I[257] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 7305 | (I[279] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 7306 | (I[301] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 7307 | (I[323] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 7308 | (I[345] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 7309 | (I[367] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 7310 | (I[389] = (img)(_n5##x,_n7##y,z,v)), \ |
philpem@5 | 7311 | (I[411] = (img)(_n5##x,_n8##y,z,v)), \ |
philpem@5 | 7312 | (I[433] = (img)(_n5##x,_n9##y,z,v)), \ |
philpem@5 | 7313 | (I[455] = (img)(_n5##x,_n10##y,z,v)), \ |
philpem@5 | 7314 | (I[477] = (img)(_n5##x,_n11##y,z,v)), \ |
philpem@5 | 7315 | (I[16] = (img)(_n6##x,_p10##y,z,v)), \ |
philpem@5 | 7316 | (I[38] = (img)(_n6##x,_p9##y,z,v)), \ |
philpem@5 | 7317 | (I[60] = (img)(_n6##x,_p8##y,z,v)), \ |
philpem@5 | 7318 | (I[82] = (img)(_n6##x,_p7##y,z,v)), \ |
philpem@5 | 7319 | (I[104] = (img)(_n6##x,_p6##y,z,v)), \ |
philpem@5 | 7320 | (I[126] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 7321 | (I[148] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 7322 | (I[170] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 7323 | (I[192] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 7324 | (I[214] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 7325 | (I[236] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 7326 | (I[258] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 7327 | (I[280] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 7328 | (I[302] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 7329 | (I[324] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 7330 | (I[346] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 7331 | (I[368] = (img)(_n6##x,_n6##y,z,v)), \ |
philpem@5 | 7332 | (I[390] = (img)(_n6##x,_n7##y,z,v)), \ |
philpem@5 | 7333 | (I[412] = (img)(_n6##x,_n8##y,z,v)), \ |
philpem@5 | 7334 | (I[434] = (img)(_n6##x,_n9##y,z,v)), \ |
philpem@5 | 7335 | (I[456] = (img)(_n6##x,_n10##y,z,v)), \ |
philpem@5 | 7336 | (I[478] = (img)(_n6##x,_n11##y,z,v)), \ |
philpem@5 | 7337 | (I[17] = (img)(_n7##x,_p10##y,z,v)), \ |
philpem@5 | 7338 | (I[39] = (img)(_n7##x,_p9##y,z,v)), \ |
philpem@5 | 7339 | (I[61] = (img)(_n7##x,_p8##y,z,v)), \ |
philpem@5 | 7340 | (I[83] = (img)(_n7##x,_p7##y,z,v)), \ |
philpem@5 | 7341 | (I[105] = (img)(_n7##x,_p6##y,z,v)), \ |
philpem@5 | 7342 | (I[127] = (img)(_n7##x,_p5##y,z,v)), \ |
philpem@5 | 7343 | (I[149] = (img)(_n7##x,_p4##y,z,v)), \ |
philpem@5 | 7344 | (I[171] = (img)(_n7##x,_p3##y,z,v)), \ |
philpem@5 | 7345 | (I[193] = (img)(_n7##x,_p2##y,z,v)), \ |
philpem@5 | 7346 | (I[215] = (img)(_n7##x,_p1##y,z,v)), \ |
philpem@5 | 7347 | (I[237] = (img)(_n7##x,y,z,v)), \ |
philpem@5 | 7348 | (I[259] = (img)(_n7##x,_n1##y,z,v)), \ |
philpem@5 | 7349 | (I[281] = (img)(_n7##x,_n2##y,z,v)), \ |
philpem@5 | 7350 | (I[303] = (img)(_n7##x,_n3##y,z,v)), \ |
philpem@5 | 7351 | (I[325] = (img)(_n7##x,_n4##y,z,v)), \ |
philpem@5 | 7352 | (I[347] = (img)(_n7##x,_n5##y,z,v)), \ |
philpem@5 | 7353 | (I[369] = (img)(_n7##x,_n6##y,z,v)), \ |
philpem@5 | 7354 | (I[391] = (img)(_n7##x,_n7##y,z,v)), \ |
philpem@5 | 7355 | (I[413] = (img)(_n7##x,_n8##y,z,v)), \ |
philpem@5 | 7356 | (I[435] = (img)(_n7##x,_n9##y,z,v)), \ |
philpem@5 | 7357 | (I[457] = (img)(_n7##x,_n10##y,z,v)), \ |
philpem@5 | 7358 | (I[479] = (img)(_n7##x,_n11##y,z,v)), \ |
philpem@5 | 7359 | (I[18] = (img)(_n8##x,_p10##y,z,v)), \ |
philpem@5 | 7360 | (I[40] = (img)(_n8##x,_p9##y,z,v)), \ |
philpem@5 | 7361 | (I[62] = (img)(_n8##x,_p8##y,z,v)), \ |
philpem@5 | 7362 | (I[84] = (img)(_n8##x,_p7##y,z,v)), \ |
philpem@5 | 7363 | (I[106] = (img)(_n8##x,_p6##y,z,v)), \ |
philpem@5 | 7364 | (I[128] = (img)(_n8##x,_p5##y,z,v)), \ |
philpem@5 | 7365 | (I[150] = (img)(_n8##x,_p4##y,z,v)), \ |
philpem@5 | 7366 | (I[172] = (img)(_n8##x,_p3##y,z,v)), \ |
philpem@5 | 7367 | (I[194] = (img)(_n8##x,_p2##y,z,v)), \ |
philpem@5 | 7368 | (I[216] = (img)(_n8##x,_p1##y,z,v)), \ |
philpem@5 | 7369 | (I[238] = (img)(_n8##x,y,z,v)), \ |
philpem@5 | 7370 | (I[260] = (img)(_n8##x,_n1##y,z,v)), \ |
philpem@5 | 7371 | (I[282] = (img)(_n8##x,_n2##y,z,v)), \ |
philpem@5 | 7372 | (I[304] = (img)(_n8##x,_n3##y,z,v)), \ |
philpem@5 | 7373 | (I[326] = (img)(_n8##x,_n4##y,z,v)), \ |
philpem@5 | 7374 | (I[348] = (img)(_n8##x,_n5##y,z,v)), \ |
philpem@5 | 7375 | (I[370] = (img)(_n8##x,_n6##y,z,v)), \ |
philpem@5 | 7376 | (I[392] = (img)(_n8##x,_n7##y,z,v)), \ |
philpem@5 | 7377 | (I[414] = (img)(_n8##x,_n8##y,z,v)), \ |
philpem@5 | 7378 | (I[436] = (img)(_n8##x,_n9##y,z,v)), \ |
philpem@5 | 7379 | (I[458] = (img)(_n8##x,_n10##y,z,v)), \ |
philpem@5 | 7380 | (I[480] = (img)(_n8##x,_n11##y,z,v)), \ |
philpem@5 | 7381 | (I[19] = (img)(_n9##x,_p10##y,z,v)), \ |
philpem@5 | 7382 | (I[41] = (img)(_n9##x,_p9##y,z,v)), \ |
philpem@5 | 7383 | (I[63] = (img)(_n9##x,_p8##y,z,v)), \ |
philpem@5 | 7384 | (I[85] = (img)(_n9##x,_p7##y,z,v)), \ |
philpem@5 | 7385 | (I[107] = (img)(_n9##x,_p6##y,z,v)), \ |
philpem@5 | 7386 | (I[129] = (img)(_n9##x,_p5##y,z,v)), \ |
philpem@5 | 7387 | (I[151] = (img)(_n9##x,_p4##y,z,v)), \ |
philpem@5 | 7388 | (I[173] = (img)(_n9##x,_p3##y,z,v)), \ |
philpem@5 | 7389 | (I[195] = (img)(_n9##x,_p2##y,z,v)), \ |
philpem@5 | 7390 | (I[217] = (img)(_n9##x,_p1##y,z,v)), \ |
philpem@5 | 7391 | (I[239] = (img)(_n9##x,y,z,v)), \ |
philpem@5 | 7392 | (I[261] = (img)(_n9##x,_n1##y,z,v)), \ |
philpem@5 | 7393 | (I[283] = (img)(_n9##x,_n2##y,z,v)), \ |
philpem@5 | 7394 | (I[305] = (img)(_n9##x,_n3##y,z,v)), \ |
philpem@5 | 7395 | (I[327] = (img)(_n9##x,_n4##y,z,v)), \ |
philpem@5 | 7396 | (I[349] = (img)(_n9##x,_n5##y,z,v)), \ |
philpem@5 | 7397 | (I[371] = (img)(_n9##x,_n6##y,z,v)), \ |
philpem@5 | 7398 | (I[393] = (img)(_n9##x,_n7##y,z,v)), \ |
philpem@5 | 7399 | (I[415] = (img)(_n9##x,_n8##y,z,v)), \ |
philpem@5 | 7400 | (I[437] = (img)(_n9##x,_n9##y,z,v)), \ |
philpem@5 | 7401 | (I[459] = (img)(_n9##x,_n10##y,z,v)), \ |
philpem@5 | 7402 | (I[481] = (img)(_n9##x,_n11##y,z,v)), \ |
philpem@5 | 7403 | (I[20] = (img)(_n10##x,_p10##y,z,v)), \ |
philpem@5 | 7404 | (I[42] = (img)(_n10##x,_p9##y,z,v)), \ |
philpem@5 | 7405 | (I[64] = (img)(_n10##x,_p8##y,z,v)), \ |
philpem@5 | 7406 | (I[86] = (img)(_n10##x,_p7##y,z,v)), \ |
philpem@5 | 7407 | (I[108] = (img)(_n10##x,_p6##y,z,v)), \ |
philpem@5 | 7408 | (I[130] = (img)(_n10##x,_p5##y,z,v)), \ |
philpem@5 | 7409 | (I[152] = (img)(_n10##x,_p4##y,z,v)), \ |
philpem@5 | 7410 | (I[174] = (img)(_n10##x,_p3##y,z,v)), \ |
philpem@5 | 7411 | (I[196] = (img)(_n10##x,_p2##y,z,v)), \ |
philpem@5 | 7412 | (I[218] = (img)(_n10##x,_p1##y,z,v)), \ |
philpem@5 | 7413 | (I[240] = (img)(_n10##x,y,z,v)), \ |
philpem@5 | 7414 | (I[262] = (img)(_n10##x,_n1##y,z,v)), \ |
philpem@5 | 7415 | (I[284] = (img)(_n10##x,_n2##y,z,v)), \ |
philpem@5 | 7416 | (I[306] = (img)(_n10##x,_n3##y,z,v)), \ |
philpem@5 | 7417 | (I[328] = (img)(_n10##x,_n4##y,z,v)), \ |
philpem@5 | 7418 | (I[350] = (img)(_n10##x,_n5##y,z,v)), \ |
philpem@5 | 7419 | (I[372] = (img)(_n10##x,_n6##y,z,v)), \ |
philpem@5 | 7420 | (I[394] = (img)(_n10##x,_n7##y,z,v)), \ |
philpem@5 | 7421 | (I[416] = (img)(_n10##x,_n8##y,z,v)), \ |
philpem@5 | 7422 | (I[438] = (img)(_n10##x,_n9##y,z,v)), \ |
philpem@5 | 7423 | (I[460] = (img)(_n10##x,_n10##y,z,v)), \ |
philpem@5 | 7424 | (I[482] = (img)(_n10##x,_n11##y,z,v)), \ |
philpem@5 | 7425 | x+11>=(int)((img).width)?(int)((img).width)-1:x+11); \ |
philpem@5 | 7426 | x<=(int)(x1) && ((_n11##x<(int)((img).width) && ( \ |
philpem@5 | 7427 | (I[21] = (img)(_n11##x,_p10##y,z,v)), \ |
philpem@5 | 7428 | (I[43] = (img)(_n11##x,_p9##y,z,v)), \ |
philpem@5 | 7429 | (I[65] = (img)(_n11##x,_p8##y,z,v)), \ |
philpem@5 | 7430 | (I[87] = (img)(_n11##x,_p7##y,z,v)), \ |
philpem@5 | 7431 | (I[109] = (img)(_n11##x,_p6##y,z,v)), \ |
philpem@5 | 7432 | (I[131] = (img)(_n11##x,_p5##y,z,v)), \ |
philpem@5 | 7433 | (I[153] = (img)(_n11##x,_p4##y,z,v)), \ |
philpem@5 | 7434 | (I[175] = (img)(_n11##x,_p3##y,z,v)), \ |
philpem@5 | 7435 | (I[197] = (img)(_n11##x,_p2##y,z,v)), \ |
philpem@5 | 7436 | (I[219] = (img)(_n11##x,_p1##y,z,v)), \ |
philpem@5 | 7437 | (I[241] = (img)(_n11##x,y,z,v)), \ |
philpem@5 | 7438 | (I[263] = (img)(_n11##x,_n1##y,z,v)), \ |
philpem@5 | 7439 | (I[285] = (img)(_n11##x,_n2##y,z,v)), \ |
philpem@5 | 7440 | (I[307] = (img)(_n11##x,_n3##y,z,v)), \ |
philpem@5 | 7441 | (I[329] = (img)(_n11##x,_n4##y,z,v)), \ |
philpem@5 | 7442 | (I[351] = (img)(_n11##x,_n5##y,z,v)), \ |
philpem@5 | 7443 | (I[373] = (img)(_n11##x,_n6##y,z,v)), \ |
philpem@5 | 7444 | (I[395] = (img)(_n11##x,_n7##y,z,v)), \ |
philpem@5 | 7445 | (I[417] = (img)(_n11##x,_n8##y,z,v)), \ |
philpem@5 | 7446 | (I[439] = (img)(_n11##x,_n9##y,z,v)), \ |
philpem@5 | 7447 | (I[461] = (img)(_n11##x,_n10##y,z,v)), \ |
philpem@5 | 7448 | (I[483] = (img)(_n11##x,_n11##y,z,v)),1)) || \ |
philpem@5 | 7449 | _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \ |
philpem@5 | 7450 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], \ |
philpem@5 | 7451 | I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], \ |
philpem@5 | 7452 | I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], \ |
philpem@5 | 7453 | I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], \ |
philpem@5 | 7454 | I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], \ |
philpem@5 | 7455 | I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], \ |
philpem@5 | 7456 | I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], \ |
philpem@5 | 7457 | I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], \ |
philpem@5 | 7458 | I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], \ |
philpem@5 | 7459 | I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], \ |
philpem@5 | 7460 | I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], \ |
philpem@5 | 7461 | I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], \ |
philpem@5 | 7462 | I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], \ |
philpem@5 | 7463 | I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], \ |
philpem@5 | 7464 | I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], \ |
philpem@5 | 7465 | I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], \ |
philpem@5 | 7466 | I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], \ |
philpem@5 | 7467 | I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], \ |
philpem@5 | 7468 | I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], \ |
philpem@5 | 7469 | I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], \ |
philpem@5 | 7470 | I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], \ |
philpem@5 | 7471 | I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], \ |
philpem@5 | 7472 | _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x) |
philpem@5 | 7473 | |
philpem@5 | 7474 | #define cimg_get22x22(img,x,y,z,v,I) \ |
philpem@5 | 7475 | I[0] = (img)(_p10##x,_p10##y,z,v), I[1] = (img)(_p9##x,_p10##y,z,v), I[2] = (img)(_p8##x,_p10##y,z,v), I[3] = (img)(_p7##x,_p10##y,z,v), I[4] = (img)(_p6##x,_p10##y,z,v), I[5] = (img)(_p5##x,_p10##y,z,v), I[6] = (img)(_p4##x,_p10##y,z,v), I[7] = (img)(_p3##x,_p10##y,z,v), I[8] = (img)(_p2##x,_p10##y,z,v), I[9] = (img)(_p1##x,_p10##y,z,v), I[10] = (img)(x,_p10##y,z,v), I[11] = (img)(_n1##x,_p10##y,z,v), I[12] = (img)(_n2##x,_p10##y,z,v), I[13] = (img)(_n3##x,_p10##y,z,v), I[14] = (img)(_n4##x,_p10##y,z,v), I[15] = (img)(_n5##x,_p10##y,z,v), I[16] = (img)(_n6##x,_p10##y,z,v), I[17] = (img)(_n7##x,_p10##y,z,v), I[18] = (img)(_n8##x,_p10##y,z,v), I[19] = (img)(_n9##x,_p10##y,z,v), I[20] = (img)(_n10##x,_p10##y,z,v), I[21] = (img)(_n11##x,_p10##y,z,v), \ |
philpem@5 | 7476 | I[22] = (img)(_p10##x,_p9##y,z,v), I[23] = (img)(_p9##x,_p9##y,z,v), I[24] = (img)(_p8##x,_p9##y,z,v), I[25] = (img)(_p7##x,_p9##y,z,v), I[26] = (img)(_p6##x,_p9##y,z,v), I[27] = (img)(_p5##x,_p9##y,z,v), I[28] = (img)(_p4##x,_p9##y,z,v), I[29] = (img)(_p3##x,_p9##y,z,v), I[30] = (img)(_p2##x,_p9##y,z,v), I[31] = (img)(_p1##x,_p9##y,z,v), I[32] = (img)(x,_p9##y,z,v), I[33] = (img)(_n1##x,_p9##y,z,v), I[34] = (img)(_n2##x,_p9##y,z,v), I[35] = (img)(_n3##x,_p9##y,z,v), I[36] = (img)(_n4##x,_p9##y,z,v), I[37] = (img)(_n5##x,_p9##y,z,v), I[38] = (img)(_n6##x,_p9##y,z,v), I[39] = (img)(_n7##x,_p9##y,z,v), I[40] = (img)(_n8##x,_p9##y,z,v), I[41] = (img)(_n9##x,_p9##y,z,v), I[42] = (img)(_n10##x,_p9##y,z,v), I[43] = (img)(_n11##x,_p9##y,z,v), \ |
philpem@5 | 7477 | I[44] = (img)(_p10##x,_p8##y,z,v), I[45] = (img)(_p9##x,_p8##y,z,v), I[46] = (img)(_p8##x,_p8##y,z,v), I[47] = (img)(_p7##x,_p8##y,z,v), I[48] = (img)(_p6##x,_p8##y,z,v), I[49] = (img)(_p5##x,_p8##y,z,v), I[50] = (img)(_p4##x,_p8##y,z,v), I[51] = (img)(_p3##x,_p8##y,z,v), I[52] = (img)(_p2##x,_p8##y,z,v), I[53] = (img)(_p1##x,_p8##y,z,v), I[54] = (img)(x,_p8##y,z,v), I[55] = (img)(_n1##x,_p8##y,z,v), I[56] = (img)(_n2##x,_p8##y,z,v), I[57] = (img)(_n3##x,_p8##y,z,v), I[58] = (img)(_n4##x,_p8##y,z,v), I[59] = (img)(_n5##x,_p8##y,z,v), I[60] = (img)(_n6##x,_p8##y,z,v), I[61] = (img)(_n7##x,_p8##y,z,v), I[62] = (img)(_n8##x,_p8##y,z,v), I[63] = (img)(_n9##x,_p8##y,z,v), I[64] = (img)(_n10##x,_p8##y,z,v), I[65] = (img)(_n11##x,_p8##y,z,v), \ |
philpem@5 | 7478 | I[66] = (img)(_p10##x,_p7##y,z,v), I[67] = (img)(_p9##x,_p7##y,z,v), I[68] = (img)(_p8##x,_p7##y,z,v), I[69] = (img)(_p7##x,_p7##y,z,v), I[70] = (img)(_p6##x,_p7##y,z,v), I[71] = (img)(_p5##x,_p7##y,z,v), I[72] = (img)(_p4##x,_p7##y,z,v), I[73] = (img)(_p3##x,_p7##y,z,v), I[74] = (img)(_p2##x,_p7##y,z,v), I[75] = (img)(_p1##x,_p7##y,z,v), I[76] = (img)(x,_p7##y,z,v), I[77] = (img)(_n1##x,_p7##y,z,v), I[78] = (img)(_n2##x,_p7##y,z,v), I[79] = (img)(_n3##x,_p7##y,z,v), I[80] = (img)(_n4##x,_p7##y,z,v), I[81] = (img)(_n5##x,_p7##y,z,v), I[82] = (img)(_n6##x,_p7##y,z,v), I[83] = (img)(_n7##x,_p7##y,z,v), I[84] = (img)(_n8##x,_p7##y,z,v), I[85] = (img)(_n9##x,_p7##y,z,v), I[86] = (img)(_n10##x,_p7##y,z,v), I[87] = (img)(_n11##x,_p7##y,z,v), \ |
philpem@5 | 7479 | I[88] = (img)(_p10##x,_p6##y,z,v), I[89] = (img)(_p9##x,_p6##y,z,v), I[90] = (img)(_p8##x,_p6##y,z,v), I[91] = (img)(_p7##x,_p6##y,z,v), I[92] = (img)(_p6##x,_p6##y,z,v), I[93] = (img)(_p5##x,_p6##y,z,v), I[94] = (img)(_p4##x,_p6##y,z,v), I[95] = (img)(_p3##x,_p6##y,z,v), I[96] = (img)(_p2##x,_p6##y,z,v), I[97] = (img)(_p1##x,_p6##y,z,v), I[98] = (img)(x,_p6##y,z,v), I[99] = (img)(_n1##x,_p6##y,z,v), I[100] = (img)(_n2##x,_p6##y,z,v), I[101] = (img)(_n3##x,_p6##y,z,v), I[102] = (img)(_n4##x,_p6##y,z,v), I[103] = (img)(_n5##x,_p6##y,z,v), I[104] = (img)(_n6##x,_p6##y,z,v), I[105] = (img)(_n7##x,_p6##y,z,v), I[106] = (img)(_n8##x,_p6##y,z,v), I[107] = (img)(_n9##x,_p6##y,z,v), I[108] = (img)(_n10##x,_p6##y,z,v), I[109] = (img)(_n11##x,_p6##y,z,v), \ |
philpem@5 | 7480 | I[110] = (img)(_p10##x,_p5##y,z,v), I[111] = (img)(_p9##x,_p5##y,z,v), I[112] = (img)(_p8##x,_p5##y,z,v), I[113] = (img)(_p7##x,_p5##y,z,v), I[114] = (img)(_p6##x,_p5##y,z,v), I[115] = (img)(_p5##x,_p5##y,z,v), I[116] = (img)(_p4##x,_p5##y,z,v), I[117] = (img)(_p3##x,_p5##y,z,v), I[118] = (img)(_p2##x,_p5##y,z,v), I[119] = (img)(_p1##x,_p5##y,z,v), I[120] = (img)(x,_p5##y,z,v), I[121] = (img)(_n1##x,_p5##y,z,v), I[122] = (img)(_n2##x,_p5##y,z,v), I[123] = (img)(_n3##x,_p5##y,z,v), I[124] = (img)(_n4##x,_p5##y,z,v), I[125] = (img)(_n5##x,_p5##y,z,v), I[126] = (img)(_n6##x,_p5##y,z,v), I[127] = (img)(_n7##x,_p5##y,z,v), I[128] = (img)(_n8##x,_p5##y,z,v), I[129] = (img)(_n9##x,_p5##y,z,v), I[130] = (img)(_n10##x,_p5##y,z,v), I[131] = (img)(_n11##x,_p5##y,z,v), \ |
philpem@5 | 7481 | I[132] = (img)(_p10##x,_p4##y,z,v), I[133] = (img)(_p9##x,_p4##y,z,v), I[134] = (img)(_p8##x,_p4##y,z,v), I[135] = (img)(_p7##x,_p4##y,z,v), I[136] = (img)(_p6##x,_p4##y,z,v), I[137] = (img)(_p5##x,_p4##y,z,v), I[138] = (img)(_p4##x,_p4##y,z,v), I[139] = (img)(_p3##x,_p4##y,z,v), I[140] = (img)(_p2##x,_p4##y,z,v), I[141] = (img)(_p1##x,_p4##y,z,v), I[142] = (img)(x,_p4##y,z,v), I[143] = (img)(_n1##x,_p4##y,z,v), I[144] = (img)(_n2##x,_p4##y,z,v), I[145] = (img)(_n3##x,_p4##y,z,v), I[146] = (img)(_n4##x,_p4##y,z,v), I[147] = (img)(_n5##x,_p4##y,z,v), I[148] = (img)(_n6##x,_p4##y,z,v), I[149] = (img)(_n7##x,_p4##y,z,v), I[150] = (img)(_n8##x,_p4##y,z,v), I[151] = (img)(_n9##x,_p4##y,z,v), I[152] = (img)(_n10##x,_p4##y,z,v), I[153] = (img)(_n11##x,_p4##y,z,v), \ |
philpem@5 | 7482 | I[154] = (img)(_p10##x,_p3##y,z,v), I[155] = (img)(_p9##x,_p3##y,z,v), I[156] = (img)(_p8##x,_p3##y,z,v), I[157] = (img)(_p7##x,_p3##y,z,v), I[158] = (img)(_p6##x,_p3##y,z,v), I[159] = (img)(_p5##x,_p3##y,z,v), I[160] = (img)(_p4##x,_p3##y,z,v), I[161] = (img)(_p3##x,_p3##y,z,v), I[162] = (img)(_p2##x,_p3##y,z,v), I[163] = (img)(_p1##x,_p3##y,z,v), I[164] = (img)(x,_p3##y,z,v), I[165] = (img)(_n1##x,_p3##y,z,v), I[166] = (img)(_n2##x,_p3##y,z,v), I[167] = (img)(_n3##x,_p3##y,z,v), I[168] = (img)(_n4##x,_p3##y,z,v), I[169] = (img)(_n5##x,_p3##y,z,v), I[170] = (img)(_n6##x,_p3##y,z,v), I[171] = (img)(_n7##x,_p3##y,z,v), I[172] = (img)(_n8##x,_p3##y,z,v), I[173] = (img)(_n9##x,_p3##y,z,v), I[174] = (img)(_n10##x,_p3##y,z,v), I[175] = (img)(_n11##x,_p3##y,z,v), \ |
philpem@5 | 7483 | I[176] = (img)(_p10##x,_p2##y,z,v), I[177] = (img)(_p9##x,_p2##y,z,v), I[178] = (img)(_p8##x,_p2##y,z,v), I[179] = (img)(_p7##x,_p2##y,z,v), I[180] = (img)(_p6##x,_p2##y,z,v), I[181] = (img)(_p5##x,_p2##y,z,v), I[182] = (img)(_p4##x,_p2##y,z,v), I[183] = (img)(_p3##x,_p2##y,z,v), I[184] = (img)(_p2##x,_p2##y,z,v), I[185] = (img)(_p1##x,_p2##y,z,v), I[186] = (img)(x,_p2##y,z,v), I[187] = (img)(_n1##x,_p2##y,z,v), I[188] = (img)(_n2##x,_p2##y,z,v), I[189] = (img)(_n3##x,_p2##y,z,v), I[190] = (img)(_n4##x,_p2##y,z,v), I[191] = (img)(_n5##x,_p2##y,z,v), I[192] = (img)(_n6##x,_p2##y,z,v), I[193] = (img)(_n7##x,_p2##y,z,v), I[194] = (img)(_n8##x,_p2##y,z,v), I[195] = (img)(_n9##x,_p2##y,z,v), I[196] = (img)(_n10##x,_p2##y,z,v), I[197] = (img)(_n11##x,_p2##y,z,v), \ |
philpem@5 | 7484 | I[198] = (img)(_p10##x,_p1##y,z,v), I[199] = (img)(_p9##x,_p1##y,z,v), I[200] = (img)(_p8##x,_p1##y,z,v), I[201] = (img)(_p7##x,_p1##y,z,v), I[202] = (img)(_p6##x,_p1##y,z,v), I[203] = (img)(_p5##x,_p1##y,z,v), I[204] = (img)(_p4##x,_p1##y,z,v), I[205] = (img)(_p3##x,_p1##y,z,v), I[206] = (img)(_p2##x,_p1##y,z,v), I[207] = (img)(_p1##x,_p1##y,z,v), I[208] = (img)(x,_p1##y,z,v), I[209] = (img)(_n1##x,_p1##y,z,v), I[210] = (img)(_n2##x,_p1##y,z,v), I[211] = (img)(_n3##x,_p1##y,z,v), I[212] = (img)(_n4##x,_p1##y,z,v), I[213] = (img)(_n5##x,_p1##y,z,v), I[214] = (img)(_n6##x,_p1##y,z,v), I[215] = (img)(_n7##x,_p1##y,z,v), I[216] = (img)(_n8##x,_p1##y,z,v), I[217] = (img)(_n9##x,_p1##y,z,v), I[218] = (img)(_n10##x,_p1##y,z,v), I[219] = (img)(_n11##x,_p1##y,z,v), \ |
philpem@5 | 7485 | I[220] = (img)(_p10##x,y,z,v), I[221] = (img)(_p9##x,y,z,v), I[222] = (img)(_p8##x,y,z,v), I[223] = (img)(_p7##x,y,z,v), I[224] = (img)(_p6##x,y,z,v), I[225] = (img)(_p5##x,y,z,v), I[226] = (img)(_p4##x,y,z,v), I[227] = (img)(_p3##x,y,z,v), I[228] = (img)(_p2##x,y,z,v), I[229] = (img)(_p1##x,y,z,v), I[230] = (img)(x,y,z,v), I[231] = (img)(_n1##x,y,z,v), I[232] = (img)(_n2##x,y,z,v), I[233] = (img)(_n3##x,y,z,v), I[234] = (img)(_n4##x,y,z,v), I[235] = (img)(_n5##x,y,z,v), I[236] = (img)(_n6##x,y,z,v), I[237] = (img)(_n7##x,y,z,v), I[238] = (img)(_n8##x,y,z,v), I[239] = (img)(_n9##x,y,z,v), I[240] = (img)(_n10##x,y,z,v), I[241] = (img)(_n11##x,y,z,v), \ |
philpem@5 | 7486 | I[242] = (img)(_p10##x,_n1##y,z,v), I[243] = (img)(_p9##x,_n1##y,z,v), I[244] = (img)(_p8##x,_n1##y,z,v), I[245] = (img)(_p7##x,_n1##y,z,v), I[246] = (img)(_p6##x,_n1##y,z,v), I[247] = (img)(_p5##x,_n1##y,z,v), I[248] = (img)(_p4##x,_n1##y,z,v), I[249] = (img)(_p3##x,_n1##y,z,v), I[250] = (img)(_p2##x,_n1##y,z,v), I[251] = (img)(_p1##x,_n1##y,z,v), I[252] = (img)(x,_n1##y,z,v), I[253] = (img)(_n1##x,_n1##y,z,v), I[254] = (img)(_n2##x,_n1##y,z,v), I[255] = (img)(_n3##x,_n1##y,z,v), I[256] = (img)(_n4##x,_n1##y,z,v), I[257] = (img)(_n5##x,_n1##y,z,v), I[258] = (img)(_n6##x,_n1##y,z,v), I[259] = (img)(_n7##x,_n1##y,z,v), I[260] = (img)(_n8##x,_n1##y,z,v), I[261] = (img)(_n9##x,_n1##y,z,v), I[262] = (img)(_n10##x,_n1##y,z,v), I[263] = (img)(_n11##x,_n1##y,z,v), \ |
philpem@5 | 7487 | I[264] = (img)(_p10##x,_n2##y,z,v), I[265] = (img)(_p9##x,_n2##y,z,v), I[266] = (img)(_p8##x,_n2##y,z,v), I[267] = (img)(_p7##x,_n2##y,z,v), I[268] = (img)(_p6##x,_n2##y,z,v), I[269] = (img)(_p5##x,_n2##y,z,v), I[270] = (img)(_p4##x,_n2##y,z,v), I[271] = (img)(_p3##x,_n2##y,z,v), I[272] = (img)(_p2##x,_n2##y,z,v), I[273] = (img)(_p1##x,_n2##y,z,v), I[274] = (img)(x,_n2##y,z,v), I[275] = (img)(_n1##x,_n2##y,z,v), I[276] = (img)(_n2##x,_n2##y,z,v), I[277] = (img)(_n3##x,_n2##y,z,v), I[278] = (img)(_n4##x,_n2##y,z,v), I[279] = (img)(_n5##x,_n2##y,z,v), I[280] = (img)(_n6##x,_n2##y,z,v), I[281] = (img)(_n7##x,_n2##y,z,v), I[282] = (img)(_n8##x,_n2##y,z,v), I[283] = (img)(_n9##x,_n2##y,z,v), I[284] = (img)(_n10##x,_n2##y,z,v), I[285] = (img)(_n11##x,_n2##y,z,v), \ |
philpem@5 | 7488 | I[286] = (img)(_p10##x,_n3##y,z,v), I[287] = (img)(_p9##x,_n3##y,z,v), I[288] = (img)(_p8##x,_n3##y,z,v), I[289] = (img)(_p7##x,_n3##y,z,v), I[290] = (img)(_p6##x,_n3##y,z,v), I[291] = (img)(_p5##x,_n3##y,z,v), I[292] = (img)(_p4##x,_n3##y,z,v), I[293] = (img)(_p3##x,_n3##y,z,v), I[294] = (img)(_p2##x,_n3##y,z,v), I[295] = (img)(_p1##x,_n3##y,z,v), I[296] = (img)(x,_n3##y,z,v), I[297] = (img)(_n1##x,_n3##y,z,v), I[298] = (img)(_n2##x,_n3##y,z,v), I[299] = (img)(_n3##x,_n3##y,z,v), I[300] = (img)(_n4##x,_n3##y,z,v), I[301] = (img)(_n5##x,_n3##y,z,v), I[302] = (img)(_n6##x,_n3##y,z,v), I[303] = (img)(_n7##x,_n3##y,z,v), I[304] = (img)(_n8##x,_n3##y,z,v), I[305] = (img)(_n9##x,_n3##y,z,v), I[306] = (img)(_n10##x,_n3##y,z,v), I[307] = (img)(_n11##x,_n3##y,z,v), \ |
philpem@5 | 7489 | I[308] = (img)(_p10##x,_n4##y,z,v), I[309] = (img)(_p9##x,_n4##y,z,v), I[310] = (img)(_p8##x,_n4##y,z,v), I[311] = (img)(_p7##x,_n4##y,z,v), I[312] = (img)(_p6##x,_n4##y,z,v), I[313] = (img)(_p5##x,_n4##y,z,v), I[314] = (img)(_p4##x,_n4##y,z,v), I[315] = (img)(_p3##x,_n4##y,z,v), I[316] = (img)(_p2##x,_n4##y,z,v), I[317] = (img)(_p1##x,_n4##y,z,v), I[318] = (img)(x,_n4##y,z,v), I[319] = (img)(_n1##x,_n4##y,z,v), I[320] = (img)(_n2##x,_n4##y,z,v), I[321] = (img)(_n3##x,_n4##y,z,v), I[322] = (img)(_n4##x,_n4##y,z,v), I[323] = (img)(_n5##x,_n4##y,z,v), I[324] = (img)(_n6##x,_n4##y,z,v), I[325] = (img)(_n7##x,_n4##y,z,v), I[326] = (img)(_n8##x,_n4##y,z,v), I[327] = (img)(_n9##x,_n4##y,z,v), I[328] = (img)(_n10##x,_n4##y,z,v), I[329] = (img)(_n11##x,_n4##y,z,v), \ |
philpem@5 | 7490 | I[330] = (img)(_p10##x,_n5##y,z,v), I[331] = (img)(_p9##x,_n5##y,z,v), I[332] = (img)(_p8##x,_n5##y,z,v), I[333] = (img)(_p7##x,_n5##y,z,v), I[334] = (img)(_p6##x,_n5##y,z,v), I[335] = (img)(_p5##x,_n5##y,z,v), I[336] = (img)(_p4##x,_n5##y,z,v), I[337] = (img)(_p3##x,_n5##y,z,v), I[338] = (img)(_p2##x,_n5##y,z,v), I[339] = (img)(_p1##x,_n5##y,z,v), I[340] = (img)(x,_n5##y,z,v), I[341] = (img)(_n1##x,_n5##y,z,v), I[342] = (img)(_n2##x,_n5##y,z,v), I[343] = (img)(_n3##x,_n5##y,z,v), I[344] = (img)(_n4##x,_n5##y,z,v), I[345] = (img)(_n5##x,_n5##y,z,v), I[346] = (img)(_n6##x,_n5##y,z,v), I[347] = (img)(_n7##x,_n5##y,z,v), I[348] = (img)(_n8##x,_n5##y,z,v), I[349] = (img)(_n9##x,_n5##y,z,v), I[350] = (img)(_n10##x,_n5##y,z,v), I[351] = (img)(_n11##x,_n5##y,z,v), \ |
philpem@5 | 7491 | I[352] = (img)(_p10##x,_n6##y,z,v), I[353] = (img)(_p9##x,_n6##y,z,v), I[354] = (img)(_p8##x,_n6##y,z,v), I[355] = (img)(_p7##x,_n6##y,z,v), I[356] = (img)(_p6##x,_n6##y,z,v), I[357] = (img)(_p5##x,_n6##y,z,v), I[358] = (img)(_p4##x,_n6##y,z,v), I[359] = (img)(_p3##x,_n6##y,z,v), I[360] = (img)(_p2##x,_n6##y,z,v), I[361] = (img)(_p1##x,_n6##y,z,v), I[362] = (img)(x,_n6##y,z,v), I[363] = (img)(_n1##x,_n6##y,z,v), I[364] = (img)(_n2##x,_n6##y,z,v), I[365] = (img)(_n3##x,_n6##y,z,v), I[366] = (img)(_n4##x,_n6##y,z,v), I[367] = (img)(_n5##x,_n6##y,z,v), I[368] = (img)(_n6##x,_n6##y,z,v), I[369] = (img)(_n7##x,_n6##y,z,v), I[370] = (img)(_n8##x,_n6##y,z,v), I[371] = (img)(_n9##x,_n6##y,z,v), I[372] = (img)(_n10##x,_n6##y,z,v), I[373] = (img)(_n11##x,_n6##y,z,v), \ |
philpem@5 | 7492 | I[374] = (img)(_p10##x,_n7##y,z,v), I[375] = (img)(_p9##x,_n7##y,z,v), I[376] = (img)(_p8##x,_n7##y,z,v), I[377] = (img)(_p7##x,_n7##y,z,v), I[378] = (img)(_p6##x,_n7##y,z,v), I[379] = (img)(_p5##x,_n7##y,z,v), I[380] = (img)(_p4##x,_n7##y,z,v), I[381] = (img)(_p3##x,_n7##y,z,v), I[382] = (img)(_p2##x,_n7##y,z,v), I[383] = (img)(_p1##x,_n7##y,z,v), I[384] = (img)(x,_n7##y,z,v), I[385] = (img)(_n1##x,_n7##y,z,v), I[386] = (img)(_n2##x,_n7##y,z,v), I[387] = (img)(_n3##x,_n7##y,z,v), I[388] = (img)(_n4##x,_n7##y,z,v), I[389] = (img)(_n5##x,_n7##y,z,v), I[390] = (img)(_n6##x,_n7##y,z,v), I[391] = (img)(_n7##x,_n7##y,z,v), I[392] = (img)(_n8##x,_n7##y,z,v), I[393] = (img)(_n9##x,_n7##y,z,v), I[394] = (img)(_n10##x,_n7##y,z,v), I[395] = (img)(_n11##x,_n7##y,z,v), \ |
philpem@5 | 7493 | I[396] = (img)(_p10##x,_n8##y,z,v), I[397] = (img)(_p9##x,_n8##y,z,v), I[398] = (img)(_p8##x,_n8##y,z,v), I[399] = (img)(_p7##x,_n8##y,z,v), I[400] = (img)(_p6##x,_n8##y,z,v), I[401] = (img)(_p5##x,_n8##y,z,v), I[402] = (img)(_p4##x,_n8##y,z,v), I[403] = (img)(_p3##x,_n8##y,z,v), I[404] = (img)(_p2##x,_n8##y,z,v), I[405] = (img)(_p1##x,_n8##y,z,v), I[406] = (img)(x,_n8##y,z,v), I[407] = (img)(_n1##x,_n8##y,z,v), I[408] = (img)(_n2##x,_n8##y,z,v), I[409] = (img)(_n3##x,_n8##y,z,v), I[410] = (img)(_n4##x,_n8##y,z,v), I[411] = (img)(_n5##x,_n8##y,z,v), I[412] = (img)(_n6##x,_n8##y,z,v), I[413] = (img)(_n7##x,_n8##y,z,v), I[414] = (img)(_n8##x,_n8##y,z,v), I[415] = (img)(_n9##x,_n8##y,z,v), I[416] = (img)(_n10##x,_n8##y,z,v), I[417] = (img)(_n11##x,_n8##y,z,v), \ |
philpem@5 | 7494 | I[418] = (img)(_p10##x,_n9##y,z,v), I[419] = (img)(_p9##x,_n9##y,z,v), I[420] = (img)(_p8##x,_n9##y,z,v), I[421] = (img)(_p7##x,_n9##y,z,v), I[422] = (img)(_p6##x,_n9##y,z,v), I[423] = (img)(_p5##x,_n9##y,z,v), I[424] = (img)(_p4##x,_n9##y,z,v), I[425] = (img)(_p3##x,_n9##y,z,v), I[426] = (img)(_p2##x,_n9##y,z,v), I[427] = (img)(_p1##x,_n9##y,z,v), I[428] = (img)(x,_n9##y,z,v), I[429] = (img)(_n1##x,_n9##y,z,v), I[430] = (img)(_n2##x,_n9##y,z,v), I[431] = (img)(_n3##x,_n9##y,z,v), I[432] = (img)(_n4##x,_n9##y,z,v), I[433] = (img)(_n5##x,_n9##y,z,v), I[434] = (img)(_n6##x,_n9##y,z,v), I[435] = (img)(_n7##x,_n9##y,z,v), I[436] = (img)(_n8##x,_n9##y,z,v), I[437] = (img)(_n9##x,_n9##y,z,v), I[438] = (img)(_n10##x,_n9##y,z,v), I[439] = (img)(_n11##x,_n9##y,z,v), \ |
philpem@5 | 7495 | I[440] = (img)(_p10##x,_n10##y,z,v), I[441] = (img)(_p9##x,_n10##y,z,v), I[442] = (img)(_p8##x,_n10##y,z,v), I[443] = (img)(_p7##x,_n10##y,z,v), I[444] = (img)(_p6##x,_n10##y,z,v), I[445] = (img)(_p5##x,_n10##y,z,v), I[446] = (img)(_p4##x,_n10##y,z,v), I[447] = (img)(_p3##x,_n10##y,z,v), I[448] = (img)(_p2##x,_n10##y,z,v), I[449] = (img)(_p1##x,_n10##y,z,v), I[450] = (img)(x,_n10##y,z,v), I[451] = (img)(_n1##x,_n10##y,z,v), I[452] = (img)(_n2##x,_n10##y,z,v), I[453] = (img)(_n3##x,_n10##y,z,v), I[454] = (img)(_n4##x,_n10##y,z,v), I[455] = (img)(_n5##x,_n10##y,z,v), I[456] = (img)(_n6##x,_n10##y,z,v), I[457] = (img)(_n7##x,_n10##y,z,v), I[458] = (img)(_n8##x,_n10##y,z,v), I[459] = (img)(_n9##x,_n10##y,z,v), I[460] = (img)(_n10##x,_n10##y,z,v), I[461] = (img)(_n11##x,_n10##y,z,v), \ |
philpem@5 | 7496 | I[462] = (img)(_p10##x,_n11##y,z,v), I[463] = (img)(_p9##x,_n11##y,z,v), I[464] = (img)(_p8##x,_n11##y,z,v), I[465] = (img)(_p7##x,_n11##y,z,v), I[466] = (img)(_p6##x,_n11##y,z,v), I[467] = (img)(_p5##x,_n11##y,z,v), I[468] = (img)(_p4##x,_n11##y,z,v), I[469] = (img)(_p3##x,_n11##y,z,v), I[470] = (img)(_p2##x,_n11##y,z,v), I[471] = (img)(_p1##x,_n11##y,z,v), I[472] = (img)(x,_n11##y,z,v), I[473] = (img)(_n1##x,_n11##y,z,v), I[474] = (img)(_n2##x,_n11##y,z,v), I[475] = (img)(_n3##x,_n11##y,z,v), I[476] = (img)(_n4##x,_n11##y,z,v), I[477] = (img)(_n5##x,_n11##y,z,v), I[478] = (img)(_n6##x,_n11##y,z,v), I[479] = (img)(_n7##x,_n11##y,z,v), I[480] = (img)(_n8##x,_n11##y,z,v), I[481] = (img)(_n9##x,_n11##y,z,v), I[482] = (img)(_n10##x,_n11##y,z,v), I[483] = (img)(_n11##x,_n11##y,z,v); |
philpem@5 | 7497 | |
philpem@5 | 7498 | // Define 23x23 loop macros for CImg |
philpem@5 | 7499 | //---------------------------------- |
philpem@5 | 7500 | #define cimg_for23(bound,i) for (int i = 0, \ |
philpem@5 | 7501 | _p11##i = 0, _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \ |
philpem@5 | 7502 | _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \ |
philpem@5 | 7503 | _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \ |
philpem@5 | 7504 | _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \ |
philpem@5 | 7505 | _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \ |
philpem@5 | 7506 | _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \ |
philpem@5 | 7507 | _n6##i = 6>=(int)(bound)?(int)(bound)-1:6, \ |
philpem@5 | 7508 | _n7##i = 7>=(int)(bound)?(int)(bound)-1:7, \ |
philpem@5 | 7509 | _n8##i = 8>=(int)(bound)?(int)(bound)-1:8, \ |
philpem@5 | 7510 | _n9##i = 9>=(int)(bound)?(int)(bound)-1:9, \ |
philpem@5 | 7511 | _n10##i = 10>=(int)(bound)?(int)(bound)-1:10, \ |
philpem@5 | 7512 | _n11##i = 11>=(int)(bound)?(int)(bound)-1:11; \ |
philpem@5 | 7513 | _n11##i<(int)(bound) || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 7514 | i==(_n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \ |
philpem@5 | 7515 | _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 7516 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i) |
philpem@5 | 7517 | |
philpem@5 | 7518 | #define cimg_for23X(img,x) cimg_for23((img).width,x) |
philpem@5 | 7519 | #define cimg_for23Y(img,y) cimg_for23((img).height,y) |
philpem@5 | 7520 | #define cimg_for23Z(img,z) cimg_for23((img).depth,z) |
philpem@5 | 7521 | #define cimg_for23V(img,v) cimg_for23((img).dim,v) |
philpem@5 | 7522 | #define cimg_for23XY(img,x,y) cimg_for23Y(img,y) cimg_for23X(img,x) |
philpem@5 | 7523 | #define cimg_for23XZ(img,x,z) cimg_for23Z(img,z) cimg_for23X(img,x) |
philpem@5 | 7524 | #define cimg_for23XV(img,x,v) cimg_for23V(img,v) cimg_for23X(img,x) |
philpem@5 | 7525 | #define cimg_for23YZ(img,y,z) cimg_for23Z(img,z) cimg_for23Y(img,y) |
philpem@5 | 7526 | #define cimg_for23YV(img,y,v) cimg_for23V(img,v) cimg_for23Y(img,y) |
philpem@5 | 7527 | #define cimg_for23ZV(img,z,v) cimg_for23V(img,v) cimg_for23Z(img,z) |
philpem@5 | 7528 | #define cimg_for23XYZ(img,x,y,z) cimg_for23Z(img,z) cimg_for23XY(img,x,y) |
philpem@5 | 7529 | #define cimg_for23XZV(img,x,z,v) cimg_for23V(img,v) cimg_for23XZ(img,x,z) |
philpem@5 | 7530 | #define cimg_for23YZV(img,y,z,v) cimg_for23V(img,v) cimg_for23YZ(img,y,z) |
philpem@5 | 7531 | #define cimg_for23XYZV(img,x,y,z,v) cimg_for23V(img,v) cimg_for23XYZ(img,x,y,z) |
philpem@5 | 7532 | |
philpem@5 | 7533 | #define cimg_for_in23(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \ |
philpem@5 | 7534 | _p11##i = i-11<0?0:i-11, \ |
philpem@5 | 7535 | _p10##i = i-10<0?0:i-10, \ |
philpem@5 | 7536 | _p9##i = i-9<0?0:i-9, \ |
philpem@5 | 7537 | _p8##i = i-8<0?0:i-8, \ |
philpem@5 | 7538 | _p7##i = i-7<0?0:i-7, \ |
philpem@5 | 7539 | _p6##i = i-6<0?0:i-6, \ |
philpem@5 | 7540 | _p5##i = i-5<0?0:i-5, \ |
philpem@5 | 7541 | _p4##i = i-4<0?0:i-4, \ |
philpem@5 | 7542 | _p3##i = i-3<0?0:i-3, \ |
philpem@5 | 7543 | _p2##i = i-2<0?0:i-2, \ |
philpem@5 | 7544 | _p1##i = i-1<0?0:i-1, \ |
philpem@5 | 7545 | _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \ |
philpem@5 | 7546 | _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \ |
philpem@5 | 7547 | _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \ |
philpem@5 | 7548 | _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \ |
philpem@5 | 7549 | _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \ |
philpem@5 | 7550 | _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6, \ |
philpem@5 | 7551 | _n7##i = i+7>=(int)(bound)?(int)(bound)-1:i+7, \ |
philpem@5 | 7552 | _n8##i = i+8>=(int)(bound)?(int)(bound)-1:i+8, \ |
philpem@5 | 7553 | _n9##i = i+9>=(int)(bound)?(int)(bound)-1:i+9, \ |
philpem@5 | 7554 | _n10##i = i+10>=(int)(bound)?(int)(bound)-1:i+10, \ |
philpem@5 | 7555 | _n11##i = i+11>=(int)(bound)?(int)(bound)-1:i+11; \ |
philpem@5 | 7556 | i<=(int)(i1) && (_n11##i<(int)(bound) || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 7557 | i==(_n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \ |
philpem@5 | 7558 | _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 7559 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i) |
philpem@5 | 7560 | |
philpem@5 | 7561 | #define cimg_for_in23X(img,x0,x1,x) cimg_for_in23((img).width,x0,x1,x) |
philpem@5 | 7562 | #define cimg_for_in23Y(img,y0,y1,y) cimg_for_in23((img).height,y0,y1,y) |
philpem@5 | 7563 | #define cimg_for_in23Z(img,z0,z1,z) cimg_for_in23((img).depth,z0,z1,z) |
philpem@5 | 7564 | #define cimg_for_in23V(img,v0,v1,v) cimg_for_in23((img).dim,v0,v1,v) |
philpem@5 | 7565 | #define cimg_for_in23XY(img,x0,y0,x1,y1,x,y) cimg_for_in23Y(img,y0,y1,y) cimg_for_in23X(img,x0,x1,x) |
philpem@5 | 7566 | #define cimg_for_in23XZ(img,x0,z0,x1,z1,x,z) cimg_for_in23Z(img,z0,z1,z) cimg_for_in23X(img,x0,x1,x) |
philpem@5 | 7567 | #define cimg_for_in23XV(img,x0,v0,x1,v1,x,v) cimg_for_in23V(img,v0,v1,v) cimg_for_in23X(img,x0,x1,x) |
philpem@5 | 7568 | #define cimg_for_in23YZ(img,y0,z0,y1,z1,y,z) cimg_for_in23Z(img,z0,z1,z) cimg_for_in23Y(img,y0,y1,y) |
philpem@5 | 7569 | #define cimg_for_in23YV(img,y0,v0,y1,v1,y,v) cimg_for_in23V(img,v0,v1,v) cimg_for_in23Y(img,y0,y1,y) |
philpem@5 | 7570 | #define cimg_for_in23ZV(img,z0,v0,z1,v1,z,v) cimg_for_in23V(img,v0,v1,v) cimg_for_in23Z(img,z0,z1,z) |
philpem@5 | 7571 | #define cimg_for_in23XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in23Z(img,z0,z1,z) cimg_for_in23XY(img,x0,y0,x1,y1,x,y) |
philpem@5 | 7572 | #define cimg_for_in23XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in23V(img,v0,v1,v) cimg_for_in23XZ(img,x0,y0,x1,y1,x,z) |
philpem@5 | 7573 | #define cimg_for_in23YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in23V(img,v0,v1,v) cimg_for_in23YZ(img,y0,z0,y1,z1,y,z) |
philpem@5 | 7574 | #define cimg_for_in23XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in23V(img,v0,v1,v) cimg_for_in23XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) |
philpem@5 | 7575 | |
philpem@5 | 7576 | #define cimg_for23x23(img,x,y,z,v,I) \ |
philpem@5 | 7577 | cimg_for23((img).height,y) for (int x = 0, \ |
philpem@5 | 7578 | _p11##x = 0, _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \ |
philpem@5 | 7579 | _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \ |
philpem@5 | 7580 | _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \ |
philpem@5 | 7581 | _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \ |
philpem@5 | 7582 | _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \ |
philpem@5 | 7583 | _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \ |
philpem@5 | 7584 | _n6##x = 6>=((img).width)?(int)((img).width)-1:6, \ |
philpem@5 | 7585 | _n7##x = 7>=((img).width)?(int)((img).width)-1:7, \ |
philpem@5 | 7586 | _n8##x = 8>=((img).width)?(int)((img).width)-1:8, \ |
philpem@5 | 7587 | _n9##x = 9>=((img).width)?(int)((img).width)-1:9, \ |
philpem@5 | 7588 | _n10##x = 10>=((img).width)?(int)((img).width)-1:10, \ |
philpem@5 | 7589 | _n11##x = (int)( \ |
philpem@5 | 7590 | (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = I[11] = (img)(0,_p11##y,z,v)), \ |
philpem@5 | 7591 | (I[23] = I[24] = I[25] = I[26] = I[27] = I[28] = I[29] = I[30] = I[31] = I[32] = I[33] = I[34] = (img)(0,_p10##y,z,v)), \ |
philpem@5 | 7592 | (I[46] = I[47] = I[48] = I[49] = I[50] = I[51] = I[52] = I[53] = I[54] = I[55] = I[56] = I[57] = (img)(0,_p9##y,z,v)), \ |
philpem@5 | 7593 | (I[69] = I[70] = I[71] = I[72] = I[73] = I[74] = I[75] = I[76] = I[77] = I[78] = I[79] = I[80] = (img)(0,_p8##y,z,v)), \ |
philpem@5 | 7594 | (I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = (img)(0,_p7##y,z,v)), \ |
philpem@5 | 7595 | (I[115] = I[116] = I[117] = I[118] = I[119] = I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = I[126] = (img)(0,_p6##y,z,v)), \ |
philpem@5 | 7596 | (I[138] = I[139] = I[140] = I[141] = I[142] = I[143] = I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = (img)(0,_p5##y,z,v)), \ |
philpem@5 | 7597 | (I[161] = I[162] = I[163] = I[164] = I[165] = I[166] = I[167] = I[168] = I[169] = I[170] = I[171] = I[172] = (img)(0,_p4##y,z,v)), \ |
philpem@5 | 7598 | (I[184] = I[185] = I[186] = I[187] = I[188] = I[189] = I[190] = I[191] = I[192] = I[193] = I[194] = I[195] = (img)(0,_p3##y,z,v)), \ |
philpem@5 | 7599 | (I[207] = I[208] = I[209] = I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = I[216] = I[217] = I[218] = (img)(0,_p2##y,z,v)), \ |
philpem@5 | 7600 | (I[230] = I[231] = I[232] = I[233] = I[234] = I[235] = I[236] = I[237] = I[238] = I[239] = I[240] = I[241] = (img)(0,_p1##y,z,v)), \ |
philpem@5 | 7601 | (I[253] = I[254] = I[255] = I[256] = I[257] = I[258] = I[259] = I[260] = I[261] = I[262] = I[263] = I[264] = (img)(0,y,z,v)), \ |
philpem@5 | 7602 | (I[276] = I[277] = I[278] = I[279] = I[280] = I[281] = I[282] = I[283] = I[284] = I[285] = I[286] = I[287] = (img)(0,_n1##y,z,v)), \ |
philpem@5 | 7603 | (I[299] = I[300] = I[301] = I[302] = I[303] = I[304] = I[305] = I[306] = I[307] = I[308] = I[309] = I[310] = (img)(0,_n2##y,z,v)), \ |
philpem@5 | 7604 | (I[322] = I[323] = I[324] = I[325] = I[326] = I[327] = I[328] = I[329] = I[330] = I[331] = I[332] = I[333] = (img)(0,_n3##y,z,v)), \ |
philpem@5 | 7605 | (I[345] = I[346] = I[347] = I[348] = I[349] = I[350] = I[351] = I[352] = I[353] = I[354] = I[355] = I[356] = (img)(0,_n4##y,z,v)), \ |
philpem@5 | 7606 | (I[368] = I[369] = I[370] = I[371] = I[372] = I[373] = I[374] = I[375] = I[376] = I[377] = I[378] = I[379] = (img)(0,_n5##y,z,v)), \ |
philpem@5 | 7607 | (I[391] = I[392] = I[393] = I[394] = I[395] = I[396] = I[397] = I[398] = I[399] = I[400] = I[401] = I[402] = (img)(0,_n6##y,z,v)), \ |
philpem@5 | 7608 | (I[414] = I[415] = I[416] = I[417] = I[418] = I[419] = I[420] = I[421] = I[422] = I[423] = I[424] = I[425] = (img)(0,_n7##y,z,v)), \ |
philpem@5 | 7609 | (I[437] = I[438] = I[439] = I[440] = I[441] = I[442] = I[443] = I[444] = I[445] = I[446] = I[447] = I[448] = (img)(0,_n8##y,z,v)), \ |
philpem@5 | 7610 | (I[460] = I[461] = I[462] = I[463] = I[464] = I[465] = I[466] = I[467] = I[468] = I[469] = I[470] = I[471] = (img)(0,_n9##y,z,v)), \ |
philpem@5 | 7611 | (I[483] = I[484] = I[485] = I[486] = I[487] = I[488] = I[489] = I[490] = I[491] = I[492] = I[493] = I[494] = (img)(0,_n10##y,z,v)), \ |
philpem@5 | 7612 | (I[506] = I[507] = I[508] = I[509] = I[510] = I[511] = I[512] = I[513] = I[514] = I[515] = I[516] = I[517] = (img)(0,_n11##y,z,v)), \ |
philpem@5 | 7613 | (I[12] = (img)(_n1##x,_p11##y,z,v)), \ |
philpem@5 | 7614 | (I[35] = (img)(_n1##x,_p10##y,z,v)), \ |
philpem@5 | 7615 | (I[58] = (img)(_n1##x,_p9##y,z,v)), \ |
philpem@5 | 7616 | (I[81] = (img)(_n1##x,_p8##y,z,v)), \ |
philpem@5 | 7617 | (I[104] = (img)(_n1##x,_p7##y,z,v)), \ |
philpem@5 | 7618 | (I[127] = (img)(_n1##x,_p6##y,z,v)), \ |
philpem@5 | 7619 | (I[150] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 7620 | (I[173] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 7621 | (I[196] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 7622 | (I[219] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 7623 | (I[242] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 7624 | (I[265] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 7625 | (I[288] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 7626 | (I[311] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 7627 | (I[334] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 7628 | (I[357] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 7629 | (I[380] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 7630 | (I[403] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 7631 | (I[426] = (img)(_n1##x,_n7##y,z,v)), \ |
philpem@5 | 7632 | (I[449] = (img)(_n1##x,_n8##y,z,v)), \ |
philpem@5 | 7633 | (I[472] = (img)(_n1##x,_n9##y,z,v)), \ |
philpem@5 | 7634 | (I[495] = (img)(_n1##x,_n10##y,z,v)), \ |
philpem@5 | 7635 | (I[518] = (img)(_n1##x,_n11##y,z,v)), \ |
philpem@5 | 7636 | (I[13] = (img)(_n2##x,_p11##y,z,v)), \ |
philpem@5 | 7637 | (I[36] = (img)(_n2##x,_p10##y,z,v)), \ |
philpem@5 | 7638 | (I[59] = (img)(_n2##x,_p9##y,z,v)), \ |
philpem@5 | 7639 | (I[82] = (img)(_n2##x,_p8##y,z,v)), \ |
philpem@5 | 7640 | (I[105] = (img)(_n2##x,_p7##y,z,v)), \ |
philpem@5 | 7641 | (I[128] = (img)(_n2##x,_p6##y,z,v)), \ |
philpem@5 | 7642 | (I[151] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 7643 | (I[174] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 7644 | (I[197] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 7645 | (I[220] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 7646 | (I[243] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 7647 | (I[266] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 7648 | (I[289] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 7649 | (I[312] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 7650 | (I[335] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 7651 | (I[358] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 7652 | (I[381] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 7653 | (I[404] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 7654 | (I[427] = (img)(_n2##x,_n7##y,z,v)), \ |
philpem@5 | 7655 | (I[450] = (img)(_n2##x,_n8##y,z,v)), \ |
philpem@5 | 7656 | (I[473] = (img)(_n2##x,_n9##y,z,v)), \ |
philpem@5 | 7657 | (I[496] = (img)(_n2##x,_n10##y,z,v)), \ |
philpem@5 | 7658 | (I[519] = (img)(_n2##x,_n11##y,z,v)), \ |
philpem@5 | 7659 | (I[14] = (img)(_n3##x,_p11##y,z,v)), \ |
philpem@5 | 7660 | (I[37] = (img)(_n3##x,_p10##y,z,v)), \ |
philpem@5 | 7661 | (I[60] = (img)(_n3##x,_p9##y,z,v)), \ |
philpem@5 | 7662 | (I[83] = (img)(_n3##x,_p8##y,z,v)), \ |
philpem@5 | 7663 | (I[106] = (img)(_n3##x,_p7##y,z,v)), \ |
philpem@5 | 7664 | (I[129] = (img)(_n3##x,_p6##y,z,v)), \ |
philpem@5 | 7665 | (I[152] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 7666 | (I[175] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 7667 | (I[198] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 7668 | (I[221] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 7669 | (I[244] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 7670 | (I[267] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 7671 | (I[290] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 7672 | (I[313] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 7673 | (I[336] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 7674 | (I[359] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 7675 | (I[382] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 7676 | (I[405] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 7677 | (I[428] = (img)(_n3##x,_n7##y,z,v)), \ |
philpem@5 | 7678 | (I[451] = (img)(_n3##x,_n8##y,z,v)), \ |
philpem@5 | 7679 | (I[474] = (img)(_n3##x,_n9##y,z,v)), \ |
philpem@5 | 7680 | (I[497] = (img)(_n3##x,_n10##y,z,v)), \ |
philpem@5 | 7681 | (I[520] = (img)(_n3##x,_n11##y,z,v)), \ |
philpem@5 | 7682 | (I[15] = (img)(_n4##x,_p11##y,z,v)), \ |
philpem@5 | 7683 | (I[38] = (img)(_n4##x,_p10##y,z,v)), \ |
philpem@5 | 7684 | (I[61] = (img)(_n4##x,_p9##y,z,v)), \ |
philpem@5 | 7685 | (I[84] = (img)(_n4##x,_p8##y,z,v)), \ |
philpem@5 | 7686 | (I[107] = (img)(_n4##x,_p7##y,z,v)), \ |
philpem@5 | 7687 | (I[130] = (img)(_n4##x,_p6##y,z,v)), \ |
philpem@5 | 7688 | (I[153] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 7689 | (I[176] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 7690 | (I[199] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 7691 | (I[222] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 7692 | (I[245] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 7693 | (I[268] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 7694 | (I[291] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 7695 | (I[314] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 7696 | (I[337] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 7697 | (I[360] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 7698 | (I[383] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 7699 | (I[406] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 7700 | (I[429] = (img)(_n4##x,_n7##y,z,v)), \ |
philpem@5 | 7701 | (I[452] = (img)(_n4##x,_n8##y,z,v)), \ |
philpem@5 | 7702 | (I[475] = (img)(_n4##x,_n9##y,z,v)), \ |
philpem@5 | 7703 | (I[498] = (img)(_n4##x,_n10##y,z,v)), \ |
philpem@5 | 7704 | (I[521] = (img)(_n4##x,_n11##y,z,v)), \ |
philpem@5 | 7705 | (I[16] = (img)(_n5##x,_p11##y,z,v)), \ |
philpem@5 | 7706 | (I[39] = (img)(_n5##x,_p10##y,z,v)), \ |
philpem@5 | 7707 | (I[62] = (img)(_n5##x,_p9##y,z,v)), \ |
philpem@5 | 7708 | (I[85] = (img)(_n5##x,_p8##y,z,v)), \ |
philpem@5 | 7709 | (I[108] = (img)(_n5##x,_p7##y,z,v)), \ |
philpem@5 | 7710 | (I[131] = (img)(_n5##x,_p6##y,z,v)), \ |
philpem@5 | 7711 | (I[154] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 7712 | (I[177] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 7713 | (I[200] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 7714 | (I[223] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 7715 | (I[246] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 7716 | (I[269] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 7717 | (I[292] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 7718 | (I[315] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 7719 | (I[338] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 7720 | (I[361] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 7721 | (I[384] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 7722 | (I[407] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 7723 | (I[430] = (img)(_n5##x,_n7##y,z,v)), \ |
philpem@5 | 7724 | (I[453] = (img)(_n5##x,_n8##y,z,v)), \ |
philpem@5 | 7725 | (I[476] = (img)(_n5##x,_n9##y,z,v)), \ |
philpem@5 | 7726 | (I[499] = (img)(_n5##x,_n10##y,z,v)), \ |
philpem@5 | 7727 | (I[522] = (img)(_n5##x,_n11##y,z,v)), \ |
philpem@5 | 7728 | (I[17] = (img)(_n6##x,_p11##y,z,v)), \ |
philpem@5 | 7729 | (I[40] = (img)(_n6##x,_p10##y,z,v)), \ |
philpem@5 | 7730 | (I[63] = (img)(_n6##x,_p9##y,z,v)), \ |
philpem@5 | 7731 | (I[86] = (img)(_n6##x,_p8##y,z,v)), \ |
philpem@5 | 7732 | (I[109] = (img)(_n6##x,_p7##y,z,v)), \ |
philpem@5 | 7733 | (I[132] = (img)(_n6##x,_p6##y,z,v)), \ |
philpem@5 | 7734 | (I[155] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 7735 | (I[178] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 7736 | (I[201] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 7737 | (I[224] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 7738 | (I[247] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 7739 | (I[270] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 7740 | (I[293] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 7741 | (I[316] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 7742 | (I[339] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 7743 | (I[362] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 7744 | (I[385] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 7745 | (I[408] = (img)(_n6##x,_n6##y,z,v)), \ |
philpem@5 | 7746 | (I[431] = (img)(_n6##x,_n7##y,z,v)), \ |
philpem@5 | 7747 | (I[454] = (img)(_n6##x,_n8##y,z,v)), \ |
philpem@5 | 7748 | (I[477] = (img)(_n6##x,_n9##y,z,v)), \ |
philpem@5 | 7749 | (I[500] = (img)(_n6##x,_n10##y,z,v)), \ |
philpem@5 | 7750 | (I[523] = (img)(_n6##x,_n11##y,z,v)), \ |
philpem@5 | 7751 | (I[18] = (img)(_n7##x,_p11##y,z,v)), \ |
philpem@5 | 7752 | (I[41] = (img)(_n7##x,_p10##y,z,v)), \ |
philpem@5 | 7753 | (I[64] = (img)(_n7##x,_p9##y,z,v)), \ |
philpem@5 | 7754 | (I[87] = (img)(_n7##x,_p8##y,z,v)), \ |
philpem@5 | 7755 | (I[110] = (img)(_n7##x,_p7##y,z,v)), \ |
philpem@5 | 7756 | (I[133] = (img)(_n7##x,_p6##y,z,v)), \ |
philpem@5 | 7757 | (I[156] = (img)(_n7##x,_p5##y,z,v)), \ |
philpem@5 | 7758 | (I[179] = (img)(_n7##x,_p4##y,z,v)), \ |
philpem@5 | 7759 | (I[202] = (img)(_n7##x,_p3##y,z,v)), \ |
philpem@5 | 7760 | (I[225] = (img)(_n7##x,_p2##y,z,v)), \ |
philpem@5 | 7761 | (I[248] = (img)(_n7##x,_p1##y,z,v)), \ |
philpem@5 | 7762 | (I[271] = (img)(_n7##x,y,z,v)), \ |
philpem@5 | 7763 | (I[294] = (img)(_n7##x,_n1##y,z,v)), \ |
philpem@5 | 7764 | (I[317] = (img)(_n7##x,_n2##y,z,v)), \ |
philpem@5 | 7765 | (I[340] = (img)(_n7##x,_n3##y,z,v)), \ |
philpem@5 | 7766 | (I[363] = (img)(_n7##x,_n4##y,z,v)), \ |
philpem@5 | 7767 | (I[386] = (img)(_n7##x,_n5##y,z,v)), \ |
philpem@5 | 7768 | (I[409] = (img)(_n7##x,_n6##y,z,v)), \ |
philpem@5 | 7769 | (I[432] = (img)(_n7##x,_n7##y,z,v)), \ |
philpem@5 | 7770 | (I[455] = (img)(_n7##x,_n8##y,z,v)), \ |
philpem@5 | 7771 | (I[478] = (img)(_n7##x,_n9##y,z,v)), \ |
philpem@5 | 7772 | (I[501] = (img)(_n7##x,_n10##y,z,v)), \ |
philpem@5 | 7773 | (I[524] = (img)(_n7##x,_n11##y,z,v)), \ |
philpem@5 | 7774 | (I[19] = (img)(_n8##x,_p11##y,z,v)), \ |
philpem@5 | 7775 | (I[42] = (img)(_n8##x,_p10##y,z,v)), \ |
philpem@5 | 7776 | (I[65] = (img)(_n8##x,_p9##y,z,v)), \ |
philpem@5 | 7777 | (I[88] = (img)(_n8##x,_p8##y,z,v)), \ |
philpem@5 | 7778 | (I[111] = (img)(_n8##x,_p7##y,z,v)), \ |
philpem@5 | 7779 | (I[134] = (img)(_n8##x,_p6##y,z,v)), \ |
philpem@5 | 7780 | (I[157] = (img)(_n8##x,_p5##y,z,v)), \ |
philpem@5 | 7781 | (I[180] = (img)(_n8##x,_p4##y,z,v)), \ |
philpem@5 | 7782 | (I[203] = (img)(_n8##x,_p3##y,z,v)), \ |
philpem@5 | 7783 | (I[226] = (img)(_n8##x,_p2##y,z,v)), \ |
philpem@5 | 7784 | (I[249] = (img)(_n8##x,_p1##y,z,v)), \ |
philpem@5 | 7785 | (I[272] = (img)(_n8##x,y,z,v)), \ |
philpem@5 | 7786 | (I[295] = (img)(_n8##x,_n1##y,z,v)), \ |
philpem@5 | 7787 | (I[318] = (img)(_n8##x,_n2##y,z,v)), \ |
philpem@5 | 7788 | (I[341] = (img)(_n8##x,_n3##y,z,v)), \ |
philpem@5 | 7789 | (I[364] = (img)(_n8##x,_n4##y,z,v)), \ |
philpem@5 | 7790 | (I[387] = (img)(_n8##x,_n5##y,z,v)), \ |
philpem@5 | 7791 | (I[410] = (img)(_n8##x,_n6##y,z,v)), \ |
philpem@5 | 7792 | (I[433] = (img)(_n8##x,_n7##y,z,v)), \ |
philpem@5 | 7793 | (I[456] = (img)(_n8##x,_n8##y,z,v)), \ |
philpem@5 | 7794 | (I[479] = (img)(_n8##x,_n9##y,z,v)), \ |
philpem@5 | 7795 | (I[502] = (img)(_n8##x,_n10##y,z,v)), \ |
philpem@5 | 7796 | (I[525] = (img)(_n8##x,_n11##y,z,v)), \ |
philpem@5 | 7797 | (I[20] = (img)(_n9##x,_p11##y,z,v)), \ |
philpem@5 | 7798 | (I[43] = (img)(_n9##x,_p10##y,z,v)), \ |
philpem@5 | 7799 | (I[66] = (img)(_n9##x,_p9##y,z,v)), \ |
philpem@5 | 7800 | (I[89] = (img)(_n9##x,_p8##y,z,v)), \ |
philpem@5 | 7801 | (I[112] = (img)(_n9##x,_p7##y,z,v)), \ |
philpem@5 | 7802 | (I[135] = (img)(_n9##x,_p6##y,z,v)), \ |
philpem@5 | 7803 | (I[158] = (img)(_n9##x,_p5##y,z,v)), \ |
philpem@5 | 7804 | (I[181] = (img)(_n9##x,_p4##y,z,v)), \ |
philpem@5 | 7805 | (I[204] = (img)(_n9##x,_p3##y,z,v)), \ |
philpem@5 | 7806 | (I[227] = (img)(_n9##x,_p2##y,z,v)), \ |
philpem@5 | 7807 | (I[250] = (img)(_n9##x,_p1##y,z,v)), \ |
philpem@5 | 7808 | (I[273] = (img)(_n9##x,y,z,v)), \ |
philpem@5 | 7809 | (I[296] = (img)(_n9##x,_n1##y,z,v)), \ |
philpem@5 | 7810 | (I[319] = (img)(_n9##x,_n2##y,z,v)), \ |
philpem@5 | 7811 | (I[342] = (img)(_n9##x,_n3##y,z,v)), \ |
philpem@5 | 7812 | (I[365] = (img)(_n9##x,_n4##y,z,v)), \ |
philpem@5 | 7813 | (I[388] = (img)(_n9##x,_n5##y,z,v)), \ |
philpem@5 | 7814 | (I[411] = (img)(_n9##x,_n6##y,z,v)), \ |
philpem@5 | 7815 | (I[434] = (img)(_n9##x,_n7##y,z,v)), \ |
philpem@5 | 7816 | (I[457] = (img)(_n9##x,_n8##y,z,v)), \ |
philpem@5 | 7817 | (I[480] = (img)(_n9##x,_n9##y,z,v)), \ |
philpem@5 | 7818 | (I[503] = (img)(_n9##x,_n10##y,z,v)), \ |
philpem@5 | 7819 | (I[526] = (img)(_n9##x,_n11##y,z,v)), \ |
philpem@5 | 7820 | (I[21] = (img)(_n10##x,_p11##y,z,v)), \ |
philpem@5 | 7821 | (I[44] = (img)(_n10##x,_p10##y,z,v)), \ |
philpem@5 | 7822 | (I[67] = (img)(_n10##x,_p9##y,z,v)), \ |
philpem@5 | 7823 | (I[90] = (img)(_n10##x,_p8##y,z,v)), \ |
philpem@5 | 7824 | (I[113] = (img)(_n10##x,_p7##y,z,v)), \ |
philpem@5 | 7825 | (I[136] = (img)(_n10##x,_p6##y,z,v)), \ |
philpem@5 | 7826 | (I[159] = (img)(_n10##x,_p5##y,z,v)), \ |
philpem@5 | 7827 | (I[182] = (img)(_n10##x,_p4##y,z,v)), \ |
philpem@5 | 7828 | (I[205] = (img)(_n10##x,_p3##y,z,v)), \ |
philpem@5 | 7829 | (I[228] = (img)(_n10##x,_p2##y,z,v)), \ |
philpem@5 | 7830 | (I[251] = (img)(_n10##x,_p1##y,z,v)), \ |
philpem@5 | 7831 | (I[274] = (img)(_n10##x,y,z,v)), \ |
philpem@5 | 7832 | (I[297] = (img)(_n10##x,_n1##y,z,v)), \ |
philpem@5 | 7833 | (I[320] = (img)(_n10##x,_n2##y,z,v)), \ |
philpem@5 | 7834 | (I[343] = (img)(_n10##x,_n3##y,z,v)), \ |
philpem@5 | 7835 | (I[366] = (img)(_n10##x,_n4##y,z,v)), \ |
philpem@5 | 7836 | (I[389] = (img)(_n10##x,_n5##y,z,v)), \ |
philpem@5 | 7837 | (I[412] = (img)(_n10##x,_n6##y,z,v)), \ |
philpem@5 | 7838 | (I[435] = (img)(_n10##x,_n7##y,z,v)), \ |
philpem@5 | 7839 | (I[458] = (img)(_n10##x,_n8##y,z,v)), \ |
philpem@5 | 7840 | (I[481] = (img)(_n10##x,_n9##y,z,v)), \ |
philpem@5 | 7841 | (I[504] = (img)(_n10##x,_n10##y,z,v)), \ |
philpem@5 | 7842 | (I[527] = (img)(_n10##x,_n11##y,z,v)), \ |
philpem@5 | 7843 | 11>=((img).width)?(int)((img).width)-1:11); \ |
philpem@5 | 7844 | (_n11##x<(int)((img).width) && ( \ |
philpem@5 | 7845 | (I[22] = (img)(_n11##x,_p11##y,z,v)), \ |
philpem@5 | 7846 | (I[45] = (img)(_n11##x,_p10##y,z,v)), \ |
philpem@5 | 7847 | (I[68] = (img)(_n11##x,_p9##y,z,v)), \ |
philpem@5 | 7848 | (I[91] = (img)(_n11##x,_p8##y,z,v)), \ |
philpem@5 | 7849 | (I[114] = (img)(_n11##x,_p7##y,z,v)), \ |
philpem@5 | 7850 | (I[137] = (img)(_n11##x,_p6##y,z,v)), \ |
philpem@5 | 7851 | (I[160] = (img)(_n11##x,_p5##y,z,v)), \ |
philpem@5 | 7852 | (I[183] = (img)(_n11##x,_p4##y,z,v)), \ |
philpem@5 | 7853 | (I[206] = (img)(_n11##x,_p3##y,z,v)), \ |
philpem@5 | 7854 | (I[229] = (img)(_n11##x,_p2##y,z,v)), \ |
philpem@5 | 7855 | (I[252] = (img)(_n11##x,_p1##y,z,v)), \ |
philpem@5 | 7856 | (I[275] = (img)(_n11##x,y,z,v)), \ |
philpem@5 | 7857 | (I[298] = (img)(_n11##x,_n1##y,z,v)), \ |
philpem@5 | 7858 | (I[321] = (img)(_n11##x,_n2##y,z,v)), \ |
philpem@5 | 7859 | (I[344] = (img)(_n11##x,_n3##y,z,v)), \ |
philpem@5 | 7860 | (I[367] = (img)(_n11##x,_n4##y,z,v)), \ |
philpem@5 | 7861 | (I[390] = (img)(_n11##x,_n5##y,z,v)), \ |
philpem@5 | 7862 | (I[413] = (img)(_n11##x,_n6##y,z,v)), \ |
philpem@5 | 7863 | (I[436] = (img)(_n11##x,_n7##y,z,v)), \ |
philpem@5 | 7864 | (I[459] = (img)(_n11##x,_n8##y,z,v)), \ |
philpem@5 | 7865 | (I[482] = (img)(_n11##x,_n9##y,z,v)), \ |
philpem@5 | 7866 | (I[505] = (img)(_n11##x,_n10##y,z,v)), \ |
philpem@5 | 7867 | (I[528] = (img)(_n11##x,_n11##y,z,v)),1)) || \ |
philpem@5 | 7868 | _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \ |
philpem@5 | 7869 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], \ |
philpem@5 | 7870 | I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], \ |
philpem@5 | 7871 | I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], \ |
philpem@5 | 7872 | I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], \ |
philpem@5 | 7873 | I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], \ |
philpem@5 | 7874 | I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], \ |
philpem@5 | 7875 | I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], \ |
philpem@5 | 7876 | I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], \ |
philpem@5 | 7877 | I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], \ |
philpem@5 | 7878 | I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], \ |
philpem@5 | 7879 | I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], \ |
philpem@5 | 7880 | I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], \ |
philpem@5 | 7881 | I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], \ |
philpem@5 | 7882 | I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], \ |
philpem@5 | 7883 | I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], \ |
philpem@5 | 7884 | I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], \ |
philpem@5 | 7885 | I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], \ |
philpem@5 | 7886 | I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], \ |
philpem@5 | 7887 | I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], \ |
philpem@5 | 7888 | I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], \ |
philpem@5 | 7889 | I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], \ |
philpem@5 | 7890 | I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], \ |
philpem@5 | 7891 | I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], \ |
philpem@5 | 7892 | _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x) |
philpem@5 | 7893 | |
philpem@5 | 7894 | #define cimg_for_in23x23(img,x0,y0,x1,y1,x,y,z,v,I) \ |
philpem@5 | 7895 | cimg_for_in23((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ |
philpem@5 | 7896 | _p11##x = x-11<0?0:x-11, \ |
philpem@5 | 7897 | _p10##x = x-10<0?0:x-10, \ |
philpem@5 | 7898 | _p9##x = x-9<0?0:x-9, \ |
philpem@5 | 7899 | _p8##x = x-8<0?0:x-8, \ |
philpem@5 | 7900 | _p7##x = x-7<0?0:x-7, \ |
philpem@5 | 7901 | _p6##x = x-6<0?0:x-6, \ |
philpem@5 | 7902 | _p5##x = x-5<0?0:x-5, \ |
philpem@5 | 7903 | _p4##x = x-4<0?0:x-4, \ |
philpem@5 | 7904 | _p3##x = x-3<0?0:x-3, \ |
philpem@5 | 7905 | _p2##x = x-2<0?0:x-2, \ |
philpem@5 | 7906 | _p1##x = x-1<0?0:x-1, \ |
philpem@5 | 7907 | _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \ |
philpem@5 | 7908 | _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \ |
philpem@5 | 7909 | _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \ |
philpem@5 | 7910 | _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \ |
philpem@5 | 7911 | _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \ |
philpem@5 | 7912 | _n6##x = x+6>=(int)((img).width)?(int)((img).width)-1:x+6, \ |
philpem@5 | 7913 | _n7##x = x+7>=(int)((img).width)?(int)((img).width)-1:x+7, \ |
philpem@5 | 7914 | _n8##x = x+8>=(int)((img).width)?(int)((img).width)-1:x+8, \ |
philpem@5 | 7915 | _n9##x = x+9>=(int)((img).width)?(int)((img).width)-1:x+9, \ |
philpem@5 | 7916 | _n10##x = x+10>=(int)((img).width)?(int)((img).width)-1:x+10, \ |
philpem@5 | 7917 | _n11##x = (int)( \ |
philpem@5 | 7918 | (I[0] = (img)(_p11##x,_p11##y,z,v)), \ |
philpem@5 | 7919 | (I[23] = (img)(_p11##x,_p10##y,z,v)), \ |
philpem@5 | 7920 | (I[46] = (img)(_p11##x,_p9##y,z,v)), \ |
philpem@5 | 7921 | (I[69] = (img)(_p11##x,_p8##y,z,v)), \ |
philpem@5 | 7922 | (I[92] = (img)(_p11##x,_p7##y,z,v)), \ |
philpem@5 | 7923 | (I[115] = (img)(_p11##x,_p6##y,z,v)), \ |
philpem@5 | 7924 | (I[138] = (img)(_p11##x,_p5##y,z,v)), \ |
philpem@5 | 7925 | (I[161] = (img)(_p11##x,_p4##y,z,v)), \ |
philpem@5 | 7926 | (I[184] = (img)(_p11##x,_p3##y,z,v)), \ |
philpem@5 | 7927 | (I[207] = (img)(_p11##x,_p2##y,z,v)), \ |
philpem@5 | 7928 | (I[230] = (img)(_p11##x,_p1##y,z,v)), \ |
philpem@5 | 7929 | (I[253] = (img)(_p11##x,y,z,v)), \ |
philpem@5 | 7930 | (I[276] = (img)(_p11##x,_n1##y,z,v)), \ |
philpem@5 | 7931 | (I[299] = (img)(_p11##x,_n2##y,z,v)), \ |
philpem@5 | 7932 | (I[322] = (img)(_p11##x,_n3##y,z,v)), \ |
philpem@5 | 7933 | (I[345] = (img)(_p11##x,_n4##y,z,v)), \ |
philpem@5 | 7934 | (I[368] = (img)(_p11##x,_n5##y,z,v)), \ |
philpem@5 | 7935 | (I[391] = (img)(_p11##x,_n6##y,z,v)), \ |
philpem@5 | 7936 | (I[414] = (img)(_p11##x,_n7##y,z,v)), \ |
philpem@5 | 7937 | (I[437] = (img)(_p11##x,_n8##y,z,v)), \ |
philpem@5 | 7938 | (I[460] = (img)(_p11##x,_n9##y,z,v)), \ |
philpem@5 | 7939 | (I[483] = (img)(_p11##x,_n10##y,z,v)), \ |
philpem@5 | 7940 | (I[506] = (img)(_p11##x,_n11##y,z,v)), \ |
philpem@5 | 7941 | (I[1] = (img)(_p10##x,_p11##y,z,v)), \ |
philpem@5 | 7942 | (I[24] = (img)(_p10##x,_p10##y,z,v)), \ |
philpem@5 | 7943 | (I[47] = (img)(_p10##x,_p9##y,z,v)), \ |
philpem@5 | 7944 | (I[70] = (img)(_p10##x,_p8##y,z,v)), \ |
philpem@5 | 7945 | (I[93] = (img)(_p10##x,_p7##y,z,v)), \ |
philpem@5 | 7946 | (I[116] = (img)(_p10##x,_p6##y,z,v)), \ |
philpem@5 | 7947 | (I[139] = (img)(_p10##x,_p5##y,z,v)), \ |
philpem@5 | 7948 | (I[162] = (img)(_p10##x,_p4##y,z,v)), \ |
philpem@5 | 7949 | (I[185] = (img)(_p10##x,_p3##y,z,v)), \ |
philpem@5 | 7950 | (I[208] = (img)(_p10##x,_p2##y,z,v)), \ |
philpem@5 | 7951 | (I[231] = (img)(_p10##x,_p1##y,z,v)), \ |
philpem@5 | 7952 | (I[254] = (img)(_p10##x,y,z,v)), \ |
philpem@5 | 7953 | (I[277] = (img)(_p10##x,_n1##y,z,v)), \ |
philpem@5 | 7954 | (I[300] = (img)(_p10##x,_n2##y,z,v)), \ |
philpem@5 | 7955 | (I[323] = (img)(_p10##x,_n3##y,z,v)), \ |
philpem@5 | 7956 | (I[346] = (img)(_p10##x,_n4##y,z,v)), \ |
philpem@5 | 7957 | (I[369] = (img)(_p10##x,_n5##y,z,v)), \ |
philpem@5 | 7958 | (I[392] = (img)(_p10##x,_n6##y,z,v)), \ |
philpem@5 | 7959 | (I[415] = (img)(_p10##x,_n7##y,z,v)), \ |
philpem@5 | 7960 | (I[438] = (img)(_p10##x,_n8##y,z,v)), \ |
philpem@5 | 7961 | (I[461] = (img)(_p10##x,_n9##y,z,v)), \ |
philpem@5 | 7962 | (I[484] = (img)(_p10##x,_n10##y,z,v)), \ |
philpem@5 | 7963 | (I[507] = (img)(_p10##x,_n11##y,z,v)), \ |
philpem@5 | 7964 | (I[2] = (img)(_p9##x,_p11##y,z,v)), \ |
philpem@5 | 7965 | (I[25] = (img)(_p9##x,_p10##y,z,v)), \ |
philpem@5 | 7966 | (I[48] = (img)(_p9##x,_p9##y,z,v)), \ |
philpem@5 | 7967 | (I[71] = (img)(_p9##x,_p8##y,z,v)), \ |
philpem@5 | 7968 | (I[94] = (img)(_p9##x,_p7##y,z,v)), \ |
philpem@5 | 7969 | (I[117] = (img)(_p9##x,_p6##y,z,v)), \ |
philpem@5 | 7970 | (I[140] = (img)(_p9##x,_p5##y,z,v)), \ |
philpem@5 | 7971 | (I[163] = (img)(_p9##x,_p4##y,z,v)), \ |
philpem@5 | 7972 | (I[186] = (img)(_p9##x,_p3##y,z,v)), \ |
philpem@5 | 7973 | (I[209] = (img)(_p9##x,_p2##y,z,v)), \ |
philpem@5 | 7974 | (I[232] = (img)(_p9##x,_p1##y,z,v)), \ |
philpem@5 | 7975 | (I[255] = (img)(_p9##x,y,z,v)), \ |
philpem@5 | 7976 | (I[278] = (img)(_p9##x,_n1##y,z,v)), \ |
philpem@5 | 7977 | (I[301] = (img)(_p9##x,_n2##y,z,v)), \ |
philpem@5 | 7978 | (I[324] = (img)(_p9##x,_n3##y,z,v)), \ |
philpem@5 | 7979 | (I[347] = (img)(_p9##x,_n4##y,z,v)), \ |
philpem@5 | 7980 | (I[370] = (img)(_p9##x,_n5##y,z,v)), \ |
philpem@5 | 7981 | (I[393] = (img)(_p9##x,_n6##y,z,v)), \ |
philpem@5 | 7982 | (I[416] = (img)(_p9##x,_n7##y,z,v)), \ |
philpem@5 | 7983 | (I[439] = (img)(_p9##x,_n8##y,z,v)), \ |
philpem@5 | 7984 | (I[462] = (img)(_p9##x,_n9##y,z,v)), \ |
philpem@5 | 7985 | (I[485] = (img)(_p9##x,_n10##y,z,v)), \ |
philpem@5 | 7986 | (I[508] = (img)(_p9##x,_n11##y,z,v)), \ |
philpem@5 | 7987 | (I[3] = (img)(_p8##x,_p11##y,z,v)), \ |
philpem@5 | 7988 | (I[26] = (img)(_p8##x,_p10##y,z,v)), \ |
philpem@5 | 7989 | (I[49] = (img)(_p8##x,_p9##y,z,v)), \ |
philpem@5 | 7990 | (I[72] = (img)(_p8##x,_p8##y,z,v)), \ |
philpem@5 | 7991 | (I[95] = (img)(_p8##x,_p7##y,z,v)), \ |
philpem@5 | 7992 | (I[118] = (img)(_p8##x,_p6##y,z,v)), \ |
philpem@5 | 7993 | (I[141] = (img)(_p8##x,_p5##y,z,v)), \ |
philpem@5 | 7994 | (I[164] = (img)(_p8##x,_p4##y,z,v)), \ |
philpem@5 | 7995 | (I[187] = (img)(_p8##x,_p3##y,z,v)), \ |
philpem@5 | 7996 | (I[210] = (img)(_p8##x,_p2##y,z,v)), \ |
philpem@5 | 7997 | (I[233] = (img)(_p8##x,_p1##y,z,v)), \ |
philpem@5 | 7998 | (I[256] = (img)(_p8##x,y,z,v)), \ |
philpem@5 | 7999 | (I[279] = (img)(_p8##x,_n1##y,z,v)), \ |
philpem@5 | 8000 | (I[302] = (img)(_p8##x,_n2##y,z,v)), \ |
philpem@5 | 8001 | (I[325] = (img)(_p8##x,_n3##y,z,v)), \ |
philpem@5 | 8002 | (I[348] = (img)(_p8##x,_n4##y,z,v)), \ |
philpem@5 | 8003 | (I[371] = (img)(_p8##x,_n5##y,z,v)), \ |
philpem@5 | 8004 | (I[394] = (img)(_p8##x,_n6##y,z,v)), \ |
philpem@5 | 8005 | (I[417] = (img)(_p8##x,_n7##y,z,v)), \ |
philpem@5 | 8006 | (I[440] = (img)(_p8##x,_n8##y,z,v)), \ |
philpem@5 | 8007 | (I[463] = (img)(_p8##x,_n9##y,z,v)), \ |
philpem@5 | 8008 | (I[486] = (img)(_p8##x,_n10##y,z,v)), \ |
philpem@5 | 8009 | (I[509] = (img)(_p8##x,_n11##y,z,v)), \ |
philpem@5 | 8010 | (I[4] = (img)(_p7##x,_p11##y,z,v)), \ |
philpem@5 | 8011 | (I[27] = (img)(_p7##x,_p10##y,z,v)), \ |
philpem@5 | 8012 | (I[50] = (img)(_p7##x,_p9##y,z,v)), \ |
philpem@5 | 8013 | (I[73] = (img)(_p7##x,_p8##y,z,v)), \ |
philpem@5 | 8014 | (I[96] = (img)(_p7##x,_p7##y,z,v)), \ |
philpem@5 | 8015 | (I[119] = (img)(_p7##x,_p6##y,z,v)), \ |
philpem@5 | 8016 | (I[142] = (img)(_p7##x,_p5##y,z,v)), \ |
philpem@5 | 8017 | (I[165] = (img)(_p7##x,_p4##y,z,v)), \ |
philpem@5 | 8018 | (I[188] = (img)(_p7##x,_p3##y,z,v)), \ |
philpem@5 | 8019 | (I[211] = (img)(_p7##x,_p2##y,z,v)), \ |
philpem@5 | 8020 | (I[234] = (img)(_p7##x,_p1##y,z,v)), \ |
philpem@5 | 8021 | (I[257] = (img)(_p7##x,y,z,v)), \ |
philpem@5 | 8022 | (I[280] = (img)(_p7##x,_n1##y,z,v)), \ |
philpem@5 | 8023 | (I[303] = (img)(_p7##x,_n2##y,z,v)), \ |
philpem@5 | 8024 | (I[326] = (img)(_p7##x,_n3##y,z,v)), \ |
philpem@5 | 8025 | (I[349] = (img)(_p7##x,_n4##y,z,v)), \ |
philpem@5 | 8026 | (I[372] = (img)(_p7##x,_n5##y,z,v)), \ |
philpem@5 | 8027 | (I[395] = (img)(_p7##x,_n6##y,z,v)), \ |
philpem@5 | 8028 | (I[418] = (img)(_p7##x,_n7##y,z,v)), \ |
philpem@5 | 8029 | (I[441] = (img)(_p7##x,_n8##y,z,v)), \ |
philpem@5 | 8030 | (I[464] = (img)(_p7##x,_n9##y,z,v)), \ |
philpem@5 | 8031 | (I[487] = (img)(_p7##x,_n10##y,z,v)), \ |
philpem@5 | 8032 | (I[510] = (img)(_p7##x,_n11##y,z,v)), \ |
philpem@5 | 8033 | (I[5] = (img)(_p6##x,_p11##y,z,v)), \ |
philpem@5 | 8034 | (I[28] = (img)(_p6##x,_p10##y,z,v)), \ |
philpem@5 | 8035 | (I[51] = (img)(_p6##x,_p9##y,z,v)), \ |
philpem@5 | 8036 | (I[74] = (img)(_p6##x,_p8##y,z,v)), \ |
philpem@5 | 8037 | (I[97] = (img)(_p6##x,_p7##y,z,v)), \ |
philpem@5 | 8038 | (I[120] = (img)(_p6##x,_p6##y,z,v)), \ |
philpem@5 | 8039 | (I[143] = (img)(_p6##x,_p5##y,z,v)), \ |
philpem@5 | 8040 | (I[166] = (img)(_p6##x,_p4##y,z,v)), \ |
philpem@5 | 8041 | (I[189] = (img)(_p6##x,_p3##y,z,v)), \ |
philpem@5 | 8042 | (I[212] = (img)(_p6##x,_p2##y,z,v)), \ |
philpem@5 | 8043 | (I[235] = (img)(_p6##x,_p1##y,z,v)), \ |
philpem@5 | 8044 | (I[258] = (img)(_p6##x,y,z,v)), \ |
philpem@5 | 8045 | (I[281] = (img)(_p6##x,_n1##y,z,v)), \ |
philpem@5 | 8046 | (I[304] = (img)(_p6##x,_n2##y,z,v)), \ |
philpem@5 | 8047 | (I[327] = (img)(_p6##x,_n3##y,z,v)), \ |
philpem@5 | 8048 | (I[350] = (img)(_p6##x,_n4##y,z,v)), \ |
philpem@5 | 8049 | (I[373] = (img)(_p6##x,_n5##y,z,v)), \ |
philpem@5 | 8050 | (I[396] = (img)(_p6##x,_n6##y,z,v)), \ |
philpem@5 | 8051 | (I[419] = (img)(_p6##x,_n7##y,z,v)), \ |
philpem@5 | 8052 | (I[442] = (img)(_p6##x,_n8##y,z,v)), \ |
philpem@5 | 8053 | (I[465] = (img)(_p6##x,_n9##y,z,v)), \ |
philpem@5 | 8054 | (I[488] = (img)(_p6##x,_n10##y,z,v)), \ |
philpem@5 | 8055 | (I[511] = (img)(_p6##x,_n11##y,z,v)), \ |
philpem@5 | 8056 | (I[6] = (img)(_p5##x,_p11##y,z,v)), \ |
philpem@5 | 8057 | (I[29] = (img)(_p5##x,_p10##y,z,v)), \ |
philpem@5 | 8058 | (I[52] = (img)(_p5##x,_p9##y,z,v)), \ |
philpem@5 | 8059 | (I[75] = (img)(_p5##x,_p8##y,z,v)), \ |
philpem@5 | 8060 | (I[98] = (img)(_p5##x,_p7##y,z,v)), \ |
philpem@5 | 8061 | (I[121] = (img)(_p5##x,_p6##y,z,v)), \ |
philpem@5 | 8062 | (I[144] = (img)(_p5##x,_p5##y,z,v)), \ |
philpem@5 | 8063 | (I[167] = (img)(_p5##x,_p4##y,z,v)), \ |
philpem@5 | 8064 | (I[190] = (img)(_p5##x,_p3##y,z,v)), \ |
philpem@5 | 8065 | (I[213] = (img)(_p5##x,_p2##y,z,v)), \ |
philpem@5 | 8066 | (I[236] = (img)(_p5##x,_p1##y,z,v)), \ |
philpem@5 | 8067 | (I[259] = (img)(_p5##x,y,z,v)), \ |
philpem@5 | 8068 | (I[282] = (img)(_p5##x,_n1##y,z,v)), \ |
philpem@5 | 8069 | (I[305] = (img)(_p5##x,_n2##y,z,v)), \ |
philpem@5 | 8070 | (I[328] = (img)(_p5##x,_n3##y,z,v)), \ |
philpem@5 | 8071 | (I[351] = (img)(_p5##x,_n4##y,z,v)), \ |
philpem@5 | 8072 | (I[374] = (img)(_p5##x,_n5##y,z,v)), \ |
philpem@5 | 8073 | (I[397] = (img)(_p5##x,_n6##y,z,v)), \ |
philpem@5 | 8074 | (I[420] = (img)(_p5##x,_n7##y,z,v)), \ |
philpem@5 | 8075 | (I[443] = (img)(_p5##x,_n8##y,z,v)), \ |
philpem@5 | 8076 | (I[466] = (img)(_p5##x,_n9##y,z,v)), \ |
philpem@5 | 8077 | (I[489] = (img)(_p5##x,_n10##y,z,v)), \ |
philpem@5 | 8078 | (I[512] = (img)(_p5##x,_n11##y,z,v)), \ |
philpem@5 | 8079 | (I[7] = (img)(_p4##x,_p11##y,z,v)), \ |
philpem@5 | 8080 | (I[30] = (img)(_p4##x,_p10##y,z,v)), \ |
philpem@5 | 8081 | (I[53] = (img)(_p4##x,_p9##y,z,v)), \ |
philpem@5 | 8082 | (I[76] = (img)(_p4##x,_p8##y,z,v)), \ |
philpem@5 | 8083 | (I[99] = (img)(_p4##x,_p7##y,z,v)), \ |
philpem@5 | 8084 | (I[122] = (img)(_p4##x,_p6##y,z,v)), \ |
philpem@5 | 8085 | (I[145] = (img)(_p4##x,_p5##y,z,v)), \ |
philpem@5 | 8086 | (I[168] = (img)(_p4##x,_p4##y,z,v)), \ |
philpem@5 | 8087 | (I[191] = (img)(_p4##x,_p3##y,z,v)), \ |
philpem@5 | 8088 | (I[214] = (img)(_p4##x,_p2##y,z,v)), \ |
philpem@5 | 8089 | (I[237] = (img)(_p4##x,_p1##y,z,v)), \ |
philpem@5 | 8090 | (I[260] = (img)(_p4##x,y,z,v)), \ |
philpem@5 | 8091 | (I[283] = (img)(_p4##x,_n1##y,z,v)), \ |
philpem@5 | 8092 | (I[306] = (img)(_p4##x,_n2##y,z,v)), \ |
philpem@5 | 8093 | (I[329] = (img)(_p4##x,_n3##y,z,v)), \ |
philpem@5 | 8094 | (I[352] = (img)(_p4##x,_n4##y,z,v)), \ |
philpem@5 | 8095 | (I[375] = (img)(_p4##x,_n5##y,z,v)), \ |
philpem@5 | 8096 | (I[398] = (img)(_p4##x,_n6##y,z,v)), \ |
philpem@5 | 8097 | (I[421] = (img)(_p4##x,_n7##y,z,v)), \ |
philpem@5 | 8098 | (I[444] = (img)(_p4##x,_n8##y,z,v)), \ |
philpem@5 | 8099 | (I[467] = (img)(_p4##x,_n9##y,z,v)), \ |
philpem@5 | 8100 | (I[490] = (img)(_p4##x,_n10##y,z,v)), \ |
philpem@5 | 8101 | (I[513] = (img)(_p4##x,_n11##y,z,v)), \ |
philpem@5 | 8102 | (I[8] = (img)(_p3##x,_p11##y,z,v)), \ |
philpem@5 | 8103 | (I[31] = (img)(_p3##x,_p10##y,z,v)), \ |
philpem@5 | 8104 | (I[54] = (img)(_p3##x,_p9##y,z,v)), \ |
philpem@5 | 8105 | (I[77] = (img)(_p3##x,_p8##y,z,v)), \ |
philpem@5 | 8106 | (I[100] = (img)(_p3##x,_p7##y,z,v)), \ |
philpem@5 | 8107 | (I[123] = (img)(_p3##x,_p6##y,z,v)), \ |
philpem@5 | 8108 | (I[146] = (img)(_p3##x,_p5##y,z,v)), \ |
philpem@5 | 8109 | (I[169] = (img)(_p3##x,_p4##y,z,v)), \ |
philpem@5 | 8110 | (I[192] = (img)(_p3##x,_p3##y,z,v)), \ |
philpem@5 | 8111 | (I[215] = (img)(_p3##x,_p2##y,z,v)), \ |
philpem@5 | 8112 | (I[238] = (img)(_p3##x,_p1##y,z,v)), \ |
philpem@5 | 8113 | (I[261] = (img)(_p3##x,y,z,v)), \ |
philpem@5 | 8114 | (I[284] = (img)(_p3##x,_n1##y,z,v)), \ |
philpem@5 | 8115 | (I[307] = (img)(_p3##x,_n2##y,z,v)), \ |
philpem@5 | 8116 | (I[330] = (img)(_p3##x,_n3##y,z,v)), \ |
philpem@5 | 8117 | (I[353] = (img)(_p3##x,_n4##y,z,v)), \ |
philpem@5 | 8118 | (I[376] = (img)(_p3##x,_n5##y,z,v)), \ |
philpem@5 | 8119 | (I[399] = (img)(_p3##x,_n6##y,z,v)), \ |
philpem@5 | 8120 | (I[422] = (img)(_p3##x,_n7##y,z,v)), \ |
philpem@5 | 8121 | (I[445] = (img)(_p3##x,_n8##y,z,v)), \ |
philpem@5 | 8122 | (I[468] = (img)(_p3##x,_n9##y,z,v)), \ |
philpem@5 | 8123 | (I[491] = (img)(_p3##x,_n10##y,z,v)), \ |
philpem@5 | 8124 | (I[514] = (img)(_p3##x,_n11##y,z,v)), \ |
philpem@5 | 8125 | (I[9] = (img)(_p2##x,_p11##y,z,v)), \ |
philpem@5 | 8126 | (I[32] = (img)(_p2##x,_p10##y,z,v)), \ |
philpem@5 | 8127 | (I[55] = (img)(_p2##x,_p9##y,z,v)), \ |
philpem@5 | 8128 | (I[78] = (img)(_p2##x,_p8##y,z,v)), \ |
philpem@5 | 8129 | (I[101] = (img)(_p2##x,_p7##y,z,v)), \ |
philpem@5 | 8130 | (I[124] = (img)(_p2##x,_p6##y,z,v)), \ |
philpem@5 | 8131 | (I[147] = (img)(_p2##x,_p5##y,z,v)), \ |
philpem@5 | 8132 | (I[170] = (img)(_p2##x,_p4##y,z,v)), \ |
philpem@5 | 8133 | (I[193] = (img)(_p2##x,_p3##y,z,v)), \ |
philpem@5 | 8134 | (I[216] = (img)(_p2##x,_p2##y,z,v)), \ |
philpem@5 | 8135 | (I[239] = (img)(_p2##x,_p1##y,z,v)), \ |
philpem@5 | 8136 | (I[262] = (img)(_p2##x,y,z,v)), \ |
philpem@5 | 8137 | (I[285] = (img)(_p2##x,_n1##y,z,v)), \ |
philpem@5 | 8138 | (I[308] = (img)(_p2##x,_n2##y,z,v)), \ |
philpem@5 | 8139 | (I[331] = (img)(_p2##x,_n3##y,z,v)), \ |
philpem@5 | 8140 | (I[354] = (img)(_p2##x,_n4##y,z,v)), \ |
philpem@5 | 8141 | (I[377] = (img)(_p2##x,_n5##y,z,v)), \ |
philpem@5 | 8142 | (I[400] = (img)(_p2##x,_n6##y,z,v)), \ |
philpem@5 | 8143 | (I[423] = (img)(_p2##x,_n7##y,z,v)), \ |
philpem@5 | 8144 | (I[446] = (img)(_p2##x,_n8##y,z,v)), \ |
philpem@5 | 8145 | (I[469] = (img)(_p2##x,_n9##y,z,v)), \ |
philpem@5 | 8146 | (I[492] = (img)(_p2##x,_n10##y,z,v)), \ |
philpem@5 | 8147 | (I[515] = (img)(_p2##x,_n11##y,z,v)), \ |
philpem@5 | 8148 | (I[10] = (img)(_p1##x,_p11##y,z,v)), \ |
philpem@5 | 8149 | (I[33] = (img)(_p1##x,_p10##y,z,v)), \ |
philpem@5 | 8150 | (I[56] = (img)(_p1##x,_p9##y,z,v)), \ |
philpem@5 | 8151 | (I[79] = (img)(_p1##x,_p8##y,z,v)), \ |
philpem@5 | 8152 | (I[102] = (img)(_p1##x,_p7##y,z,v)), \ |
philpem@5 | 8153 | (I[125] = (img)(_p1##x,_p6##y,z,v)), \ |
philpem@5 | 8154 | (I[148] = (img)(_p1##x,_p5##y,z,v)), \ |
philpem@5 | 8155 | (I[171] = (img)(_p1##x,_p4##y,z,v)), \ |
philpem@5 | 8156 | (I[194] = (img)(_p1##x,_p3##y,z,v)), \ |
philpem@5 | 8157 | (I[217] = (img)(_p1##x,_p2##y,z,v)), \ |
philpem@5 | 8158 | (I[240] = (img)(_p1##x,_p1##y,z,v)), \ |
philpem@5 | 8159 | (I[263] = (img)(_p1##x,y,z,v)), \ |
philpem@5 | 8160 | (I[286] = (img)(_p1##x,_n1##y,z,v)), \ |
philpem@5 | 8161 | (I[309] = (img)(_p1##x,_n2##y,z,v)), \ |
philpem@5 | 8162 | (I[332] = (img)(_p1##x,_n3##y,z,v)), \ |
philpem@5 | 8163 | (I[355] = (img)(_p1##x,_n4##y,z,v)), \ |
philpem@5 | 8164 | (I[378] = (img)(_p1##x,_n5##y,z,v)), \ |
philpem@5 | 8165 | (I[401] = (img)(_p1##x,_n6##y,z,v)), \ |
philpem@5 | 8166 | (I[424] = (img)(_p1##x,_n7##y,z,v)), \ |
philpem@5 | 8167 | (I[447] = (img)(_p1##x,_n8##y,z,v)), \ |
philpem@5 | 8168 | (I[470] = (img)(_p1##x,_n9##y,z,v)), \ |
philpem@5 | 8169 | (I[493] = (img)(_p1##x,_n10##y,z,v)), \ |
philpem@5 | 8170 | (I[516] = (img)(_p1##x,_n11##y,z,v)), \ |
philpem@5 | 8171 | (I[11] = (img)(x,_p11##y,z,v)), \ |
philpem@5 | 8172 | (I[34] = (img)(x,_p10##y,z,v)), \ |
philpem@5 | 8173 | (I[57] = (img)(x,_p9##y,z,v)), \ |
philpem@5 | 8174 | (I[80] = (img)(x,_p8##y,z,v)), \ |
philpem@5 | 8175 | (I[103] = (img)(x,_p7##y,z,v)), \ |
philpem@5 | 8176 | (I[126] = (img)(x,_p6##y,z,v)), \ |
philpem@5 | 8177 | (I[149] = (img)(x,_p5##y,z,v)), \ |
philpem@5 | 8178 | (I[172] = (img)(x,_p4##y,z,v)), \ |
philpem@5 | 8179 | (I[195] = (img)(x,_p3##y,z,v)), \ |
philpem@5 | 8180 | (I[218] = (img)(x,_p2##y,z,v)), \ |
philpem@5 | 8181 | (I[241] = (img)(x,_p1##y,z,v)), \ |
philpem@5 | 8182 | (I[264] = (img)(x,y,z,v)), \ |
philpem@5 | 8183 | (I[287] = (img)(x,_n1##y,z,v)), \ |
philpem@5 | 8184 | (I[310] = (img)(x,_n2##y,z,v)), \ |
philpem@5 | 8185 | (I[333] = (img)(x,_n3##y,z,v)), \ |
philpem@5 | 8186 | (I[356] = (img)(x,_n4##y,z,v)), \ |
philpem@5 | 8187 | (I[379] = (img)(x,_n5##y,z,v)), \ |
philpem@5 | 8188 | (I[402] = (img)(x,_n6##y,z,v)), \ |
philpem@5 | 8189 | (I[425] = (img)(x,_n7##y,z,v)), \ |
philpem@5 | 8190 | (I[448] = (img)(x,_n8##y,z,v)), \ |
philpem@5 | 8191 | (I[471] = (img)(x,_n9##y,z,v)), \ |
philpem@5 | 8192 | (I[494] = (img)(x,_n10##y,z,v)), \ |
philpem@5 | 8193 | (I[517] = (img)(x,_n11##y,z,v)), \ |
philpem@5 | 8194 | (I[12] = (img)(_n1##x,_p11##y,z,v)), \ |
philpem@5 | 8195 | (I[35] = (img)(_n1##x,_p10##y,z,v)), \ |
philpem@5 | 8196 | (I[58] = (img)(_n1##x,_p9##y,z,v)), \ |
philpem@5 | 8197 | (I[81] = (img)(_n1##x,_p8##y,z,v)), \ |
philpem@5 | 8198 | (I[104] = (img)(_n1##x,_p7##y,z,v)), \ |
philpem@5 | 8199 | (I[127] = (img)(_n1##x,_p6##y,z,v)), \ |
philpem@5 | 8200 | (I[150] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 8201 | (I[173] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 8202 | (I[196] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 8203 | (I[219] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 8204 | (I[242] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 8205 | (I[265] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 8206 | (I[288] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 8207 | (I[311] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 8208 | (I[334] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 8209 | (I[357] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 8210 | (I[380] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 8211 | (I[403] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 8212 | (I[426] = (img)(_n1##x,_n7##y,z,v)), \ |
philpem@5 | 8213 | (I[449] = (img)(_n1##x,_n8##y,z,v)), \ |
philpem@5 | 8214 | (I[472] = (img)(_n1##x,_n9##y,z,v)), \ |
philpem@5 | 8215 | (I[495] = (img)(_n1##x,_n10##y,z,v)), \ |
philpem@5 | 8216 | (I[518] = (img)(_n1##x,_n11##y,z,v)), \ |
philpem@5 | 8217 | (I[13] = (img)(_n2##x,_p11##y,z,v)), \ |
philpem@5 | 8218 | (I[36] = (img)(_n2##x,_p10##y,z,v)), \ |
philpem@5 | 8219 | (I[59] = (img)(_n2##x,_p9##y,z,v)), \ |
philpem@5 | 8220 | (I[82] = (img)(_n2##x,_p8##y,z,v)), \ |
philpem@5 | 8221 | (I[105] = (img)(_n2##x,_p7##y,z,v)), \ |
philpem@5 | 8222 | (I[128] = (img)(_n2##x,_p6##y,z,v)), \ |
philpem@5 | 8223 | (I[151] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 8224 | (I[174] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 8225 | (I[197] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 8226 | (I[220] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 8227 | (I[243] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 8228 | (I[266] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 8229 | (I[289] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 8230 | (I[312] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 8231 | (I[335] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 8232 | (I[358] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 8233 | (I[381] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 8234 | (I[404] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 8235 | (I[427] = (img)(_n2##x,_n7##y,z,v)), \ |
philpem@5 | 8236 | (I[450] = (img)(_n2##x,_n8##y,z,v)), \ |
philpem@5 | 8237 | (I[473] = (img)(_n2##x,_n9##y,z,v)), \ |
philpem@5 | 8238 | (I[496] = (img)(_n2##x,_n10##y,z,v)), \ |
philpem@5 | 8239 | (I[519] = (img)(_n2##x,_n11##y,z,v)), \ |
philpem@5 | 8240 | (I[14] = (img)(_n3##x,_p11##y,z,v)), \ |
philpem@5 | 8241 | (I[37] = (img)(_n3##x,_p10##y,z,v)), \ |
philpem@5 | 8242 | (I[60] = (img)(_n3##x,_p9##y,z,v)), \ |
philpem@5 | 8243 | (I[83] = (img)(_n3##x,_p8##y,z,v)), \ |
philpem@5 | 8244 | (I[106] = (img)(_n3##x,_p7##y,z,v)), \ |
philpem@5 | 8245 | (I[129] = (img)(_n3##x,_p6##y,z,v)), \ |
philpem@5 | 8246 | (I[152] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 8247 | (I[175] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 8248 | (I[198] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 8249 | (I[221] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 8250 | (I[244] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 8251 | (I[267] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 8252 | (I[290] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 8253 | (I[313] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 8254 | (I[336] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 8255 | (I[359] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 8256 | (I[382] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 8257 | (I[405] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 8258 | (I[428] = (img)(_n3##x,_n7##y,z,v)), \ |
philpem@5 | 8259 | (I[451] = (img)(_n3##x,_n8##y,z,v)), \ |
philpem@5 | 8260 | (I[474] = (img)(_n3##x,_n9##y,z,v)), \ |
philpem@5 | 8261 | (I[497] = (img)(_n3##x,_n10##y,z,v)), \ |
philpem@5 | 8262 | (I[520] = (img)(_n3##x,_n11##y,z,v)), \ |
philpem@5 | 8263 | (I[15] = (img)(_n4##x,_p11##y,z,v)), \ |
philpem@5 | 8264 | (I[38] = (img)(_n4##x,_p10##y,z,v)), \ |
philpem@5 | 8265 | (I[61] = (img)(_n4##x,_p9##y,z,v)), \ |
philpem@5 | 8266 | (I[84] = (img)(_n4##x,_p8##y,z,v)), \ |
philpem@5 | 8267 | (I[107] = (img)(_n4##x,_p7##y,z,v)), \ |
philpem@5 | 8268 | (I[130] = (img)(_n4##x,_p6##y,z,v)), \ |
philpem@5 | 8269 | (I[153] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 8270 | (I[176] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 8271 | (I[199] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 8272 | (I[222] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 8273 | (I[245] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 8274 | (I[268] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 8275 | (I[291] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 8276 | (I[314] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 8277 | (I[337] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 8278 | (I[360] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 8279 | (I[383] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 8280 | (I[406] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 8281 | (I[429] = (img)(_n4##x,_n7##y,z,v)), \ |
philpem@5 | 8282 | (I[452] = (img)(_n4##x,_n8##y,z,v)), \ |
philpem@5 | 8283 | (I[475] = (img)(_n4##x,_n9##y,z,v)), \ |
philpem@5 | 8284 | (I[498] = (img)(_n4##x,_n10##y,z,v)), \ |
philpem@5 | 8285 | (I[521] = (img)(_n4##x,_n11##y,z,v)), \ |
philpem@5 | 8286 | (I[16] = (img)(_n5##x,_p11##y,z,v)), \ |
philpem@5 | 8287 | (I[39] = (img)(_n5##x,_p10##y,z,v)), \ |
philpem@5 | 8288 | (I[62] = (img)(_n5##x,_p9##y,z,v)), \ |
philpem@5 | 8289 | (I[85] = (img)(_n5##x,_p8##y,z,v)), \ |
philpem@5 | 8290 | (I[108] = (img)(_n5##x,_p7##y,z,v)), \ |
philpem@5 | 8291 | (I[131] = (img)(_n5##x,_p6##y,z,v)), \ |
philpem@5 | 8292 | (I[154] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 8293 | (I[177] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 8294 | (I[200] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 8295 | (I[223] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 8296 | (I[246] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 8297 | (I[269] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 8298 | (I[292] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 8299 | (I[315] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 8300 | (I[338] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 8301 | (I[361] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 8302 | (I[384] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 8303 | (I[407] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 8304 | (I[430] = (img)(_n5##x,_n7##y,z,v)), \ |
philpem@5 | 8305 | (I[453] = (img)(_n5##x,_n8##y,z,v)), \ |
philpem@5 | 8306 | (I[476] = (img)(_n5##x,_n9##y,z,v)), \ |
philpem@5 | 8307 | (I[499] = (img)(_n5##x,_n10##y,z,v)), \ |
philpem@5 | 8308 | (I[522] = (img)(_n5##x,_n11##y,z,v)), \ |
philpem@5 | 8309 | (I[17] = (img)(_n6##x,_p11##y,z,v)), \ |
philpem@5 | 8310 | (I[40] = (img)(_n6##x,_p10##y,z,v)), \ |
philpem@5 | 8311 | (I[63] = (img)(_n6##x,_p9##y,z,v)), \ |
philpem@5 | 8312 | (I[86] = (img)(_n6##x,_p8##y,z,v)), \ |
philpem@5 | 8313 | (I[109] = (img)(_n6##x,_p7##y,z,v)), \ |
philpem@5 | 8314 | (I[132] = (img)(_n6##x,_p6##y,z,v)), \ |
philpem@5 | 8315 | (I[155] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 8316 | (I[178] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 8317 | (I[201] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 8318 | (I[224] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 8319 | (I[247] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 8320 | (I[270] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 8321 | (I[293] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 8322 | (I[316] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 8323 | (I[339] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 8324 | (I[362] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 8325 | (I[385] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 8326 | (I[408] = (img)(_n6##x,_n6##y,z,v)), \ |
philpem@5 | 8327 | (I[431] = (img)(_n6##x,_n7##y,z,v)), \ |
philpem@5 | 8328 | (I[454] = (img)(_n6##x,_n8##y,z,v)), \ |
philpem@5 | 8329 | (I[477] = (img)(_n6##x,_n9##y,z,v)), \ |
philpem@5 | 8330 | (I[500] = (img)(_n6##x,_n10##y,z,v)), \ |
philpem@5 | 8331 | (I[523] = (img)(_n6##x,_n11##y,z,v)), \ |
philpem@5 | 8332 | (I[18] = (img)(_n7##x,_p11##y,z,v)), \ |
philpem@5 | 8333 | (I[41] = (img)(_n7##x,_p10##y,z,v)), \ |
philpem@5 | 8334 | (I[64] = (img)(_n7##x,_p9##y,z,v)), \ |
philpem@5 | 8335 | (I[87] = (img)(_n7##x,_p8##y,z,v)), \ |
philpem@5 | 8336 | (I[110] = (img)(_n7##x,_p7##y,z,v)), \ |
philpem@5 | 8337 | (I[133] = (img)(_n7##x,_p6##y,z,v)), \ |
philpem@5 | 8338 | (I[156] = (img)(_n7##x,_p5##y,z,v)), \ |
philpem@5 | 8339 | (I[179] = (img)(_n7##x,_p4##y,z,v)), \ |
philpem@5 | 8340 | (I[202] = (img)(_n7##x,_p3##y,z,v)), \ |
philpem@5 | 8341 | (I[225] = (img)(_n7##x,_p2##y,z,v)), \ |
philpem@5 | 8342 | (I[248] = (img)(_n7##x,_p1##y,z,v)), \ |
philpem@5 | 8343 | (I[271] = (img)(_n7##x,y,z,v)), \ |
philpem@5 | 8344 | (I[294] = (img)(_n7##x,_n1##y,z,v)), \ |
philpem@5 | 8345 | (I[317] = (img)(_n7##x,_n2##y,z,v)), \ |
philpem@5 | 8346 | (I[340] = (img)(_n7##x,_n3##y,z,v)), \ |
philpem@5 | 8347 | (I[363] = (img)(_n7##x,_n4##y,z,v)), \ |
philpem@5 | 8348 | (I[386] = (img)(_n7##x,_n5##y,z,v)), \ |
philpem@5 | 8349 | (I[409] = (img)(_n7##x,_n6##y,z,v)), \ |
philpem@5 | 8350 | (I[432] = (img)(_n7##x,_n7##y,z,v)), \ |
philpem@5 | 8351 | (I[455] = (img)(_n7##x,_n8##y,z,v)), \ |
philpem@5 | 8352 | (I[478] = (img)(_n7##x,_n9##y,z,v)), \ |
philpem@5 | 8353 | (I[501] = (img)(_n7##x,_n10##y,z,v)), \ |
philpem@5 | 8354 | (I[524] = (img)(_n7##x,_n11##y,z,v)), \ |
philpem@5 | 8355 | (I[19] = (img)(_n8##x,_p11##y,z,v)), \ |
philpem@5 | 8356 | (I[42] = (img)(_n8##x,_p10##y,z,v)), \ |
philpem@5 | 8357 | (I[65] = (img)(_n8##x,_p9##y,z,v)), \ |
philpem@5 | 8358 | (I[88] = (img)(_n8##x,_p8##y,z,v)), \ |
philpem@5 | 8359 | (I[111] = (img)(_n8##x,_p7##y,z,v)), \ |
philpem@5 | 8360 | (I[134] = (img)(_n8##x,_p6##y,z,v)), \ |
philpem@5 | 8361 | (I[157] = (img)(_n8##x,_p5##y,z,v)), \ |
philpem@5 | 8362 | (I[180] = (img)(_n8##x,_p4##y,z,v)), \ |
philpem@5 | 8363 | (I[203] = (img)(_n8##x,_p3##y,z,v)), \ |
philpem@5 | 8364 | (I[226] = (img)(_n8##x,_p2##y,z,v)), \ |
philpem@5 | 8365 | (I[249] = (img)(_n8##x,_p1##y,z,v)), \ |
philpem@5 | 8366 | (I[272] = (img)(_n8##x,y,z,v)), \ |
philpem@5 | 8367 | (I[295] = (img)(_n8##x,_n1##y,z,v)), \ |
philpem@5 | 8368 | (I[318] = (img)(_n8##x,_n2##y,z,v)), \ |
philpem@5 | 8369 | (I[341] = (img)(_n8##x,_n3##y,z,v)), \ |
philpem@5 | 8370 | (I[364] = (img)(_n8##x,_n4##y,z,v)), \ |
philpem@5 | 8371 | (I[387] = (img)(_n8##x,_n5##y,z,v)), \ |
philpem@5 | 8372 | (I[410] = (img)(_n8##x,_n6##y,z,v)), \ |
philpem@5 | 8373 | (I[433] = (img)(_n8##x,_n7##y,z,v)), \ |
philpem@5 | 8374 | (I[456] = (img)(_n8##x,_n8##y,z,v)), \ |
philpem@5 | 8375 | (I[479] = (img)(_n8##x,_n9##y,z,v)), \ |
philpem@5 | 8376 | (I[502] = (img)(_n8##x,_n10##y,z,v)), \ |
philpem@5 | 8377 | (I[525] = (img)(_n8##x,_n11##y,z,v)), \ |
philpem@5 | 8378 | (I[20] = (img)(_n9##x,_p11##y,z,v)), \ |
philpem@5 | 8379 | (I[43] = (img)(_n9##x,_p10##y,z,v)), \ |
philpem@5 | 8380 | (I[66] = (img)(_n9##x,_p9##y,z,v)), \ |
philpem@5 | 8381 | (I[89] = (img)(_n9##x,_p8##y,z,v)), \ |
philpem@5 | 8382 | (I[112] = (img)(_n9##x,_p7##y,z,v)), \ |
philpem@5 | 8383 | (I[135] = (img)(_n9##x,_p6##y,z,v)), \ |
philpem@5 | 8384 | (I[158] = (img)(_n9##x,_p5##y,z,v)), \ |
philpem@5 | 8385 | (I[181] = (img)(_n9##x,_p4##y,z,v)), \ |
philpem@5 | 8386 | (I[204] = (img)(_n9##x,_p3##y,z,v)), \ |
philpem@5 | 8387 | (I[227] = (img)(_n9##x,_p2##y,z,v)), \ |
philpem@5 | 8388 | (I[250] = (img)(_n9##x,_p1##y,z,v)), \ |
philpem@5 | 8389 | (I[273] = (img)(_n9##x,y,z,v)), \ |
philpem@5 | 8390 | (I[296] = (img)(_n9##x,_n1##y,z,v)), \ |
philpem@5 | 8391 | (I[319] = (img)(_n9##x,_n2##y,z,v)), \ |
philpem@5 | 8392 | (I[342] = (img)(_n9##x,_n3##y,z,v)), \ |
philpem@5 | 8393 | (I[365] = (img)(_n9##x,_n4##y,z,v)), \ |
philpem@5 | 8394 | (I[388] = (img)(_n9##x,_n5##y,z,v)), \ |
philpem@5 | 8395 | (I[411] = (img)(_n9##x,_n6##y,z,v)), \ |
philpem@5 | 8396 | (I[434] = (img)(_n9##x,_n7##y,z,v)), \ |
philpem@5 | 8397 | (I[457] = (img)(_n9##x,_n8##y,z,v)), \ |
philpem@5 | 8398 | (I[480] = (img)(_n9##x,_n9##y,z,v)), \ |
philpem@5 | 8399 | (I[503] = (img)(_n9##x,_n10##y,z,v)), \ |
philpem@5 | 8400 | (I[526] = (img)(_n9##x,_n11##y,z,v)), \ |
philpem@5 | 8401 | (I[21] = (img)(_n10##x,_p11##y,z,v)), \ |
philpem@5 | 8402 | (I[44] = (img)(_n10##x,_p10##y,z,v)), \ |
philpem@5 | 8403 | (I[67] = (img)(_n10##x,_p9##y,z,v)), \ |
philpem@5 | 8404 | (I[90] = (img)(_n10##x,_p8##y,z,v)), \ |
philpem@5 | 8405 | (I[113] = (img)(_n10##x,_p7##y,z,v)), \ |
philpem@5 | 8406 | (I[136] = (img)(_n10##x,_p6##y,z,v)), \ |
philpem@5 | 8407 | (I[159] = (img)(_n10##x,_p5##y,z,v)), \ |
philpem@5 | 8408 | (I[182] = (img)(_n10##x,_p4##y,z,v)), \ |
philpem@5 | 8409 | (I[205] = (img)(_n10##x,_p3##y,z,v)), \ |
philpem@5 | 8410 | (I[228] = (img)(_n10##x,_p2##y,z,v)), \ |
philpem@5 | 8411 | (I[251] = (img)(_n10##x,_p1##y,z,v)), \ |
philpem@5 | 8412 | (I[274] = (img)(_n10##x,y,z,v)), \ |
philpem@5 | 8413 | (I[297] = (img)(_n10##x,_n1##y,z,v)), \ |
philpem@5 | 8414 | (I[320] = (img)(_n10##x,_n2##y,z,v)), \ |
philpem@5 | 8415 | (I[343] = (img)(_n10##x,_n3##y,z,v)), \ |
philpem@5 | 8416 | (I[366] = (img)(_n10##x,_n4##y,z,v)), \ |
philpem@5 | 8417 | (I[389] = (img)(_n10##x,_n5##y,z,v)), \ |
philpem@5 | 8418 | (I[412] = (img)(_n10##x,_n6##y,z,v)), \ |
philpem@5 | 8419 | (I[435] = (img)(_n10##x,_n7##y,z,v)), \ |
philpem@5 | 8420 | (I[458] = (img)(_n10##x,_n8##y,z,v)), \ |
philpem@5 | 8421 | (I[481] = (img)(_n10##x,_n9##y,z,v)), \ |
philpem@5 | 8422 | (I[504] = (img)(_n10##x,_n10##y,z,v)), \ |
philpem@5 | 8423 | (I[527] = (img)(_n10##x,_n11##y,z,v)), \ |
philpem@5 | 8424 | x+11>=(int)((img).width)?(int)((img).width)-1:x+11); \ |
philpem@5 | 8425 | x<=(int)(x1) && ((_n11##x<(int)((img).width) && ( \ |
philpem@5 | 8426 | (I[22] = (img)(_n11##x,_p11##y,z,v)), \ |
philpem@5 | 8427 | (I[45] = (img)(_n11##x,_p10##y,z,v)), \ |
philpem@5 | 8428 | (I[68] = (img)(_n11##x,_p9##y,z,v)), \ |
philpem@5 | 8429 | (I[91] = (img)(_n11##x,_p8##y,z,v)), \ |
philpem@5 | 8430 | (I[114] = (img)(_n11##x,_p7##y,z,v)), \ |
philpem@5 | 8431 | (I[137] = (img)(_n11##x,_p6##y,z,v)), \ |
philpem@5 | 8432 | (I[160] = (img)(_n11##x,_p5##y,z,v)), \ |
philpem@5 | 8433 | (I[183] = (img)(_n11##x,_p4##y,z,v)), \ |
philpem@5 | 8434 | (I[206] = (img)(_n11##x,_p3##y,z,v)), \ |
philpem@5 | 8435 | (I[229] = (img)(_n11##x,_p2##y,z,v)), \ |
philpem@5 | 8436 | (I[252] = (img)(_n11##x,_p1##y,z,v)), \ |
philpem@5 | 8437 | (I[275] = (img)(_n11##x,y,z,v)), \ |
philpem@5 | 8438 | (I[298] = (img)(_n11##x,_n1##y,z,v)), \ |
philpem@5 | 8439 | (I[321] = (img)(_n11##x,_n2##y,z,v)), \ |
philpem@5 | 8440 | (I[344] = (img)(_n11##x,_n3##y,z,v)), \ |
philpem@5 | 8441 | (I[367] = (img)(_n11##x,_n4##y,z,v)), \ |
philpem@5 | 8442 | (I[390] = (img)(_n11##x,_n5##y,z,v)), \ |
philpem@5 | 8443 | (I[413] = (img)(_n11##x,_n6##y,z,v)), \ |
philpem@5 | 8444 | (I[436] = (img)(_n11##x,_n7##y,z,v)), \ |
philpem@5 | 8445 | (I[459] = (img)(_n11##x,_n8##y,z,v)), \ |
philpem@5 | 8446 | (I[482] = (img)(_n11##x,_n9##y,z,v)), \ |
philpem@5 | 8447 | (I[505] = (img)(_n11##x,_n10##y,z,v)), \ |
philpem@5 | 8448 | (I[528] = (img)(_n11##x,_n11##y,z,v)),1)) || \ |
philpem@5 | 8449 | _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \ |
philpem@5 | 8450 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], \ |
philpem@5 | 8451 | I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], \ |
philpem@5 | 8452 | I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], \ |
philpem@5 | 8453 | I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], \ |
philpem@5 | 8454 | I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], \ |
philpem@5 | 8455 | I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], \ |
philpem@5 | 8456 | I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], \ |
philpem@5 | 8457 | I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], \ |
philpem@5 | 8458 | I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], \ |
philpem@5 | 8459 | I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], \ |
philpem@5 | 8460 | I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], \ |
philpem@5 | 8461 | I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], \ |
philpem@5 | 8462 | I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], \ |
philpem@5 | 8463 | I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], \ |
philpem@5 | 8464 | I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], \ |
philpem@5 | 8465 | I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], \ |
philpem@5 | 8466 | I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], \ |
philpem@5 | 8467 | I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], \ |
philpem@5 | 8468 | I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], \ |
philpem@5 | 8469 | I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], \ |
philpem@5 | 8470 | I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], \ |
philpem@5 | 8471 | I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], \ |
philpem@5 | 8472 | I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], \ |
philpem@5 | 8473 | _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x) |
philpem@5 | 8474 | |
philpem@5 | 8475 | #define cimg_get23x23(img,x,y,z,v,I) \ |
philpem@5 | 8476 | I[0] = (img)(_p11##x,_p11##y,z,v), I[1] = (img)(_p10##x,_p11##y,z,v), I[2] = (img)(_p9##x,_p11##y,z,v), I[3] = (img)(_p8##x,_p11##y,z,v), I[4] = (img)(_p7##x,_p11##y,z,v), I[5] = (img)(_p6##x,_p11##y,z,v), I[6] = (img)(_p5##x,_p11##y,z,v), I[7] = (img)(_p4##x,_p11##y,z,v), I[8] = (img)(_p3##x,_p11##y,z,v), I[9] = (img)(_p2##x,_p11##y,z,v), I[10] = (img)(_p1##x,_p11##y,z,v), I[11] = (img)(x,_p11##y,z,v), I[12] = (img)(_n1##x,_p11##y,z,v), I[13] = (img)(_n2##x,_p11##y,z,v), I[14] = (img)(_n3##x,_p11##y,z,v), I[15] = (img)(_n4##x,_p11##y,z,v), I[16] = (img)(_n5##x,_p11##y,z,v), I[17] = (img)(_n6##x,_p11##y,z,v), I[18] = (img)(_n7##x,_p11##y,z,v), I[19] = (img)(_n8##x,_p11##y,z,v), I[20] = (img)(_n9##x,_p11##y,z,v), I[21] = (img)(_n10##x,_p11##y,z,v), I[22] = (img)(_n11##x,_p11##y,z,v), \ |
philpem@5 | 8477 | I[23] = (img)(_p11##x,_p10##y,z,v), I[24] = (img)(_p10##x,_p10##y,z,v), I[25] = (img)(_p9##x,_p10##y,z,v), I[26] = (img)(_p8##x,_p10##y,z,v), I[27] = (img)(_p7##x,_p10##y,z,v), I[28] = (img)(_p6##x,_p10##y,z,v), I[29] = (img)(_p5##x,_p10##y,z,v), I[30] = (img)(_p4##x,_p10##y,z,v), I[31] = (img)(_p3##x,_p10##y,z,v), I[32] = (img)(_p2##x,_p10##y,z,v), I[33] = (img)(_p1##x,_p10##y,z,v), I[34] = (img)(x,_p10##y,z,v), I[35] = (img)(_n1##x,_p10##y,z,v), I[36] = (img)(_n2##x,_p10##y,z,v), I[37] = (img)(_n3##x,_p10##y,z,v), I[38] = (img)(_n4##x,_p10##y,z,v), I[39] = (img)(_n5##x,_p10##y,z,v), I[40] = (img)(_n6##x,_p10##y,z,v), I[41] = (img)(_n7##x,_p10##y,z,v), I[42] = (img)(_n8##x,_p10##y,z,v), I[43] = (img)(_n9##x,_p10##y,z,v), I[44] = (img)(_n10##x,_p10##y,z,v), I[45] = (img)(_n11##x,_p10##y,z,v), \ |
philpem@5 | 8478 | I[46] = (img)(_p11##x,_p9##y,z,v), I[47] = (img)(_p10##x,_p9##y,z,v), I[48] = (img)(_p9##x,_p9##y,z,v), I[49] = (img)(_p8##x,_p9##y,z,v), I[50] = (img)(_p7##x,_p9##y,z,v), I[51] = (img)(_p6##x,_p9##y,z,v), I[52] = (img)(_p5##x,_p9##y,z,v), I[53] = (img)(_p4##x,_p9##y,z,v), I[54] = (img)(_p3##x,_p9##y,z,v), I[55] = (img)(_p2##x,_p9##y,z,v), I[56] = (img)(_p1##x,_p9##y,z,v), I[57] = (img)(x,_p9##y,z,v), I[58] = (img)(_n1##x,_p9##y,z,v), I[59] = (img)(_n2##x,_p9##y,z,v), I[60] = (img)(_n3##x,_p9##y,z,v), I[61] = (img)(_n4##x,_p9##y,z,v), I[62] = (img)(_n5##x,_p9##y,z,v), I[63] = (img)(_n6##x,_p9##y,z,v), I[64] = (img)(_n7##x,_p9##y,z,v), I[65] = (img)(_n8##x,_p9##y,z,v), I[66] = (img)(_n9##x,_p9##y,z,v), I[67] = (img)(_n10##x,_p9##y,z,v), I[68] = (img)(_n11##x,_p9##y,z,v), \ |
philpem@5 | 8479 | I[69] = (img)(_p11##x,_p8##y,z,v), I[70] = (img)(_p10##x,_p8##y,z,v), I[71] = (img)(_p9##x,_p8##y,z,v), I[72] = (img)(_p8##x,_p8##y,z,v), I[73] = (img)(_p7##x,_p8##y,z,v), I[74] = (img)(_p6##x,_p8##y,z,v), I[75] = (img)(_p5##x,_p8##y,z,v), I[76] = (img)(_p4##x,_p8##y,z,v), I[77] = (img)(_p3##x,_p8##y,z,v), I[78] = (img)(_p2##x,_p8##y,z,v), I[79] = (img)(_p1##x,_p8##y,z,v), I[80] = (img)(x,_p8##y,z,v), I[81] = (img)(_n1##x,_p8##y,z,v), I[82] = (img)(_n2##x,_p8##y,z,v), I[83] = (img)(_n3##x,_p8##y,z,v), I[84] = (img)(_n4##x,_p8##y,z,v), I[85] = (img)(_n5##x,_p8##y,z,v), I[86] = (img)(_n6##x,_p8##y,z,v), I[87] = (img)(_n7##x,_p8##y,z,v), I[88] = (img)(_n8##x,_p8##y,z,v), I[89] = (img)(_n9##x,_p8##y,z,v), I[90] = (img)(_n10##x,_p8##y,z,v), I[91] = (img)(_n11##x,_p8##y,z,v), \ |
philpem@5 | 8480 | I[92] = (img)(_p11##x,_p7##y,z,v), I[93] = (img)(_p10##x,_p7##y,z,v), I[94] = (img)(_p9##x,_p7##y,z,v), I[95] = (img)(_p8##x,_p7##y,z,v), I[96] = (img)(_p7##x,_p7##y,z,v), I[97] = (img)(_p6##x,_p7##y,z,v), I[98] = (img)(_p5##x,_p7##y,z,v), I[99] = (img)(_p4##x,_p7##y,z,v), I[100] = (img)(_p3##x,_p7##y,z,v), I[101] = (img)(_p2##x,_p7##y,z,v), I[102] = (img)(_p1##x,_p7##y,z,v), I[103] = (img)(x,_p7##y,z,v), I[104] = (img)(_n1##x,_p7##y,z,v), I[105] = (img)(_n2##x,_p7##y,z,v), I[106] = (img)(_n3##x,_p7##y,z,v), I[107] = (img)(_n4##x,_p7##y,z,v), I[108] = (img)(_n5##x,_p7##y,z,v), I[109] = (img)(_n6##x,_p7##y,z,v), I[110] = (img)(_n7##x,_p7##y,z,v), I[111] = (img)(_n8##x,_p7##y,z,v), I[112] = (img)(_n9##x,_p7##y,z,v), I[113] = (img)(_n10##x,_p7##y,z,v), I[114] = (img)(_n11##x,_p7##y,z,v), \ |
philpem@5 | 8481 | I[115] = (img)(_p11##x,_p6##y,z,v), I[116] = (img)(_p10##x,_p6##y,z,v), I[117] = (img)(_p9##x,_p6##y,z,v), I[118] = (img)(_p8##x,_p6##y,z,v), I[119] = (img)(_p7##x,_p6##y,z,v), I[120] = (img)(_p6##x,_p6##y,z,v), I[121] = (img)(_p5##x,_p6##y,z,v), I[122] = (img)(_p4##x,_p6##y,z,v), I[123] = (img)(_p3##x,_p6##y,z,v), I[124] = (img)(_p2##x,_p6##y,z,v), I[125] = (img)(_p1##x,_p6##y,z,v), I[126] = (img)(x,_p6##y,z,v), I[127] = (img)(_n1##x,_p6##y,z,v), I[128] = (img)(_n2##x,_p6##y,z,v), I[129] = (img)(_n3##x,_p6##y,z,v), I[130] = (img)(_n4##x,_p6##y,z,v), I[131] = (img)(_n5##x,_p6##y,z,v), I[132] = (img)(_n6##x,_p6##y,z,v), I[133] = (img)(_n7##x,_p6##y,z,v), I[134] = (img)(_n8##x,_p6##y,z,v), I[135] = (img)(_n9##x,_p6##y,z,v), I[136] = (img)(_n10##x,_p6##y,z,v), I[137] = (img)(_n11##x,_p6##y,z,v), \ |
philpem@5 | 8482 | I[138] = (img)(_p11##x,_p5##y,z,v), I[139] = (img)(_p10##x,_p5##y,z,v), I[140] = (img)(_p9##x,_p5##y,z,v), I[141] = (img)(_p8##x,_p5##y,z,v), I[142] = (img)(_p7##x,_p5##y,z,v), I[143] = (img)(_p6##x,_p5##y,z,v), I[144] = (img)(_p5##x,_p5##y,z,v), I[145] = (img)(_p4##x,_p5##y,z,v), I[146] = (img)(_p3##x,_p5##y,z,v), I[147] = (img)(_p2##x,_p5##y,z,v), I[148] = (img)(_p1##x,_p5##y,z,v), I[149] = (img)(x,_p5##y,z,v), I[150] = (img)(_n1##x,_p5##y,z,v), I[151] = (img)(_n2##x,_p5##y,z,v), I[152] = (img)(_n3##x,_p5##y,z,v), I[153] = (img)(_n4##x,_p5##y,z,v), I[154] = (img)(_n5##x,_p5##y,z,v), I[155] = (img)(_n6##x,_p5##y,z,v), I[156] = (img)(_n7##x,_p5##y,z,v), I[157] = (img)(_n8##x,_p5##y,z,v), I[158] = (img)(_n9##x,_p5##y,z,v), I[159] = (img)(_n10##x,_p5##y,z,v), I[160] = (img)(_n11##x,_p5##y,z,v), \ |
philpem@5 | 8483 | I[161] = (img)(_p11##x,_p4##y,z,v), I[162] = (img)(_p10##x,_p4##y,z,v), I[163] = (img)(_p9##x,_p4##y,z,v), I[164] = (img)(_p8##x,_p4##y,z,v), I[165] = (img)(_p7##x,_p4##y,z,v), I[166] = (img)(_p6##x,_p4##y,z,v), I[167] = (img)(_p5##x,_p4##y,z,v), I[168] = (img)(_p4##x,_p4##y,z,v), I[169] = (img)(_p3##x,_p4##y,z,v), I[170] = (img)(_p2##x,_p4##y,z,v), I[171] = (img)(_p1##x,_p4##y,z,v), I[172] = (img)(x,_p4##y,z,v), I[173] = (img)(_n1##x,_p4##y,z,v), I[174] = (img)(_n2##x,_p4##y,z,v), I[175] = (img)(_n3##x,_p4##y,z,v), I[176] = (img)(_n4##x,_p4##y,z,v), I[177] = (img)(_n5##x,_p4##y,z,v), I[178] = (img)(_n6##x,_p4##y,z,v), I[179] = (img)(_n7##x,_p4##y,z,v), I[180] = (img)(_n8##x,_p4##y,z,v), I[181] = (img)(_n9##x,_p4##y,z,v), I[182] = (img)(_n10##x,_p4##y,z,v), I[183] = (img)(_n11##x,_p4##y,z,v), \ |
philpem@5 | 8484 | I[184] = (img)(_p11##x,_p3##y,z,v), I[185] = (img)(_p10##x,_p3##y,z,v), I[186] = (img)(_p9##x,_p3##y,z,v), I[187] = (img)(_p8##x,_p3##y,z,v), I[188] = (img)(_p7##x,_p3##y,z,v), I[189] = (img)(_p6##x,_p3##y,z,v), I[190] = (img)(_p5##x,_p3##y,z,v), I[191] = (img)(_p4##x,_p3##y,z,v), I[192] = (img)(_p3##x,_p3##y,z,v), I[193] = (img)(_p2##x,_p3##y,z,v), I[194] = (img)(_p1##x,_p3##y,z,v), I[195] = (img)(x,_p3##y,z,v), I[196] = (img)(_n1##x,_p3##y,z,v), I[197] = (img)(_n2##x,_p3##y,z,v), I[198] = (img)(_n3##x,_p3##y,z,v), I[199] = (img)(_n4##x,_p3##y,z,v), I[200] = (img)(_n5##x,_p3##y,z,v), I[201] = (img)(_n6##x,_p3##y,z,v), I[202] = (img)(_n7##x,_p3##y,z,v), I[203] = (img)(_n8##x,_p3##y,z,v), I[204] = (img)(_n9##x,_p3##y,z,v), I[205] = (img)(_n10##x,_p3##y,z,v), I[206] = (img)(_n11##x,_p3##y,z,v), \ |
philpem@5 | 8485 | I[207] = (img)(_p11##x,_p2##y,z,v), I[208] = (img)(_p10##x,_p2##y,z,v), I[209] = (img)(_p9##x,_p2##y,z,v), I[210] = (img)(_p8##x,_p2##y,z,v), I[211] = (img)(_p7##x,_p2##y,z,v), I[212] = (img)(_p6##x,_p2##y,z,v), I[213] = (img)(_p5##x,_p2##y,z,v), I[214] = (img)(_p4##x,_p2##y,z,v), I[215] = (img)(_p3##x,_p2##y,z,v), I[216] = (img)(_p2##x,_p2##y,z,v), I[217] = (img)(_p1##x,_p2##y,z,v), I[218] = (img)(x,_p2##y,z,v), I[219] = (img)(_n1##x,_p2##y,z,v), I[220] = (img)(_n2##x,_p2##y,z,v), I[221] = (img)(_n3##x,_p2##y,z,v), I[222] = (img)(_n4##x,_p2##y,z,v), I[223] = (img)(_n5##x,_p2##y,z,v), I[224] = (img)(_n6##x,_p2##y,z,v), I[225] = (img)(_n7##x,_p2##y,z,v), I[226] = (img)(_n8##x,_p2##y,z,v), I[227] = (img)(_n9##x,_p2##y,z,v), I[228] = (img)(_n10##x,_p2##y,z,v), I[229] = (img)(_n11##x,_p2##y,z,v), \ |
philpem@5 | 8486 | I[230] = (img)(_p11##x,_p1##y,z,v), I[231] = (img)(_p10##x,_p1##y,z,v), I[232] = (img)(_p9##x,_p1##y,z,v), I[233] = (img)(_p8##x,_p1##y,z,v), I[234] = (img)(_p7##x,_p1##y,z,v), I[235] = (img)(_p6##x,_p1##y,z,v), I[236] = (img)(_p5##x,_p1##y,z,v), I[237] = (img)(_p4##x,_p1##y,z,v), I[238] = (img)(_p3##x,_p1##y,z,v), I[239] = (img)(_p2##x,_p1##y,z,v), I[240] = (img)(_p1##x,_p1##y,z,v), I[241] = (img)(x,_p1##y,z,v), I[242] = (img)(_n1##x,_p1##y,z,v), I[243] = (img)(_n2##x,_p1##y,z,v), I[244] = (img)(_n3##x,_p1##y,z,v), I[245] = (img)(_n4##x,_p1##y,z,v), I[246] = (img)(_n5##x,_p1##y,z,v), I[247] = (img)(_n6##x,_p1##y,z,v), I[248] = (img)(_n7##x,_p1##y,z,v), I[249] = (img)(_n8##x,_p1##y,z,v), I[250] = (img)(_n9##x,_p1##y,z,v), I[251] = (img)(_n10##x,_p1##y,z,v), I[252] = (img)(_n11##x,_p1##y,z,v), \ |
philpem@5 | 8487 | I[253] = (img)(_p11##x,y,z,v), I[254] = (img)(_p10##x,y,z,v), I[255] = (img)(_p9##x,y,z,v), I[256] = (img)(_p8##x,y,z,v), I[257] = (img)(_p7##x,y,z,v), I[258] = (img)(_p6##x,y,z,v), I[259] = (img)(_p5##x,y,z,v), I[260] = (img)(_p4##x,y,z,v), I[261] = (img)(_p3##x,y,z,v), I[262] = (img)(_p2##x,y,z,v), I[263] = (img)(_p1##x,y,z,v), I[264] = (img)(x,y,z,v), I[265] = (img)(_n1##x,y,z,v), I[266] = (img)(_n2##x,y,z,v), I[267] = (img)(_n3##x,y,z,v), I[268] = (img)(_n4##x,y,z,v), I[269] = (img)(_n5##x,y,z,v), I[270] = (img)(_n6##x,y,z,v), I[271] = (img)(_n7##x,y,z,v), I[272] = (img)(_n8##x,y,z,v), I[273] = (img)(_n9##x,y,z,v), I[274] = (img)(_n10##x,y,z,v), I[275] = (img)(_n11##x,y,z,v), \ |
philpem@5 | 8488 | I[276] = (img)(_p11##x,_n1##y,z,v), I[277] = (img)(_p10##x,_n1##y,z,v), I[278] = (img)(_p9##x,_n1##y,z,v), I[279] = (img)(_p8##x,_n1##y,z,v), I[280] = (img)(_p7##x,_n1##y,z,v), I[281] = (img)(_p6##x,_n1##y,z,v), I[282] = (img)(_p5##x,_n1##y,z,v), I[283] = (img)(_p4##x,_n1##y,z,v), I[284] = (img)(_p3##x,_n1##y,z,v), I[285] = (img)(_p2##x,_n1##y,z,v), I[286] = (img)(_p1##x,_n1##y,z,v), I[287] = (img)(x,_n1##y,z,v), I[288] = (img)(_n1##x,_n1##y,z,v), I[289] = (img)(_n2##x,_n1##y,z,v), I[290] = (img)(_n3##x,_n1##y,z,v), I[291] = (img)(_n4##x,_n1##y,z,v), I[292] = (img)(_n5##x,_n1##y,z,v), I[293] = (img)(_n6##x,_n1##y,z,v), I[294] = (img)(_n7##x,_n1##y,z,v), I[295] = (img)(_n8##x,_n1##y,z,v), I[296] = (img)(_n9##x,_n1##y,z,v), I[297] = (img)(_n10##x,_n1##y,z,v), I[298] = (img)(_n11##x,_n1##y,z,v), \ |
philpem@5 | 8489 | I[299] = (img)(_p11##x,_n2##y,z,v), I[300] = (img)(_p10##x,_n2##y,z,v), I[301] = (img)(_p9##x,_n2##y,z,v), I[302] = (img)(_p8##x,_n2##y,z,v), I[303] = (img)(_p7##x,_n2##y,z,v), I[304] = (img)(_p6##x,_n2##y,z,v), I[305] = (img)(_p5##x,_n2##y,z,v), I[306] = (img)(_p4##x,_n2##y,z,v), I[307] = (img)(_p3##x,_n2##y,z,v), I[308] = (img)(_p2##x,_n2##y,z,v), I[309] = (img)(_p1##x,_n2##y,z,v), I[310] = (img)(x,_n2##y,z,v), I[311] = (img)(_n1##x,_n2##y,z,v), I[312] = (img)(_n2##x,_n2##y,z,v), I[313] = (img)(_n3##x,_n2##y,z,v), I[314] = (img)(_n4##x,_n2##y,z,v), I[315] = (img)(_n5##x,_n2##y,z,v), I[316] = (img)(_n6##x,_n2##y,z,v), I[317] = (img)(_n7##x,_n2##y,z,v), I[318] = (img)(_n8##x,_n2##y,z,v), I[319] = (img)(_n9##x,_n2##y,z,v), I[320] = (img)(_n10##x,_n2##y,z,v), I[321] = (img)(_n11##x,_n2##y,z,v), \ |
philpem@5 | 8490 | I[322] = (img)(_p11##x,_n3##y,z,v), I[323] = (img)(_p10##x,_n3##y,z,v), I[324] = (img)(_p9##x,_n3##y,z,v), I[325] = (img)(_p8##x,_n3##y,z,v), I[326] = (img)(_p7##x,_n3##y,z,v), I[327] = (img)(_p6##x,_n3##y,z,v), I[328] = (img)(_p5##x,_n3##y,z,v), I[329] = (img)(_p4##x,_n3##y,z,v), I[330] = (img)(_p3##x,_n3##y,z,v), I[331] = (img)(_p2##x,_n3##y,z,v), I[332] = (img)(_p1##x,_n3##y,z,v), I[333] = (img)(x,_n3##y,z,v), I[334] = (img)(_n1##x,_n3##y,z,v), I[335] = (img)(_n2##x,_n3##y,z,v), I[336] = (img)(_n3##x,_n3##y,z,v), I[337] = (img)(_n4##x,_n3##y,z,v), I[338] = (img)(_n5##x,_n3##y,z,v), I[339] = (img)(_n6##x,_n3##y,z,v), I[340] = (img)(_n7##x,_n3##y,z,v), I[341] = (img)(_n8##x,_n3##y,z,v), I[342] = (img)(_n9##x,_n3##y,z,v), I[343] = (img)(_n10##x,_n3##y,z,v), I[344] = (img)(_n11##x,_n3##y,z,v), \ |
philpem@5 | 8491 | I[345] = (img)(_p11##x,_n4##y,z,v), I[346] = (img)(_p10##x,_n4##y,z,v), I[347] = (img)(_p9##x,_n4##y,z,v), I[348] = (img)(_p8##x,_n4##y,z,v), I[349] = (img)(_p7##x,_n4##y,z,v), I[350] = (img)(_p6##x,_n4##y,z,v), I[351] = (img)(_p5##x,_n4##y,z,v), I[352] = (img)(_p4##x,_n4##y,z,v), I[353] = (img)(_p3##x,_n4##y,z,v), I[354] = (img)(_p2##x,_n4##y,z,v), I[355] = (img)(_p1##x,_n4##y,z,v), I[356] = (img)(x,_n4##y,z,v), I[357] = (img)(_n1##x,_n4##y,z,v), I[358] = (img)(_n2##x,_n4##y,z,v), I[359] = (img)(_n3##x,_n4##y,z,v), I[360] = (img)(_n4##x,_n4##y,z,v), I[361] = (img)(_n5##x,_n4##y,z,v), I[362] = (img)(_n6##x,_n4##y,z,v), I[363] = (img)(_n7##x,_n4##y,z,v), I[364] = (img)(_n8##x,_n4##y,z,v), I[365] = (img)(_n9##x,_n4##y,z,v), I[366] = (img)(_n10##x,_n4##y,z,v), I[367] = (img)(_n11##x,_n4##y,z,v), \ |
philpem@5 | 8492 | I[368] = (img)(_p11##x,_n5##y,z,v), I[369] = (img)(_p10##x,_n5##y,z,v), I[370] = (img)(_p9##x,_n5##y,z,v), I[371] = (img)(_p8##x,_n5##y,z,v), I[372] = (img)(_p7##x,_n5##y,z,v), I[373] = (img)(_p6##x,_n5##y,z,v), I[374] = (img)(_p5##x,_n5##y,z,v), I[375] = (img)(_p4##x,_n5##y,z,v), I[376] = (img)(_p3##x,_n5##y,z,v), I[377] = (img)(_p2##x,_n5##y,z,v), I[378] = (img)(_p1##x,_n5##y,z,v), I[379] = (img)(x,_n5##y,z,v), I[380] = (img)(_n1##x,_n5##y,z,v), I[381] = (img)(_n2##x,_n5##y,z,v), I[382] = (img)(_n3##x,_n5##y,z,v), I[383] = (img)(_n4##x,_n5##y,z,v), I[384] = (img)(_n5##x,_n5##y,z,v), I[385] = (img)(_n6##x,_n5##y,z,v), I[386] = (img)(_n7##x,_n5##y,z,v), I[387] = (img)(_n8##x,_n5##y,z,v), I[388] = (img)(_n9##x,_n5##y,z,v), I[389] = (img)(_n10##x,_n5##y,z,v), I[390] = (img)(_n11##x,_n5##y,z,v), \ |
philpem@5 | 8493 | I[391] = (img)(_p11##x,_n6##y,z,v), I[392] = (img)(_p10##x,_n6##y,z,v), I[393] = (img)(_p9##x,_n6##y,z,v), I[394] = (img)(_p8##x,_n6##y,z,v), I[395] = (img)(_p7##x,_n6##y,z,v), I[396] = (img)(_p6##x,_n6##y,z,v), I[397] = (img)(_p5##x,_n6##y,z,v), I[398] = (img)(_p4##x,_n6##y,z,v), I[399] = (img)(_p3##x,_n6##y,z,v), I[400] = (img)(_p2##x,_n6##y,z,v), I[401] = (img)(_p1##x,_n6##y,z,v), I[402] = (img)(x,_n6##y,z,v), I[403] = (img)(_n1##x,_n6##y,z,v), I[404] = (img)(_n2##x,_n6##y,z,v), I[405] = (img)(_n3##x,_n6##y,z,v), I[406] = (img)(_n4##x,_n6##y,z,v), I[407] = (img)(_n5##x,_n6##y,z,v), I[408] = (img)(_n6##x,_n6##y,z,v), I[409] = (img)(_n7##x,_n6##y,z,v), I[410] = (img)(_n8##x,_n6##y,z,v), I[411] = (img)(_n9##x,_n6##y,z,v), I[412] = (img)(_n10##x,_n6##y,z,v), I[413] = (img)(_n11##x,_n6##y,z,v), \ |
philpem@5 | 8494 | I[414] = (img)(_p11##x,_n7##y,z,v), I[415] = (img)(_p10##x,_n7##y,z,v), I[416] = (img)(_p9##x,_n7##y,z,v), I[417] = (img)(_p8##x,_n7##y,z,v), I[418] = (img)(_p7##x,_n7##y,z,v), I[419] = (img)(_p6##x,_n7##y,z,v), I[420] = (img)(_p5##x,_n7##y,z,v), I[421] = (img)(_p4##x,_n7##y,z,v), I[422] = (img)(_p3##x,_n7##y,z,v), I[423] = (img)(_p2##x,_n7##y,z,v), I[424] = (img)(_p1##x,_n7##y,z,v), I[425] = (img)(x,_n7##y,z,v), I[426] = (img)(_n1##x,_n7##y,z,v), I[427] = (img)(_n2##x,_n7##y,z,v), I[428] = (img)(_n3##x,_n7##y,z,v), I[429] = (img)(_n4##x,_n7##y,z,v), I[430] = (img)(_n5##x,_n7##y,z,v), I[431] = (img)(_n6##x,_n7##y,z,v), I[432] = (img)(_n7##x,_n7##y,z,v), I[433] = (img)(_n8##x,_n7##y,z,v), I[434] = (img)(_n9##x,_n7##y,z,v), I[435] = (img)(_n10##x,_n7##y,z,v), I[436] = (img)(_n11##x,_n7##y,z,v), \ |
philpem@5 | 8495 | I[437] = (img)(_p11##x,_n8##y,z,v), I[438] = (img)(_p10##x,_n8##y,z,v), I[439] = (img)(_p9##x,_n8##y,z,v), I[440] = (img)(_p8##x,_n8##y,z,v), I[441] = (img)(_p7##x,_n8##y,z,v), I[442] = (img)(_p6##x,_n8##y,z,v), I[443] = (img)(_p5##x,_n8##y,z,v), I[444] = (img)(_p4##x,_n8##y,z,v), I[445] = (img)(_p3##x,_n8##y,z,v), I[446] = (img)(_p2##x,_n8##y,z,v), I[447] = (img)(_p1##x,_n8##y,z,v), I[448] = (img)(x,_n8##y,z,v), I[449] = (img)(_n1##x,_n8##y,z,v), I[450] = (img)(_n2##x,_n8##y,z,v), I[451] = (img)(_n3##x,_n8##y,z,v), I[452] = (img)(_n4##x,_n8##y,z,v), I[453] = (img)(_n5##x,_n8##y,z,v), I[454] = (img)(_n6##x,_n8##y,z,v), I[455] = (img)(_n7##x,_n8##y,z,v), I[456] = (img)(_n8##x,_n8##y,z,v), I[457] = (img)(_n9##x,_n8##y,z,v), I[458] = (img)(_n10##x,_n8##y,z,v), I[459] = (img)(_n11##x,_n8##y,z,v), \ |
philpem@5 | 8496 | I[460] = (img)(_p11##x,_n9##y,z,v), I[461] = (img)(_p10##x,_n9##y,z,v), I[462] = (img)(_p9##x,_n9##y,z,v), I[463] = (img)(_p8##x,_n9##y,z,v), I[464] = (img)(_p7##x,_n9##y,z,v), I[465] = (img)(_p6##x,_n9##y,z,v), I[466] = (img)(_p5##x,_n9##y,z,v), I[467] = (img)(_p4##x,_n9##y,z,v), I[468] = (img)(_p3##x,_n9##y,z,v), I[469] = (img)(_p2##x,_n9##y,z,v), I[470] = (img)(_p1##x,_n9##y,z,v), I[471] = (img)(x,_n9##y,z,v), I[472] = (img)(_n1##x,_n9##y,z,v), I[473] = (img)(_n2##x,_n9##y,z,v), I[474] = (img)(_n3##x,_n9##y,z,v), I[475] = (img)(_n4##x,_n9##y,z,v), I[476] = (img)(_n5##x,_n9##y,z,v), I[477] = (img)(_n6##x,_n9##y,z,v), I[478] = (img)(_n7##x,_n9##y,z,v), I[479] = (img)(_n8##x,_n9##y,z,v), I[480] = (img)(_n9##x,_n9##y,z,v), I[481] = (img)(_n10##x,_n9##y,z,v), I[482] = (img)(_n11##x,_n9##y,z,v), \ |
philpem@5 | 8497 | I[483] = (img)(_p11##x,_n10##y,z,v), I[484] = (img)(_p10##x,_n10##y,z,v), I[485] = (img)(_p9##x,_n10##y,z,v), I[486] = (img)(_p8##x,_n10##y,z,v), I[487] = (img)(_p7##x,_n10##y,z,v), I[488] = (img)(_p6##x,_n10##y,z,v), I[489] = (img)(_p5##x,_n10##y,z,v), I[490] = (img)(_p4##x,_n10##y,z,v), I[491] = (img)(_p3##x,_n10##y,z,v), I[492] = (img)(_p2##x,_n10##y,z,v), I[493] = (img)(_p1##x,_n10##y,z,v), I[494] = (img)(x,_n10##y,z,v), I[495] = (img)(_n1##x,_n10##y,z,v), I[496] = (img)(_n2##x,_n10##y,z,v), I[497] = (img)(_n3##x,_n10##y,z,v), I[498] = (img)(_n4##x,_n10##y,z,v), I[499] = (img)(_n5##x,_n10##y,z,v), I[500] = (img)(_n6##x,_n10##y,z,v), I[501] = (img)(_n7##x,_n10##y,z,v), I[502] = (img)(_n8##x,_n10##y,z,v), I[503] = (img)(_n9##x,_n10##y,z,v), I[504] = (img)(_n10##x,_n10##y,z,v), I[505] = (img)(_n11##x,_n10##y,z,v), \ |
philpem@5 | 8498 | I[506] = (img)(_p11##x,_n11##y,z,v), I[507] = (img)(_p10##x,_n11##y,z,v), I[508] = (img)(_p9##x,_n11##y,z,v), I[509] = (img)(_p8##x,_n11##y,z,v), I[510] = (img)(_p7##x,_n11##y,z,v), I[511] = (img)(_p6##x,_n11##y,z,v), I[512] = (img)(_p5##x,_n11##y,z,v), I[513] = (img)(_p4##x,_n11##y,z,v), I[514] = (img)(_p3##x,_n11##y,z,v), I[515] = (img)(_p2##x,_n11##y,z,v), I[516] = (img)(_p1##x,_n11##y,z,v), I[517] = (img)(x,_n11##y,z,v), I[518] = (img)(_n1##x,_n11##y,z,v), I[519] = (img)(_n2##x,_n11##y,z,v), I[520] = (img)(_n3##x,_n11##y,z,v), I[521] = (img)(_n4##x,_n11##y,z,v), I[522] = (img)(_n5##x,_n11##y,z,v), I[523] = (img)(_n6##x,_n11##y,z,v), I[524] = (img)(_n7##x,_n11##y,z,v), I[525] = (img)(_n8##x,_n11##y,z,v), I[526] = (img)(_n9##x,_n11##y,z,v), I[527] = (img)(_n10##x,_n11##y,z,v), I[528] = (img)(_n11##x,_n11##y,z,v); |
philpem@5 | 8499 | |
philpem@5 | 8500 | // Define 24x24 loop macros for CImg |
philpem@5 | 8501 | //---------------------------------- |
philpem@5 | 8502 | #define cimg_for24(bound,i) for (int i = 0, \ |
philpem@5 | 8503 | _p11##i = 0, _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \ |
philpem@5 | 8504 | _n1##i = 1>=(int)(bound)?(int)(bound)-1:1, \ |
philpem@5 | 8505 | _n2##i = 2>=(int)(bound)?(int)(bound)-1:2, \ |
philpem@5 | 8506 | _n3##i = 3>=(int)(bound)?(int)(bound)-1:3, \ |
philpem@5 | 8507 | _n4##i = 4>=(int)(bound)?(int)(bound)-1:4, \ |
philpem@5 | 8508 | _n5##i = 5>=(int)(bound)?(int)(bound)-1:5, \ |
philpem@5 | 8509 | _n6##i = 6>=(int)(bound)?(int)(bound)-1:6, \ |
philpem@5 | 8510 | _n7##i = 7>=(int)(bound)?(int)(bound)-1:7, \ |
philpem@5 | 8511 | _n8##i = 8>=(int)(bound)?(int)(bound)-1:8, \ |
philpem@5 | 8512 | _n9##i = 9>=(int)(bound)?(int)(bound)-1:9, \ |
philpem@5 | 8513 | _n10##i = 10>=(int)(bound)?(int)(bound)-1:10, \ |
philpem@5 | 8514 | _n11##i = 11>=(int)(bound)?(int)(bound)-1:11, \ |
philpem@5 | 8515 | _n12##i = 12>=(int)(bound)?(int)(bound)-1:12; \ |
philpem@5 | 8516 | _n12##i<(int)(bound) || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 8517 | i==(_n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \ |
philpem@5 | 8518 | _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 8519 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i) |
philpem@5 | 8520 | |
philpem@5 | 8521 | #define cimg_for24X(img,x) cimg_for24((img).width,x) |
philpem@5 | 8522 | #define cimg_for24Y(img,y) cimg_for24((img).height,y) |
philpem@5 | 8523 | #define cimg_for24Z(img,z) cimg_for24((img).depth,z) |
philpem@5 | 8524 | #define cimg_for24V(img,v) cimg_for24((img).dim,v) |
philpem@5 | 8525 | #define cimg_for24XY(img,x,y) cimg_for24Y(img,y) cimg_for24X(img,x) |
philpem@5 | 8526 | #define cimg_for24XZ(img,x,z) cimg_for24Z(img,z) cimg_for24X(img,x) |
philpem@5 | 8527 | #define cimg_for24XV(img,x,v) cimg_for24V(img,v) cimg_for24X(img,x) |
philpem@5 | 8528 | #define cimg_for24YZ(img,y,z) cimg_for24Z(img,z) cimg_for24Y(img,y) |
philpem@5 | 8529 | #define cimg_for24YV(img,y,v) cimg_for24V(img,v) cimg_for24Y(img,y) |
philpem@5 | 8530 | #define cimg_for24ZV(img,z,v) cimg_for24V(img,v) cimg_for24Z(img,z) |
philpem@5 | 8531 | #define cimg_for24XYZ(img,x,y,z) cimg_for24Z(img,z) cimg_for24XY(img,x,y) |
philpem@5 | 8532 | #define cimg_for24XZV(img,x,z,v) cimg_for24V(img,v) cimg_for24XZ(img,x,z) |
philpem@5 | 8533 | #define cimg_for24YZV(img,y,z,v) cimg_for24V(img,v) cimg_for24YZ(img,y,z) |
philpem@5 | 8534 | #define cimg_for24XYZV(img,x,y,z,v) cimg_for24V(img,v) cimg_for24XYZ(img,x,y,z) |
philpem@5 | 8535 | |
philpem@5 | 8536 | #define cimg_for_in24(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \ |
philpem@5 | 8537 | _p11##i = i-11<0?0:i-11, \ |
philpem@5 | 8538 | _p10##i = i-10<0?0:i-10, \ |
philpem@5 | 8539 | _p9##i = i-9<0?0:i-9, \ |
philpem@5 | 8540 | _p8##i = i-8<0?0:i-8, \ |
philpem@5 | 8541 | _p7##i = i-7<0?0:i-7, \ |
philpem@5 | 8542 | _p6##i = i-6<0?0:i-6, \ |
philpem@5 | 8543 | _p5##i = i-5<0?0:i-5, \ |
philpem@5 | 8544 | _p4##i = i-4<0?0:i-4, \ |
philpem@5 | 8545 | _p3##i = i-3<0?0:i-3, \ |
philpem@5 | 8546 | _p2##i = i-2<0?0:i-2, \ |
philpem@5 | 8547 | _p1##i = i-1<0?0:i-1, \ |
philpem@5 | 8548 | _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \ |
philpem@5 | 8549 | _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \ |
philpem@5 | 8550 | _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \ |
philpem@5 | 8551 | _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4, \ |
philpem@5 | 8552 | _n5##i = i+5>=(int)(bound)?(int)(bound)-1:i+5, \ |
philpem@5 | 8553 | _n6##i = i+6>=(int)(bound)?(int)(bound)-1:i+6, \ |
philpem@5 | 8554 | _n7##i = i+7>=(int)(bound)?(int)(bound)-1:i+7, \ |
philpem@5 | 8555 | _n8##i = i+8>=(int)(bound)?(int)(bound)-1:i+8, \ |
philpem@5 | 8556 | _n9##i = i+9>=(int)(bound)?(int)(bound)-1:i+9, \ |
philpem@5 | 8557 | _n10##i = i+10>=(int)(bound)?(int)(bound)-1:i+10, \ |
philpem@5 | 8558 | _n11##i = i+11>=(int)(bound)?(int)(bound)-1:i+11, \ |
philpem@5 | 8559 | _n12##i = i+12>=(int)(bound)?(int)(bound)-1:i+12; \ |
philpem@5 | 8560 | i<=(int)(i1) && (_n12##i<(int)(bound) || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 8561 | i==(_n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \ |
philpem@5 | 8562 | _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 8563 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i) |
philpem@5 | 8564 | |
philpem@5 | 8565 | #define cimg_for_in24X(img,x0,x1,x) cimg_for_in24((img).width,x0,x1,x) |
philpem@5 | 8566 | #define cimg_for_in24Y(img,y0,y1,y) cimg_for_in24((img).height,y0,y1,y) |
philpem@5 | 8567 | #define cimg_for_in24Z(img,z0,z1,z) cimg_for_in24((img).depth,z0,z1,z) |
philpem@5 | 8568 | #define cimg_for_in24V(img,v0,v1,v) cimg_for_in24((img).dim,v0,v1,v) |
philpem@5 | 8569 | #define cimg_for_in24XY(img,x0,y0,x1,y1,x,y) cimg_for_in24Y(img,y0,y1,y) cimg_for_in24X(img,x0,x1,x) |
philpem@5 | 8570 | #define cimg_for_in24XZ(img,x0,z0,x1,z1,x,z) cimg_for_in24Z(img,z0,z1,z) cimg_for_in24X(img,x0,x1,x) |
philpem@5 | 8571 | #define cimg_for_in24XV(img,x0,v0,x1,v1,x,v) cimg_for_in24V(img,v0,v1,v) cimg_for_in24X(img,x0,x1,x) |
philpem@5 | 8572 | #define cimg_for_in24YZ(img,y0,z0,y1,z1,y,z) cimg_for_in24Z(img,z0,z1,z) cimg_for_in24Y(img,y0,y1,y) |
philpem@5 | 8573 | #define cimg_for_in24YV(img,y0,v0,y1,v1,y,v) cimg_for_in24V(img,v0,v1,v) cimg_for_in24Y(img,y0,y1,y) |
philpem@5 | 8574 | #define cimg_for_in24ZV(img,z0,v0,z1,v1,z,v) cimg_for_in24V(img,v0,v1,v) cimg_for_in24Z(img,z0,z1,z) |
philpem@5 | 8575 | #define cimg_for_in24XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in24Z(img,z0,z1,z) cimg_for_in24XY(img,x0,y0,x1,y1,x,y) |
philpem@5 | 8576 | #define cimg_for_in24XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in24V(img,v0,v1,v) cimg_for_in24XZ(img,x0,y0,x1,y1,x,z) |
philpem@5 | 8577 | #define cimg_for_in24YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in24V(img,v0,v1,v) cimg_for_in24YZ(img,y0,z0,y1,z1,y,z) |
philpem@5 | 8578 | #define cimg_for_in24XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in24V(img,v0,v1,v) cimg_for_in24XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) |
philpem@5 | 8579 | |
philpem@5 | 8580 | #define cimg_for24x24(img,x,y,z,v,I) \ |
philpem@5 | 8581 | cimg_for24((img).height,y) for (int x = 0, \ |
philpem@5 | 8582 | _p11##x = 0, _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \ |
philpem@5 | 8583 | _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \ |
philpem@5 | 8584 | _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \ |
philpem@5 | 8585 | _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \ |
philpem@5 | 8586 | _n4##x = 4>=((img).width)?(int)((img).width)-1:4, \ |
philpem@5 | 8587 | _n5##x = 5>=((img).width)?(int)((img).width)-1:5, \ |
philpem@5 | 8588 | _n6##x = 6>=((img).width)?(int)((img).width)-1:6, \ |
philpem@5 | 8589 | _n7##x = 7>=((img).width)?(int)((img).width)-1:7, \ |
philpem@5 | 8590 | _n8##x = 8>=((img).width)?(int)((img).width)-1:8, \ |
philpem@5 | 8591 | _n9##x = 9>=((img).width)?(int)((img).width)-1:9, \ |
philpem@5 | 8592 | _n10##x = 10>=((img).width)?(int)((img).width)-1:10, \ |
philpem@5 | 8593 | _n11##x = 11>=((img).width)?(int)((img).width)-1:11, \ |
philpem@5 | 8594 | _n12##x = (int)( \ |
philpem@5 | 8595 | (I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = I[11] = (img)(0,_p11##y,z,v)), \ |
philpem@5 | 8596 | (I[24] = I[25] = I[26] = I[27] = I[28] = I[29] = I[30] = I[31] = I[32] = I[33] = I[34] = I[35] = (img)(0,_p10##y,z,v)), \ |
philpem@5 | 8597 | (I[48] = I[49] = I[50] = I[51] = I[52] = I[53] = I[54] = I[55] = I[56] = I[57] = I[58] = I[59] = (img)(0,_p9##y,z,v)), \ |
philpem@5 | 8598 | (I[72] = I[73] = I[74] = I[75] = I[76] = I[77] = I[78] = I[79] = I[80] = I[81] = I[82] = I[83] = (img)(0,_p8##y,z,v)), \ |
philpem@5 | 8599 | (I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = I[104] = I[105] = I[106] = I[107] = (img)(0,_p7##y,z,v)), \ |
philpem@5 | 8600 | (I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = I[126] = I[127] = I[128] = I[129] = I[130] = I[131] = (img)(0,_p6##y,z,v)), \ |
philpem@5 | 8601 | (I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = I[150] = I[151] = I[152] = I[153] = I[154] = I[155] = (img)(0,_p5##y,z,v)), \ |
philpem@5 | 8602 | (I[168] = I[169] = I[170] = I[171] = I[172] = I[173] = I[174] = I[175] = I[176] = I[177] = I[178] = I[179] = (img)(0,_p4##y,z,v)), \ |
philpem@5 | 8603 | (I[192] = I[193] = I[194] = I[195] = I[196] = I[197] = I[198] = I[199] = I[200] = I[201] = I[202] = I[203] = (img)(0,_p3##y,z,v)), \ |
philpem@5 | 8604 | (I[216] = I[217] = I[218] = I[219] = I[220] = I[221] = I[222] = I[223] = I[224] = I[225] = I[226] = I[227] = (img)(0,_p2##y,z,v)), \ |
philpem@5 | 8605 | (I[240] = I[241] = I[242] = I[243] = I[244] = I[245] = I[246] = I[247] = I[248] = I[249] = I[250] = I[251] = (img)(0,_p1##y,z,v)), \ |
philpem@5 | 8606 | (I[264] = I[265] = I[266] = I[267] = I[268] = I[269] = I[270] = I[271] = I[272] = I[273] = I[274] = I[275] = (img)(0,y,z,v)), \ |
philpem@5 | 8607 | (I[288] = I[289] = I[290] = I[291] = I[292] = I[293] = I[294] = I[295] = I[296] = I[297] = I[298] = I[299] = (img)(0,_n1##y,z,v)), \ |
philpem@5 | 8608 | (I[312] = I[313] = I[314] = I[315] = I[316] = I[317] = I[318] = I[319] = I[320] = I[321] = I[322] = I[323] = (img)(0,_n2##y,z,v)), \ |
philpem@5 | 8609 | (I[336] = I[337] = I[338] = I[339] = I[340] = I[341] = I[342] = I[343] = I[344] = I[345] = I[346] = I[347] = (img)(0,_n3##y,z,v)), \ |
philpem@5 | 8610 | (I[360] = I[361] = I[362] = I[363] = I[364] = I[365] = I[366] = I[367] = I[368] = I[369] = I[370] = I[371] = (img)(0,_n4##y,z,v)), \ |
philpem@5 | 8611 | (I[384] = I[385] = I[386] = I[387] = I[388] = I[389] = I[390] = I[391] = I[392] = I[393] = I[394] = I[395] = (img)(0,_n5##y,z,v)), \ |
philpem@5 | 8612 | (I[408] = I[409] = I[410] = I[411] = I[412] = I[413] = I[414] = I[415] = I[416] = I[417] = I[418] = I[419] = (img)(0,_n6##y,z,v)), \ |
philpem@5 | 8613 | (I[432] = I[433] = I[434] = I[435] = I[436] = I[437] = I[438] = I[439] = I[440] = I[441] = I[442] = I[443] = (img)(0,_n7##y,z,v)), \ |
philpem@5 | 8614 | (I[456] = I[457] = I[458] = I[459] = I[460] = I[461] = I[462] = I[463] = I[464] = I[465] = I[466] = I[467] = (img)(0,_n8##y,z,v)), \ |
philpem@5 | 8615 | (I[480] = I[481] = I[482] = I[483] = I[484] = I[485] = I[486] = I[487] = I[488] = I[489] = I[490] = I[491] = (img)(0,_n9##y,z,v)), \ |
philpem@5 | 8616 | (I[504] = I[505] = I[506] = I[507] = I[508] = I[509] = I[510] = I[511] = I[512] = I[513] = I[514] = I[515] = (img)(0,_n10##y,z,v)), \ |
philpem@5 | 8617 | (I[528] = I[529] = I[530] = I[531] = I[532] = I[533] = I[534] = I[535] = I[536] = I[537] = I[538] = I[539] = (img)(0,_n11##y,z,v)), \ |
philpem@5 | 8618 | (I[552] = I[553] = I[554] = I[555] = I[556] = I[557] = I[558] = I[559] = I[560] = I[561] = I[562] = I[563] = (img)(0,_n12##y,z,v)), \ |
philpem@5 | 8619 | (I[12] = (img)(_n1##x,_p11##y,z,v)), \ |
philpem@5 | 8620 | (I[36] = (img)(_n1##x,_p10##y,z,v)), \ |
philpem@5 | 8621 | (I[60] = (img)(_n1##x,_p9##y,z,v)), \ |
philpem@5 | 8622 | (I[84] = (img)(_n1##x,_p8##y,z,v)), \ |
philpem@5 | 8623 | (I[108] = (img)(_n1##x,_p7##y,z,v)), \ |
philpem@5 | 8624 | (I[132] = (img)(_n1##x,_p6##y,z,v)), \ |
philpem@5 | 8625 | (I[156] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 8626 | (I[180] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 8627 | (I[204] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 8628 | (I[228] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 8629 | (I[252] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 8630 | (I[276] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 8631 | (I[300] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 8632 | (I[324] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 8633 | (I[348] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 8634 | (I[372] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 8635 | (I[396] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 8636 | (I[420] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 8637 | (I[444] = (img)(_n1##x,_n7##y,z,v)), \ |
philpem@5 | 8638 | (I[468] = (img)(_n1##x,_n8##y,z,v)), \ |
philpem@5 | 8639 | (I[492] = (img)(_n1##x,_n9##y,z,v)), \ |
philpem@5 | 8640 | (I[516] = (img)(_n1##x,_n10##y,z,v)), \ |
philpem@5 | 8641 | (I[540] = (img)(_n1##x,_n11##y,z,v)), \ |
philpem@5 | 8642 | (I[564] = (img)(_n1##x,_n12##y,z,v)), \ |
philpem@5 | 8643 | (I[13] = (img)(_n2##x,_p11##y,z,v)), \ |
philpem@5 | 8644 | (I[37] = (img)(_n2##x,_p10##y,z,v)), \ |
philpem@5 | 8645 | (I[61] = (img)(_n2##x,_p9##y,z,v)), \ |
philpem@5 | 8646 | (I[85] = (img)(_n2##x,_p8##y,z,v)), \ |
philpem@5 | 8647 | (I[109] = (img)(_n2##x,_p7##y,z,v)), \ |
philpem@5 | 8648 | (I[133] = (img)(_n2##x,_p6##y,z,v)), \ |
philpem@5 | 8649 | (I[157] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 8650 | (I[181] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 8651 | (I[205] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 8652 | (I[229] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 8653 | (I[253] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 8654 | (I[277] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 8655 | (I[301] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 8656 | (I[325] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 8657 | (I[349] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 8658 | (I[373] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 8659 | (I[397] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 8660 | (I[421] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 8661 | (I[445] = (img)(_n2##x,_n7##y,z,v)), \ |
philpem@5 | 8662 | (I[469] = (img)(_n2##x,_n8##y,z,v)), \ |
philpem@5 | 8663 | (I[493] = (img)(_n2##x,_n9##y,z,v)), \ |
philpem@5 | 8664 | (I[517] = (img)(_n2##x,_n10##y,z,v)), \ |
philpem@5 | 8665 | (I[541] = (img)(_n2##x,_n11##y,z,v)), \ |
philpem@5 | 8666 | (I[565] = (img)(_n2##x,_n12##y,z,v)), \ |
philpem@5 | 8667 | (I[14] = (img)(_n3##x,_p11##y,z,v)), \ |
philpem@5 | 8668 | (I[38] = (img)(_n3##x,_p10##y,z,v)), \ |
philpem@5 | 8669 | (I[62] = (img)(_n3##x,_p9##y,z,v)), \ |
philpem@5 | 8670 | (I[86] = (img)(_n3##x,_p8##y,z,v)), \ |
philpem@5 | 8671 | (I[110] = (img)(_n3##x,_p7##y,z,v)), \ |
philpem@5 | 8672 | (I[134] = (img)(_n3##x,_p6##y,z,v)), \ |
philpem@5 | 8673 | (I[158] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 8674 | (I[182] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 8675 | (I[206] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 8676 | (I[230] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 8677 | (I[254] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 8678 | (I[278] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 8679 | (I[302] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 8680 | (I[326] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 8681 | (I[350] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 8682 | (I[374] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 8683 | (I[398] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 8684 | (I[422] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 8685 | (I[446] = (img)(_n3##x,_n7##y,z,v)), \ |
philpem@5 | 8686 | (I[470] = (img)(_n3##x,_n8##y,z,v)), \ |
philpem@5 | 8687 | (I[494] = (img)(_n3##x,_n9##y,z,v)), \ |
philpem@5 | 8688 | (I[518] = (img)(_n3##x,_n10##y,z,v)), \ |
philpem@5 | 8689 | (I[542] = (img)(_n3##x,_n11##y,z,v)), \ |
philpem@5 | 8690 | (I[566] = (img)(_n3##x,_n12##y,z,v)), \ |
philpem@5 | 8691 | (I[15] = (img)(_n4##x,_p11##y,z,v)), \ |
philpem@5 | 8692 | (I[39] = (img)(_n4##x,_p10##y,z,v)), \ |
philpem@5 | 8693 | (I[63] = (img)(_n4##x,_p9##y,z,v)), \ |
philpem@5 | 8694 | (I[87] = (img)(_n4##x,_p8##y,z,v)), \ |
philpem@5 | 8695 | (I[111] = (img)(_n4##x,_p7##y,z,v)), \ |
philpem@5 | 8696 | (I[135] = (img)(_n4##x,_p6##y,z,v)), \ |
philpem@5 | 8697 | (I[159] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 8698 | (I[183] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 8699 | (I[207] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 8700 | (I[231] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 8701 | (I[255] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 8702 | (I[279] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 8703 | (I[303] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 8704 | (I[327] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 8705 | (I[351] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 8706 | (I[375] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 8707 | (I[399] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 8708 | (I[423] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 8709 | (I[447] = (img)(_n4##x,_n7##y,z,v)), \ |
philpem@5 | 8710 | (I[471] = (img)(_n4##x,_n8##y,z,v)), \ |
philpem@5 | 8711 | (I[495] = (img)(_n4##x,_n9##y,z,v)), \ |
philpem@5 | 8712 | (I[519] = (img)(_n4##x,_n10##y,z,v)), \ |
philpem@5 | 8713 | (I[543] = (img)(_n4##x,_n11##y,z,v)), \ |
philpem@5 | 8714 | (I[567] = (img)(_n4##x,_n12##y,z,v)), \ |
philpem@5 | 8715 | (I[16] = (img)(_n5##x,_p11##y,z,v)), \ |
philpem@5 | 8716 | (I[40] = (img)(_n5##x,_p10##y,z,v)), \ |
philpem@5 | 8717 | (I[64] = (img)(_n5##x,_p9##y,z,v)), \ |
philpem@5 | 8718 | (I[88] = (img)(_n5##x,_p8##y,z,v)), \ |
philpem@5 | 8719 | (I[112] = (img)(_n5##x,_p7##y,z,v)), \ |
philpem@5 | 8720 | (I[136] = (img)(_n5##x,_p6##y,z,v)), \ |
philpem@5 | 8721 | (I[160] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 8722 | (I[184] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 8723 | (I[208] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 8724 | (I[232] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 8725 | (I[256] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 8726 | (I[280] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 8727 | (I[304] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 8728 | (I[328] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 8729 | (I[352] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 8730 | (I[376] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 8731 | (I[400] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 8732 | (I[424] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 8733 | (I[448] = (img)(_n5##x,_n7##y,z,v)), \ |
philpem@5 | 8734 | (I[472] = (img)(_n5##x,_n8##y,z,v)), \ |
philpem@5 | 8735 | (I[496] = (img)(_n5##x,_n9##y,z,v)), \ |
philpem@5 | 8736 | (I[520] = (img)(_n5##x,_n10##y,z,v)), \ |
philpem@5 | 8737 | (I[544] = (img)(_n5##x,_n11##y,z,v)), \ |
philpem@5 | 8738 | (I[568] = (img)(_n5##x,_n12##y,z,v)), \ |
philpem@5 | 8739 | (I[17] = (img)(_n6##x,_p11##y,z,v)), \ |
philpem@5 | 8740 | (I[41] = (img)(_n6##x,_p10##y,z,v)), \ |
philpem@5 | 8741 | (I[65] = (img)(_n6##x,_p9##y,z,v)), \ |
philpem@5 | 8742 | (I[89] = (img)(_n6##x,_p8##y,z,v)), \ |
philpem@5 | 8743 | (I[113] = (img)(_n6##x,_p7##y,z,v)), \ |
philpem@5 | 8744 | (I[137] = (img)(_n6##x,_p6##y,z,v)), \ |
philpem@5 | 8745 | (I[161] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 8746 | (I[185] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 8747 | (I[209] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 8748 | (I[233] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 8749 | (I[257] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 8750 | (I[281] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 8751 | (I[305] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 8752 | (I[329] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 8753 | (I[353] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 8754 | (I[377] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 8755 | (I[401] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 8756 | (I[425] = (img)(_n6##x,_n6##y,z,v)), \ |
philpem@5 | 8757 | (I[449] = (img)(_n6##x,_n7##y,z,v)), \ |
philpem@5 | 8758 | (I[473] = (img)(_n6##x,_n8##y,z,v)), \ |
philpem@5 | 8759 | (I[497] = (img)(_n6##x,_n9##y,z,v)), \ |
philpem@5 | 8760 | (I[521] = (img)(_n6##x,_n10##y,z,v)), \ |
philpem@5 | 8761 | (I[545] = (img)(_n6##x,_n11##y,z,v)), \ |
philpem@5 | 8762 | (I[569] = (img)(_n6##x,_n12##y,z,v)), \ |
philpem@5 | 8763 | (I[18] = (img)(_n7##x,_p11##y,z,v)), \ |
philpem@5 | 8764 | (I[42] = (img)(_n7##x,_p10##y,z,v)), \ |
philpem@5 | 8765 | (I[66] = (img)(_n7##x,_p9##y,z,v)), \ |
philpem@5 | 8766 | (I[90] = (img)(_n7##x,_p8##y,z,v)), \ |
philpem@5 | 8767 | (I[114] = (img)(_n7##x,_p7##y,z,v)), \ |
philpem@5 | 8768 | (I[138] = (img)(_n7##x,_p6##y,z,v)), \ |
philpem@5 | 8769 | (I[162] = (img)(_n7##x,_p5##y,z,v)), \ |
philpem@5 | 8770 | (I[186] = (img)(_n7##x,_p4##y,z,v)), \ |
philpem@5 | 8771 | (I[210] = (img)(_n7##x,_p3##y,z,v)), \ |
philpem@5 | 8772 | (I[234] = (img)(_n7##x,_p2##y,z,v)), \ |
philpem@5 | 8773 | (I[258] = (img)(_n7##x,_p1##y,z,v)), \ |
philpem@5 | 8774 | (I[282] = (img)(_n7##x,y,z,v)), \ |
philpem@5 | 8775 | (I[306] = (img)(_n7##x,_n1##y,z,v)), \ |
philpem@5 | 8776 | (I[330] = (img)(_n7##x,_n2##y,z,v)), \ |
philpem@5 | 8777 | (I[354] = (img)(_n7##x,_n3##y,z,v)), \ |
philpem@5 | 8778 | (I[378] = (img)(_n7##x,_n4##y,z,v)), \ |
philpem@5 | 8779 | (I[402] = (img)(_n7##x,_n5##y,z,v)), \ |
philpem@5 | 8780 | (I[426] = (img)(_n7##x,_n6##y,z,v)), \ |
philpem@5 | 8781 | (I[450] = (img)(_n7##x,_n7##y,z,v)), \ |
philpem@5 | 8782 | (I[474] = (img)(_n7##x,_n8##y,z,v)), \ |
philpem@5 | 8783 | (I[498] = (img)(_n7##x,_n9##y,z,v)), \ |
philpem@5 | 8784 | (I[522] = (img)(_n7##x,_n10##y,z,v)), \ |
philpem@5 | 8785 | (I[546] = (img)(_n7##x,_n11##y,z,v)), \ |
philpem@5 | 8786 | (I[570] = (img)(_n7##x,_n12##y,z,v)), \ |
philpem@5 | 8787 | (I[19] = (img)(_n8##x,_p11##y,z,v)), \ |
philpem@5 | 8788 | (I[43] = (img)(_n8##x,_p10##y,z,v)), \ |
philpem@5 | 8789 | (I[67] = (img)(_n8##x,_p9##y,z,v)), \ |
philpem@5 | 8790 | (I[91] = (img)(_n8##x,_p8##y,z,v)), \ |
philpem@5 | 8791 | (I[115] = (img)(_n8##x,_p7##y,z,v)), \ |
philpem@5 | 8792 | (I[139] = (img)(_n8##x,_p6##y,z,v)), \ |
philpem@5 | 8793 | (I[163] = (img)(_n8##x,_p5##y,z,v)), \ |
philpem@5 | 8794 | (I[187] = (img)(_n8##x,_p4##y,z,v)), \ |
philpem@5 | 8795 | (I[211] = (img)(_n8##x,_p3##y,z,v)), \ |
philpem@5 | 8796 | (I[235] = (img)(_n8##x,_p2##y,z,v)), \ |
philpem@5 | 8797 | (I[259] = (img)(_n8##x,_p1##y,z,v)), \ |
philpem@5 | 8798 | (I[283] = (img)(_n8##x,y,z,v)), \ |
philpem@5 | 8799 | (I[307] = (img)(_n8##x,_n1##y,z,v)), \ |
philpem@5 | 8800 | (I[331] = (img)(_n8##x,_n2##y,z,v)), \ |
philpem@5 | 8801 | (I[355] = (img)(_n8##x,_n3##y,z,v)), \ |
philpem@5 | 8802 | (I[379] = (img)(_n8##x,_n4##y,z,v)), \ |
philpem@5 | 8803 | (I[403] = (img)(_n8##x,_n5##y,z,v)), \ |
philpem@5 | 8804 | (I[427] = (img)(_n8##x,_n6##y,z,v)), \ |
philpem@5 | 8805 | (I[451] = (img)(_n8##x,_n7##y,z,v)), \ |
philpem@5 | 8806 | (I[475] = (img)(_n8##x,_n8##y,z,v)), \ |
philpem@5 | 8807 | (I[499] = (img)(_n8##x,_n9##y,z,v)), \ |
philpem@5 | 8808 | (I[523] = (img)(_n8##x,_n10##y,z,v)), \ |
philpem@5 | 8809 | (I[547] = (img)(_n8##x,_n11##y,z,v)), \ |
philpem@5 | 8810 | (I[571] = (img)(_n8##x,_n12##y,z,v)), \ |
philpem@5 | 8811 | (I[20] = (img)(_n9##x,_p11##y,z,v)), \ |
philpem@5 | 8812 | (I[44] = (img)(_n9##x,_p10##y,z,v)), \ |
philpem@5 | 8813 | (I[68] = (img)(_n9##x,_p9##y,z,v)), \ |
philpem@5 | 8814 | (I[92] = (img)(_n9##x,_p8##y,z,v)), \ |
philpem@5 | 8815 | (I[116] = (img)(_n9##x,_p7##y,z,v)), \ |
philpem@5 | 8816 | (I[140] = (img)(_n9##x,_p6##y,z,v)), \ |
philpem@5 | 8817 | (I[164] = (img)(_n9##x,_p5##y,z,v)), \ |
philpem@5 | 8818 | (I[188] = (img)(_n9##x,_p4##y,z,v)), \ |
philpem@5 | 8819 | (I[212] = (img)(_n9##x,_p3##y,z,v)), \ |
philpem@5 | 8820 | (I[236] = (img)(_n9##x,_p2##y,z,v)), \ |
philpem@5 | 8821 | (I[260] = (img)(_n9##x,_p1##y,z,v)), \ |
philpem@5 | 8822 | (I[284] = (img)(_n9##x,y,z,v)), \ |
philpem@5 | 8823 | (I[308] = (img)(_n9##x,_n1##y,z,v)), \ |
philpem@5 | 8824 | (I[332] = (img)(_n9##x,_n2##y,z,v)), \ |
philpem@5 | 8825 | (I[356] = (img)(_n9##x,_n3##y,z,v)), \ |
philpem@5 | 8826 | (I[380] = (img)(_n9##x,_n4##y,z,v)), \ |
philpem@5 | 8827 | (I[404] = (img)(_n9##x,_n5##y,z,v)), \ |
philpem@5 | 8828 | (I[428] = (img)(_n9##x,_n6##y,z,v)), \ |
philpem@5 | 8829 | (I[452] = (img)(_n9##x,_n7##y,z,v)), \ |
philpem@5 | 8830 | (I[476] = (img)(_n9##x,_n8##y,z,v)), \ |
philpem@5 | 8831 | (I[500] = (img)(_n9##x,_n9##y,z,v)), \ |
philpem@5 | 8832 | (I[524] = (img)(_n9##x,_n10##y,z,v)), \ |
philpem@5 | 8833 | (I[548] = (img)(_n9##x,_n11##y,z,v)), \ |
philpem@5 | 8834 | (I[572] = (img)(_n9##x,_n12##y,z,v)), \ |
philpem@5 | 8835 | (I[21] = (img)(_n10##x,_p11##y,z,v)), \ |
philpem@5 | 8836 | (I[45] = (img)(_n10##x,_p10##y,z,v)), \ |
philpem@5 | 8837 | (I[69] = (img)(_n10##x,_p9##y,z,v)), \ |
philpem@5 | 8838 | (I[93] = (img)(_n10##x,_p8##y,z,v)), \ |
philpem@5 | 8839 | (I[117] = (img)(_n10##x,_p7##y,z,v)), \ |
philpem@5 | 8840 | (I[141] = (img)(_n10##x,_p6##y,z,v)), \ |
philpem@5 | 8841 | (I[165] = (img)(_n10##x,_p5##y,z,v)), \ |
philpem@5 | 8842 | (I[189] = (img)(_n10##x,_p4##y,z,v)), \ |
philpem@5 | 8843 | (I[213] = (img)(_n10##x,_p3##y,z,v)), \ |
philpem@5 | 8844 | (I[237] = (img)(_n10##x,_p2##y,z,v)), \ |
philpem@5 | 8845 | (I[261] = (img)(_n10##x,_p1##y,z,v)), \ |
philpem@5 | 8846 | (I[285] = (img)(_n10##x,y,z,v)), \ |
philpem@5 | 8847 | (I[309] = (img)(_n10##x,_n1##y,z,v)), \ |
philpem@5 | 8848 | (I[333] = (img)(_n10##x,_n2##y,z,v)), \ |
philpem@5 | 8849 | (I[357] = (img)(_n10##x,_n3##y,z,v)), \ |
philpem@5 | 8850 | (I[381] = (img)(_n10##x,_n4##y,z,v)), \ |
philpem@5 | 8851 | (I[405] = (img)(_n10##x,_n5##y,z,v)), \ |
philpem@5 | 8852 | (I[429] = (img)(_n10##x,_n6##y,z,v)), \ |
philpem@5 | 8853 | (I[453] = (img)(_n10##x,_n7##y,z,v)), \ |
philpem@5 | 8854 | (I[477] = (img)(_n10##x,_n8##y,z,v)), \ |
philpem@5 | 8855 | (I[501] = (img)(_n10##x,_n9##y,z,v)), \ |
philpem@5 | 8856 | (I[525] = (img)(_n10##x,_n10##y,z,v)), \ |
philpem@5 | 8857 | (I[549] = (img)(_n10##x,_n11##y,z,v)), \ |
philpem@5 | 8858 | (I[573] = (img)(_n10##x,_n12##y,z,v)), \ |
philpem@5 | 8859 | (I[22] = (img)(_n11##x,_p11##y,z,v)), \ |
philpem@5 | 8860 | (I[46] = (img)(_n11##x,_p10##y,z,v)), \ |
philpem@5 | 8861 | (I[70] = (img)(_n11##x,_p9##y,z,v)), \ |
philpem@5 | 8862 | (I[94] = (img)(_n11##x,_p8##y,z,v)), \ |
philpem@5 | 8863 | (I[118] = (img)(_n11##x,_p7##y,z,v)), \ |
philpem@5 | 8864 | (I[142] = (img)(_n11##x,_p6##y,z,v)), \ |
philpem@5 | 8865 | (I[166] = (img)(_n11##x,_p5##y,z,v)), \ |
philpem@5 | 8866 | (I[190] = (img)(_n11##x,_p4##y,z,v)), \ |
philpem@5 | 8867 | (I[214] = (img)(_n11##x,_p3##y,z,v)), \ |
philpem@5 | 8868 | (I[238] = (img)(_n11##x,_p2##y,z,v)), \ |
philpem@5 | 8869 | (I[262] = (img)(_n11##x,_p1##y,z,v)), \ |
philpem@5 | 8870 | (I[286] = (img)(_n11##x,y,z,v)), \ |
philpem@5 | 8871 | (I[310] = (img)(_n11##x,_n1##y,z,v)), \ |
philpem@5 | 8872 | (I[334] = (img)(_n11##x,_n2##y,z,v)), \ |
philpem@5 | 8873 | (I[358] = (img)(_n11##x,_n3##y,z,v)), \ |
philpem@5 | 8874 | (I[382] = (img)(_n11##x,_n4##y,z,v)), \ |
philpem@5 | 8875 | (I[406] = (img)(_n11##x,_n5##y,z,v)), \ |
philpem@5 | 8876 | (I[430] = (img)(_n11##x,_n6##y,z,v)), \ |
philpem@5 | 8877 | (I[454] = (img)(_n11##x,_n7##y,z,v)), \ |
philpem@5 | 8878 | (I[478] = (img)(_n11##x,_n8##y,z,v)), \ |
philpem@5 | 8879 | (I[502] = (img)(_n11##x,_n9##y,z,v)), \ |
philpem@5 | 8880 | (I[526] = (img)(_n11##x,_n10##y,z,v)), \ |
philpem@5 | 8881 | (I[550] = (img)(_n11##x,_n11##y,z,v)), \ |
philpem@5 | 8882 | (I[574] = (img)(_n11##x,_n12##y,z,v)), \ |
philpem@5 | 8883 | 12>=((img).width)?(int)((img).width)-1:12); \ |
philpem@5 | 8884 | (_n12##x<(int)((img).width) && ( \ |
philpem@5 | 8885 | (I[23] = (img)(_n12##x,_p11##y,z,v)), \ |
philpem@5 | 8886 | (I[47] = (img)(_n12##x,_p10##y,z,v)), \ |
philpem@5 | 8887 | (I[71] = (img)(_n12##x,_p9##y,z,v)), \ |
philpem@5 | 8888 | (I[95] = (img)(_n12##x,_p8##y,z,v)), \ |
philpem@5 | 8889 | (I[119] = (img)(_n12##x,_p7##y,z,v)), \ |
philpem@5 | 8890 | (I[143] = (img)(_n12##x,_p6##y,z,v)), \ |
philpem@5 | 8891 | (I[167] = (img)(_n12##x,_p5##y,z,v)), \ |
philpem@5 | 8892 | (I[191] = (img)(_n12##x,_p4##y,z,v)), \ |
philpem@5 | 8893 | (I[215] = (img)(_n12##x,_p3##y,z,v)), \ |
philpem@5 | 8894 | (I[239] = (img)(_n12##x,_p2##y,z,v)), \ |
philpem@5 | 8895 | (I[263] = (img)(_n12##x,_p1##y,z,v)), \ |
philpem@5 | 8896 | (I[287] = (img)(_n12##x,y,z,v)), \ |
philpem@5 | 8897 | (I[311] = (img)(_n12##x,_n1##y,z,v)), \ |
philpem@5 | 8898 | (I[335] = (img)(_n12##x,_n2##y,z,v)), \ |
philpem@5 | 8899 | (I[359] = (img)(_n12##x,_n3##y,z,v)), \ |
philpem@5 | 8900 | (I[383] = (img)(_n12##x,_n4##y,z,v)), \ |
philpem@5 | 8901 | (I[407] = (img)(_n12##x,_n5##y,z,v)), \ |
philpem@5 | 8902 | (I[431] = (img)(_n12##x,_n6##y,z,v)), \ |
philpem@5 | 8903 | (I[455] = (img)(_n12##x,_n7##y,z,v)), \ |
philpem@5 | 8904 | (I[479] = (img)(_n12##x,_n8##y,z,v)), \ |
philpem@5 | 8905 | (I[503] = (img)(_n12##x,_n9##y,z,v)), \ |
philpem@5 | 8906 | (I[527] = (img)(_n12##x,_n10##y,z,v)), \ |
philpem@5 | 8907 | (I[551] = (img)(_n12##x,_n11##y,z,v)), \ |
philpem@5 | 8908 | (I[575] = (img)(_n12##x,_n12##y,z,v)),1)) || \ |
philpem@5 | 8909 | _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \ |
philpem@5 | 8910 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \ |
philpem@5 | 8911 | I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \ |
philpem@5 | 8912 | I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \ |
philpem@5 | 8913 | I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \ |
philpem@5 | 8914 | I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \ |
philpem@5 | 8915 | I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \ |
philpem@5 | 8916 | I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \ |
philpem@5 | 8917 | I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \ |
philpem@5 | 8918 | I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \ |
philpem@5 | 8919 | I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \ |
philpem@5 | 8920 | I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], \ |
philpem@5 | 8921 | I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \ |
philpem@5 | 8922 | I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], \ |
philpem@5 | 8923 | I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \ |
philpem@5 | 8924 | I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \ |
philpem@5 | 8925 | I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], \ |
philpem@5 | 8926 | I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], \ |
philpem@5 | 8927 | I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], \ |
philpem@5 | 8928 | I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], \ |
philpem@5 | 8929 | I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], \ |
philpem@5 | 8930 | I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], \ |
philpem@5 | 8931 | I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], \ |
philpem@5 | 8932 | I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], \ |
philpem@5 | 8933 | I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], \ |
philpem@5 | 8934 | _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x) |
philpem@5 | 8935 | |
philpem@5 | 8936 | #define cimg_for_in24x24(img,x0,y0,x1,y1,x,y,z,v,I) \ |
philpem@5 | 8937 | cimg_for_in24((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ |
philpem@5 | 8938 | _p11##x = x-11<0?0:x-11, \ |
philpem@5 | 8939 | _p10##x = x-10<0?0:x-10, \ |
philpem@5 | 8940 | _p9##x = x-9<0?0:x-9, \ |
philpem@5 | 8941 | _p8##x = x-8<0?0:x-8, \ |
philpem@5 | 8942 | _p7##x = x-7<0?0:x-7, \ |
philpem@5 | 8943 | _p6##x = x-6<0?0:x-6, \ |
philpem@5 | 8944 | _p5##x = x-5<0?0:x-5, \ |
philpem@5 | 8945 | _p4##x = x-4<0?0:x-4, \ |
philpem@5 | 8946 | _p3##x = x-3<0?0:x-3, \ |
philpem@5 | 8947 | _p2##x = x-2<0?0:x-2, \ |
philpem@5 | 8948 | _p1##x = x-1<0?0:x-1, \ |
philpem@5 | 8949 | _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \ |
philpem@5 | 8950 | _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \ |
philpem@5 | 8951 | _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \ |
philpem@5 | 8952 | _n4##x = x+4>=(int)((img).width)?(int)((img).width)-1:x+4, \ |
philpem@5 | 8953 | _n5##x = x+5>=(int)((img).width)?(int)((img).width)-1:x+5, \ |
philpem@5 | 8954 | _n6##x = x+6>=(int)((img).width)?(int)((img).width)-1:x+6, \ |
philpem@5 | 8955 | _n7##x = x+7>=(int)((img).width)?(int)((img).width)-1:x+7, \ |
philpem@5 | 8956 | _n8##x = x+8>=(int)((img).width)?(int)((img).width)-1:x+8, \ |
philpem@5 | 8957 | _n9##x = x+9>=(int)((img).width)?(int)((img).width)-1:x+9, \ |
philpem@5 | 8958 | _n10##x = x+10>=(int)((img).width)?(int)((img).width)-1:x+10, \ |
philpem@5 | 8959 | _n11##x = x+11>=(int)((img).width)?(int)((img).width)-1:x+11, \ |
philpem@5 | 8960 | _n12##x = (int)( \ |
philpem@5 | 8961 | (I[0] = (img)(_p11##x,_p11##y,z,v)), \ |
philpem@5 | 8962 | (I[24] = (img)(_p11##x,_p10##y,z,v)), \ |
philpem@5 | 8963 | (I[48] = (img)(_p11##x,_p9##y,z,v)), \ |
philpem@5 | 8964 | (I[72] = (img)(_p11##x,_p8##y,z,v)), \ |
philpem@5 | 8965 | (I[96] = (img)(_p11##x,_p7##y,z,v)), \ |
philpem@5 | 8966 | (I[120] = (img)(_p11##x,_p6##y,z,v)), \ |
philpem@5 | 8967 | (I[144] = (img)(_p11##x,_p5##y,z,v)), \ |
philpem@5 | 8968 | (I[168] = (img)(_p11##x,_p4##y,z,v)), \ |
philpem@5 | 8969 | (I[192] = (img)(_p11##x,_p3##y,z,v)), \ |
philpem@5 | 8970 | (I[216] = (img)(_p11##x,_p2##y,z,v)), \ |
philpem@5 | 8971 | (I[240] = (img)(_p11##x,_p1##y,z,v)), \ |
philpem@5 | 8972 | (I[264] = (img)(_p11##x,y,z,v)), \ |
philpem@5 | 8973 | (I[288] = (img)(_p11##x,_n1##y,z,v)), \ |
philpem@5 | 8974 | (I[312] = (img)(_p11##x,_n2##y,z,v)), \ |
philpem@5 | 8975 | (I[336] = (img)(_p11##x,_n3##y,z,v)), \ |
philpem@5 | 8976 | (I[360] = (img)(_p11##x,_n4##y,z,v)), \ |
philpem@5 | 8977 | (I[384] = (img)(_p11##x,_n5##y,z,v)), \ |
philpem@5 | 8978 | (I[408] = (img)(_p11##x,_n6##y,z,v)), \ |
philpem@5 | 8979 | (I[432] = (img)(_p11##x,_n7##y,z,v)), \ |
philpem@5 | 8980 | (I[456] = (img)(_p11##x,_n8##y,z,v)), \ |
philpem@5 | 8981 | (I[480] = (img)(_p11##x,_n9##y,z,v)), \ |
philpem@5 | 8982 | (I[504] = (img)(_p11##x,_n10##y,z,v)), \ |
philpem@5 | 8983 | (I[528] = (img)(_p11##x,_n11##y,z,v)), \ |
philpem@5 | 8984 | (I[552] = (img)(_p11##x,_n12##y,z,v)), \ |
philpem@5 | 8985 | (I[1] = (img)(_p10##x,_p11##y,z,v)), \ |
philpem@5 | 8986 | (I[25] = (img)(_p10##x,_p10##y,z,v)), \ |
philpem@5 | 8987 | (I[49] = (img)(_p10##x,_p9##y,z,v)), \ |
philpem@5 | 8988 | (I[73] = (img)(_p10##x,_p8##y,z,v)), \ |
philpem@5 | 8989 | (I[97] = (img)(_p10##x,_p7##y,z,v)), \ |
philpem@5 | 8990 | (I[121] = (img)(_p10##x,_p6##y,z,v)), \ |
philpem@5 | 8991 | (I[145] = (img)(_p10##x,_p5##y,z,v)), \ |
philpem@5 | 8992 | (I[169] = (img)(_p10##x,_p4##y,z,v)), \ |
philpem@5 | 8993 | (I[193] = (img)(_p10##x,_p3##y,z,v)), \ |
philpem@5 | 8994 | (I[217] = (img)(_p10##x,_p2##y,z,v)), \ |
philpem@5 | 8995 | (I[241] = (img)(_p10##x,_p1##y,z,v)), \ |
philpem@5 | 8996 | (I[265] = (img)(_p10##x,y,z,v)), \ |
philpem@5 | 8997 | (I[289] = (img)(_p10##x,_n1##y,z,v)), \ |
philpem@5 | 8998 | (I[313] = (img)(_p10##x,_n2##y,z,v)), \ |
philpem@5 | 8999 | (I[337] = (img)(_p10##x,_n3##y,z,v)), \ |
philpem@5 | 9000 | (I[361] = (img)(_p10##x,_n4##y,z,v)), \ |
philpem@5 | 9001 | (I[385] = (img)(_p10##x,_n5##y,z,v)), \ |
philpem@5 | 9002 | (I[409] = (img)(_p10##x,_n6##y,z,v)), \ |
philpem@5 | 9003 | (I[433] = (img)(_p10##x,_n7##y,z,v)), \ |
philpem@5 | 9004 | (I[457] = (img)(_p10##x,_n8##y,z,v)), \ |
philpem@5 | 9005 | (I[481] = (img)(_p10##x,_n9##y,z,v)), \ |
philpem@5 | 9006 | (I[505] = (img)(_p10##x,_n10##y,z,v)), \ |
philpem@5 | 9007 | (I[529] = (img)(_p10##x,_n11##y,z,v)), \ |
philpem@5 | 9008 | (I[553] = (img)(_p10##x,_n12##y,z,v)), \ |
philpem@5 | 9009 | (I[2] = (img)(_p9##x,_p11##y,z,v)), \ |
philpem@5 | 9010 | (I[26] = (img)(_p9##x,_p10##y,z,v)), \ |
philpem@5 | 9011 | (I[50] = (img)(_p9##x,_p9##y,z,v)), \ |
philpem@5 | 9012 | (I[74] = (img)(_p9##x,_p8##y,z,v)), \ |
philpem@5 | 9013 | (I[98] = (img)(_p9##x,_p7##y,z,v)), \ |
philpem@5 | 9014 | (I[122] = (img)(_p9##x,_p6##y,z,v)), \ |
philpem@5 | 9015 | (I[146] = (img)(_p9##x,_p5##y,z,v)), \ |
philpem@5 | 9016 | (I[170] = (img)(_p9##x,_p4##y,z,v)), \ |
philpem@5 | 9017 | (I[194] = (img)(_p9##x,_p3##y,z,v)), \ |
philpem@5 | 9018 | (I[218] = (img)(_p9##x,_p2##y,z,v)), \ |
philpem@5 | 9019 | (I[242] = (img)(_p9##x,_p1##y,z,v)), \ |
philpem@5 | 9020 | (I[266] = (img)(_p9##x,y,z,v)), \ |
philpem@5 | 9021 | (I[290] = (img)(_p9##x,_n1##y,z,v)), \ |
philpem@5 | 9022 | (I[314] = (img)(_p9##x,_n2##y,z,v)), \ |
philpem@5 | 9023 | (I[338] = (img)(_p9##x,_n3##y,z,v)), \ |
philpem@5 | 9024 | (I[362] = (img)(_p9##x,_n4##y,z,v)), \ |
philpem@5 | 9025 | (I[386] = (img)(_p9##x,_n5##y,z,v)), \ |
philpem@5 | 9026 | (I[410] = (img)(_p9##x,_n6##y,z,v)), \ |
philpem@5 | 9027 | (I[434] = (img)(_p9##x,_n7##y,z,v)), \ |
philpem@5 | 9028 | (I[458] = (img)(_p9##x,_n8##y,z,v)), \ |
philpem@5 | 9029 | (I[482] = (img)(_p9##x,_n9##y,z,v)), \ |
philpem@5 | 9030 | (I[506] = (img)(_p9##x,_n10##y,z,v)), \ |
philpem@5 | 9031 | (I[530] = (img)(_p9##x,_n11##y,z,v)), \ |
philpem@5 | 9032 | (I[554] = (img)(_p9##x,_n12##y,z,v)), \ |
philpem@5 | 9033 | (I[3] = (img)(_p8##x,_p11##y,z,v)), \ |
philpem@5 | 9034 | (I[27] = (img)(_p8##x,_p10##y,z,v)), \ |
philpem@5 | 9035 | (I[51] = (img)(_p8##x,_p9##y,z,v)), \ |
philpem@5 | 9036 | (I[75] = (img)(_p8##x,_p8##y,z,v)), \ |
philpem@5 | 9037 | (I[99] = (img)(_p8##x,_p7##y,z,v)), \ |
philpem@5 | 9038 | (I[123] = (img)(_p8##x,_p6##y,z,v)), \ |
philpem@5 | 9039 | (I[147] = (img)(_p8##x,_p5##y,z,v)), \ |
philpem@5 | 9040 | (I[171] = (img)(_p8##x,_p4##y,z,v)), \ |
philpem@5 | 9041 | (I[195] = (img)(_p8##x,_p3##y,z,v)), \ |
philpem@5 | 9042 | (I[219] = (img)(_p8##x,_p2##y,z,v)), \ |
philpem@5 | 9043 | (I[243] = (img)(_p8##x,_p1##y,z,v)), \ |
philpem@5 | 9044 | (I[267] = (img)(_p8##x,y,z,v)), \ |
philpem@5 | 9045 | (I[291] = (img)(_p8##x,_n1##y,z,v)), \ |
philpem@5 | 9046 | (I[315] = (img)(_p8##x,_n2##y,z,v)), \ |
philpem@5 | 9047 | (I[339] = (img)(_p8##x,_n3##y,z,v)), \ |
philpem@5 | 9048 | (I[363] = (img)(_p8##x,_n4##y,z,v)), \ |
philpem@5 | 9049 | (I[387] = (img)(_p8##x,_n5##y,z,v)), \ |
philpem@5 | 9050 | (I[411] = (img)(_p8##x,_n6##y,z,v)), \ |
philpem@5 | 9051 | (I[435] = (img)(_p8##x,_n7##y,z,v)), \ |
philpem@5 | 9052 | (I[459] = (img)(_p8##x,_n8##y,z,v)), \ |
philpem@5 | 9053 | (I[483] = (img)(_p8##x,_n9##y,z,v)), \ |
philpem@5 | 9054 | (I[507] = (img)(_p8##x,_n10##y,z,v)), \ |
philpem@5 | 9055 | (I[531] = (img)(_p8##x,_n11##y,z,v)), \ |
philpem@5 | 9056 | (I[555] = (img)(_p8##x,_n12##y,z,v)), \ |
philpem@5 | 9057 | (I[4] = (img)(_p7##x,_p11##y,z,v)), \ |
philpem@5 | 9058 | (I[28] = (img)(_p7##x,_p10##y,z,v)), \ |
philpem@5 | 9059 | (I[52] = (img)(_p7##x,_p9##y,z,v)), \ |
philpem@5 | 9060 | (I[76] = (img)(_p7##x,_p8##y,z,v)), \ |
philpem@5 | 9061 | (I[100] = (img)(_p7##x,_p7##y,z,v)), \ |
philpem@5 | 9062 | (I[124] = (img)(_p7##x,_p6##y,z,v)), \ |
philpem@5 | 9063 | (I[148] = (img)(_p7##x,_p5##y,z,v)), \ |
philpem@5 | 9064 | (I[172] = (img)(_p7##x,_p4##y,z,v)), \ |
philpem@5 | 9065 | (I[196] = (img)(_p7##x,_p3##y,z,v)), \ |
philpem@5 | 9066 | (I[220] = (img)(_p7##x,_p2##y,z,v)), \ |
philpem@5 | 9067 | (I[244] = (img)(_p7##x,_p1##y,z,v)), \ |
philpem@5 | 9068 | (I[268] = (img)(_p7##x,y,z,v)), \ |
philpem@5 | 9069 | (I[292] = (img)(_p7##x,_n1##y,z,v)), \ |
philpem@5 | 9070 | (I[316] = (img)(_p7##x,_n2##y,z,v)), \ |
philpem@5 | 9071 | (I[340] = (img)(_p7##x,_n3##y,z,v)), \ |
philpem@5 | 9072 | (I[364] = (img)(_p7##x,_n4##y,z,v)), \ |
philpem@5 | 9073 | (I[388] = (img)(_p7##x,_n5##y,z,v)), \ |
philpem@5 | 9074 | (I[412] = (img)(_p7##x,_n6##y,z,v)), \ |
philpem@5 | 9075 | (I[436] = (img)(_p7##x,_n7##y,z,v)), \ |
philpem@5 | 9076 | (I[460] = (img)(_p7##x,_n8##y,z,v)), \ |
philpem@5 | 9077 | (I[484] = (img)(_p7##x,_n9##y,z,v)), \ |
philpem@5 | 9078 | (I[508] = (img)(_p7##x,_n10##y,z,v)), \ |
philpem@5 | 9079 | (I[532] = (img)(_p7##x,_n11##y,z,v)), \ |
philpem@5 | 9080 | (I[556] = (img)(_p7##x,_n12##y,z,v)), \ |
philpem@5 | 9081 | (I[5] = (img)(_p6##x,_p11##y,z,v)), \ |
philpem@5 | 9082 | (I[29] = (img)(_p6##x,_p10##y,z,v)), \ |
philpem@5 | 9083 | (I[53] = (img)(_p6##x,_p9##y,z,v)), \ |
philpem@5 | 9084 | (I[77] = (img)(_p6##x,_p8##y,z,v)), \ |
philpem@5 | 9085 | (I[101] = (img)(_p6##x,_p7##y,z,v)), \ |
philpem@5 | 9086 | (I[125] = (img)(_p6##x,_p6##y,z,v)), \ |
philpem@5 | 9087 | (I[149] = (img)(_p6##x,_p5##y,z,v)), \ |
philpem@5 | 9088 | (I[173] = (img)(_p6##x,_p4##y,z,v)), \ |
philpem@5 | 9089 | (I[197] = (img)(_p6##x,_p3##y,z,v)), \ |
philpem@5 | 9090 | (I[221] = (img)(_p6##x,_p2##y,z,v)), \ |
philpem@5 | 9091 | (I[245] = (img)(_p6##x,_p1##y,z,v)), \ |
philpem@5 | 9092 | (I[269] = (img)(_p6##x,y,z,v)), \ |
philpem@5 | 9093 | (I[293] = (img)(_p6##x,_n1##y,z,v)), \ |
philpem@5 | 9094 | (I[317] = (img)(_p6##x,_n2##y,z,v)), \ |
philpem@5 | 9095 | (I[341] = (img)(_p6##x,_n3##y,z,v)), \ |
philpem@5 | 9096 | (I[365] = (img)(_p6##x,_n4##y,z,v)), \ |
philpem@5 | 9097 | (I[389] = (img)(_p6##x,_n5##y,z,v)), \ |
philpem@5 | 9098 | (I[413] = (img)(_p6##x,_n6##y,z,v)), \ |
philpem@5 | 9099 | (I[437] = (img)(_p6##x,_n7##y,z,v)), \ |
philpem@5 | 9100 | (I[461] = (img)(_p6##x,_n8##y,z,v)), \ |
philpem@5 | 9101 | (I[485] = (img)(_p6##x,_n9##y,z,v)), \ |
philpem@5 | 9102 | (I[509] = (img)(_p6##x,_n10##y,z,v)), \ |
philpem@5 | 9103 | (I[533] = (img)(_p6##x,_n11##y,z,v)), \ |
philpem@5 | 9104 | (I[557] = (img)(_p6##x,_n12##y,z,v)), \ |
philpem@5 | 9105 | (I[6] = (img)(_p5##x,_p11##y,z,v)), \ |
philpem@5 | 9106 | (I[30] = (img)(_p5##x,_p10##y,z,v)), \ |
philpem@5 | 9107 | (I[54] = (img)(_p5##x,_p9##y,z,v)), \ |
philpem@5 | 9108 | (I[78] = (img)(_p5##x,_p8##y,z,v)), \ |
philpem@5 | 9109 | (I[102] = (img)(_p5##x,_p7##y,z,v)), \ |
philpem@5 | 9110 | (I[126] = (img)(_p5##x,_p6##y,z,v)), \ |
philpem@5 | 9111 | (I[150] = (img)(_p5##x,_p5##y,z,v)), \ |
philpem@5 | 9112 | (I[174] = (img)(_p5##x,_p4##y,z,v)), \ |
philpem@5 | 9113 | (I[198] = (img)(_p5##x,_p3##y,z,v)), \ |
philpem@5 | 9114 | (I[222] = (img)(_p5##x,_p2##y,z,v)), \ |
philpem@5 | 9115 | (I[246] = (img)(_p5##x,_p1##y,z,v)), \ |
philpem@5 | 9116 | (I[270] = (img)(_p5##x,y,z,v)), \ |
philpem@5 | 9117 | (I[294] = (img)(_p5##x,_n1##y,z,v)), \ |
philpem@5 | 9118 | (I[318] = (img)(_p5##x,_n2##y,z,v)), \ |
philpem@5 | 9119 | (I[342] = (img)(_p5##x,_n3##y,z,v)), \ |
philpem@5 | 9120 | (I[366] = (img)(_p5##x,_n4##y,z,v)), \ |
philpem@5 | 9121 | (I[390] = (img)(_p5##x,_n5##y,z,v)), \ |
philpem@5 | 9122 | (I[414] = (img)(_p5##x,_n6##y,z,v)), \ |
philpem@5 | 9123 | (I[438] = (img)(_p5##x,_n7##y,z,v)), \ |
philpem@5 | 9124 | (I[462] = (img)(_p5##x,_n8##y,z,v)), \ |
philpem@5 | 9125 | (I[486] = (img)(_p5##x,_n9##y,z,v)), \ |
philpem@5 | 9126 | (I[510] = (img)(_p5##x,_n10##y,z,v)), \ |
philpem@5 | 9127 | (I[534] = (img)(_p5##x,_n11##y,z,v)), \ |
philpem@5 | 9128 | (I[558] = (img)(_p5##x,_n12##y,z,v)), \ |
philpem@5 | 9129 | (I[7] = (img)(_p4##x,_p11##y,z,v)), \ |
philpem@5 | 9130 | (I[31] = (img)(_p4##x,_p10##y,z,v)), \ |
philpem@5 | 9131 | (I[55] = (img)(_p4##x,_p9##y,z,v)), \ |
philpem@5 | 9132 | (I[79] = (img)(_p4##x,_p8##y,z,v)), \ |
philpem@5 | 9133 | (I[103] = (img)(_p4##x,_p7##y,z,v)), \ |
philpem@5 | 9134 | (I[127] = (img)(_p4##x,_p6##y,z,v)), \ |
philpem@5 | 9135 | (I[151] = (img)(_p4##x,_p5##y,z,v)), \ |
philpem@5 | 9136 | (I[175] = (img)(_p4##x,_p4##y,z,v)), \ |
philpem@5 | 9137 | (I[199] = (img)(_p4##x,_p3##y,z,v)), \ |
philpem@5 | 9138 | (I[223] = (img)(_p4##x,_p2##y,z,v)), \ |
philpem@5 | 9139 | (I[247] = (img)(_p4##x,_p1##y,z,v)), \ |
philpem@5 | 9140 | (I[271] = (img)(_p4##x,y,z,v)), \ |
philpem@5 | 9141 | (I[295] = (img)(_p4##x,_n1##y,z,v)), \ |
philpem@5 | 9142 | (I[319] = (img)(_p4##x,_n2##y,z,v)), \ |
philpem@5 | 9143 | (I[343] = (img)(_p4##x,_n3##y,z,v)), \ |
philpem@5 | 9144 | (I[367] = (img)(_p4##x,_n4##y,z,v)), \ |
philpem@5 | 9145 | (I[391] = (img)(_p4##x,_n5##y,z,v)), \ |
philpem@5 | 9146 | (I[415] = (img)(_p4##x,_n6##y,z,v)), \ |
philpem@5 | 9147 | (I[439] = (img)(_p4##x,_n7##y,z,v)), \ |
philpem@5 | 9148 | (I[463] = (img)(_p4##x,_n8##y,z,v)), \ |
philpem@5 | 9149 | (I[487] = (img)(_p4##x,_n9##y,z,v)), \ |
philpem@5 | 9150 | (I[511] = (img)(_p4##x,_n10##y,z,v)), \ |
philpem@5 | 9151 | (I[535] = (img)(_p4##x,_n11##y,z,v)), \ |
philpem@5 | 9152 | (I[559] = (img)(_p4##x,_n12##y,z,v)), \ |
philpem@5 | 9153 | (I[8] = (img)(_p3##x,_p11##y,z,v)), \ |
philpem@5 | 9154 | (I[32] = (img)(_p3##x,_p10##y,z,v)), \ |
philpem@5 | 9155 | (I[56] = (img)(_p3##x,_p9##y,z,v)), \ |
philpem@5 | 9156 | (I[80] = (img)(_p3##x,_p8##y,z,v)), \ |
philpem@5 | 9157 | (I[104] = (img)(_p3##x,_p7##y,z,v)), \ |
philpem@5 | 9158 | (I[128] = (img)(_p3##x,_p6##y,z,v)), \ |
philpem@5 | 9159 | (I[152] = (img)(_p3##x,_p5##y,z,v)), \ |
philpem@5 | 9160 | (I[176] = (img)(_p3##x,_p4##y,z,v)), \ |
philpem@5 | 9161 | (I[200] = (img)(_p3##x,_p3##y,z,v)), \ |
philpem@5 | 9162 | (I[224] = (img)(_p3##x,_p2##y,z,v)), \ |
philpem@5 | 9163 | (I[248] = (img)(_p3##x,_p1##y,z,v)), \ |
philpem@5 | 9164 | (I[272] = (img)(_p3##x,y,z,v)), \ |
philpem@5 | 9165 | (I[296] = (img)(_p3##x,_n1##y,z,v)), \ |
philpem@5 | 9166 | (I[320] = (img)(_p3##x,_n2##y,z,v)), \ |
philpem@5 | 9167 | (I[344] = (img)(_p3##x,_n3##y,z,v)), \ |
philpem@5 | 9168 | (I[368] = (img)(_p3##x,_n4##y,z,v)), \ |
philpem@5 | 9169 | (I[392] = (img)(_p3##x,_n5##y,z,v)), \ |
philpem@5 | 9170 | (I[416] = (img)(_p3##x,_n6##y,z,v)), \ |
philpem@5 | 9171 | (I[440] = (img)(_p3##x,_n7##y,z,v)), \ |
philpem@5 | 9172 | (I[464] = (img)(_p3##x,_n8##y,z,v)), \ |
philpem@5 | 9173 | (I[488] = (img)(_p3##x,_n9##y,z,v)), \ |
philpem@5 | 9174 | (I[512] = (img)(_p3##x,_n10##y,z,v)), \ |
philpem@5 | 9175 | (I[536] = (img)(_p3##x,_n11##y,z,v)), \ |
philpem@5 | 9176 | (I[560] = (img)(_p3##x,_n12##y,z,v)), \ |
philpem@5 | 9177 | (I[9] = (img)(_p2##x,_p11##y,z,v)), \ |
philpem@5 | 9178 | (I[33] = (img)(_p2##x,_p10##y,z,v)), \ |
philpem@5 | 9179 | (I[57] = (img)(_p2##x,_p9##y,z,v)), \ |
philpem@5 | 9180 | (I[81] = (img)(_p2##x,_p8##y,z,v)), \ |
philpem@5 | 9181 | (I[105] = (img)(_p2##x,_p7##y,z,v)), \ |
philpem@5 | 9182 | (I[129] = (img)(_p2##x,_p6##y,z,v)), \ |
philpem@5 | 9183 | (I[153] = (img)(_p2##x,_p5##y,z,v)), \ |
philpem@5 | 9184 | (I[177] = (img)(_p2##x,_p4##y,z,v)), \ |
philpem@5 | 9185 | (I[201] = (img)(_p2##x,_p3##y,z,v)), \ |
philpem@5 | 9186 | (I[225] = (img)(_p2##x,_p2##y,z,v)), \ |
philpem@5 | 9187 | (I[249] = (img)(_p2##x,_p1##y,z,v)), \ |
philpem@5 | 9188 | (I[273] = (img)(_p2##x,y,z,v)), \ |
philpem@5 | 9189 | (I[297] = (img)(_p2##x,_n1##y,z,v)), \ |
philpem@5 | 9190 | (I[321] = (img)(_p2##x,_n2##y,z,v)), \ |
philpem@5 | 9191 | (I[345] = (img)(_p2##x,_n3##y,z,v)), \ |
philpem@5 | 9192 | (I[369] = (img)(_p2##x,_n4##y,z,v)), \ |
philpem@5 | 9193 | (I[393] = (img)(_p2##x,_n5##y,z,v)), \ |
philpem@5 | 9194 | (I[417] = (img)(_p2##x,_n6##y,z,v)), \ |
philpem@5 | 9195 | (I[441] = (img)(_p2##x,_n7##y,z,v)), \ |
philpem@5 | 9196 | (I[465] = (img)(_p2##x,_n8##y,z,v)), \ |
philpem@5 | 9197 | (I[489] = (img)(_p2##x,_n9##y,z,v)), \ |
philpem@5 | 9198 | (I[513] = (img)(_p2##x,_n10##y,z,v)), \ |
philpem@5 | 9199 | (I[537] = (img)(_p2##x,_n11##y,z,v)), \ |
philpem@5 | 9200 | (I[561] = (img)(_p2##x,_n12##y,z,v)), \ |
philpem@5 | 9201 | (I[10] = (img)(_p1##x,_p11##y,z,v)), \ |
philpem@5 | 9202 | (I[34] = (img)(_p1##x,_p10##y,z,v)), \ |
philpem@5 | 9203 | (I[58] = (img)(_p1##x,_p9##y,z,v)), \ |
philpem@5 | 9204 | (I[82] = (img)(_p1##x,_p8##y,z,v)), \ |
philpem@5 | 9205 | (I[106] = (img)(_p1##x,_p7##y,z,v)), \ |
philpem@5 | 9206 | (I[130] = (img)(_p1##x,_p6##y,z,v)), \ |
philpem@5 | 9207 | (I[154] = (img)(_p1##x,_p5##y,z,v)), \ |
philpem@5 | 9208 | (I[178] = (img)(_p1##x,_p4##y,z,v)), \ |
philpem@5 | 9209 | (I[202] = (img)(_p1##x,_p3##y,z,v)), \ |
philpem@5 | 9210 | (I[226] = (img)(_p1##x,_p2##y,z,v)), \ |
philpem@5 | 9211 | (I[250] = (img)(_p1##x,_p1##y,z,v)), \ |
philpem@5 | 9212 | (I[274] = (img)(_p1##x,y,z,v)), \ |
philpem@5 | 9213 | (I[298] = (img)(_p1##x,_n1##y,z,v)), \ |
philpem@5 | 9214 | (I[322] = (img)(_p1##x,_n2##y,z,v)), \ |
philpem@5 | 9215 | (I[346] = (img)(_p1##x,_n3##y,z,v)), \ |
philpem@5 | 9216 | (I[370] = (img)(_p1##x,_n4##y,z,v)), \ |
philpem@5 | 9217 | (I[394] = (img)(_p1##x,_n5##y,z,v)), \ |
philpem@5 | 9218 | (I[418] = (img)(_p1##x,_n6##y,z,v)), \ |
philpem@5 | 9219 | (I[442] = (img)(_p1##x,_n7##y,z,v)), \ |
philpem@5 | 9220 | (I[466] = (img)(_p1##x,_n8##y,z,v)), \ |
philpem@5 | 9221 | (I[490] = (img)(_p1##x,_n9##y,z,v)), \ |
philpem@5 | 9222 | (I[514] = (img)(_p1##x,_n10##y,z,v)), \ |
philpem@5 | 9223 | (I[538] = (img)(_p1##x,_n11##y,z,v)), \ |
philpem@5 | 9224 | (I[562] = (img)(_p1##x,_n12##y,z,v)), \ |
philpem@5 | 9225 | (I[11] = (img)(x,_p11##y,z,v)), \ |
philpem@5 | 9226 | (I[35] = (img)(x,_p10##y,z,v)), \ |
philpem@5 | 9227 | (I[59] = (img)(x,_p9##y,z,v)), \ |
philpem@5 | 9228 | (I[83] = (img)(x,_p8##y,z,v)), \ |
philpem@5 | 9229 | (I[107] = (img)(x,_p7##y,z,v)), \ |
philpem@5 | 9230 | (I[131] = (img)(x,_p6##y,z,v)), \ |
philpem@5 | 9231 | (I[155] = (img)(x,_p5##y,z,v)), \ |
philpem@5 | 9232 | (I[179] = (img)(x,_p4##y,z,v)), \ |
philpem@5 | 9233 | (I[203] = (img)(x,_p3##y,z,v)), \ |
philpem@5 | 9234 | (I[227] = (img)(x,_p2##y,z,v)), \ |
philpem@5 | 9235 | (I[251] = (img)(x,_p1##y,z,v)), \ |
philpem@5 | 9236 | (I[275] = (img)(x,y,z,v)), \ |
philpem@5 | 9237 | (I[299] = (img)(x,_n1##y,z,v)), \ |
philpem@5 | 9238 | (I[323] = (img)(x,_n2##y,z,v)), \ |
philpem@5 | 9239 | (I[347] = (img)(x,_n3##y,z,v)), \ |
philpem@5 | 9240 | (I[371] = (img)(x,_n4##y,z,v)), \ |
philpem@5 | 9241 | (I[395] = (img)(x,_n5##y,z,v)), \ |
philpem@5 | 9242 | (I[419] = (img)(x,_n6##y,z,v)), \ |
philpem@5 | 9243 | (I[443] = (img)(x,_n7##y,z,v)), \ |
philpem@5 | 9244 | (I[467] = (img)(x,_n8##y,z,v)), \ |
philpem@5 | 9245 | (I[491] = (img)(x,_n9##y,z,v)), \ |
philpem@5 | 9246 | (I[515] = (img)(x,_n10##y,z,v)), \ |
philpem@5 | 9247 | (I[539] = (img)(x,_n11##y,z,v)), \ |
philpem@5 | 9248 | (I[563] = (img)(x,_n12##y,z,v)), \ |
philpem@5 | 9249 | (I[12] = (img)(_n1##x,_p11##y,z,v)), \ |
philpem@5 | 9250 | (I[36] = (img)(_n1##x,_p10##y,z,v)), \ |
philpem@5 | 9251 | (I[60] = (img)(_n1##x,_p9##y,z,v)), \ |
philpem@5 | 9252 | (I[84] = (img)(_n1##x,_p8##y,z,v)), \ |
philpem@5 | 9253 | (I[108] = (img)(_n1##x,_p7##y,z,v)), \ |
philpem@5 | 9254 | (I[132] = (img)(_n1##x,_p6##y,z,v)), \ |
philpem@5 | 9255 | (I[156] = (img)(_n1##x,_p5##y,z,v)), \ |
philpem@5 | 9256 | (I[180] = (img)(_n1##x,_p4##y,z,v)), \ |
philpem@5 | 9257 | (I[204] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 9258 | (I[228] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 9259 | (I[252] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 9260 | (I[276] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 9261 | (I[300] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 9262 | (I[324] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 9263 | (I[348] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 9264 | (I[372] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 9265 | (I[396] = (img)(_n1##x,_n5##y,z,v)), \ |
philpem@5 | 9266 | (I[420] = (img)(_n1##x,_n6##y,z,v)), \ |
philpem@5 | 9267 | (I[444] = (img)(_n1##x,_n7##y,z,v)), \ |
philpem@5 | 9268 | (I[468] = (img)(_n1##x,_n8##y,z,v)), \ |
philpem@5 | 9269 | (I[492] = (img)(_n1##x,_n9##y,z,v)), \ |
philpem@5 | 9270 | (I[516] = (img)(_n1##x,_n10##y,z,v)), \ |
philpem@5 | 9271 | (I[540] = (img)(_n1##x,_n11##y,z,v)), \ |
philpem@5 | 9272 | (I[564] = (img)(_n1##x,_n12##y,z,v)), \ |
philpem@5 | 9273 | (I[13] = (img)(_n2##x,_p11##y,z,v)), \ |
philpem@5 | 9274 | (I[37] = (img)(_n2##x,_p10##y,z,v)), \ |
philpem@5 | 9275 | (I[61] = (img)(_n2##x,_p9##y,z,v)), \ |
philpem@5 | 9276 | (I[85] = (img)(_n2##x,_p8##y,z,v)), \ |
philpem@5 | 9277 | (I[109] = (img)(_n2##x,_p7##y,z,v)), \ |
philpem@5 | 9278 | (I[133] = (img)(_n2##x,_p6##y,z,v)), \ |
philpem@5 | 9279 | (I[157] = (img)(_n2##x,_p5##y,z,v)), \ |
philpem@5 | 9280 | (I[181] = (img)(_n2##x,_p4##y,z,v)), \ |
philpem@5 | 9281 | (I[205] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 9282 | (I[229] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 9283 | (I[253] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 9284 | (I[277] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 9285 | (I[301] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 9286 | (I[325] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 9287 | (I[349] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 9288 | (I[373] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 9289 | (I[397] = (img)(_n2##x,_n5##y,z,v)), \ |
philpem@5 | 9290 | (I[421] = (img)(_n2##x,_n6##y,z,v)), \ |
philpem@5 | 9291 | (I[445] = (img)(_n2##x,_n7##y,z,v)), \ |
philpem@5 | 9292 | (I[469] = (img)(_n2##x,_n8##y,z,v)), \ |
philpem@5 | 9293 | (I[493] = (img)(_n2##x,_n9##y,z,v)), \ |
philpem@5 | 9294 | (I[517] = (img)(_n2##x,_n10##y,z,v)), \ |
philpem@5 | 9295 | (I[541] = (img)(_n2##x,_n11##y,z,v)), \ |
philpem@5 | 9296 | (I[565] = (img)(_n2##x,_n12##y,z,v)), \ |
philpem@5 | 9297 | (I[14] = (img)(_n3##x,_p11##y,z,v)), \ |
philpem@5 | 9298 | (I[38] = (img)(_n3##x,_p10##y,z,v)), \ |
philpem@5 | 9299 | (I[62] = (img)(_n3##x,_p9##y,z,v)), \ |
philpem@5 | 9300 | (I[86] = (img)(_n3##x,_p8##y,z,v)), \ |
philpem@5 | 9301 | (I[110] = (img)(_n3##x,_p7##y,z,v)), \ |
philpem@5 | 9302 | (I[134] = (img)(_n3##x,_p6##y,z,v)), \ |
philpem@5 | 9303 | (I[158] = (img)(_n3##x,_p5##y,z,v)), \ |
philpem@5 | 9304 | (I[182] = (img)(_n3##x,_p4##y,z,v)), \ |
philpem@5 | 9305 | (I[206] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 9306 | (I[230] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 9307 | (I[254] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 9308 | (I[278] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 9309 | (I[302] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 9310 | (I[326] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 9311 | (I[350] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 9312 | (I[374] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 9313 | (I[398] = (img)(_n3##x,_n5##y,z,v)), \ |
philpem@5 | 9314 | (I[422] = (img)(_n3##x,_n6##y,z,v)), \ |
philpem@5 | 9315 | (I[446] = (img)(_n3##x,_n7##y,z,v)), \ |
philpem@5 | 9316 | (I[470] = (img)(_n3##x,_n8##y,z,v)), \ |
philpem@5 | 9317 | (I[494] = (img)(_n3##x,_n9##y,z,v)), \ |
philpem@5 | 9318 | (I[518] = (img)(_n3##x,_n10##y,z,v)), \ |
philpem@5 | 9319 | (I[542] = (img)(_n3##x,_n11##y,z,v)), \ |
philpem@5 | 9320 | (I[566] = (img)(_n3##x,_n12##y,z,v)), \ |
philpem@5 | 9321 | (I[15] = (img)(_n4##x,_p11##y,z,v)), \ |
philpem@5 | 9322 | (I[39] = (img)(_n4##x,_p10##y,z,v)), \ |
philpem@5 | 9323 | (I[63] = (img)(_n4##x,_p9##y,z,v)), \ |
philpem@5 | 9324 | (I[87] = (img)(_n4##x,_p8##y,z,v)), \ |
philpem@5 | 9325 | (I[111] = (img)(_n4##x,_p7##y,z,v)), \ |
philpem@5 | 9326 | (I[135] = (img)(_n4##x,_p6##y,z,v)), \ |
philpem@5 | 9327 | (I[159] = (img)(_n4##x,_p5##y,z,v)), \ |
philpem@5 | 9328 | (I[183] = (img)(_n4##x,_p4##y,z,v)), \ |
philpem@5 | 9329 | (I[207] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 9330 | (I[231] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 9331 | (I[255] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 9332 | (I[279] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 9333 | (I[303] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 9334 | (I[327] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 9335 | (I[351] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 9336 | (I[375] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 9337 | (I[399] = (img)(_n4##x,_n5##y,z,v)), \ |
philpem@5 | 9338 | (I[423] = (img)(_n4##x,_n6##y,z,v)), \ |
philpem@5 | 9339 | (I[447] = (img)(_n4##x,_n7##y,z,v)), \ |
philpem@5 | 9340 | (I[471] = (img)(_n4##x,_n8##y,z,v)), \ |
philpem@5 | 9341 | (I[495] = (img)(_n4##x,_n9##y,z,v)), \ |
philpem@5 | 9342 | (I[519] = (img)(_n4##x,_n10##y,z,v)), \ |
philpem@5 | 9343 | (I[543] = (img)(_n4##x,_n11##y,z,v)), \ |
philpem@5 | 9344 | (I[567] = (img)(_n4##x,_n12##y,z,v)), \ |
philpem@5 | 9345 | (I[16] = (img)(_n5##x,_p11##y,z,v)), \ |
philpem@5 | 9346 | (I[40] = (img)(_n5##x,_p10##y,z,v)), \ |
philpem@5 | 9347 | (I[64] = (img)(_n5##x,_p9##y,z,v)), \ |
philpem@5 | 9348 | (I[88] = (img)(_n5##x,_p8##y,z,v)), \ |
philpem@5 | 9349 | (I[112] = (img)(_n5##x,_p7##y,z,v)), \ |
philpem@5 | 9350 | (I[136] = (img)(_n5##x,_p6##y,z,v)), \ |
philpem@5 | 9351 | (I[160] = (img)(_n5##x,_p5##y,z,v)), \ |
philpem@5 | 9352 | (I[184] = (img)(_n5##x,_p4##y,z,v)), \ |
philpem@5 | 9353 | (I[208] = (img)(_n5##x,_p3##y,z,v)), \ |
philpem@5 | 9354 | (I[232] = (img)(_n5##x,_p2##y,z,v)), \ |
philpem@5 | 9355 | (I[256] = (img)(_n5##x,_p1##y,z,v)), \ |
philpem@5 | 9356 | (I[280] = (img)(_n5##x,y,z,v)), \ |
philpem@5 | 9357 | (I[304] = (img)(_n5##x,_n1##y,z,v)), \ |
philpem@5 | 9358 | (I[328] = (img)(_n5##x,_n2##y,z,v)), \ |
philpem@5 | 9359 | (I[352] = (img)(_n5##x,_n3##y,z,v)), \ |
philpem@5 | 9360 | (I[376] = (img)(_n5##x,_n4##y,z,v)), \ |
philpem@5 | 9361 | (I[400] = (img)(_n5##x,_n5##y,z,v)), \ |
philpem@5 | 9362 | (I[424] = (img)(_n5##x,_n6##y,z,v)), \ |
philpem@5 | 9363 | (I[448] = (img)(_n5##x,_n7##y,z,v)), \ |
philpem@5 | 9364 | (I[472] = (img)(_n5##x,_n8##y,z,v)), \ |
philpem@5 | 9365 | (I[496] = (img)(_n5##x,_n9##y,z,v)), \ |
philpem@5 | 9366 | (I[520] = (img)(_n5##x,_n10##y,z,v)), \ |
philpem@5 | 9367 | (I[544] = (img)(_n5##x,_n11##y,z,v)), \ |
philpem@5 | 9368 | (I[568] = (img)(_n5##x,_n12##y,z,v)), \ |
philpem@5 | 9369 | (I[17] = (img)(_n6##x,_p11##y,z,v)), \ |
philpem@5 | 9370 | (I[41] = (img)(_n6##x,_p10##y,z,v)), \ |
philpem@5 | 9371 | (I[65] = (img)(_n6##x,_p9##y,z,v)), \ |
philpem@5 | 9372 | (I[89] = (img)(_n6##x,_p8##y,z,v)), \ |
philpem@5 | 9373 | (I[113] = (img)(_n6##x,_p7##y,z,v)), \ |
philpem@5 | 9374 | (I[137] = (img)(_n6##x,_p6##y,z,v)), \ |
philpem@5 | 9375 | (I[161] = (img)(_n6##x,_p5##y,z,v)), \ |
philpem@5 | 9376 | (I[185] = (img)(_n6##x,_p4##y,z,v)), \ |
philpem@5 | 9377 | (I[209] = (img)(_n6##x,_p3##y,z,v)), \ |
philpem@5 | 9378 | (I[233] = (img)(_n6##x,_p2##y,z,v)), \ |
philpem@5 | 9379 | (I[257] = (img)(_n6##x,_p1##y,z,v)), \ |
philpem@5 | 9380 | (I[281] = (img)(_n6##x,y,z,v)), \ |
philpem@5 | 9381 | (I[305] = (img)(_n6##x,_n1##y,z,v)), \ |
philpem@5 | 9382 | (I[329] = (img)(_n6##x,_n2##y,z,v)), \ |
philpem@5 | 9383 | (I[353] = (img)(_n6##x,_n3##y,z,v)), \ |
philpem@5 | 9384 | (I[377] = (img)(_n6##x,_n4##y,z,v)), \ |
philpem@5 | 9385 | (I[401] = (img)(_n6##x,_n5##y,z,v)), \ |
philpem@5 | 9386 | (I[425] = (img)(_n6##x,_n6##y,z,v)), \ |
philpem@5 | 9387 | (I[449] = (img)(_n6##x,_n7##y,z,v)), \ |
philpem@5 | 9388 | (I[473] = (img)(_n6##x,_n8##y,z,v)), \ |
philpem@5 | 9389 | (I[497] = (img)(_n6##x,_n9##y,z,v)), \ |
philpem@5 | 9390 | (I[521] = (img)(_n6##x,_n10##y,z,v)), \ |
philpem@5 | 9391 | (I[545] = (img)(_n6##x,_n11##y,z,v)), \ |
philpem@5 | 9392 | (I[569] = (img)(_n6##x,_n12##y,z,v)), \ |
philpem@5 | 9393 | (I[18] = (img)(_n7##x,_p11##y,z,v)), \ |
philpem@5 | 9394 | (I[42] = (img)(_n7##x,_p10##y,z,v)), \ |
philpem@5 | 9395 | (I[66] = (img)(_n7##x,_p9##y,z,v)), \ |
philpem@5 | 9396 | (I[90] = (img)(_n7##x,_p8##y,z,v)), \ |
philpem@5 | 9397 | (I[114] = (img)(_n7##x,_p7##y,z,v)), \ |
philpem@5 | 9398 | (I[138] = (img)(_n7##x,_p6##y,z,v)), \ |
philpem@5 | 9399 | (I[162] = (img)(_n7##x,_p5##y,z,v)), \ |
philpem@5 | 9400 | (I[186] = (img)(_n7##x,_p4##y,z,v)), \ |
philpem@5 | 9401 | (I[210] = (img)(_n7##x,_p3##y,z,v)), \ |
philpem@5 | 9402 | (I[234] = (img)(_n7##x,_p2##y,z,v)), \ |
philpem@5 | 9403 | (I[258] = (img)(_n7##x,_p1##y,z,v)), \ |
philpem@5 | 9404 | (I[282] = (img)(_n7##x,y,z,v)), \ |
philpem@5 | 9405 | (I[306] = (img)(_n7##x,_n1##y,z,v)), \ |
philpem@5 | 9406 | (I[330] = (img)(_n7##x,_n2##y,z,v)), \ |
philpem@5 | 9407 | (I[354] = (img)(_n7##x,_n3##y,z,v)), \ |
philpem@5 | 9408 | (I[378] = (img)(_n7##x,_n4##y,z,v)), \ |
philpem@5 | 9409 | (I[402] = (img)(_n7##x,_n5##y,z,v)), \ |
philpem@5 | 9410 | (I[426] = (img)(_n7##x,_n6##y,z,v)), \ |
philpem@5 | 9411 | (I[450] = (img)(_n7##x,_n7##y,z,v)), \ |
philpem@5 | 9412 | (I[474] = (img)(_n7##x,_n8##y,z,v)), \ |
philpem@5 | 9413 | (I[498] = (img)(_n7##x,_n9##y,z,v)), \ |
philpem@5 | 9414 | (I[522] = (img)(_n7##x,_n10##y,z,v)), \ |
philpem@5 | 9415 | (I[546] = (img)(_n7##x,_n11##y,z,v)), \ |
philpem@5 | 9416 | (I[570] = (img)(_n7##x,_n12##y,z,v)), \ |
philpem@5 | 9417 | (I[19] = (img)(_n8##x,_p11##y,z,v)), \ |
philpem@5 | 9418 | (I[43] = (img)(_n8##x,_p10##y,z,v)), \ |
philpem@5 | 9419 | (I[67] = (img)(_n8##x,_p9##y,z,v)), \ |
philpem@5 | 9420 | (I[91] = (img)(_n8##x,_p8##y,z,v)), \ |
philpem@5 | 9421 | (I[115] = (img)(_n8##x,_p7##y,z,v)), \ |
philpem@5 | 9422 | (I[139] = (img)(_n8##x,_p6##y,z,v)), \ |
philpem@5 | 9423 | (I[163] = (img)(_n8##x,_p5##y,z,v)), \ |
philpem@5 | 9424 | (I[187] = (img)(_n8##x,_p4##y,z,v)), \ |
philpem@5 | 9425 | (I[211] = (img)(_n8##x,_p3##y,z,v)), \ |
philpem@5 | 9426 | (I[235] = (img)(_n8##x,_p2##y,z,v)), \ |
philpem@5 | 9427 | (I[259] = (img)(_n8##x,_p1##y,z,v)), \ |
philpem@5 | 9428 | (I[283] = (img)(_n8##x,y,z,v)), \ |
philpem@5 | 9429 | (I[307] = (img)(_n8##x,_n1##y,z,v)), \ |
philpem@5 | 9430 | (I[331] = (img)(_n8##x,_n2##y,z,v)), \ |
philpem@5 | 9431 | (I[355] = (img)(_n8##x,_n3##y,z,v)), \ |
philpem@5 | 9432 | (I[379] = (img)(_n8##x,_n4##y,z,v)), \ |
philpem@5 | 9433 | (I[403] = (img)(_n8##x,_n5##y,z,v)), \ |
philpem@5 | 9434 | (I[427] = (img)(_n8##x,_n6##y,z,v)), \ |
philpem@5 | 9435 | (I[451] = (img)(_n8##x,_n7##y,z,v)), \ |
philpem@5 | 9436 | (I[475] = (img)(_n8##x,_n8##y,z,v)), \ |
philpem@5 | 9437 | (I[499] = (img)(_n8##x,_n9##y,z,v)), \ |
philpem@5 | 9438 | (I[523] = (img)(_n8##x,_n10##y,z,v)), \ |
philpem@5 | 9439 | (I[547] = (img)(_n8##x,_n11##y,z,v)), \ |
philpem@5 | 9440 | (I[571] = (img)(_n8##x,_n12##y,z,v)), \ |
philpem@5 | 9441 | (I[20] = (img)(_n9##x,_p11##y,z,v)), \ |
philpem@5 | 9442 | (I[44] = (img)(_n9##x,_p10##y,z,v)), \ |
philpem@5 | 9443 | (I[68] = (img)(_n9##x,_p9##y,z,v)), \ |
philpem@5 | 9444 | (I[92] = (img)(_n9##x,_p8##y,z,v)), \ |
philpem@5 | 9445 | (I[116] = (img)(_n9##x,_p7##y,z,v)), \ |
philpem@5 | 9446 | (I[140] = (img)(_n9##x,_p6##y,z,v)), \ |
philpem@5 | 9447 | (I[164] = (img)(_n9##x,_p5##y,z,v)), \ |
philpem@5 | 9448 | (I[188] = (img)(_n9##x,_p4##y,z,v)), \ |
philpem@5 | 9449 | (I[212] = (img)(_n9##x,_p3##y,z,v)), \ |
philpem@5 | 9450 | (I[236] = (img)(_n9##x,_p2##y,z,v)), \ |
philpem@5 | 9451 | (I[260] = (img)(_n9##x,_p1##y,z,v)), \ |
philpem@5 | 9452 | (I[284] = (img)(_n9##x,y,z,v)), \ |
philpem@5 | 9453 | (I[308] = (img)(_n9##x,_n1##y,z,v)), \ |
philpem@5 | 9454 | (I[332] = (img)(_n9##x,_n2##y,z,v)), \ |
philpem@5 | 9455 | (I[356] = (img)(_n9##x,_n3##y,z,v)), \ |
philpem@5 | 9456 | (I[380] = (img)(_n9##x,_n4##y,z,v)), \ |
philpem@5 | 9457 | (I[404] = (img)(_n9##x,_n5##y,z,v)), \ |
philpem@5 | 9458 | (I[428] = (img)(_n9##x,_n6##y,z,v)), \ |
philpem@5 | 9459 | (I[452] = (img)(_n9##x,_n7##y,z,v)), \ |
philpem@5 | 9460 | (I[476] = (img)(_n9##x,_n8##y,z,v)), \ |
philpem@5 | 9461 | (I[500] = (img)(_n9##x,_n9##y,z,v)), \ |
philpem@5 | 9462 | (I[524] = (img)(_n9##x,_n10##y,z,v)), \ |
philpem@5 | 9463 | (I[548] = (img)(_n9##x,_n11##y,z,v)), \ |
philpem@5 | 9464 | (I[572] = (img)(_n9##x,_n12##y,z,v)), \ |
philpem@5 | 9465 | (I[21] = (img)(_n10##x,_p11##y,z,v)), \ |
philpem@5 | 9466 | (I[45] = (img)(_n10##x,_p10##y,z,v)), \ |
philpem@5 | 9467 | (I[69] = (img)(_n10##x,_p9##y,z,v)), \ |
philpem@5 | 9468 | (I[93] = (img)(_n10##x,_p8##y,z,v)), \ |
philpem@5 | 9469 | (I[117] = (img)(_n10##x,_p7##y,z,v)), \ |
philpem@5 | 9470 | (I[141] = (img)(_n10##x,_p6##y,z,v)), \ |
philpem@5 | 9471 | (I[165] = (img)(_n10##x,_p5##y,z,v)), \ |
philpem@5 | 9472 | (I[189] = (img)(_n10##x,_p4##y,z,v)), \ |
philpem@5 | 9473 | (I[213] = (img)(_n10##x,_p3##y,z,v)), \ |
philpem@5 | 9474 | (I[237] = (img)(_n10##x,_p2##y,z,v)), \ |
philpem@5 | 9475 | (I[261] = (img)(_n10##x,_p1##y,z,v)), \ |
philpem@5 | 9476 | (I[285] = (img)(_n10##x,y,z,v)), \ |
philpem@5 | 9477 | (I[309] = (img)(_n10##x,_n1##y,z,v)), \ |
philpem@5 | 9478 | (I[333] = (img)(_n10##x,_n2##y,z,v)), \ |
philpem@5 | 9479 | (I[357] = (img)(_n10##x,_n3##y,z,v)), \ |
philpem@5 | 9480 | (I[381] = (img)(_n10##x,_n4##y,z,v)), \ |
philpem@5 | 9481 | (I[405] = (img)(_n10##x,_n5##y,z,v)), \ |
philpem@5 | 9482 | (I[429] = (img)(_n10##x,_n6##y,z,v)), \ |
philpem@5 | 9483 | (I[453] = (img)(_n10##x,_n7##y,z,v)), \ |
philpem@5 | 9484 | (I[477] = (img)(_n10##x,_n8##y,z,v)), \ |
philpem@5 | 9485 | (I[501] = (img)(_n10##x,_n9##y,z,v)), \ |
philpem@5 | 9486 | (I[525] = (img)(_n10##x,_n10##y,z,v)), \ |
philpem@5 | 9487 | (I[549] = (img)(_n10##x,_n11##y,z,v)), \ |
philpem@5 | 9488 | (I[573] = (img)(_n10##x,_n12##y,z,v)), \ |
philpem@5 | 9489 | (I[22] = (img)(_n11##x,_p11##y,z,v)), \ |
philpem@5 | 9490 | (I[46] = (img)(_n11##x,_p10##y,z,v)), \ |
philpem@5 | 9491 | (I[70] = (img)(_n11##x,_p9##y,z,v)), \ |
philpem@5 | 9492 | (I[94] = (img)(_n11##x,_p8##y,z,v)), \ |
philpem@5 | 9493 | (I[118] = (img)(_n11##x,_p7##y,z,v)), \ |
philpem@5 | 9494 | (I[142] = (img)(_n11##x,_p6##y,z,v)), \ |
philpem@5 | 9495 | (I[166] = (img)(_n11##x,_p5##y,z,v)), \ |
philpem@5 | 9496 | (I[190] = (img)(_n11##x,_p4##y,z,v)), \ |
philpem@5 | 9497 | (I[214] = (img)(_n11##x,_p3##y,z,v)), \ |
philpem@5 | 9498 | (I[238] = (img)(_n11##x,_p2##y,z,v)), \ |
philpem@5 | 9499 | (I[262] = (img)(_n11##x,_p1##y,z,v)), \ |
philpem@5 | 9500 | (I[286] = (img)(_n11##x,y,z,v)), \ |
philpem@5 | 9501 | (I[310] = (img)(_n11##x,_n1##y,z,v)), \ |
philpem@5 | 9502 | (I[334] = (img)(_n11##x,_n2##y,z,v)), \ |
philpem@5 | 9503 | (I[358] = (img)(_n11##x,_n3##y,z,v)), \ |
philpem@5 | 9504 | (I[382] = (img)(_n11##x,_n4##y,z,v)), \ |
philpem@5 | 9505 | (I[406] = (img)(_n11##x,_n5##y,z,v)), \ |
philpem@5 | 9506 | (I[430] = (img)(_n11##x,_n6##y,z,v)), \ |
philpem@5 | 9507 | (I[454] = (img)(_n11##x,_n7##y,z,v)), \ |
philpem@5 | 9508 | (I[478] = (img)(_n11##x,_n8##y,z,v)), \ |
philpem@5 | 9509 | (I[502] = (img)(_n11##x,_n9##y,z,v)), \ |
philpem@5 | 9510 | (I[526] = (img)(_n11##x,_n10##y,z,v)), \ |
philpem@5 | 9511 | (I[550] = (img)(_n11##x,_n11##y,z,v)), \ |
philpem@5 | 9512 | (I[574] = (img)(_n11##x,_n12##y,z,v)), \ |
philpem@5 | 9513 | x+12>=(int)((img).width)?(int)((img).width)-1:x+12); \ |
philpem@5 | 9514 | x<=(int)(x1) && ((_n12##x<(int)((img).width) && ( \ |
philpem@5 | 9515 | (I[23] = (img)(_n12##x,_p11##y,z,v)), \ |
philpem@5 | 9516 | (I[47] = (img)(_n12##x,_p10##y,z,v)), \ |
philpem@5 | 9517 | (I[71] = (img)(_n12##x,_p9##y,z,v)), \ |
philpem@5 | 9518 | (I[95] = (img)(_n12##x,_p8##y,z,v)), \ |
philpem@5 | 9519 | (I[119] = (img)(_n12##x,_p7##y,z,v)), \ |
philpem@5 | 9520 | (I[143] = (img)(_n12##x,_p6##y,z,v)), \ |
philpem@5 | 9521 | (I[167] = (img)(_n12##x,_p5##y,z,v)), \ |
philpem@5 | 9522 | (I[191] = (img)(_n12##x,_p4##y,z,v)), \ |
philpem@5 | 9523 | (I[215] = (img)(_n12##x,_p3##y,z,v)), \ |
philpem@5 | 9524 | (I[239] = (img)(_n12##x,_p2##y,z,v)), \ |
philpem@5 | 9525 | (I[263] = (img)(_n12##x,_p1##y,z,v)), \ |
philpem@5 | 9526 | (I[287] = (img)(_n12##x,y,z,v)), \ |
philpem@5 | 9527 | (I[311] = (img)(_n12##x,_n1##y,z,v)), \ |
philpem@5 | 9528 | (I[335] = (img)(_n12##x,_n2##y,z,v)), \ |
philpem@5 | 9529 | (I[359] = (img)(_n12##x,_n3##y,z,v)), \ |
philpem@5 | 9530 | (I[383] = (img)(_n12##x,_n4##y,z,v)), \ |
philpem@5 | 9531 | (I[407] = (img)(_n12##x,_n5##y,z,v)), \ |
philpem@5 | 9532 | (I[431] = (img)(_n12##x,_n6##y,z,v)), \ |
philpem@5 | 9533 | (I[455] = (img)(_n12##x,_n7##y,z,v)), \ |
philpem@5 | 9534 | (I[479] = (img)(_n12##x,_n8##y,z,v)), \ |
philpem@5 | 9535 | (I[503] = (img)(_n12##x,_n9##y,z,v)), \ |
philpem@5 | 9536 | (I[527] = (img)(_n12##x,_n10##y,z,v)), \ |
philpem@5 | 9537 | (I[551] = (img)(_n12##x,_n11##y,z,v)), \ |
philpem@5 | 9538 | (I[575] = (img)(_n12##x,_n12##y,z,v)),1)) || \ |
philpem@5 | 9539 | _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \ |
philpem@5 | 9540 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \ |
philpem@5 | 9541 | I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \ |
philpem@5 | 9542 | I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \ |
philpem@5 | 9543 | I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \ |
philpem@5 | 9544 | I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \ |
philpem@5 | 9545 | I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \ |
philpem@5 | 9546 | I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \ |
philpem@5 | 9547 | I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \ |
philpem@5 | 9548 | I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \ |
philpem@5 | 9549 | I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \ |
philpem@5 | 9550 | I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], \ |
philpem@5 | 9551 | I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \ |
philpem@5 | 9552 | I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], \ |
philpem@5 | 9553 | I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \ |
philpem@5 | 9554 | I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \ |
philpem@5 | 9555 | I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], \ |
philpem@5 | 9556 | I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], \ |
philpem@5 | 9557 | I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], \ |
philpem@5 | 9558 | I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], \ |
philpem@5 | 9559 | I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], \ |
philpem@5 | 9560 | I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], \ |
philpem@5 | 9561 | I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], \ |
philpem@5 | 9562 | I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], \ |
philpem@5 | 9563 | I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], \ |
philpem@5 | 9564 | _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x) |
philpem@5 | 9565 | |
philpem@5 | 9566 | #define cimg_get24x24(img,x,y,z,v,I) \ |
philpem@5 | 9567 | I[0] = (img)(_p11##x,_p11##y,z,v), I[1] = (img)(_p10##x,_p11##y,z,v), I[2] = (img)(_p9##x,_p11##y,z,v), I[3] = (img)(_p8##x,_p11##y,z,v), I[4] = (img)(_p7##x,_p11##y,z,v), I[5] = (img)(_p6##x,_p11##y,z,v), I[6] = (img)(_p5##x,_p11##y,z,v), I[7] = (img)(_p4##x,_p11##y,z,v), I[8] = (img)(_p3##x,_p11##y,z,v), I[9] = (img)(_p2##x,_p11##y,z,v), I[10] = (img)(_p1##x,_p11##y,z,v), I[11] = (img)(x,_p11##y,z,v), I[12] = (img)(_n1##x,_p11##y,z,v), I[13] = (img)(_n2##x,_p11##y,z,v), I[14] = (img)(_n3##x,_p11##y,z,v), I[15] = (img)(_n4##x,_p11##y,z,v), I[16] = (img)(_n5##x,_p11##y,z,v), I[17] = (img)(_n6##x,_p11##y,z,v), I[18] = (img)(_n7##x,_p11##y,z,v), I[19] = (img)(_n8##x,_p11##y,z,v), I[20] = (img)(_n9##x,_p11##y,z,v), I[21] = (img)(_n10##x,_p11##y,z,v), I[22] = (img)(_n11##x,_p11##y,z,v), I[23] = (img)(_n12##x,_p11##y,z,v), \ |
philpem@5 | 9568 | I[24] = (img)(_p11##x,_p10##y,z,v), I[25] = (img)(_p10##x,_p10##y,z,v), I[26] = (img)(_p9##x,_p10##y,z,v), I[27] = (img)(_p8##x,_p10##y,z,v), I[28] = (img)(_p7##x,_p10##y,z,v), I[29] = (img)(_p6##x,_p10##y,z,v), I[30] = (img)(_p5##x,_p10##y,z,v), I[31] = (img)(_p4##x,_p10##y,z,v), I[32] = (img)(_p3##x,_p10##y,z,v), I[33] = (img)(_p2##x,_p10##y,z,v), I[34] = (img)(_p1##x,_p10##y,z,v), I[35] = (img)(x,_p10##y,z,v), I[36] = (img)(_n1##x,_p10##y,z,v), I[37] = (img)(_n2##x,_p10##y,z,v), I[38] = (img)(_n3##x,_p10##y,z,v), I[39] = (img)(_n4##x,_p10##y,z,v), I[40] = (img)(_n5##x,_p10##y,z,v), I[41] = (img)(_n6##x,_p10##y,z,v), I[42] = (img)(_n7##x,_p10##y,z,v), I[43] = (img)(_n8##x,_p10##y,z,v), I[44] = (img)(_n9##x,_p10##y,z,v), I[45] = (img)(_n10##x,_p10##y,z,v), I[46] = (img)(_n11##x,_p10##y,z,v), I[47] = (img)(_n12##x,_p10##y,z,v), \ |
philpem@5 | 9569 | I[48] = (img)(_p11##x,_p9##y,z,v), I[49] = (img)(_p10##x,_p9##y,z,v), I[50] = (img)(_p9##x,_p9##y,z,v), I[51] = (img)(_p8##x,_p9##y,z,v), I[52] = (img)(_p7##x,_p9##y,z,v), I[53] = (img)(_p6##x,_p9##y,z,v), I[54] = (img)(_p5##x,_p9##y,z,v), I[55] = (img)(_p4##x,_p9##y,z,v), I[56] = (img)(_p3##x,_p9##y,z,v), I[57] = (img)(_p2##x,_p9##y,z,v), I[58] = (img)(_p1##x,_p9##y,z,v), I[59] = (img)(x,_p9##y,z,v), I[60] = (img)(_n1##x,_p9##y,z,v), I[61] = (img)(_n2##x,_p9##y,z,v), I[62] = (img)(_n3##x,_p9##y,z,v), I[63] = (img)(_n4##x,_p9##y,z,v), I[64] = (img)(_n5##x,_p9##y,z,v), I[65] = (img)(_n6##x,_p9##y,z,v), I[66] = (img)(_n7##x,_p9##y,z,v), I[67] = (img)(_n8##x,_p9##y,z,v), I[68] = (img)(_n9##x,_p9##y,z,v), I[69] = (img)(_n10##x,_p9##y,z,v), I[70] = (img)(_n11##x,_p9##y,z,v), I[71] = (img)(_n12##x,_p9##y,z,v), \ |
philpem@5 | 9570 | I[72] = (img)(_p11##x,_p8##y,z,v), I[73] = (img)(_p10##x,_p8##y,z,v), I[74] = (img)(_p9##x,_p8##y,z,v), I[75] = (img)(_p8##x,_p8##y,z,v), I[76] = (img)(_p7##x,_p8##y,z,v), I[77] = (img)(_p6##x,_p8##y,z,v), I[78] = (img)(_p5##x,_p8##y,z,v), I[79] = (img)(_p4##x,_p8##y,z,v), I[80] = (img)(_p3##x,_p8##y,z,v), I[81] = (img)(_p2##x,_p8##y,z,v), I[82] = (img)(_p1##x,_p8##y,z,v), I[83] = (img)(x,_p8##y,z,v), I[84] = (img)(_n1##x,_p8##y,z,v), I[85] = (img)(_n2##x,_p8##y,z,v), I[86] = (img)(_n3##x,_p8##y,z,v), I[87] = (img)(_n4##x,_p8##y,z,v), I[88] = (img)(_n5##x,_p8##y,z,v), I[89] = (img)(_n6##x,_p8##y,z,v), I[90] = (img)(_n7##x,_p8##y,z,v), I[91] = (img)(_n8##x,_p8##y,z,v), I[92] = (img)(_n9##x,_p8##y,z,v), I[93] = (img)(_n10##x,_p8##y,z,v), I[94] = (img)(_n11##x,_p8##y,z,v), I[95] = (img)(_n12##x,_p8##y,z,v), \ |
philpem@5 | 9571 | I[96] = (img)(_p11##x,_p7##y,z,v), I[97] = (img)(_p10##x,_p7##y,z,v), I[98] = (img)(_p9##x,_p7##y,z,v), I[99] = (img)(_p8##x,_p7##y,z,v), I[100] = (img)(_p7##x,_p7##y,z,v), I[101] = (img)(_p6##x,_p7##y,z,v), I[102] = (img)(_p5##x,_p7##y,z,v), I[103] = (img)(_p4##x,_p7##y,z,v), I[104] = (img)(_p3##x,_p7##y,z,v), I[105] = (img)(_p2##x,_p7##y,z,v), I[106] = (img)(_p1##x,_p7##y,z,v), I[107] = (img)(x,_p7##y,z,v), I[108] = (img)(_n1##x,_p7##y,z,v), I[109] = (img)(_n2##x,_p7##y,z,v), I[110] = (img)(_n3##x,_p7##y,z,v), I[111] = (img)(_n4##x,_p7##y,z,v), I[112] = (img)(_n5##x,_p7##y,z,v), I[113] = (img)(_n6##x,_p7##y,z,v), I[114] = (img)(_n7##x,_p7##y,z,v), I[115] = (img)(_n8##x,_p7##y,z,v), I[116] = (img)(_n9##x,_p7##y,z,v), I[117] = (img)(_n10##x,_p7##y,z,v), I[118] = (img)(_n11##x,_p7##y,z,v), I[119] = (img)(_n12##x,_p7##y,z,v), \ |
philpem@5 | 9572 | I[120] = (img)(_p11##x,_p6##y,z,v), I[121] = (img)(_p10##x,_p6##y,z,v), I[122] = (img)(_p9##x,_p6##y,z,v), I[123] = (img)(_p8##x,_p6##y,z,v), I[124] = (img)(_p7##x,_p6##y,z,v), I[125] = (img)(_p6##x,_p6##y,z,v), I[126] = (img)(_p5##x,_p6##y,z,v), I[127] = (img)(_p4##x,_p6##y,z,v), I[128] = (img)(_p3##x,_p6##y,z,v), I[129] = (img)(_p2##x,_p6##y,z,v), I[130] = (img)(_p1##x,_p6##y,z,v), I[131] = (img)(x,_p6##y,z,v), I[132] = (img)(_n1##x,_p6##y,z,v), I[133] = (img)(_n2##x,_p6##y,z,v), I[134] = (img)(_n3##x,_p6##y,z,v), I[135] = (img)(_n4##x,_p6##y,z,v), I[136] = (img)(_n5##x,_p6##y,z,v), I[137] = (img)(_n6##x,_p6##y,z,v), I[138] = (img)(_n7##x,_p6##y,z,v), I[139] = (img)(_n8##x,_p6##y,z,v), I[140] = (img)(_n9##x,_p6##y,z,v), I[141] = (img)(_n10##x,_p6##y,z,v), I[142] = (img)(_n11##x,_p6##y,z,v), I[143] = (img)(_n12##x,_p6##y,z,v), \ |
philpem@5 | 9573 | I[144] = (img)(_p11##x,_p5##y,z,v), I[145] = (img)(_p10##x,_p5##y,z,v), I[146] = (img)(_p9##x,_p5##y,z,v), I[147] = (img)(_p8##x,_p5##y,z,v), I[148] = (img)(_p7##x,_p5##y,z,v), I[149] = (img)(_p6##x,_p5##y,z,v), I[150] = (img)(_p5##x,_p5##y,z,v), I[151] = (img)(_p4##x,_p5##y,z,v), I[152] = (img)(_p3##x,_p5##y,z,v), I[153] = (img)(_p2##x,_p5##y,z,v), I[154] = (img)(_p1##x,_p5##y,z,v), I[155] = (img)(x,_p5##y,z,v), I[156] = (img)(_n1##x,_p5##y,z,v), I[157] = (img)(_n2##x,_p5##y,z,v), I[158] = (img)(_n3##x,_p5##y,z,v), I[159] = (img)(_n4##x,_p5##y,z,v), I[160] = (img)(_n5##x,_p5##y,z,v), I[161] = (img)(_n6##x,_p5##y,z,v), I[162] = (img)(_n7##x,_p5##y,z,v), I[163] = (img)(_n8##x,_p5##y,z,v), I[164] = (img)(_n9##x,_p5##y,z,v), I[165] = (img)(_n10##x,_p5##y,z,v), I[166] = (img)(_n11##x,_p5##y,z,v), I[167] = (img)(_n12##x,_p5##y,z,v), \ |
philpem@5 | 9574 | I[168] = (img)(_p11##x,_p4##y,z,v), I[169] = (img)(_p10##x,_p4##y,z,v), I[170] = (img)(_p9##x,_p4##y,z,v), I[171] = (img)(_p8##x,_p4##y,z,v), I[172] = (img)(_p7##x,_p4##y,z,v), I[173] = (img)(_p6##x,_p4##y,z,v), I[174] = (img)(_p5##x,_p4##y,z,v), I[175] = (img)(_p4##x,_p4##y,z,v), I[176] = (img)(_p3##x,_p4##y,z,v), I[177] = (img)(_p2##x,_p4##y,z,v), I[178] = (img)(_p1##x,_p4##y,z,v), I[179] = (img)(x,_p4##y,z,v), I[180] = (img)(_n1##x,_p4##y,z,v), I[181] = (img)(_n2##x,_p4##y,z,v), I[182] = (img)(_n3##x,_p4##y,z,v), I[183] = (img)(_n4##x,_p4##y,z,v), I[184] = (img)(_n5##x,_p4##y,z,v), I[185] = (img)(_n6##x,_p4##y,z,v), I[186] = (img)(_n7##x,_p4##y,z,v), I[187] = (img)(_n8##x,_p4##y,z,v), I[188] = (img)(_n9##x,_p4##y,z,v), I[189] = (img)(_n10##x,_p4##y,z,v), I[190] = (img)(_n11##x,_p4##y,z,v), I[191] = (img)(_n12##x,_p4##y,z,v), \ |
philpem@5 | 9575 | I[192] = (img)(_p11##x,_p3##y,z,v), I[193] = (img)(_p10##x,_p3##y,z,v), I[194] = (img)(_p9##x,_p3##y,z,v), I[195] = (img)(_p8##x,_p3##y,z,v), I[196] = (img)(_p7##x,_p3##y,z,v), I[197] = (img)(_p6##x,_p3##y,z,v), I[198] = (img)(_p5##x,_p3##y,z,v), I[199] = (img)(_p4##x,_p3##y,z,v), I[200] = (img)(_p3##x,_p3##y,z,v), I[201] = (img)(_p2##x,_p3##y,z,v), I[202] = (img)(_p1##x,_p3##y,z,v), I[203] = (img)(x,_p3##y,z,v), I[204] = (img)(_n1##x,_p3##y,z,v), I[205] = (img)(_n2##x,_p3##y,z,v), I[206] = (img)(_n3##x,_p3##y,z,v), I[207] = (img)(_n4##x,_p3##y,z,v), I[208] = (img)(_n5##x,_p3##y,z,v), I[209] = (img)(_n6##x,_p3##y,z,v), I[210] = (img)(_n7##x,_p3##y,z,v), I[211] = (img)(_n8##x,_p3##y,z,v), I[212] = (img)(_n9##x,_p3##y,z,v), I[213] = (img)(_n10##x,_p3##y,z,v), I[214] = (img)(_n11##x,_p3##y,z,v), I[215] = (img)(_n12##x,_p3##y,z,v), \ |
philpem@5 | 9576 | I[216] = (img)(_p11##x,_p2##y,z,v), I[217] = (img)(_p10##x,_p2##y,z,v), I[218] = (img)(_p9##x,_p2##y,z,v), I[219] = (img)(_p8##x,_p2##y,z,v), I[220] = (img)(_p7##x,_p2##y,z,v), I[221] = (img)(_p6##x,_p2##y,z,v), I[222] = (img)(_p5##x,_p2##y,z,v), I[223] = (img)(_p4##x,_p2##y,z,v), I[224] = (img)(_p3##x,_p2##y,z,v), I[225] = (img)(_p2##x,_p2##y,z,v), I[226] = (img)(_p1##x,_p2##y,z,v), I[227] = (img)(x,_p2##y,z,v), I[228] = (img)(_n1##x,_p2##y,z,v), I[229] = (img)(_n2##x,_p2##y,z,v), I[230] = (img)(_n3##x,_p2##y,z,v), I[231] = (img)(_n4##x,_p2##y,z,v), I[232] = (img)(_n5##x,_p2##y,z,v), I[233] = (img)(_n6##x,_p2##y,z,v), I[234] = (img)(_n7##x,_p2##y,z,v), I[235] = (img)(_n8##x,_p2##y,z,v), I[236] = (img)(_n9##x,_p2##y,z,v), I[237] = (img)(_n10##x,_p2##y,z,v), I[238] = (img)(_n11##x,_p2##y,z,v), I[239] = (img)(_n12##x,_p2##y,z,v), \ |
philpem@5 | 9577 | I[240] = (img)(_p11##x,_p1##y,z,v), I[241] = (img)(_p10##x,_p1##y,z,v), I[242] = (img)(_p9##x,_p1##y,z,v), I[243] = (img)(_p8##x,_p1##y,z,v), I[244] = (img)(_p7##x,_p1##y,z,v), I[245] = (img)(_p6##x,_p1##y,z,v), I[246] = (img)(_p5##x,_p1##y,z,v), I[247] = (img)(_p4##x,_p1##y,z,v), I[248] = (img)(_p3##x,_p1##y,z,v), I[249] = (img)(_p2##x,_p1##y,z,v), I[250] = (img)(_p1##x,_p1##y,z,v), I[251] = (img)(x,_p1##y,z,v), I[252] = (img)(_n1##x,_p1##y,z,v), I[253] = (img)(_n2##x,_p1##y,z,v), I[254] = (img)(_n3##x,_p1##y,z,v), I[255] = (img)(_n4##x,_p1##y,z,v), I[256] = (img)(_n5##x,_p1##y,z,v), I[257] = (img)(_n6##x,_p1##y,z,v), I[258] = (img)(_n7##x,_p1##y,z,v), I[259] = (img)(_n8##x,_p1##y,z,v), I[260] = (img)(_n9##x,_p1##y,z,v), I[261] = (img)(_n10##x,_p1##y,z,v), I[262] = (img)(_n11##x,_p1##y,z,v), I[263] = (img)(_n12##x,_p1##y,z,v), \ |
philpem@5 | 9578 | I[264] = (img)(_p11##x,y,z,v), I[265] = (img)(_p10##x,y,z,v), I[266] = (img)(_p9##x,y,z,v), I[267] = (img)(_p8##x,y,z,v), I[268] = (img)(_p7##x,y,z,v), I[269] = (img)(_p6##x,y,z,v), I[270] = (img)(_p5##x,y,z,v), I[271] = (img)(_p4##x,y,z,v), I[272] = (img)(_p3##x,y,z,v), I[273] = (img)(_p2##x,y,z,v), I[274] = (img)(_p1##x,y,z,v), I[275] = (img)(x,y,z,v), I[276] = (img)(_n1##x,y,z,v), I[277] = (img)(_n2##x,y,z,v), I[278] = (img)(_n3##x,y,z,v), I[279] = (img)(_n4##x,y,z,v), I[280] = (img)(_n5##x,y,z,v), I[281] = (img)(_n6##x,y,z,v), I[282] = (img)(_n7##x,y,z,v), I[283] = (img)(_n8##x,y,z,v), I[284] = (img)(_n9##x,y,z,v), I[285] = (img)(_n10##x,y,z,v), I[286] = (img)(_n11##x,y,z,v), I[287] = (img)(_n12##x,y,z,v), \ |
philpem@5 | 9579 | I[288] = (img)(_p11##x,_n1##y,z,v), I[289] = (img)(_p10##x,_n1##y,z,v), I[290] = (img)(_p9##x,_n1##y,z,v), I[291] = (img)(_p8##x,_n1##y,z,v), I[292] = (img)(_p7##x,_n1##y,z,v), I[293] = (img)(_p6##x,_n1##y,z,v), I[294] = (img)(_p5##x,_n1##y,z,v), I[295] = (img)(_p4##x,_n1##y,z,v), I[296] = (img)(_p3##x,_n1##y,z,v), I[297] = (img)(_p2##x,_n1##y,z,v), I[298] = (img)(_p1##x,_n1##y,z,v), I[299] = (img)(x,_n1##y,z,v), I[300] = (img)(_n1##x,_n1##y,z,v), I[301] = (img)(_n2##x,_n1##y,z,v), I[302] = (img)(_n3##x,_n1##y,z,v), I[303] = (img)(_n4##x,_n1##y,z,v), I[304] = (img)(_n5##x,_n1##y,z,v), I[305] = (img)(_n6##x,_n1##y,z,v), I[306] = (img)(_n7##x,_n1##y,z,v), I[307] = (img)(_n8##x,_n1##y,z,v), I[308] = (img)(_n9##x,_n1##y,z,v), I[309] = (img)(_n10##x,_n1##y,z,v), I[310] = (img)(_n11##x,_n1##y,z,v), I[311] = (img)(_n12##x,_n1##y,z,v), \ |
philpem@5 | 9580 | I[312] = (img)(_p11##x,_n2##y,z,v), I[313] = (img)(_p10##x,_n2##y,z,v), I[314] = (img)(_p9##x,_n2##y,z,v), I[315] = (img)(_p8##x,_n2##y,z,v), I[316] = (img)(_p7##x,_n2##y,z,v), I[317] = (img)(_p6##x,_n2##y,z,v), I[318] = (img)(_p5##x,_n2##y,z,v), I[319] = (img)(_p4##x,_n2##y,z,v), I[320] = (img)(_p3##x,_n2##y,z,v), I[321] = (img)(_p2##x,_n2##y,z,v), I[322] = (img)(_p1##x,_n2##y,z,v), I[323] = (img)(x,_n2##y,z,v), I[324] = (img)(_n1##x,_n2##y,z,v), I[325] = (img)(_n2##x,_n2##y,z,v), I[326] = (img)(_n3##x,_n2##y,z,v), I[327] = (img)(_n4##x,_n2##y,z,v), I[328] = (img)(_n5##x,_n2##y,z,v), I[329] = (img)(_n6##x,_n2##y,z,v), I[330] = (img)(_n7##x,_n2##y,z,v), I[331] = (img)(_n8##x,_n2##y,z,v), I[332] = (img)(_n9##x,_n2##y,z,v), I[333] = (img)(_n10##x,_n2##y,z,v), I[334] = (img)(_n11##x,_n2##y,z,v), I[335] = (img)(_n12##x,_n2##y,z,v), \ |
philpem@5 | 9581 | I[336] = (img)(_p11##x,_n3##y,z,v), I[337] = (img)(_p10##x,_n3##y,z,v), I[338] = (img)(_p9##x,_n3##y,z,v), I[339] = (img)(_p8##x,_n3##y,z,v), I[340] = (img)(_p7##x,_n3##y,z,v), I[341] = (img)(_p6##x,_n3##y,z,v), I[342] = (img)(_p5##x,_n3##y,z,v), I[343] = (img)(_p4##x,_n3##y,z,v), I[344] = (img)(_p3##x,_n3##y,z,v), I[345] = (img)(_p2##x,_n3##y,z,v), I[346] = (img)(_p1##x,_n3##y,z,v), I[347] = (img)(x,_n3##y,z,v), I[348] = (img)(_n1##x,_n3##y,z,v), I[349] = (img)(_n2##x,_n3##y,z,v), I[350] = (img)(_n3##x,_n3##y,z,v), I[351] = (img)(_n4##x,_n3##y,z,v), I[352] = (img)(_n5##x,_n3##y,z,v), I[353] = (img)(_n6##x,_n3##y,z,v), I[354] = (img)(_n7##x,_n3##y,z,v), I[355] = (img)(_n8##x,_n3##y,z,v), I[356] = (img)(_n9##x,_n3##y,z,v), I[357] = (img)(_n10##x,_n3##y,z,v), I[358] = (img)(_n11##x,_n3##y,z,v), I[359] = (img)(_n12##x,_n3##y,z,v), \ |
philpem@5 | 9582 | I[360] = (img)(_p11##x,_n4##y,z,v), I[361] = (img)(_p10##x,_n4##y,z,v), I[362] = (img)(_p9##x,_n4##y,z,v), I[363] = (img)(_p8##x,_n4##y,z,v), I[364] = (img)(_p7##x,_n4##y,z,v), I[365] = (img)(_p6##x,_n4##y,z,v), I[366] = (img)(_p5##x,_n4##y,z,v), I[367] = (img)(_p4##x,_n4##y,z,v), I[368] = (img)(_p3##x,_n4##y,z,v), I[369] = (img)(_p2##x,_n4##y,z,v), I[370] = (img)(_p1##x,_n4##y,z,v), I[371] = (img)(x,_n4##y,z,v), I[372] = (img)(_n1##x,_n4##y,z,v), I[373] = (img)(_n2##x,_n4##y,z,v), I[374] = (img)(_n3##x,_n4##y,z,v), I[375] = (img)(_n4##x,_n4##y,z,v), I[376] = (img)(_n5##x,_n4##y,z,v), I[377] = (img)(_n6##x,_n4##y,z,v), I[378] = (img)(_n7##x,_n4##y,z,v), I[379] = (img)(_n8##x,_n4##y,z,v), I[380] = (img)(_n9##x,_n4##y,z,v), I[381] = (img)(_n10##x,_n4##y,z,v), I[382] = (img)(_n11##x,_n4##y,z,v), I[383] = (img)(_n12##x,_n4##y,z,v), \ |
philpem@5 | 9583 | I[384] = (img)(_p11##x,_n5##y,z,v), I[385] = (img)(_p10##x,_n5##y,z,v), I[386] = (img)(_p9##x,_n5##y,z,v), I[387] = (img)(_p8##x,_n5##y,z,v), I[388] = (img)(_p7##x,_n5##y,z,v), I[389] = (img)(_p6##x,_n5##y,z,v), I[390] = (img)(_p5##x,_n5##y,z,v), I[391] = (img)(_p4##x,_n5##y,z,v), I[392] = (img)(_p3##x,_n5##y,z,v), I[393] = (img)(_p2##x,_n5##y,z,v), I[394] = (img)(_p1##x,_n5##y,z,v), I[395] = (img)(x,_n5##y,z,v), I[396] = (img)(_n1##x,_n5##y,z,v), I[397] = (img)(_n2##x,_n5##y,z,v), I[398] = (img)(_n3##x,_n5##y,z,v), I[399] = (img)(_n4##x,_n5##y,z,v), I[400] = (img)(_n5##x,_n5##y,z,v), I[401] = (img)(_n6##x,_n5##y,z,v), I[402] = (img)(_n7##x,_n5##y,z,v), I[403] = (img)(_n8##x,_n5##y,z,v), I[404] = (img)(_n9##x,_n5##y,z,v), I[405] = (img)(_n10##x,_n5##y,z,v), I[406] = (img)(_n11##x,_n5##y,z,v), I[407] = (img)(_n12##x,_n5##y,z,v), \ |
philpem@5 | 9584 | I[408] = (img)(_p11##x,_n6##y,z,v), I[409] = (img)(_p10##x,_n6##y,z,v), I[410] = (img)(_p9##x,_n6##y,z,v), I[411] = (img)(_p8##x,_n6##y,z,v), I[412] = (img)(_p7##x,_n6##y,z,v), I[413] = (img)(_p6##x,_n6##y,z,v), I[414] = (img)(_p5##x,_n6##y,z,v), I[415] = (img)(_p4##x,_n6##y,z,v), I[416] = (img)(_p3##x,_n6##y,z,v), I[417] = (img)(_p2##x,_n6##y,z,v), I[418] = (img)(_p1##x,_n6##y,z,v), I[419] = (img)(x,_n6##y,z,v), I[420] = (img)(_n1##x,_n6##y,z,v), I[421] = (img)(_n2##x,_n6##y,z,v), I[422] = (img)(_n3##x,_n6##y,z,v), I[423] = (img)(_n4##x,_n6##y,z,v), I[424] = (img)(_n5##x,_n6##y,z,v), I[425] = (img)(_n6##x,_n6##y,z,v), I[426] = (img)(_n7##x,_n6##y,z,v), I[427] = (img)(_n8##x,_n6##y,z,v), I[428] = (img)(_n9##x,_n6##y,z,v), I[429] = (img)(_n10##x,_n6##y,z,v), I[430] = (img)(_n11##x,_n6##y,z,v), I[431] = (img)(_n12##x,_n6##y,z,v), \ |
philpem@5 | 9585 | I[432] = (img)(_p11##x,_n7##y,z,v), I[433] = (img)(_p10##x,_n7##y,z,v), I[434] = (img)(_p9##x,_n7##y,z,v), I[435] = (img)(_p8##x,_n7##y,z,v), I[436] = (img)(_p7##x,_n7##y,z,v), I[437] = (img)(_p6##x,_n7##y,z,v), I[438] = (img)(_p5##x,_n7##y,z,v), I[439] = (img)(_p4##x,_n7##y,z,v), I[440] = (img)(_p3##x,_n7##y,z,v), I[441] = (img)(_p2##x,_n7##y,z,v), I[442] = (img)(_p1##x,_n7##y,z,v), I[443] = (img)(x,_n7##y,z,v), I[444] = (img)(_n1##x,_n7##y,z,v), I[445] = (img)(_n2##x,_n7##y,z,v), I[446] = (img)(_n3##x,_n7##y,z,v), I[447] = (img)(_n4##x,_n7##y,z,v), I[448] = (img)(_n5##x,_n7##y,z,v), I[449] = (img)(_n6##x,_n7##y,z,v), I[450] = (img)(_n7##x,_n7##y,z,v), I[451] = (img)(_n8##x,_n7##y,z,v), I[452] = (img)(_n9##x,_n7##y,z,v), I[453] = (img)(_n10##x,_n7##y,z,v), I[454] = (img)(_n11##x,_n7##y,z,v), I[455] = (img)(_n12##x,_n7##y,z,v), \ |
philpem@5 | 9586 | I[456] = (img)(_p11##x,_n8##y,z,v), I[457] = (img)(_p10##x,_n8##y,z,v), I[458] = (img)(_p9##x,_n8##y,z,v), I[459] = (img)(_p8##x,_n8##y,z,v), I[460] = (img)(_p7##x,_n8##y,z,v), I[461] = (img)(_p6##x,_n8##y,z,v), I[462] = (img)(_p5##x,_n8##y,z,v), I[463] = (img)(_p4##x,_n8##y,z,v), I[464] = (img)(_p3##x,_n8##y,z,v), I[465] = (img)(_p2##x,_n8##y,z,v), I[466] = (img)(_p1##x,_n8##y,z,v), I[467] = (img)(x,_n8##y,z,v), I[468] = (img)(_n1##x,_n8##y,z,v), I[469] = (img)(_n2##x,_n8##y,z,v), I[470] = (img)(_n3##x,_n8##y,z,v), I[471] = (img)(_n4##x,_n8##y,z,v), I[472] = (img)(_n5##x,_n8##y,z,v), I[473] = (img)(_n6##x,_n8##y,z,v), I[474] = (img)(_n7##x,_n8##y,z,v), I[475] = (img)(_n8##x,_n8##y,z,v), I[476] = (img)(_n9##x,_n8##y,z,v), I[477] = (img)(_n10##x,_n8##y,z,v), I[478] = (img)(_n11##x,_n8##y,z,v), I[479] = (img)(_n12##x,_n8##y,z,v), \ |
philpem@5 | 9587 | I[480] = (img)(_p11##x,_n9##y,z,v), I[481] = (img)(_p10##x,_n9##y,z,v), I[482] = (img)(_p9##x,_n9##y,z,v), I[483] = (img)(_p8##x,_n9##y,z,v), I[484] = (img)(_p7##x,_n9##y,z,v), I[485] = (img)(_p6##x,_n9##y,z,v), I[486] = (img)(_p5##x,_n9##y,z,v), I[487] = (img)(_p4##x,_n9##y,z,v), I[488] = (img)(_p3##x,_n9##y,z,v), I[489] = (img)(_p2##x,_n9##y,z,v), I[490] = (img)(_p1##x,_n9##y,z,v), I[491] = (img)(x,_n9##y,z,v), I[492] = (img)(_n1##x,_n9##y,z,v), I[493] = (img)(_n2##x,_n9##y,z,v), I[494] = (img)(_n3##x,_n9##y,z,v), I[495] = (img)(_n4##x,_n9##y,z,v), I[496] = (img)(_n5##x,_n9##y,z,v), I[497] = (img)(_n6##x,_n9##y,z,v), I[498] = (img)(_n7##x,_n9##y,z,v), I[499] = (img)(_n8##x,_n9##y,z,v), I[500] = (img)(_n9##x,_n9##y,z,v), I[501] = (img)(_n10##x,_n9##y,z,v), I[502] = (img)(_n11##x,_n9##y,z,v), I[503] = (img)(_n12##x,_n9##y,z,v), \ |
philpem@5 | 9588 | I[504] = (img)(_p11##x,_n10##y,z,v), I[505] = (img)(_p10##x,_n10##y,z,v), I[506] = (img)(_p9##x,_n10##y,z,v), I[507] = (img)(_p8##x,_n10##y,z,v), I[508] = (img)(_p7##x,_n10##y,z,v), I[509] = (img)(_p6##x,_n10##y,z,v), I[510] = (img)(_p5##x,_n10##y,z,v), I[511] = (img)(_p4##x,_n10##y,z,v), I[512] = (img)(_p3##x,_n10##y,z,v), I[513] = (img)(_p2##x,_n10##y,z,v), I[514] = (img)(_p1##x,_n10##y,z,v), I[515] = (img)(x,_n10##y,z,v), I[516] = (img)(_n1##x,_n10##y,z,v), I[517] = (img)(_n2##x,_n10##y,z,v), I[518] = (img)(_n3##x,_n10##y,z,v), I[519] = (img)(_n4##x,_n10##y,z,v), I[520] = (img)(_n5##x,_n10##y,z,v), I[521] = (img)(_n6##x,_n10##y,z,v), I[522] = (img)(_n7##x,_n10##y,z,v), I[523] = (img)(_n8##x,_n10##y,z,v), I[524] = (img)(_n9##x,_n10##y,z,v), I[525] = (img)(_n10##x,_n10##y,z,v), I[526] = (img)(_n11##x,_n10##y,z,v), I[527] = (img)(_n12##x,_n10##y,z,v), \ |
philpem@5 | 9589 | I[528] = (img)(_p11##x,_n11##y,z,v), I[529] = (img)(_p10##x,_n11##y,z,v), I[530] = (img)(_p9##x,_n11##y,z,v), I[531] = (img)(_p8##x,_n11##y,z,v), I[532] = (img)(_p7##x,_n11##y,z,v), I[533] = (img)(_p6##x,_n11##y,z,v), I[534] = (img)(_p5##x,_n11##y,z,v), I[535] = (img)(_p4##x,_n11##y,z,v), I[536] = (img)(_p3##x,_n11##y,z,v), I[537] = (img)(_p2##x,_n11##y,z,v), I[538] = (img)(_p1##x,_n11##y,z,v), I[539] = (img)(x,_n11##y,z,v), I[540] = (img)(_n1##x,_n11##y,z,v), I[541] = (img)(_n2##x,_n11##y,z,v), I[542] = (img)(_n3##x,_n11##y,z,v), I[543] = (img)(_n4##x,_n11##y,z,v), I[544] = (img)(_n5##x,_n11##y,z,v), I[545] = (img)(_n6##x,_n11##y,z,v), I[546] = (img)(_n7##x,_n11##y,z,v), I[547] = (img)(_n8##x,_n11##y,z,v), I[548] = (img)(_n9##x,_n11##y,z,v), I[549] = (img)(_n10##x,_n11##y,z,v), I[550] = (img)(_n11##x,_n11##y,z,v), I[551] = (img)(_n12##x,_n11##y,z,v), \ |
philpem@5 | 9590 | I[552] = (img)(_p11##x,_n12##y,z,v), I[553] = (img)(_p10##x,_n12##y,z,v), I[554] = (img)(_p9##x,_n12##y,z,v), I[555] = (img)(_p8##x,_n12##y,z,v), I[556] = (img)(_p7##x,_n12##y,z,v), I[557] = (img)(_p6##x,_n12##y,z,v), I[558] = (img)(_p5##x,_n12##y,z,v), I[559] = (img)(_p4##x,_n12##y,z,v), I[560] = (img)(_p3##x,_n12##y,z,v), I[561] = (img)(_p2##x,_n12##y,z,v), I[562] = (img)(_p1##x,_n12##y,z,v), I[563] = (img)(x,_n12##y,z,v), I[564] = (img)(_n1##x,_n12##y,z,v), I[565] = (img)(_n2##x,_n12##y,z,v), I[566] = (img)(_n3##x,_n12##y,z,v), I[567] = (img)(_n4##x,_n12##y,z,v), I[568] = (img)(_n5##x,_n12##y,z,v), I[569] = (img)(_n6##x,_n12##y,z,v), I[570] = (img)(_n7##x,_n12##y,z,v), I[571] = (img)(_n8##x,_n12##y,z,v), I[572] = (img)(_n9##x,_n12##y,z,v), I[573] = (img)(_n10##x,_n12##y,z,v), I[574] = (img)(_n11##x,_n12##y,z,v), I[575] = (img)(_n12##x,_n12##y,z,v); |
philpem@5 | 9591 | |
philpem@5 | 9592 | // Define 4x4x4 loop macros for CImg |
philpem@5 | 9593 | //------------------------------------- |
philpem@5 | 9594 | #define cimg_for_in4(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \ |
philpem@5 | 9595 | _p1##i = i-1<0?0:i-1, \ |
philpem@5 | 9596 | _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \ |
philpem@5 | 9597 | _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2; \ |
philpem@5 | 9598 | i<=(int)(i1) && (_n2##i<(int)(bound) || _n1##i==--_n2##i || \ |
philpem@5 | 9599 | i==(_n2##i = --_n1##i)); \ |
philpem@5 | 9600 | _p1##i = i++, \ |
philpem@5 | 9601 | ++_n1##i, ++_n2##i) |
philpem@5 | 9602 | |
philpem@5 | 9603 | #define cimg_for_in4X(img,x0,x1,x) cimg_for_in4((img).width,x0,x1,x) |
philpem@5 | 9604 | #define cimg_for_in4Y(img,y0,y1,y) cimg_for_in4((img).height,y0,y1,y) |
philpem@5 | 9605 | #define cimg_for_in4Z(img,z0,z1,z) cimg_for_in4((img).depth,z0,z1,z) |
philpem@5 | 9606 | #define cimg_for_in4V(img,v0,v1,v) cimg_for_in4((img).dim,v0,v1,v) |
philpem@5 | 9607 | #define cimg_for_in4XY(img,x0,y0,x1,y1,x,y) cimg_for_in4Y(img,y0,y1,y) cimg_for_in4X(img,x0,x1,x) |
philpem@5 | 9608 | #define cimg_for_in4XZ(img,x0,z0,x1,z1,x,z) cimg_for_in4Z(img,z0,z1,z) cimg_for_in4X(img,x0,x1,x) |
philpem@5 | 9609 | #define cimg_for_in4XV(img,x0,v0,x1,v1,x,v) cimg_for_in4V(img,v0,v1,v) cimg_for_in4X(img,x0,x1,x) |
philpem@5 | 9610 | #define cimg_for_in4YZ(img,y0,z0,y1,z1,y,z) cimg_for_in4Z(img,z0,z1,z) cimg_for_in4Y(img,y0,y1,y) |
philpem@5 | 9611 | #define cimg_for_in4YV(img,y0,v0,y1,v1,y,v) cimg_for_in4V(img,v0,v1,v) cimg_for_in4Y(img,y0,y1,y) |
philpem@5 | 9612 | #define cimg_for_in4ZV(img,z0,v0,z1,v1,z,v) cimg_for_in4V(img,v0,v1,v) cimg_for_in4Z(img,z0,z1,z) |
philpem@5 | 9613 | #define cimg_for_in4XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in4Z(img,z0,z1,z) cimg_for_in4XY(img,x0,y0,x1,y1,x,y) |
philpem@5 | 9614 | #define cimg_for_in4XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in4V(img,v0,v1,v) cimg_for_in4XZ(img,x0,y0,x1,y1,x,z) |
philpem@5 | 9615 | #define cimg_for_in4YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in4V(img,v0,v1,v) cimg_for_in4YZ(img,y0,z0,y1,z1,y,z) |
philpem@5 | 9616 | #define cimg_for_in4XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in4V(img,v0,v1,v) cimg_for_in4XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) |
philpem@5 | 9617 | |
philpem@5 | 9618 | #define cimg_for4x4x4(img,x,y,z,v,I) \ |
philpem@5 | 9619 | cimg_for4((img).depth,z) cimg_for4((img).height,y) for (int x = 0, \ |
philpem@5 | 9620 | _p1##x = 0, \ |
philpem@5 | 9621 | _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \ |
philpem@5 | 9622 | _n2##x = (int)( \ |
philpem@5 | 9623 | (I[0] = I[1] = (img)(0,_p1##y,_p1##z,v)), \ |
philpem@5 | 9624 | (I[4] = I[5] = (img)(0,y,_p1##z,v)), \ |
philpem@5 | 9625 | (I[8] = I[9] = (img)(0,_n1##y,_p1##z,v)), \ |
philpem@5 | 9626 | (I[12] = I[13] = (img)(0,_n2##y,_p1##z,v)), \ |
philpem@5 | 9627 | (I[16] = I[17] = (img)(0,_p1##y,z,v)), \ |
philpem@5 | 9628 | (I[20] = I[21] = (img)(0,y,z,v)), \ |
philpem@5 | 9629 | (I[24] = I[25] = (img)(0,_n1##y,z,v)), \ |
philpem@5 | 9630 | (I[28] = I[29] = (img)(0,_n2##y,z,v)), \ |
philpem@5 | 9631 | (I[32] = I[33] = (img)(0,_p1##y,_n1##z,v)), \ |
philpem@5 | 9632 | (I[36] = I[37] = (img)(0,y,_n1##z,v)), \ |
philpem@5 | 9633 | (I[40] = I[41] = (img)(0,_n1##y,_n1##z,v)), \ |
philpem@5 | 9634 | (I[44] = I[45] = (img)(0,_n2##y,_n1##z,v)), \ |
philpem@5 | 9635 | (I[48] = I[49] = (img)(0,_p1##y,_n2##z,v)), \ |
philpem@5 | 9636 | (I[52] = I[53] = (img)(0,y,_n2##z,v)), \ |
philpem@5 | 9637 | (I[56] = I[57] = (img)(0,_n1##y,_n2##z,v)), \ |
philpem@5 | 9638 | (I[60] = I[61] = (img)(0,_n2##y,_n2##z,v)), \ |
philpem@5 | 9639 | (I[2] = (img)(_n1##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 9640 | (I[6] = (img)(_n1##x,y,_p1##z,v)), \ |
philpem@5 | 9641 | (I[10] = (img)(_n1##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 9642 | (I[14] = (img)(_n1##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 9643 | (I[18] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 9644 | (I[22] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 9645 | (I[26] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 9646 | (I[30] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 9647 | (I[34] = (img)(_n1##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 9648 | (I[38] = (img)(_n1##x,y,_n1##z,v)), \ |
philpem@5 | 9649 | (I[42] = (img)(_n1##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 9650 | (I[46] = (img)(_n1##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 9651 | (I[50] = (img)(_n1##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 9652 | (I[54] = (img)(_n1##x,y,_n2##z,v)), \ |
philpem@5 | 9653 | (I[58] = (img)(_n1##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 9654 | (I[62] = (img)(_n1##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 9655 | 2>=((img).width)?(int)((img).width)-1:2); \ |
philpem@5 | 9656 | (_n2##x<(int)((img).width) && ( \ |
philpem@5 | 9657 | (I[3] = (img)(_n2##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 9658 | (I[7] = (img)(_n2##x,y,_p1##z,v)), \ |
philpem@5 | 9659 | (I[11] = (img)(_n2##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 9660 | (I[15] = (img)(_n2##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 9661 | (I[19] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 9662 | (I[23] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 9663 | (I[27] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 9664 | (I[31] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 9665 | (I[35] = (img)(_n2##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 9666 | (I[39] = (img)(_n2##x,y,_n1##z,v)), \ |
philpem@5 | 9667 | (I[43] = (img)(_n2##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 9668 | (I[47] = (img)(_n2##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 9669 | (I[51] = (img)(_n2##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 9670 | (I[55] = (img)(_n2##x,y,_n2##z,v)), \ |
philpem@5 | 9671 | (I[59] = (img)(_n2##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 9672 | (I[63] = (img)(_n2##x,_n2##y,_n2##z,v)),1)) || \ |
philpem@5 | 9673 | _n1##x==--_n2##x || x==(_n2##x = --_n1##x); \ |
philpem@5 | 9674 | I[0] = I[1], I[1] = I[2], I[2] = I[3], \ |
philpem@5 | 9675 | I[4] = I[5], I[5] = I[6], I[6] = I[7], \ |
philpem@5 | 9676 | I[8] = I[9], I[9] = I[10], I[10] = I[11], \ |
philpem@5 | 9677 | I[12] = I[13], I[13] = I[14], I[14] = I[15], \ |
philpem@5 | 9678 | I[16] = I[17], I[17] = I[18], I[18] = I[19], \ |
philpem@5 | 9679 | I[20] = I[21], I[21] = I[22], I[22] = I[23], \ |
philpem@5 | 9680 | I[24] = I[25], I[25] = I[26], I[26] = I[27], \ |
philpem@5 | 9681 | I[28] = I[29], I[29] = I[30], I[30] = I[31], \ |
philpem@5 | 9682 | I[32] = I[33], I[33] = I[34], I[34] = I[35], \ |
philpem@5 | 9683 | I[36] = I[37], I[37] = I[38], I[38] = I[39], \ |
philpem@5 | 9684 | I[40] = I[41], I[41] = I[42], I[42] = I[43], \ |
philpem@5 | 9685 | I[44] = I[45], I[45] = I[46], I[46] = I[47], \ |
philpem@5 | 9686 | I[48] = I[49], I[49] = I[50], I[50] = I[51], \ |
philpem@5 | 9687 | I[52] = I[53], I[53] = I[54], I[54] = I[55], \ |
philpem@5 | 9688 | I[56] = I[57], I[57] = I[58], I[58] = I[59], \ |
philpem@5 | 9689 | I[60] = I[61], I[61] = I[62], I[62] = I[63], \ |
philpem@5 | 9690 | _p1##x = x++, ++_n1##x, ++_n2##x) |
philpem@5 | 9691 | |
philpem@5 | 9692 | #define cimg_for_in4x4x4(img,x0,y0,z0,x1,y1,z1,x,y,z,v,I) \ |
philpem@5 | 9693 | cimg_for_in4((img).depth,z0,z1,z) cimg_for_in4((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ |
philpem@5 | 9694 | _p1##x = x-1<0?0:x-1, \ |
philpem@5 | 9695 | _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \ |
philpem@5 | 9696 | _n2##x = (int)( \ |
philpem@5 | 9697 | (I[0] = (img)(_p1##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 9698 | (I[4] = (img)(_p1##x,y,_p1##z,v)), \ |
philpem@5 | 9699 | (I[8] = (img)(_p1##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 9700 | (I[12] = (img)(_p1##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 9701 | (I[16] = (img)(_p1##x,_p1##y,z,v)), \ |
philpem@5 | 9702 | (I[20] = (img)(_p1##x,y,z,v)), \ |
philpem@5 | 9703 | (I[24] = (img)(_p1##x,_n1##y,z,v)), \ |
philpem@5 | 9704 | (I[28] = (img)(_p1##x,_n2##y,z,v)), \ |
philpem@5 | 9705 | (I[32] = (img)(_p1##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 9706 | (I[36] = (img)(_p1##x,y,_n1##z,v)), \ |
philpem@5 | 9707 | (I[40] = (img)(_p1##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 9708 | (I[44] = (img)(_p1##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 9709 | (I[48] = (img)(_p1##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 9710 | (I[52] = (img)(_p1##x,y,_n2##z,v)), \ |
philpem@5 | 9711 | (I[56] = (img)(_p1##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 9712 | (I[60] = (img)(_p1##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 9713 | (I[1] = (img)(x,_p1##y,_p1##z,v)), \ |
philpem@5 | 9714 | (I[5] = (img)(x,y,_p1##z,v)), \ |
philpem@5 | 9715 | (I[9] = (img)(x,_n1##y,_p1##z,v)), \ |
philpem@5 | 9716 | (I[13] = (img)(x,_n2##y,_p1##z,v)), \ |
philpem@5 | 9717 | (I[17] = (img)(x,_p1##y,z,v)), \ |
philpem@5 | 9718 | (I[21] = (img)(x,y,z,v)), \ |
philpem@5 | 9719 | (I[25] = (img)(x,_n1##y,z,v)), \ |
philpem@5 | 9720 | (I[29] = (img)(x,_n2##y,z,v)), \ |
philpem@5 | 9721 | (I[33] = (img)(x,_p1##y,_n1##z,v)), \ |
philpem@5 | 9722 | (I[37] = (img)(x,y,_n1##z,v)), \ |
philpem@5 | 9723 | (I[41] = (img)(x,_n1##y,_n1##z,v)), \ |
philpem@5 | 9724 | (I[45] = (img)(x,_n2##y,_n1##z,v)), \ |
philpem@5 | 9725 | (I[49] = (img)(x,_p1##y,_n2##z,v)), \ |
philpem@5 | 9726 | (I[53] = (img)(x,y,_n2##z,v)), \ |
philpem@5 | 9727 | (I[57] = (img)(x,_n1##y,_n2##z,v)), \ |
philpem@5 | 9728 | (I[61] = (img)(x,_n2##y,_n2##z,v)), \ |
philpem@5 | 9729 | (I[2] = (img)(_n1##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 9730 | (I[6] = (img)(_n1##x,y,_p1##z,v)), \ |
philpem@5 | 9731 | (I[10] = (img)(_n1##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 9732 | (I[14] = (img)(_n1##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 9733 | (I[18] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 9734 | (I[22] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 9735 | (I[26] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 9736 | (I[30] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 9737 | (I[34] = (img)(_n1##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 9738 | (I[38] = (img)(_n1##x,y,_n1##z,v)), \ |
philpem@5 | 9739 | (I[42] = (img)(_n1##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 9740 | (I[46] = (img)(_n1##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 9741 | (I[50] = (img)(_n1##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 9742 | (I[54] = (img)(_n1##x,y,_n2##z,v)), \ |
philpem@5 | 9743 | (I[58] = (img)(_n1##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 9744 | (I[62] = (img)(_n1##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 9745 | x+2>=(int)((img).width)?(int)((img).width)-1:x+2); \ |
philpem@5 | 9746 | x<=(int)(x1) && ((_n2##x<(int)((img).width) && ( \ |
philpem@5 | 9747 | (I[3] = (img)(_n2##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 9748 | (I[7] = (img)(_n2##x,y,_p1##z,v)), \ |
philpem@5 | 9749 | (I[11] = (img)(_n2##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 9750 | (I[15] = (img)(_n2##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 9751 | (I[19] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 9752 | (I[23] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 9753 | (I[27] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 9754 | (I[31] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 9755 | (I[35] = (img)(_n2##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 9756 | (I[39] = (img)(_n2##x,y,_n1##z,v)), \ |
philpem@5 | 9757 | (I[43] = (img)(_n2##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 9758 | (I[47] = (img)(_n2##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 9759 | (I[51] = (img)(_n2##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 9760 | (I[55] = (img)(_n2##x,y,_n2##z,v)), \ |
philpem@5 | 9761 | (I[59] = (img)(_n2##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 9762 | (I[63] = (img)(_n2##x,_n2##y,_n2##z,v)),1)) || \ |
philpem@5 | 9763 | _n1##x==--_n2##x || x==(_n2##x = --_n1##x)); \ |
philpem@5 | 9764 | I[0] = I[1], I[1] = I[2], I[2] = I[3], \ |
philpem@5 | 9765 | I[4] = I[5], I[5] = I[6], I[6] = I[7], \ |
philpem@5 | 9766 | I[8] = I[9], I[9] = I[10], I[10] = I[11], \ |
philpem@5 | 9767 | I[12] = I[13], I[13] = I[14], I[14] = I[15], \ |
philpem@5 | 9768 | I[16] = I[17], I[17] = I[18], I[18] = I[19], \ |
philpem@5 | 9769 | I[20] = I[21], I[21] = I[22], I[22] = I[23], \ |
philpem@5 | 9770 | I[24] = I[25], I[25] = I[26], I[26] = I[27], \ |
philpem@5 | 9771 | I[28] = I[29], I[29] = I[30], I[30] = I[31], \ |
philpem@5 | 9772 | I[32] = I[33], I[33] = I[34], I[34] = I[35], \ |
philpem@5 | 9773 | I[36] = I[37], I[37] = I[38], I[38] = I[39], \ |
philpem@5 | 9774 | I[40] = I[41], I[41] = I[42], I[42] = I[43], \ |
philpem@5 | 9775 | I[44] = I[45], I[45] = I[46], I[46] = I[47], \ |
philpem@5 | 9776 | I[48] = I[49], I[49] = I[50], I[50] = I[51], \ |
philpem@5 | 9777 | I[52] = I[53], I[53] = I[54], I[54] = I[55], \ |
philpem@5 | 9778 | I[56] = I[57], I[57] = I[58], I[58] = I[59], \ |
philpem@5 | 9779 | I[60] = I[61], I[61] = I[62], I[62] = I[63], \ |
philpem@5 | 9780 | _p1##x = x++, ++_n1##x, ++_n2##x) |
philpem@5 | 9781 | |
philpem@5 | 9782 | #define cimg_get4x4x4(img,x,y,z,v,I) \ |
philpem@5 | 9783 | I[0] = (img)(_p1##x,_p1##y,_p1##z,v), I[1] = (img)(x,_p1##y,_p1##z,v), I[2] = (img)(_n1##x,_p1##y,_p1##z,v), I[3] = (img)(_n2##x,_p1##y,_p1##z,v), \ |
philpem@5 | 9784 | I[4] = (img)(_p1##x,y,_p1##z,v), I[5] = (img)(x,y,_p1##z,v), I[6] = (img)(_n1##x,y,_p1##z,v), I[7] = (img)(_n2##x,y,_p1##z,v), \ |
philpem@5 | 9785 | I[8] = (img)(_p1##x,_n1##y,_p1##z,v), I[9] = (img)(x,_n1##y,_p1##z,v), I[10] = (img)(_n1##x,_n1##y,_p1##z,v), I[11] = (img)(_n2##x,_n1##y,_p1##z,v), \ |
philpem@5 | 9786 | I[12] = (img)(_p1##x,_n2##y,_p1##z,v), I[13] = (img)(x,_n2##y,_p1##z,v), I[14] = (img)(_n1##x,_n2##y,_p1##z,v), I[15] = (img)(_n2##x,_n2##y,_p1##z,v), \ |
philpem@5 | 9787 | I[16] = (img)(_p1##x,_p1##y,z,v), I[17] = (img)(x,_p1##y,z,v), I[18] = (img)(_n1##x,_p1##y,z,v), I[19] = (img)(_n2##x,_p1##y,z,v), \ |
philpem@5 | 9788 | I[20] = (img)(_p1##x,y,z,v), I[21] = (img)(x,y,z,v), I[22] = (img)(_n1##x,y,z,v), I[23] = (img)(_n2##x,y,z,v), \ |
philpem@5 | 9789 | I[24] = (img)(_p1##x,_n1##y,z,v), I[25] = (img)(x,_n1##y,z,v), I[26] = (img)(_n1##x,_n1##y,z,v), I[27] = (img)(_n2##x,_n1##y,z,v), \ |
philpem@5 | 9790 | I[28] = (img)(_p1##x,_n2##y,z,v), I[29] = (img)(x,_n2##y,z,v), I[30] = (img)(_n1##x,_n2##y,z,v), I[31] = (img)(_n2##x,_n2##y,z,v), \ |
philpem@5 | 9791 | I[32] = (img)(_p1##x,_p1##y,_n1##z,v), I[33] = (img)(x,_p1##y,_n1##z,v), I[34] = (img)(_n1##x,_p1##y,_n1##z,v), I[35] = (img)(_n2##x,_p1##y,_n1##z,v), \ |
philpem@5 | 9792 | I[36] = (img)(_p1##x,y,_n1##z,v), I[37] = (img)(x,y,_n1##z,v), I[38] = (img)(_n1##x,y,_n1##z,v), I[39] = (img)(_n2##x,y,_n1##z,v), \ |
philpem@5 | 9793 | I[40] = (img)(_p1##x,_n1##y,_n1##z,v), I[41] = (img)(x,_n1##y,_n1##z,v), I[42] = (img)(_n1##x,_n1##y,_n1##z,v), I[43] = (img)(_n2##x,_n1##y,_n1##z,v), \ |
philpem@5 | 9794 | I[44] = (img)(_p1##x,_n2##y,_n1##z,v), I[45] = (img)(x,_n2##y,_n1##z,v), I[46] = (img)(_n1##x,_n2##y,_n1##z,v), I[47] = (img)(_n2##x,_n2##y,_n1##z,v), \ |
philpem@5 | 9795 | I[48] = (img)(_p1##x,_p1##y,_n2##z,v), I[49] = (img)(x,_p1##y,_n2##z,v), I[50] = (img)(_n1##x,_p1##y,_n2##z,v), I[51] = (img)(_n2##x,_p1##y,_n2##z,v), \ |
philpem@5 | 9796 | I[52] = (img)(_p1##x,y,_n2##z,v), I[53] = (img)(x,y,_n2##z,v), I[54] = (img)(_n1##x,y,_n2##z,v), I[55] = (img)(_n2##x,y,_n2##z,v), \ |
philpem@5 | 9797 | I[56] = (img)(_p1##x,_n1##y,_n2##z,v), I[57] = (img)(x,_n1##y,_n2##z,v), I[58] = (img)(_n1##x,_n1##y,_n2##z,v), I[59] = (img)(_n2##x,_n1##y,_n2##z,v), \ |
philpem@5 | 9798 | I[60] = (img)(_p1##x,_n2##y,_n2##z,v), I[61] = (img)(x,_n2##y,_n2##z,v), I[62] = (img)(_n1##x,_n2##y,_n2##z,v), I[63] = (img)(_n2##x,_n2##y,_n2##z,v); |
philpem@5 | 9799 | |
philpem@5 | 9800 | // Define 5x5x5 loop macros for CImg |
philpem@5 | 9801 | //------------------------------------- |
philpem@5 | 9802 | #define cimg_for_in5(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \ |
philpem@5 | 9803 | _p2##i = i-2<0?0:i-2, \ |
philpem@5 | 9804 | _p1##i = i-1<0?0:i-1, \ |
philpem@5 | 9805 | _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \ |
philpem@5 | 9806 | _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2; \ |
philpem@5 | 9807 | i<=(int)(i1) && (_n2##i<(int)(bound) || _n1##i==--_n2##i || \ |
philpem@5 | 9808 | i==(_n2##i = --_n1##i)); \ |
philpem@5 | 9809 | _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 9810 | ++_n1##i, ++_n2##i) |
philpem@5 | 9811 | |
philpem@5 | 9812 | #define cimg_for_in5X(img,x0,x1,x) cimg_for_in5((img).width,x0,x1,x) |
philpem@5 | 9813 | #define cimg_for_in5Y(img,y0,y1,y) cimg_for_in5((img).height,y0,y1,y) |
philpem@5 | 9814 | #define cimg_for_in5Z(img,z0,z1,z) cimg_for_in5((img).depth,z0,z1,z) |
philpem@5 | 9815 | #define cimg_for_in5V(img,v0,v1,v) cimg_for_in5((img).dim,v0,v1,v) |
philpem@5 | 9816 | #define cimg_for_in5XY(img,x0,y0,x1,y1,x,y) cimg_for_in5Y(img,y0,y1,y) cimg_for_in5X(img,x0,x1,x) |
philpem@5 | 9817 | #define cimg_for_in5XZ(img,x0,z0,x1,z1,x,z) cimg_for_in5Z(img,z0,z1,z) cimg_for_in5X(img,x0,x1,x) |
philpem@5 | 9818 | #define cimg_for_in5XV(img,x0,v0,x1,v1,x,v) cimg_for_in5V(img,v0,v1,v) cimg_for_in5X(img,x0,x1,x) |
philpem@5 | 9819 | #define cimg_for_in5YZ(img,y0,z0,y1,z1,y,z) cimg_for_in5Z(img,z0,z1,z) cimg_for_in5Y(img,y0,y1,y) |
philpem@5 | 9820 | #define cimg_for_in5YV(img,y0,v0,y1,v1,y,v) cimg_for_in5V(img,v0,v1,v) cimg_for_in5Y(img,y0,y1,y) |
philpem@5 | 9821 | #define cimg_for_in5ZV(img,z0,v0,z1,v1,z,v) cimg_for_in5V(img,v0,v1,v) cimg_for_in5Z(img,z0,z1,z) |
philpem@5 | 9822 | #define cimg_for_in5XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in5Z(img,z0,z1,z) cimg_for_in5XY(img,x0,y0,x1,y1,x,y) |
philpem@5 | 9823 | #define cimg_for_in5XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in5V(img,v0,v1,v) cimg_for_in5XZ(img,x0,y0,x1,y1,x,z) |
philpem@5 | 9824 | #define cimg_for_in5YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in5V(img,v0,v1,v) cimg_for_in5YZ(img,y0,z0,y1,z1,y,z) |
philpem@5 | 9825 | #define cimg_for_in5XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in5V(img,v0,v1,v) cimg_for_in5XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) |
philpem@5 | 9826 | |
philpem@5 | 9827 | #define cimg_for5x5x5(img,x,y,z,v,I) \ |
philpem@5 | 9828 | cimg_for5((img).depth,z) cimg_for5((img).height,y) for (int x = 0, \ |
philpem@5 | 9829 | _p2##x = 0, _p1##x = 0, \ |
philpem@5 | 9830 | _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \ |
philpem@5 | 9831 | _n2##x = (int)( \ |
philpem@5 | 9832 | (I[0] = I[1] = I[2] = (img)(0,_p2##y,_p2##z,v)), \ |
philpem@5 | 9833 | (I[5] = I[6] = I[7] = (img)(0,_p1##y,_p2##z,v)), \ |
philpem@5 | 9834 | (I[10] = I[11] = I[12] = (img)(0,y,_p2##z,v)), \ |
philpem@5 | 9835 | (I[15] = I[16] = I[17] = (img)(0,_n1##y,_p2##z,v)), \ |
philpem@5 | 9836 | (I[20] = I[21] = I[22] = (img)(0,_n2##y,_p2##z,v)), \ |
philpem@5 | 9837 | (I[25] = I[26] = I[27] = (img)(0,_p2##y,_p1##z,v)), \ |
philpem@5 | 9838 | (I[30] = I[31] = I[32] = (img)(0,_p1##y,_p1##z,v)), \ |
philpem@5 | 9839 | (I[35] = I[36] = I[37] = (img)(0,y,_p1##z,v)), \ |
philpem@5 | 9840 | (I[40] = I[41] = I[42] = (img)(0,_n1##y,_p1##z,v)), \ |
philpem@5 | 9841 | (I[45] = I[46] = I[47] = (img)(0,_n2##y,_p1##z,v)), \ |
philpem@5 | 9842 | (I[50] = I[51] = I[52] = (img)(0,_p2##y,z,v)), \ |
philpem@5 | 9843 | (I[55] = I[56] = I[57] = (img)(0,_p1##y,z,v)), \ |
philpem@5 | 9844 | (I[60] = I[61] = I[62] = (img)(0,y,z,v)), \ |
philpem@5 | 9845 | (I[65] = I[66] = I[67] = (img)(0,_n1##y,z,v)), \ |
philpem@5 | 9846 | (I[70] = I[71] = I[72] = (img)(0,_n2##y,z,v)), \ |
philpem@5 | 9847 | (I[75] = I[76] = I[77] = (img)(0,_p2##y,_n1##z,v)), \ |
philpem@5 | 9848 | (I[80] = I[81] = I[82] = (img)(0,_p1##y,_n1##z,v)), \ |
philpem@5 | 9849 | (I[85] = I[86] = I[87] = (img)(0,y,_n1##z,v)), \ |
philpem@5 | 9850 | (I[90] = I[91] = I[92] = (img)(0,_n1##y,_n1##z,v)), \ |
philpem@5 | 9851 | (I[95] = I[96] = I[97] = (img)(0,_n2##y,_n1##z,v)), \ |
philpem@5 | 9852 | (I[100] = I[101] = I[102] = (img)(0,_p2##y,_n2##z,v)), \ |
philpem@5 | 9853 | (I[105] = I[106] = I[107] = (img)(0,_p1##y,_n2##z,v)), \ |
philpem@5 | 9854 | (I[110] = I[111] = I[112] = (img)(0,y,_n2##z,v)), \ |
philpem@5 | 9855 | (I[115] = I[116] = I[117] = (img)(0,_n1##y,_n2##z,v)), \ |
philpem@5 | 9856 | (I[120] = I[121] = I[122] = (img)(0,_n2##y,_n2##z,v)), \ |
philpem@5 | 9857 | (I[3] = (img)(_n1##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 9858 | (I[8] = (img)(_n1##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 9859 | (I[13] = (img)(_n1##x,y,_p2##z,v)), \ |
philpem@5 | 9860 | (I[18] = (img)(_n1##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 9861 | (I[23] = (img)(_n1##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 9862 | (I[28] = (img)(_n1##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 9863 | (I[33] = (img)(_n1##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 9864 | (I[38] = (img)(_n1##x,y,_p1##z,v)), \ |
philpem@5 | 9865 | (I[43] = (img)(_n1##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 9866 | (I[48] = (img)(_n1##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 9867 | (I[53] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 9868 | (I[58] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 9869 | (I[63] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 9870 | (I[68] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 9871 | (I[73] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 9872 | (I[78] = (img)(_n1##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 9873 | (I[83] = (img)(_n1##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 9874 | (I[88] = (img)(_n1##x,y,_n1##z,v)), \ |
philpem@5 | 9875 | (I[93] = (img)(_n1##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 9876 | (I[98] = (img)(_n1##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 9877 | (I[103] = (img)(_n1##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 9878 | (I[108] = (img)(_n1##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 9879 | (I[113] = (img)(_n1##x,y,_n2##z,v)), \ |
philpem@5 | 9880 | (I[118] = (img)(_n1##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 9881 | (I[123] = (img)(_n1##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 9882 | 2>=((img).width)?(int)((img).width)-1:2); \ |
philpem@5 | 9883 | (_n2##x<(int)((img).width) && ( \ |
philpem@5 | 9884 | (I[4] = (img)(_n2##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 9885 | (I[9] = (img)(_n2##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 9886 | (I[14] = (img)(_n2##x,y,_p2##z,v)), \ |
philpem@5 | 9887 | (I[19] = (img)(_n2##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 9888 | (I[24] = (img)(_n2##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 9889 | (I[29] = (img)(_n2##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 9890 | (I[34] = (img)(_n2##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 9891 | (I[39] = (img)(_n2##x,y,_p1##z,v)), \ |
philpem@5 | 9892 | (I[44] = (img)(_n2##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 9893 | (I[49] = (img)(_n2##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 9894 | (I[54] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 9895 | (I[59] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 9896 | (I[64] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 9897 | (I[69] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 9898 | (I[74] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 9899 | (I[79] = (img)(_n2##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 9900 | (I[84] = (img)(_n2##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 9901 | (I[89] = (img)(_n2##x,y,_n1##z,v)), \ |
philpem@5 | 9902 | (I[94] = (img)(_n2##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 9903 | (I[99] = (img)(_n2##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 9904 | (I[104] = (img)(_n2##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 9905 | (I[109] = (img)(_n2##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 9906 | (I[114] = (img)(_n2##x,y,_n2##z,v)), \ |
philpem@5 | 9907 | (I[119] = (img)(_n2##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 9908 | (I[124] = (img)(_n2##x,_n2##y,_n2##z,v)),1)) || \ |
philpem@5 | 9909 | _n1##x==--_n2##x || x==(_n2##x = --_n1##x); \ |
philpem@5 | 9910 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], \ |
philpem@5 | 9911 | I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], \ |
philpem@5 | 9912 | I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], \ |
philpem@5 | 9913 | I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \ |
philpem@5 | 9914 | I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \ |
philpem@5 | 9915 | I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \ |
philpem@5 | 9916 | I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], \ |
philpem@5 | 9917 | I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \ |
philpem@5 | 9918 | I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], \ |
philpem@5 | 9919 | I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], \ |
philpem@5 | 9920 | I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], \ |
philpem@5 | 9921 | I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \ |
philpem@5 | 9922 | I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], \ |
philpem@5 | 9923 | I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \ |
philpem@5 | 9924 | I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], \ |
philpem@5 | 9925 | I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \ |
philpem@5 | 9926 | I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], \ |
philpem@5 | 9927 | I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \ |
philpem@5 | 9928 | I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], \ |
philpem@5 | 9929 | I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \ |
philpem@5 | 9930 | I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \ |
philpem@5 | 9931 | I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], \ |
philpem@5 | 9932 | I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], \ |
philpem@5 | 9933 | I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \ |
philpem@5 | 9934 | I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], \ |
philpem@5 | 9935 | _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x) |
philpem@5 | 9936 | |
philpem@5 | 9937 | #define cimg_for_in5x5x5(img,x0,y0,z0,x1,y1,z1,x,y,z,v,I) \ |
philpem@5 | 9938 | cimg_for_in5((img).depth,z0,z1,z) cimg_for_in5((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ |
philpem@5 | 9939 | _p2##x = x-2<0?0:x-2, \ |
philpem@5 | 9940 | _p1##x = x-1<0?0:x-1, \ |
philpem@5 | 9941 | _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \ |
philpem@5 | 9942 | _n2##x = (int)( \ |
philpem@5 | 9943 | (I[0] = (img)(_p2##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 9944 | (I[5] = (img)(_p2##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 9945 | (I[10] = (img)(_p2##x,y,_p2##z,v)), \ |
philpem@5 | 9946 | (I[15] = (img)(_p2##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 9947 | (I[20] = (img)(_p2##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 9948 | (I[25] = (img)(_p2##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 9949 | (I[30] = (img)(_p2##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 9950 | (I[35] = (img)(_p2##x,y,_p1##z,v)), \ |
philpem@5 | 9951 | (I[40] = (img)(_p2##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 9952 | (I[45] = (img)(_p2##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 9953 | (I[50] = (img)(_p2##x,_p2##y,z,v)), \ |
philpem@5 | 9954 | (I[55] = (img)(_p2##x,_p1##y,z,v)), \ |
philpem@5 | 9955 | (I[60] = (img)(_p2##x,y,z,v)), \ |
philpem@5 | 9956 | (I[65] = (img)(_p2##x,_n1##y,z,v)), \ |
philpem@5 | 9957 | (I[70] = (img)(_p2##x,_n2##y,z,v)), \ |
philpem@5 | 9958 | (I[75] = (img)(_p2##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 9959 | (I[80] = (img)(_p2##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 9960 | (I[85] = (img)(_p2##x,y,_n1##z,v)), \ |
philpem@5 | 9961 | (I[90] = (img)(_p2##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 9962 | (I[95] = (img)(_p2##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 9963 | (I[100] = (img)(_p2##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 9964 | (I[105] = (img)(_p2##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 9965 | (I[110] = (img)(_p2##x,y,_n2##z,v)), \ |
philpem@5 | 9966 | (I[115] = (img)(_p2##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 9967 | (I[120] = (img)(_p2##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 9968 | (I[1] = (img)(_p1##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 9969 | (I[6] = (img)(_p1##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 9970 | (I[11] = (img)(_p1##x,y,_p2##z,v)), \ |
philpem@5 | 9971 | (I[16] = (img)(_p1##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 9972 | (I[21] = (img)(_p1##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 9973 | (I[26] = (img)(_p1##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 9974 | (I[31] = (img)(_p1##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 9975 | (I[36] = (img)(_p1##x,y,_p1##z,v)), \ |
philpem@5 | 9976 | (I[41] = (img)(_p1##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 9977 | (I[46] = (img)(_p1##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 9978 | (I[51] = (img)(_p1##x,_p2##y,z,v)), \ |
philpem@5 | 9979 | (I[56] = (img)(_p1##x,_p1##y,z,v)), \ |
philpem@5 | 9980 | (I[61] = (img)(_p1##x,y,z,v)), \ |
philpem@5 | 9981 | (I[66] = (img)(_p1##x,_n1##y,z,v)), \ |
philpem@5 | 9982 | (I[71] = (img)(_p1##x,_n2##y,z,v)), \ |
philpem@5 | 9983 | (I[76] = (img)(_p1##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 9984 | (I[81] = (img)(_p1##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 9985 | (I[86] = (img)(_p1##x,y,_n1##z,v)), \ |
philpem@5 | 9986 | (I[91] = (img)(_p1##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 9987 | (I[96] = (img)(_p1##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 9988 | (I[101] = (img)(_p1##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 9989 | (I[106] = (img)(_p1##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 9990 | (I[111] = (img)(_p1##x,y,_n2##z,v)), \ |
philpem@5 | 9991 | (I[116] = (img)(_p1##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 9992 | (I[121] = (img)(_p1##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 9993 | (I[2] = (img)(x,_p2##y,_p2##z,v)), \ |
philpem@5 | 9994 | (I[7] = (img)(x,_p1##y,_p2##z,v)), \ |
philpem@5 | 9995 | (I[12] = (img)(x,y,_p2##z,v)), \ |
philpem@5 | 9996 | (I[17] = (img)(x,_n1##y,_p2##z,v)), \ |
philpem@5 | 9997 | (I[22] = (img)(x,_n2##y,_p2##z,v)), \ |
philpem@5 | 9998 | (I[27] = (img)(x,_p2##y,_p1##z,v)), \ |
philpem@5 | 9999 | (I[32] = (img)(x,_p1##y,_p1##z,v)), \ |
philpem@5 | 10000 | (I[37] = (img)(x,y,_p1##z,v)), \ |
philpem@5 | 10001 | (I[42] = (img)(x,_n1##y,_p1##z,v)), \ |
philpem@5 | 10002 | (I[47] = (img)(x,_n2##y,_p1##z,v)), \ |
philpem@5 | 10003 | (I[52] = (img)(x,_p2##y,z,v)), \ |
philpem@5 | 10004 | (I[57] = (img)(x,_p1##y,z,v)), \ |
philpem@5 | 10005 | (I[62] = (img)(x,y,z,v)), \ |
philpem@5 | 10006 | (I[67] = (img)(x,_n1##y,z,v)), \ |
philpem@5 | 10007 | (I[72] = (img)(x,_n2##y,z,v)), \ |
philpem@5 | 10008 | (I[77] = (img)(x,_p2##y,_n1##z,v)), \ |
philpem@5 | 10009 | (I[82] = (img)(x,_p1##y,_n1##z,v)), \ |
philpem@5 | 10010 | (I[87] = (img)(x,y,_n1##z,v)), \ |
philpem@5 | 10011 | (I[92] = (img)(x,_n1##y,_n1##z,v)), \ |
philpem@5 | 10012 | (I[97] = (img)(x,_n2##y,_n1##z,v)), \ |
philpem@5 | 10013 | (I[102] = (img)(x,_p2##y,_n2##z,v)), \ |
philpem@5 | 10014 | (I[107] = (img)(x,_p1##y,_n2##z,v)), \ |
philpem@5 | 10015 | (I[112] = (img)(x,y,_n2##z,v)), \ |
philpem@5 | 10016 | (I[117] = (img)(x,_n1##y,_n2##z,v)), \ |
philpem@5 | 10017 | (I[122] = (img)(x,_n2##y,_n2##z,v)), \ |
philpem@5 | 10018 | (I[3] = (img)(_n1##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 10019 | (I[8] = (img)(_n1##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 10020 | (I[13] = (img)(_n1##x,y,_p2##z,v)), \ |
philpem@5 | 10021 | (I[18] = (img)(_n1##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 10022 | (I[23] = (img)(_n1##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 10023 | (I[28] = (img)(_n1##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 10024 | (I[33] = (img)(_n1##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 10025 | (I[38] = (img)(_n1##x,y,_p1##z,v)), \ |
philpem@5 | 10026 | (I[43] = (img)(_n1##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 10027 | (I[48] = (img)(_n1##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 10028 | (I[53] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 10029 | (I[58] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 10030 | (I[63] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 10031 | (I[68] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 10032 | (I[73] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 10033 | (I[78] = (img)(_n1##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 10034 | (I[83] = (img)(_n1##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 10035 | (I[88] = (img)(_n1##x,y,_n1##z,v)), \ |
philpem@5 | 10036 | (I[93] = (img)(_n1##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 10037 | (I[98] = (img)(_n1##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 10038 | (I[103] = (img)(_n1##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 10039 | (I[108] = (img)(_n1##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 10040 | (I[113] = (img)(_n1##x,y,_n2##z,v)), \ |
philpem@5 | 10041 | (I[118] = (img)(_n1##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 10042 | (I[123] = (img)(_n1##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 10043 | x+2>=(int)((img).width)?(int)((img).width)-1:x+2); \ |
philpem@5 | 10044 | x<=(int)(x1) && ((_n2##x<(int)((img).width) && ( \ |
philpem@5 | 10045 | (I[4] = (img)(_n2##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 10046 | (I[9] = (img)(_n2##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 10047 | (I[14] = (img)(_n2##x,y,_p2##z,v)), \ |
philpem@5 | 10048 | (I[19] = (img)(_n2##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 10049 | (I[24] = (img)(_n2##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 10050 | (I[29] = (img)(_n2##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 10051 | (I[34] = (img)(_n2##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 10052 | (I[39] = (img)(_n2##x,y,_p1##z,v)), \ |
philpem@5 | 10053 | (I[44] = (img)(_n2##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 10054 | (I[49] = (img)(_n2##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 10055 | (I[54] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 10056 | (I[59] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 10057 | (I[64] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 10058 | (I[69] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 10059 | (I[74] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 10060 | (I[79] = (img)(_n2##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 10061 | (I[84] = (img)(_n2##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 10062 | (I[89] = (img)(_n2##x,y,_n1##z,v)), \ |
philpem@5 | 10063 | (I[94] = (img)(_n2##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 10064 | (I[99] = (img)(_n2##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 10065 | (I[104] = (img)(_n2##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 10066 | (I[109] = (img)(_n2##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 10067 | (I[114] = (img)(_n2##x,y,_n2##z,v)), \ |
philpem@5 | 10068 | (I[119] = (img)(_n2##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 10069 | (I[124] = (img)(_n2##x,_n2##y,_n2##z,v)),1)) || \ |
philpem@5 | 10070 | _n1##x==--_n2##x || x==(_n2##x = --_n1##x)); \ |
philpem@5 | 10071 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], \ |
philpem@5 | 10072 | I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], \ |
philpem@5 | 10073 | I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], \ |
philpem@5 | 10074 | I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \ |
philpem@5 | 10075 | I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \ |
philpem@5 | 10076 | I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \ |
philpem@5 | 10077 | I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], \ |
philpem@5 | 10078 | I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \ |
philpem@5 | 10079 | I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], \ |
philpem@5 | 10080 | I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], \ |
philpem@5 | 10081 | I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], \ |
philpem@5 | 10082 | I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \ |
philpem@5 | 10083 | I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], \ |
philpem@5 | 10084 | I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \ |
philpem@5 | 10085 | I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], \ |
philpem@5 | 10086 | I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \ |
philpem@5 | 10087 | I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], \ |
philpem@5 | 10088 | I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \ |
philpem@5 | 10089 | I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], \ |
philpem@5 | 10090 | I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \ |
philpem@5 | 10091 | I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \ |
philpem@5 | 10092 | I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], \ |
philpem@5 | 10093 | I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], \ |
philpem@5 | 10094 | I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \ |
philpem@5 | 10095 | I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], \ |
philpem@5 | 10096 | _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x) |
philpem@5 | 10097 | |
philpem@5 | 10098 | #define cimg_get5x5x5(img,x,y,z,v,I) \ |
philpem@5 | 10099 | I[0] = (img)(_p2##x,_p2##y,_p2##z,v), I[1] = (img)(_p1##x,_p2##y,_p2##z,v), I[2] = (img)(x,_p2##y,_p2##z,v), I[3] = (img)(_n1##x,_p2##y,_p2##z,v), I[4] = (img)(_n2##x,_p2##y,_p2##z,v), \ |
philpem@5 | 10100 | I[5] = (img)(_p2##x,_p1##y,_p2##z,v), I[6] = (img)(_p1##x,_p1##y,_p2##z,v), I[7] = (img)(x,_p1##y,_p2##z,v), I[8] = (img)(_n1##x,_p1##y,_p2##z,v), I[9] = (img)(_n2##x,_p1##y,_p2##z,v), \ |
philpem@5 | 10101 | I[10] = (img)(_p2##x,y,_p2##z,v), I[11] = (img)(_p1##x,y,_p2##z,v), I[12] = (img)(x,y,_p2##z,v), I[13] = (img)(_n1##x,y,_p2##z,v), I[14] = (img)(_n2##x,y,_p2##z,v), \ |
philpem@5 | 10102 | I[15] = (img)(_p2##x,_n1##y,_p2##z,v), I[16] = (img)(_p1##x,_n1##y,_p2##z,v), I[17] = (img)(x,_n1##y,_p2##z,v), I[18] = (img)(_n1##x,_n1##y,_p2##z,v), I[19] = (img)(_n2##x,_n1##y,_p2##z,v), \ |
philpem@5 | 10103 | I[20] = (img)(_p2##x,_n2##y,_p2##z,v), I[21] = (img)(_p1##x,_n2##y,_p2##z,v), I[22] = (img)(x,_n2##y,_p2##z,v), I[23] = (img)(_n1##x,_n2##y,_p2##z,v), I[24] = (img)(_n2##x,_n2##y,_p2##z,v), \ |
philpem@5 | 10104 | I[25] = (img)(_p2##x,_p2##y,_p1##z,v), I[26] = (img)(_p1##x,_p2##y,_p1##z,v), I[27] = (img)(x,_p2##y,_p1##z,v), I[28] = (img)(_n1##x,_p2##y,_p1##z,v), I[29] = (img)(_n2##x,_p2##y,_p1##z,v), \ |
philpem@5 | 10105 | I[30] = (img)(_p2##x,_p1##y,_p1##z,v), I[31] = (img)(_p1##x,_p1##y,_p1##z,v), I[32] = (img)(x,_p1##y,_p1##z,v), I[33] = (img)(_n1##x,_p1##y,_p1##z,v), I[34] = (img)(_n2##x,_p1##y,_p1##z,v), \ |
philpem@5 | 10106 | I[35] = (img)(_p2##x,y,_p1##z,v), I[36] = (img)(_p1##x,y,_p1##z,v), I[37] = (img)(x,y,_p1##z,v), I[38] = (img)(_n1##x,y,_p1##z,v), I[39] = (img)(_n2##x,y,_p1##z,v), \ |
philpem@5 | 10107 | I[40] = (img)(_p2##x,_n1##y,_p1##z,v), I[41] = (img)(_p1##x,_n1##y,_p1##z,v), I[42] = (img)(x,_n1##y,_p1##z,v), I[43] = (img)(_n1##x,_n1##y,_p1##z,v), I[44] = (img)(_n2##x,_n1##y,_p1##z,v), \ |
philpem@5 | 10108 | I[45] = (img)(_p2##x,_n2##y,_p1##z,v), I[46] = (img)(_p1##x,_n2##y,_p1##z,v), I[47] = (img)(x,_n2##y,_p1##z,v), I[48] = (img)(_n1##x,_n2##y,_p1##z,v), I[49] = (img)(_n2##x,_n2##y,_p1##z,v), \ |
philpem@5 | 10109 | I[50] = (img)(_p2##x,_p2##y,z,v), I[51] = (img)(_p1##x,_p2##y,z,v), I[52] = (img)(x,_p2##y,z,v), I[53] = (img)(_n1##x,_p2##y,z,v), I[54] = (img)(_n2##x,_p2##y,z,v), \ |
philpem@5 | 10110 | I[55] = (img)(_p2##x,_p1##y,z,v), I[56] = (img)(_p1##x,_p1##y,z,v), I[57] = (img)(x,_p1##y,z,v), I[58] = (img)(_n1##x,_p1##y,z,v), I[59] = (img)(_n2##x,_p1##y,z,v), \ |
philpem@5 | 10111 | I[60] = (img)(_p2##x,y,z,v), I[61] = (img)(_p1##x,y,z,v), I[62] = (img)(x,y,z,v), I[63] = (img)(_n1##x,y,z,v), I[64] = (img)(_n2##x,y,z,v), \ |
philpem@5 | 10112 | I[65] = (img)(_p2##x,_n1##y,z,v), I[66] = (img)(_p1##x,_n1##y,z,v), I[67] = (img)(x,_n1##y,z,v), I[68] = (img)(_n1##x,_n1##y,z,v), I[69] = (img)(_n2##x,_n1##y,z,v), \ |
philpem@5 | 10113 | I[70] = (img)(_p2##x,_n2##y,z,v), I[71] = (img)(_p1##x,_n2##y,z,v), I[72] = (img)(x,_n2##y,z,v), I[73] = (img)(_n1##x,_n2##y,z,v), I[74] = (img)(_n2##x,_n2##y,z,v), \ |
philpem@5 | 10114 | I[75] = (img)(_p2##x,_p2##y,_n1##z,v), I[76] = (img)(_p1##x,_p2##y,_n1##z,v), I[77] = (img)(x,_p2##y,_n1##z,v), I[78] = (img)(_n1##x,_p2##y,_n1##z,v), I[79] = (img)(_n2##x,_p2##y,_n1##z,v), \ |
philpem@5 | 10115 | I[80] = (img)(_p2##x,_p1##y,_n1##z,v), I[81] = (img)(_p1##x,_p1##y,_n1##z,v), I[82] = (img)(x,_p1##y,_n1##z,v), I[83] = (img)(_n1##x,_p1##y,_n1##z,v), I[84] = (img)(_n2##x,_p1##y,_n1##z,v), \ |
philpem@5 | 10116 | I[85] = (img)(_p2##x,y,_n1##z,v), I[86] = (img)(_p1##x,y,_n1##z,v), I[87] = (img)(x,y,_n1##z,v), I[88] = (img)(_n1##x,y,_n1##z,v), I[89] = (img)(_n2##x,y,_n1##z,v), \ |
philpem@5 | 10117 | I[90] = (img)(_p2##x,_n1##y,_n1##z,v), I[91] = (img)(_p1##x,_n1##y,_n1##z,v), I[92] = (img)(x,_n1##y,_n1##z,v), I[93] = (img)(_n1##x,_n1##y,_n1##z,v), I[94] = (img)(_n2##x,_n1##y,_n1##z,v), \ |
philpem@5 | 10118 | I[95] = (img)(_p2##x,_n2##y,_n1##z,v), I[96] = (img)(_p1##x,_n2##y,_n1##z,v), I[97] = (img)(x,_n2##y,_n1##z,v), I[98] = (img)(_n1##x,_n2##y,_n1##z,v), I[99] = (img)(_n2##x,_n2##y,_n1##z,v), \ |
philpem@5 | 10119 | I[100] = (img)(_p2##x,_p2##y,_n2##z,v), I[101] = (img)(_p1##x,_p2##y,_n2##z,v), I[102] = (img)(x,_p2##y,_n2##z,v), I[103] = (img)(_n1##x,_p2##y,_n2##z,v), I[104] = (img)(_n2##x,_p2##y,_n2##z,v), \ |
philpem@5 | 10120 | I[105] = (img)(_p2##x,_p1##y,_n2##z,v), I[106] = (img)(_p1##x,_p1##y,_n2##z,v), I[107] = (img)(x,_p1##y,_n2##z,v), I[108] = (img)(_n1##x,_p1##y,_n2##z,v), I[109] = (img)(_n2##x,_p1##y,_n2##z,v), \ |
philpem@5 | 10121 | I[110] = (img)(_p2##x,y,_n2##z,v), I[111] = (img)(_p1##x,y,_n2##z,v), I[112] = (img)(x,y,_n2##z,v), I[113] = (img)(_n1##x,y,_n2##z,v), I[114] = (img)(_n2##x,y,_n2##z,v), \ |
philpem@5 | 10122 | I[115] = (img)(_p2##x,_n1##y,_n2##z,v), I[116] = (img)(_p1##x,_n1##y,_n2##z,v), I[117] = (img)(x,_n1##y,_n2##z,v), I[118] = (img)(_n1##x,_n1##y,_n2##z,v), I[119] = (img)(_n2##x,_n1##y,_n2##z,v), \ |
philpem@5 | 10123 | I[120] = (img)(_p2##x,_n2##y,_n2##z,v), I[121] = (img)(_p1##x,_n2##y,_n2##z,v), I[122] = (img)(x,_n2##y,_n2##z,v), I[123] = (img)(_n1##x,_n2##y,_n2##z,v), I[124] = (img)(_n2##x,_n2##y,_n2##z,v); |
philpem@5 | 10124 | |
philpem@5 | 10125 | // Define 6x6x6 loop macros for CImg |
philpem@5 | 10126 | //------------------------------------- |
philpem@5 | 10127 | #define cimg_for_in6(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \ |
philpem@5 | 10128 | _p2##i = i-2<0?0:i-2, \ |
philpem@5 | 10129 | _p1##i = i-1<0?0:i-1, \ |
philpem@5 | 10130 | _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \ |
philpem@5 | 10131 | _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \ |
philpem@5 | 10132 | _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3; \ |
philpem@5 | 10133 | i<=(int)(i1) && (_n3##i<(int)(bound) || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 10134 | i==(_n3##i = _n2##i = --_n1##i)); \ |
philpem@5 | 10135 | _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 10136 | ++_n1##i, ++_n2##i, ++_n3##i) |
philpem@5 | 10137 | |
philpem@5 | 10138 | #define cimg_for_in6X(img,x0,x1,x) cimg_for_in6((img).width,x0,x1,x) |
philpem@5 | 10139 | #define cimg_for_in6Y(img,y0,y1,y) cimg_for_in6((img).height,y0,y1,y) |
philpem@5 | 10140 | #define cimg_for_in6Z(img,z0,z1,z) cimg_for_in6((img).depth,z0,z1,z) |
philpem@5 | 10141 | #define cimg_for_in6V(img,v0,v1,v) cimg_for_in6((img).dim,v0,v1,v) |
philpem@5 | 10142 | #define cimg_for_in6XY(img,x0,y0,x1,y1,x,y) cimg_for_in6Y(img,y0,y1,y) cimg_for_in6X(img,x0,x1,x) |
philpem@5 | 10143 | #define cimg_for_in6XZ(img,x0,z0,x1,z1,x,z) cimg_for_in6Z(img,z0,z1,z) cimg_for_in6X(img,x0,x1,x) |
philpem@5 | 10144 | #define cimg_for_in6XV(img,x0,v0,x1,v1,x,v) cimg_for_in6V(img,v0,v1,v) cimg_for_in6X(img,x0,x1,x) |
philpem@5 | 10145 | #define cimg_for_in6YZ(img,y0,z0,y1,z1,y,z) cimg_for_in6Z(img,z0,z1,z) cimg_for_in6Y(img,y0,y1,y) |
philpem@5 | 10146 | #define cimg_for_in6YV(img,y0,v0,y1,v1,y,v) cimg_for_in6V(img,v0,v1,v) cimg_for_in6Y(img,y0,y1,y) |
philpem@5 | 10147 | #define cimg_for_in6ZV(img,z0,v0,z1,v1,z,v) cimg_for_in6V(img,v0,v1,v) cimg_for_in6Z(img,z0,z1,z) |
philpem@5 | 10148 | #define cimg_for_in6XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in6Z(img,z0,z1,z) cimg_for_in6XY(img,x0,y0,x1,y1,x,y) |
philpem@5 | 10149 | #define cimg_for_in6XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in6V(img,v0,v1,v) cimg_for_in6XZ(img,x0,y0,x1,y1,x,z) |
philpem@5 | 10150 | #define cimg_for_in6YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in6V(img,v0,v1,v) cimg_for_in6YZ(img,y0,z0,y1,z1,y,z) |
philpem@5 | 10151 | #define cimg_for_in6XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in6V(img,v0,v1,v) cimg_for_in6XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) |
philpem@5 | 10152 | |
philpem@5 | 10153 | #define cimg_for6x6x6(img,x,y,z,v,I) \ |
philpem@5 | 10154 | cimg_for6((img).depth,z) cimg_for6((img).height,y) for (int x = 0, \ |
philpem@5 | 10155 | _p2##x = 0, _p1##x = 0, \ |
philpem@5 | 10156 | _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \ |
philpem@5 | 10157 | _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \ |
philpem@5 | 10158 | _n3##x = (int)( \ |
philpem@5 | 10159 | (I[0] = I[1] = I[2] = (img)(0,_p2##y,_p2##z,v)), \ |
philpem@5 | 10160 | (I[6] = I[7] = I[8] = (img)(0,_p1##y,_p2##z,v)), \ |
philpem@5 | 10161 | (I[12] = I[13] = I[14] = (img)(0,y,_p2##z,v)), \ |
philpem@5 | 10162 | (I[18] = I[19] = I[20] = (img)(0,_n1##y,_p2##z,v)), \ |
philpem@5 | 10163 | (I[24] = I[25] = I[26] = (img)(0,_n2##y,_p2##z,v)), \ |
philpem@5 | 10164 | (I[30] = I[31] = I[32] = (img)(0,_n3##y,_p2##z,v)), \ |
philpem@5 | 10165 | (I[36] = I[37] = I[38] = (img)(0,_p2##y,_p1##z,v)), \ |
philpem@5 | 10166 | (I[42] = I[43] = I[44] = (img)(0,_p1##y,_p1##z,v)), \ |
philpem@5 | 10167 | (I[48] = I[49] = I[50] = (img)(0,y,_p1##z,v)), \ |
philpem@5 | 10168 | (I[54] = I[55] = I[56] = (img)(0,_n1##y,_p1##z,v)), \ |
philpem@5 | 10169 | (I[60] = I[61] = I[62] = (img)(0,_n2##y,_p1##z,v)), \ |
philpem@5 | 10170 | (I[66] = I[67] = I[68] = (img)(0,_n3##y,_p1##z,v)), \ |
philpem@5 | 10171 | (I[72] = I[73] = I[74] = (img)(0,_p2##y,z,v)), \ |
philpem@5 | 10172 | (I[78] = I[79] = I[80] = (img)(0,_p1##y,z,v)), \ |
philpem@5 | 10173 | (I[84] = I[85] = I[86] = (img)(0,y,z,v)), \ |
philpem@5 | 10174 | (I[90] = I[91] = I[92] = (img)(0,_n1##y,z,v)), \ |
philpem@5 | 10175 | (I[96] = I[97] = I[98] = (img)(0,_n2##y,z,v)), \ |
philpem@5 | 10176 | (I[102] = I[103] = I[104] = (img)(0,_n3##y,z,v)), \ |
philpem@5 | 10177 | (I[108] = I[109] = I[110] = (img)(0,_p2##y,_n1##z,v)), \ |
philpem@5 | 10178 | (I[114] = I[115] = I[116] = (img)(0,_p1##y,_n1##z,v)), \ |
philpem@5 | 10179 | (I[120] = I[121] = I[122] = (img)(0,y,_n1##z,v)), \ |
philpem@5 | 10180 | (I[126] = I[127] = I[128] = (img)(0,_n1##y,_n1##z,v)), \ |
philpem@5 | 10181 | (I[132] = I[133] = I[134] = (img)(0,_n2##y,_n1##z,v)), \ |
philpem@5 | 10182 | (I[138] = I[139] = I[140] = (img)(0,_n3##y,_n1##z,v)), \ |
philpem@5 | 10183 | (I[144] = I[145] = I[146] = (img)(0,_p2##y,_n2##z,v)), \ |
philpem@5 | 10184 | (I[150] = I[151] = I[152] = (img)(0,_p1##y,_n2##z,v)), \ |
philpem@5 | 10185 | (I[156] = I[157] = I[158] = (img)(0,y,_n2##z,v)), \ |
philpem@5 | 10186 | (I[162] = I[163] = I[164] = (img)(0,_n1##y,_n2##z,v)), \ |
philpem@5 | 10187 | (I[168] = I[169] = I[170] = (img)(0,_n2##y,_n2##z,v)), \ |
philpem@5 | 10188 | (I[174] = I[175] = I[176] = (img)(0,_n3##y,_n2##z,v)), \ |
philpem@5 | 10189 | (I[180] = I[181] = I[182] = (img)(0,_p2##y,_n3##z,v)), \ |
philpem@5 | 10190 | (I[186] = I[187] = I[188] = (img)(0,_p1##y,_n3##z,v)), \ |
philpem@5 | 10191 | (I[192] = I[193] = I[194] = (img)(0,y,_n3##z,v)), \ |
philpem@5 | 10192 | (I[198] = I[199] = I[200] = (img)(0,_n1##y,_n3##z,v)), \ |
philpem@5 | 10193 | (I[204] = I[205] = I[206] = (img)(0,_n2##y,_n3##z,v)), \ |
philpem@5 | 10194 | (I[210] = I[211] = I[212] = (img)(0,_n3##y,_n3##z,v)), \ |
philpem@5 | 10195 | (I[3] = (img)(_n1##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 10196 | (I[9] = (img)(_n1##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 10197 | (I[15] = (img)(_n1##x,y,_p2##z,v)), \ |
philpem@5 | 10198 | (I[21] = (img)(_n1##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 10199 | (I[27] = (img)(_n1##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 10200 | (I[33] = (img)(_n1##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 10201 | (I[39] = (img)(_n1##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 10202 | (I[45] = (img)(_n1##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 10203 | (I[51] = (img)(_n1##x,y,_p1##z,v)), \ |
philpem@5 | 10204 | (I[57] = (img)(_n1##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 10205 | (I[63] = (img)(_n1##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 10206 | (I[69] = (img)(_n1##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 10207 | (I[75] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 10208 | (I[81] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 10209 | (I[87] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 10210 | (I[93] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 10211 | (I[99] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 10212 | (I[105] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 10213 | (I[111] = (img)(_n1##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 10214 | (I[117] = (img)(_n1##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 10215 | (I[123] = (img)(_n1##x,y,_n1##z,v)), \ |
philpem@5 | 10216 | (I[129] = (img)(_n1##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 10217 | (I[135] = (img)(_n1##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 10218 | (I[141] = (img)(_n1##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 10219 | (I[147] = (img)(_n1##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 10220 | (I[153] = (img)(_n1##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 10221 | (I[159] = (img)(_n1##x,y,_n2##z,v)), \ |
philpem@5 | 10222 | (I[165] = (img)(_n1##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 10223 | (I[171] = (img)(_n1##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 10224 | (I[177] = (img)(_n1##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 10225 | (I[183] = (img)(_n1##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 10226 | (I[189] = (img)(_n1##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 10227 | (I[195] = (img)(_n1##x,y,_n3##z,v)), \ |
philpem@5 | 10228 | (I[201] = (img)(_n1##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 10229 | (I[207] = (img)(_n1##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 10230 | (I[213] = (img)(_n1##x,_n3##y,_n3##z,v)), \ |
philpem@5 | 10231 | (I[4] = (img)(_n2##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 10232 | (I[10] = (img)(_n2##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 10233 | (I[16] = (img)(_n2##x,y,_p2##z,v)), \ |
philpem@5 | 10234 | (I[22] = (img)(_n2##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 10235 | (I[28] = (img)(_n2##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 10236 | (I[34] = (img)(_n2##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 10237 | (I[40] = (img)(_n2##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 10238 | (I[46] = (img)(_n2##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 10239 | (I[52] = (img)(_n2##x,y,_p1##z,v)), \ |
philpem@5 | 10240 | (I[58] = (img)(_n2##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 10241 | (I[64] = (img)(_n2##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 10242 | (I[70] = (img)(_n2##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 10243 | (I[76] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 10244 | (I[82] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 10245 | (I[88] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 10246 | (I[94] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 10247 | (I[100] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 10248 | (I[106] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 10249 | (I[112] = (img)(_n2##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 10250 | (I[118] = (img)(_n2##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 10251 | (I[124] = (img)(_n2##x,y,_n1##z,v)), \ |
philpem@5 | 10252 | (I[130] = (img)(_n2##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 10253 | (I[136] = (img)(_n2##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 10254 | (I[142] = (img)(_n2##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 10255 | (I[148] = (img)(_n2##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 10256 | (I[154] = (img)(_n2##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 10257 | (I[160] = (img)(_n2##x,y,_n2##z,v)), \ |
philpem@5 | 10258 | (I[166] = (img)(_n2##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 10259 | (I[172] = (img)(_n2##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 10260 | (I[178] = (img)(_n2##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 10261 | (I[184] = (img)(_n2##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 10262 | (I[190] = (img)(_n2##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 10263 | (I[196] = (img)(_n2##x,y,_n3##z,v)), \ |
philpem@5 | 10264 | (I[202] = (img)(_n2##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 10265 | (I[208] = (img)(_n2##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 10266 | (I[214] = (img)(_n2##x,_n3##y,_n3##z,v)), \ |
philpem@5 | 10267 | 3>=((img).width)?(int)((img).width)-1:3); \ |
philpem@5 | 10268 | (_n3##x<(int)((img).width) && ( \ |
philpem@5 | 10269 | (I[5] = (img)(_n3##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 10270 | (I[11] = (img)(_n3##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 10271 | (I[17] = (img)(_n3##x,y,_p2##z,v)), \ |
philpem@5 | 10272 | (I[23] = (img)(_n3##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 10273 | (I[29] = (img)(_n3##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 10274 | (I[35] = (img)(_n3##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 10275 | (I[41] = (img)(_n3##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 10276 | (I[47] = (img)(_n3##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 10277 | (I[53] = (img)(_n3##x,y,_p1##z,v)), \ |
philpem@5 | 10278 | (I[59] = (img)(_n3##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 10279 | (I[65] = (img)(_n3##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 10280 | (I[71] = (img)(_n3##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 10281 | (I[77] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 10282 | (I[83] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 10283 | (I[89] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 10284 | (I[95] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 10285 | (I[101] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 10286 | (I[107] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 10287 | (I[113] = (img)(_n3##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 10288 | (I[119] = (img)(_n3##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 10289 | (I[125] = (img)(_n3##x,y,_n1##z,v)), \ |
philpem@5 | 10290 | (I[131] = (img)(_n3##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 10291 | (I[137] = (img)(_n3##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 10292 | (I[143] = (img)(_n3##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 10293 | (I[149] = (img)(_n3##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 10294 | (I[155] = (img)(_n3##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 10295 | (I[161] = (img)(_n3##x,y,_n2##z,v)), \ |
philpem@5 | 10296 | (I[167] = (img)(_n3##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 10297 | (I[173] = (img)(_n3##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 10298 | (I[179] = (img)(_n3##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 10299 | (I[185] = (img)(_n3##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 10300 | (I[191] = (img)(_n3##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 10301 | (I[197] = (img)(_n3##x,y,_n3##z,v)), \ |
philpem@5 | 10302 | (I[203] = (img)(_n3##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 10303 | (I[209] = (img)(_n3##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 10304 | (I[215] = (img)(_n3##x,_n3##y,_n3##z,v)),1)) || \ |
philpem@5 | 10305 | _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3##x = _n2##x = --_n1##x); \ |
philpem@5 | 10306 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], \ |
philpem@5 | 10307 | I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], \ |
philpem@5 | 10308 | I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], \ |
philpem@5 | 10309 | I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \ |
philpem@5 | 10310 | I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \ |
philpem@5 | 10311 | I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \ |
philpem@5 | 10312 | I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \ |
philpem@5 | 10313 | I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \ |
philpem@5 | 10314 | I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], \ |
philpem@5 | 10315 | I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \ |
philpem@5 | 10316 | I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], \ |
philpem@5 | 10317 | I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \ |
philpem@5 | 10318 | I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], \ |
philpem@5 | 10319 | I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \ |
philpem@5 | 10320 | I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \ |
philpem@5 | 10321 | I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \ |
philpem@5 | 10322 | I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], \ |
philpem@5 | 10323 | I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \ |
philpem@5 | 10324 | I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], \ |
philpem@5 | 10325 | I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \ |
philpem@5 | 10326 | I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \ |
philpem@5 | 10327 | I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], \ |
philpem@5 | 10328 | I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], \ |
philpem@5 | 10329 | I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \ |
philpem@5 | 10330 | I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], \ |
philpem@5 | 10331 | I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], \ |
philpem@5 | 10332 | I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], \ |
philpem@5 | 10333 | I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \ |
philpem@5 | 10334 | I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], \ |
philpem@5 | 10335 | I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \ |
philpem@5 | 10336 | I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], \ |
philpem@5 | 10337 | I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \ |
philpem@5 | 10338 | I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], \ |
philpem@5 | 10339 | I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], \ |
philpem@5 | 10340 | I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \ |
philpem@5 | 10341 | I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \ |
philpem@5 | 10342 | _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x) |
philpem@5 | 10343 | |
philpem@5 | 10344 | #define cimg_for_in6x6x6(img,x0,y0,z0,x1,y1,z1,x,y,z,v,I) \ |
philpem@5 | 10345 | cimg_for_in6((img).depth,z0,z1,z) cimg_for_in6((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ |
philpem@5 | 10346 | _p2##x = x-2<0?0:x-2, \ |
philpem@5 | 10347 | _p1##x = x-1<0?0:x-1, \ |
philpem@5 | 10348 | _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \ |
philpem@5 | 10349 | _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \ |
philpem@5 | 10350 | _n3##x = (int)( \ |
philpem@5 | 10351 | (I[0] = (img)(_p2##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 10352 | (I[6] = (img)(_p2##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 10353 | (I[12] = (img)(_p2##x,y,_p2##z,v)), \ |
philpem@5 | 10354 | (I[18] = (img)(_p2##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 10355 | (I[24] = (img)(_p2##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 10356 | (I[30] = (img)(_p2##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 10357 | (I[36] = (img)(_p2##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 10358 | (I[42] = (img)(_p2##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 10359 | (I[48] = (img)(_p2##x,y,_p1##z,v)), \ |
philpem@5 | 10360 | (I[54] = (img)(_p2##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 10361 | (I[60] = (img)(_p2##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 10362 | (I[66] = (img)(_p2##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 10363 | (I[72] = (img)(_p2##x,_p2##y,z,v)), \ |
philpem@5 | 10364 | (I[78] = (img)(_p2##x,_p1##y,z,v)), \ |
philpem@5 | 10365 | (I[84] = (img)(_p2##x,y,z,v)), \ |
philpem@5 | 10366 | (I[90] = (img)(_p2##x,_n1##y,z,v)), \ |
philpem@5 | 10367 | (I[96] = (img)(_p2##x,_n2##y,z,v)), \ |
philpem@5 | 10368 | (I[102] = (img)(_p2##x,_n3##y,z,v)), \ |
philpem@5 | 10369 | (I[108] = (img)(_p2##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 10370 | (I[114] = (img)(_p2##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 10371 | (I[120] = (img)(_p2##x,y,_n1##z,v)), \ |
philpem@5 | 10372 | (I[126] = (img)(_p2##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 10373 | (I[132] = (img)(_p2##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 10374 | (I[138] = (img)(_p2##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 10375 | (I[144] = (img)(_p2##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 10376 | (I[150] = (img)(_p2##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 10377 | (I[156] = (img)(_p2##x,y,_n2##z,v)), \ |
philpem@5 | 10378 | (I[162] = (img)(_p2##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 10379 | (I[168] = (img)(_p2##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 10380 | (I[174] = (img)(_p2##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 10381 | (I[180] = (img)(_p2##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 10382 | (I[186] = (img)(_p2##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 10383 | (I[192] = (img)(_p2##x,y,_n3##z,v)), \ |
philpem@5 | 10384 | (I[198] = (img)(_p2##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 10385 | (I[204] = (img)(_p2##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 10386 | (I[210] = (img)(_p2##x,_n3##y,_n3##z,v)), \ |
philpem@5 | 10387 | (I[1] = (img)(_p1##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 10388 | (I[7] = (img)(_p1##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 10389 | (I[13] = (img)(_p1##x,y,_p2##z,v)), \ |
philpem@5 | 10390 | (I[19] = (img)(_p1##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 10391 | (I[25] = (img)(_p1##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 10392 | (I[31] = (img)(_p1##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 10393 | (I[37] = (img)(_p1##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 10394 | (I[43] = (img)(_p1##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 10395 | (I[49] = (img)(_p1##x,y,_p1##z,v)), \ |
philpem@5 | 10396 | (I[55] = (img)(_p1##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 10397 | (I[61] = (img)(_p1##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 10398 | (I[67] = (img)(_p1##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 10399 | (I[73] = (img)(_p1##x,_p2##y,z,v)), \ |
philpem@5 | 10400 | (I[79] = (img)(_p1##x,_p1##y,z,v)), \ |
philpem@5 | 10401 | (I[85] = (img)(_p1##x,y,z,v)), \ |
philpem@5 | 10402 | (I[91] = (img)(_p1##x,_n1##y,z,v)), \ |
philpem@5 | 10403 | (I[97] = (img)(_p1##x,_n2##y,z,v)), \ |
philpem@5 | 10404 | (I[103] = (img)(_p1##x,_n3##y,z,v)), \ |
philpem@5 | 10405 | (I[109] = (img)(_p1##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 10406 | (I[115] = (img)(_p1##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 10407 | (I[121] = (img)(_p1##x,y,_n1##z,v)), \ |
philpem@5 | 10408 | (I[127] = (img)(_p1##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 10409 | (I[133] = (img)(_p1##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 10410 | (I[139] = (img)(_p1##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 10411 | (I[145] = (img)(_p1##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 10412 | (I[151] = (img)(_p1##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 10413 | (I[157] = (img)(_p1##x,y,_n2##z,v)), \ |
philpem@5 | 10414 | (I[163] = (img)(_p1##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 10415 | (I[169] = (img)(_p1##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 10416 | (I[175] = (img)(_p1##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 10417 | (I[181] = (img)(_p1##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 10418 | (I[187] = (img)(_p1##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 10419 | (I[193] = (img)(_p1##x,y,_n3##z,v)), \ |
philpem@5 | 10420 | (I[199] = (img)(_p1##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 10421 | (I[205] = (img)(_p1##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 10422 | (I[211] = (img)(_p1##x,_n3##y,_n3##z,v)), \ |
philpem@5 | 10423 | (I[2] = (img)(x,_p2##y,_p2##z,v)), \ |
philpem@5 | 10424 | (I[8] = (img)(x,_p1##y,_p2##z,v)), \ |
philpem@5 | 10425 | (I[14] = (img)(x,y,_p2##z,v)), \ |
philpem@5 | 10426 | (I[20] = (img)(x,_n1##y,_p2##z,v)), \ |
philpem@5 | 10427 | (I[26] = (img)(x,_n2##y,_p2##z,v)), \ |
philpem@5 | 10428 | (I[32] = (img)(x,_n3##y,_p2##z,v)), \ |
philpem@5 | 10429 | (I[38] = (img)(x,_p2##y,_p1##z,v)), \ |
philpem@5 | 10430 | (I[44] = (img)(x,_p1##y,_p1##z,v)), \ |
philpem@5 | 10431 | (I[50] = (img)(x,y,_p1##z,v)), \ |
philpem@5 | 10432 | (I[56] = (img)(x,_n1##y,_p1##z,v)), \ |
philpem@5 | 10433 | (I[62] = (img)(x,_n2##y,_p1##z,v)), \ |
philpem@5 | 10434 | (I[68] = (img)(x,_n3##y,_p1##z,v)), \ |
philpem@5 | 10435 | (I[74] = (img)(x,_p2##y,z,v)), \ |
philpem@5 | 10436 | (I[80] = (img)(x,_p1##y,z,v)), \ |
philpem@5 | 10437 | (I[86] = (img)(x,y,z,v)), \ |
philpem@5 | 10438 | (I[92] = (img)(x,_n1##y,z,v)), \ |
philpem@5 | 10439 | (I[98] = (img)(x,_n2##y,z,v)), \ |
philpem@5 | 10440 | (I[104] = (img)(x,_n3##y,z,v)), \ |
philpem@5 | 10441 | (I[110] = (img)(x,_p2##y,_n1##z,v)), \ |
philpem@5 | 10442 | (I[116] = (img)(x,_p1##y,_n1##z,v)), \ |
philpem@5 | 10443 | (I[122] = (img)(x,y,_n1##z,v)), \ |
philpem@5 | 10444 | (I[128] = (img)(x,_n1##y,_n1##z,v)), \ |
philpem@5 | 10445 | (I[134] = (img)(x,_n2##y,_n1##z,v)), \ |
philpem@5 | 10446 | (I[140] = (img)(x,_n3##y,_n1##z,v)), \ |
philpem@5 | 10447 | (I[146] = (img)(x,_p2##y,_n2##z,v)), \ |
philpem@5 | 10448 | (I[152] = (img)(x,_p1##y,_n2##z,v)), \ |
philpem@5 | 10449 | (I[158] = (img)(x,y,_n2##z,v)), \ |
philpem@5 | 10450 | (I[164] = (img)(x,_n1##y,_n2##z,v)), \ |
philpem@5 | 10451 | (I[170] = (img)(x,_n2##y,_n2##z,v)), \ |
philpem@5 | 10452 | (I[176] = (img)(x,_n3##y,_n2##z,v)), \ |
philpem@5 | 10453 | (I[182] = (img)(x,_p2##y,_n3##z,v)), \ |
philpem@5 | 10454 | (I[188] = (img)(x,_p1##y,_n3##z,v)), \ |
philpem@5 | 10455 | (I[194] = (img)(x,y,_n3##z,v)), \ |
philpem@5 | 10456 | (I[200] = (img)(x,_n1##y,_n3##z,v)), \ |
philpem@5 | 10457 | (I[206] = (img)(x,_n2##y,_n3##z,v)), \ |
philpem@5 | 10458 | (I[212] = (img)(x,_n3##y,_n3##z,v)), \ |
philpem@5 | 10459 | (I[3] = (img)(_n1##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 10460 | (I[9] = (img)(_n1##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 10461 | (I[15] = (img)(_n1##x,y,_p2##z,v)), \ |
philpem@5 | 10462 | (I[21] = (img)(_n1##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 10463 | (I[27] = (img)(_n1##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 10464 | (I[33] = (img)(_n1##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 10465 | (I[39] = (img)(_n1##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 10466 | (I[45] = (img)(_n1##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 10467 | (I[51] = (img)(_n1##x,y,_p1##z,v)), \ |
philpem@5 | 10468 | (I[57] = (img)(_n1##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 10469 | (I[63] = (img)(_n1##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 10470 | (I[69] = (img)(_n1##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 10471 | (I[75] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 10472 | (I[81] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 10473 | (I[87] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 10474 | (I[93] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 10475 | (I[99] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 10476 | (I[105] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 10477 | (I[111] = (img)(_n1##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 10478 | (I[117] = (img)(_n1##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 10479 | (I[123] = (img)(_n1##x,y,_n1##z,v)), \ |
philpem@5 | 10480 | (I[129] = (img)(_n1##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 10481 | (I[135] = (img)(_n1##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 10482 | (I[141] = (img)(_n1##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 10483 | (I[147] = (img)(_n1##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 10484 | (I[153] = (img)(_n1##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 10485 | (I[159] = (img)(_n1##x,y,_n2##z,v)), \ |
philpem@5 | 10486 | (I[165] = (img)(_n1##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 10487 | (I[171] = (img)(_n1##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 10488 | (I[177] = (img)(_n1##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 10489 | (I[183] = (img)(_n1##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 10490 | (I[189] = (img)(_n1##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 10491 | (I[195] = (img)(_n1##x,y,_n3##z,v)), \ |
philpem@5 | 10492 | (I[201] = (img)(_n1##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 10493 | (I[207] = (img)(_n1##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 10494 | (I[213] = (img)(_n1##x,_n3##y,_n3##z,v)), \ |
philpem@5 | 10495 | (I[4] = (img)(_n2##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 10496 | (I[10] = (img)(_n2##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 10497 | (I[16] = (img)(_n2##x,y,_p2##z,v)), \ |
philpem@5 | 10498 | (I[22] = (img)(_n2##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 10499 | (I[28] = (img)(_n2##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 10500 | (I[34] = (img)(_n2##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 10501 | (I[40] = (img)(_n2##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 10502 | (I[46] = (img)(_n2##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 10503 | (I[52] = (img)(_n2##x,y,_p1##z,v)), \ |
philpem@5 | 10504 | (I[58] = (img)(_n2##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 10505 | (I[64] = (img)(_n2##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 10506 | (I[70] = (img)(_n2##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 10507 | (I[76] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 10508 | (I[82] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 10509 | (I[88] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 10510 | (I[94] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 10511 | (I[100] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 10512 | (I[106] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 10513 | (I[112] = (img)(_n2##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 10514 | (I[118] = (img)(_n2##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 10515 | (I[124] = (img)(_n2##x,y,_n1##z,v)), \ |
philpem@5 | 10516 | (I[130] = (img)(_n2##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 10517 | (I[136] = (img)(_n2##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 10518 | (I[142] = (img)(_n2##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 10519 | (I[148] = (img)(_n2##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 10520 | (I[154] = (img)(_n2##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 10521 | (I[160] = (img)(_n2##x,y,_n2##z,v)), \ |
philpem@5 | 10522 | (I[166] = (img)(_n2##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 10523 | (I[172] = (img)(_n2##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 10524 | (I[178] = (img)(_n2##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 10525 | (I[184] = (img)(_n2##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 10526 | (I[190] = (img)(_n2##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 10527 | (I[196] = (img)(_n2##x,y,_n3##z,v)), \ |
philpem@5 | 10528 | (I[202] = (img)(_n2##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 10529 | (I[208] = (img)(_n2##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 10530 | (I[214] = (img)(_n2##x,_n3##y,_n3##z,v)), \ |
philpem@5 | 10531 | x+3>=(int)((img).width)?(int)((img).width)-1:x+3); \ |
philpem@5 | 10532 | x<=(int)(x1) && ((_n3##x<(int)((img).width) && ( \ |
philpem@5 | 10533 | (I[5] = (img)(_n3##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 10534 | (I[11] = (img)(_n3##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 10535 | (I[17] = (img)(_n3##x,y,_p2##z,v)), \ |
philpem@5 | 10536 | (I[23] = (img)(_n3##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 10537 | (I[29] = (img)(_n3##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 10538 | (I[35] = (img)(_n3##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 10539 | (I[41] = (img)(_n3##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 10540 | (I[47] = (img)(_n3##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 10541 | (I[53] = (img)(_n3##x,y,_p1##z,v)), \ |
philpem@5 | 10542 | (I[59] = (img)(_n3##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 10543 | (I[65] = (img)(_n3##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 10544 | (I[71] = (img)(_n3##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 10545 | (I[77] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 10546 | (I[83] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 10547 | (I[89] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 10548 | (I[95] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 10549 | (I[101] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 10550 | (I[107] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 10551 | (I[113] = (img)(_n3##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 10552 | (I[119] = (img)(_n3##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 10553 | (I[125] = (img)(_n3##x,y,_n1##z,v)), \ |
philpem@5 | 10554 | (I[131] = (img)(_n3##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 10555 | (I[137] = (img)(_n3##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 10556 | (I[143] = (img)(_n3##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 10557 | (I[149] = (img)(_n3##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 10558 | (I[155] = (img)(_n3##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 10559 | (I[161] = (img)(_n3##x,y,_n2##z,v)), \ |
philpem@5 | 10560 | (I[167] = (img)(_n3##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 10561 | (I[173] = (img)(_n3##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 10562 | (I[179] = (img)(_n3##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 10563 | (I[185] = (img)(_n3##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 10564 | (I[191] = (img)(_n3##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 10565 | (I[197] = (img)(_n3##x,y,_n3##z,v)), \ |
philpem@5 | 10566 | (I[203] = (img)(_n3##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 10567 | (I[209] = (img)(_n3##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 10568 | (I[215] = (img)(_n3##x,_n3##y,_n3##z,v)),1)) || \ |
philpem@5 | 10569 | _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3##x = _n2##x = --_n1##x)); \ |
philpem@5 | 10570 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], \ |
philpem@5 | 10571 | I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], \ |
philpem@5 | 10572 | I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], \ |
philpem@5 | 10573 | I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \ |
philpem@5 | 10574 | I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \ |
philpem@5 | 10575 | I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \ |
philpem@5 | 10576 | I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \ |
philpem@5 | 10577 | I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \ |
philpem@5 | 10578 | I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], \ |
philpem@5 | 10579 | I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \ |
philpem@5 | 10580 | I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], \ |
philpem@5 | 10581 | I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \ |
philpem@5 | 10582 | I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], \ |
philpem@5 | 10583 | I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \ |
philpem@5 | 10584 | I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \ |
philpem@5 | 10585 | I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \ |
philpem@5 | 10586 | I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], \ |
philpem@5 | 10587 | I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \ |
philpem@5 | 10588 | I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], \ |
philpem@5 | 10589 | I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \ |
philpem@5 | 10590 | I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \ |
philpem@5 | 10591 | I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], \ |
philpem@5 | 10592 | I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], \ |
philpem@5 | 10593 | I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \ |
philpem@5 | 10594 | I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], \ |
philpem@5 | 10595 | I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], \ |
philpem@5 | 10596 | I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], \ |
philpem@5 | 10597 | I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \ |
philpem@5 | 10598 | I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], \ |
philpem@5 | 10599 | I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \ |
philpem@5 | 10600 | I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], \ |
philpem@5 | 10601 | I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \ |
philpem@5 | 10602 | I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], \ |
philpem@5 | 10603 | I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], \ |
philpem@5 | 10604 | I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \ |
philpem@5 | 10605 | I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \ |
philpem@5 | 10606 | _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x) |
philpem@5 | 10607 | |
philpem@5 | 10608 | #define cimg_get6x6x6(img,x,y,z,v,I) \ |
philpem@5 | 10609 | I[0] = (img)(_p2##x,_p2##y,_p2##z,v), I[1] = (img)(_p1##x,_p2##y,_p2##z,v), I[2] = (img)(x,_p2##y,_p2##z,v), I[3] = (img)(_n1##x,_p2##y,_p2##z,v), I[4] = (img)(_n2##x,_p2##y,_p2##z,v), I[5] = (img)(_n3##x,_p2##y,_p2##z,v), \ |
philpem@5 | 10610 | I[6] = (img)(_p2##x,_p1##y,_p2##z,v), I[7] = (img)(_p1##x,_p1##y,_p2##z,v), I[8] = (img)(x,_p1##y,_p2##z,v), I[9] = (img)(_n1##x,_p1##y,_p2##z,v), I[10] = (img)(_n2##x,_p1##y,_p2##z,v), I[11] = (img)(_n3##x,_p1##y,_p2##z,v), \ |
philpem@5 | 10611 | I[12] = (img)(_p2##x,y,_p2##z,v), I[13] = (img)(_p1##x,y,_p2##z,v), I[14] = (img)(x,y,_p2##z,v), I[15] = (img)(_n1##x,y,_p2##z,v), I[16] = (img)(_n2##x,y,_p2##z,v), I[17] = (img)(_n3##x,y,_p2##z,v), \ |
philpem@5 | 10612 | I[18] = (img)(_p2##x,_n1##y,_p2##z,v), I[19] = (img)(_p1##x,_n1##y,_p2##z,v), I[20] = (img)(x,_n1##y,_p2##z,v), I[21] = (img)(_n1##x,_n1##y,_p2##z,v), I[22] = (img)(_n2##x,_n1##y,_p2##z,v), I[23] = (img)(_n3##x,_n1##y,_p2##z,v), \ |
philpem@5 | 10613 | I[24] = (img)(_p2##x,_n2##y,_p2##z,v), I[25] = (img)(_p1##x,_n2##y,_p2##z,v), I[26] = (img)(x,_n2##y,_p2##z,v), I[27] = (img)(_n1##x,_n2##y,_p2##z,v), I[28] = (img)(_n2##x,_n2##y,_p2##z,v), I[29] = (img)(_n3##x,_n2##y,_p2##z,v), \ |
philpem@5 | 10614 | I[30] = (img)(_p2##x,_n3##y,_p2##z,v), I[31] = (img)(_p1##x,_n3##y,_p2##z,v), I[32] = (img)(x,_n3##y,_p2##z,v), I[33] = (img)(_n1##x,_n3##y,_p2##z,v), I[34] = (img)(_n2##x,_n3##y,_p2##z,v), I[35] = (img)(_n3##x,_n3##y,_p2##z,v), \ |
philpem@5 | 10615 | I[36] = (img)(_p2##x,_p2##y,_p1##z,v), I[37] = (img)(_p1##x,_p2##y,_p1##z,v), I[38] = (img)(x,_p2##y,_p1##z,v), I[39] = (img)(_n1##x,_p2##y,_p1##z,v), I[40] = (img)(_n2##x,_p2##y,_p1##z,v), I[41] = (img)(_n3##x,_p2##y,_p1##z,v), \ |
philpem@5 | 10616 | I[42] = (img)(_p2##x,_p1##y,_p1##z,v), I[43] = (img)(_p1##x,_p1##y,_p1##z,v), I[44] = (img)(x,_p1##y,_p1##z,v), I[45] = (img)(_n1##x,_p1##y,_p1##z,v), I[46] = (img)(_n2##x,_p1##y,_p1##z,v), I[47] = (img)(_n3##x,_p1##y,_p1##z,v), \ |
philpem@5 | 10617 | I[48] = (img)(_p2##x,y,_p1##z,v), I[49] = (img)(_p1##x,y,_p1##z,v), I[50] = (img)(x,y,_p1##z,v), I[51] = (img)(_n1##x,y,_p1##z,v), I[52] = (img)(_n2##x,y,_p1##z,v), I[53] = (img)(_n3##x,y,_p1##z,v), \ |
philpem@5 | 10618 | I[54] = (img)(_p2##x,_n1##y,_p1##z,v), I[55] = (img)(_p1##x,_n1##y,_p1##z,v), I[56] = (img)(x,_n1##y,_p1##z,v), I[57] = (img)(_n1##x,_n1##y,_p1##z,v), I[58] = (img)(_n2##x,_n1##y,_p1##z,v), I[59] = (img)(_n3##x,_n1##y,_p1##z,v), \ |
philpem@5 | 10619 | I[60] = (img)(_p2##x,_n2##y,_p1##z,v), I[61] = (img)(_p1##x,_n2##y,_p1##z,v), I[62] = (img)(x,_n2##y,_p1##z,v), I[63] = (img)(_n1##x,_n2##y,_p1##z,v), I[64] = (img)(_n2##x,_n2##y,_p1##z,v), I[65] = (img)(_n3##x,_n2##y,_p1##z,v), \ |
philpem@5 | 10620 | I[66] = (img)(_p2##x,_n3##y,_p1##z,v), I[67] = (img)(_p1##x,_n3##y,_p1##z,v), I[68] = (img)(x,_n3##y,_p1##z,v), I[69] = (img)(_n1##x,_n3##y,_p1##z,v), I[70] = (img)(_n2##x,_n3##y,_p1##z,v), I[71] = (img)(_n3##x,_n3##y,_p1##z,v), \ |
philpem@5 | 10621 | I[72] = (img)(_p2##x,_p2##y,z,v), I[73] = (img)(_p1##x,_p2##y,z,v), I[74] = (img)(x,_p2##y,z,v), I[75] = (img)(_n1##x,_p2##y,z,v), I[76] = (img)(_n2##x,_p2##y,z,v), I[77] = (img)(_n3##x,_p2##y,z,v), \ |
philpem@5 | 10622 | I[78] = (img)(_p2##x,_p1##y,z,v), I[79] = (img)(_p1##x,_p1##y,z,v), I[80] = (img)(x,_p1##y,z,v), I[81] = (img)(_n1##x,_p1##y,z,v), I[82] = (img)(_n2##x,_p1##y,z,v), I[83] = (img)(_n3##x,_p1##y,z,v), \ |
philpem@5 | 10623 | I[84] = (img)(_p2##x,y,z,v), I[85] = (img)(_p1##x,y,z,v), I[86] = (img)(x,y,z,v), I[87] = (img)(_n1##x,y,z,v), I[88] = (img)(_n2##x,y,z,v), I[89] = (img)(_n3##x,y,z,v), \ |
philpem@5 | 10624 | I[90] = (img)(_p2##x,_n1##y,z,v), I[91] = (img)(_p1##x,_n1##y,z,v), I[92] = (img)(x,_n1##y,z,v), I[93] = (img)(_n1##x,_n1##y,z,v), I[94] = (img)(_n2##x,_n1##y,z,v), I[95] = (img)(_n3##x,_n1##y,z,v), \ |
philpem@5 | 10625 | I[96] = (img)(_p2##x,_n2##y,z,v), I[97] = (img)(_p1##x,_n2##y,z,v), I[98] = (img)(x,_n2##y,z,v), I[99] = (img)(_n1##x,_n2##y,z,v), I[100] = (img)(_n2##x,_n2##y,z,v), I[101] = (img)(_n3##x,_n2##y,z,v), \ |
philpem@5 | 10626 | I[102] = (img)(_p2##x,_n3##y,z,v), I[103] = (img)(_p1##x,_n3##y,z,v), I[104] = (img)(x,_n3##y,z,v), I[105] = (img)(_n1##x,_n3##y,z,v), I[106] = (img)(_n2##x,_n3##y,z,v), I[107] = (img)(_n3##x,_n3##y,z,v), \ |
philpem@5 | 10627 | I[108] = (img)(_p2##x,_p2##y,_n1##z,v), I[109] = (img)(_p1##x,_p2##y,_n1##z,v), I[110] = (img)(x,_p2##y,_n1##z,v), I[111] = (img)(_n1##x,_p2##y,_n1##z,v), I[112] = (img)(_n2##x,_p2##y,_n1##z,v), I[113] = (img)(_n3##x,_p2##y,_n1##z,v), \ |
philpem@5 | 10628 | I[114] = (img)(_p2##x,_p1##y,_n1##z,v), I[115] = (img)(_p1##x,_p1##y,_n1##z,v), I[116] = (img)(x,_p1##y,_n1##z,v), I[117] = (img)(_n1##x,_p1##y,_n1##z,v), I[118] = (img)(_n2##x,_p1##y,_n1##z,v), I[119] = (img)(_n3##x,_p1##y,_n1##z,v), \ |
philpem@5 | 10629 | I[120] = (img)(_p2##x,y,_n1##z,v), I[121] = (img)(_p1##x,y,_n1##z,v), I[122] = (img)(x,y,_n1##z,v), I[123] = (img)(_n1##x,y,_n1##z,v), I[124] = (img)(_n2##x,y,_n1##z,v), I[125] = (img)(_n3##x,y,_n1##z,v), \ |
philpem@5 | 10630 | I[126] = (img)(_p2##x,_n1##y,_n1##z,v), I[127] = (img)(_p1##x,_n1##y,_n1##z,v), I[128] = (img)(x,_n1##y,_n1##z,v), I[129] = (img)(_n1##x,_n1##y,_n1##z,v), I[130] = (img)(_n2##x,_n1##y,_n1##z,v), I[131] = (img)(_n3##x,_n1##y,_n1##z,v), \ |
philpem@5 | 10631 | I[132] = (img)(_p2##x,_n2##y,_n1##z,v), I[133] = (img)(_p1##x,_n2##y,_n1##z,v), I[134] = (img)(x,_n2##y,_n1##z,v), I[135] = (img)(_n1##x,_n2##y,_n1##z,v), I[136] = (img)(_n2##x,_n2##y,_n1##z,v), I[137] = (img)(_n3##x,_n2##y,_n1##z,v), \ |
philpem@5 | 10632 | I[138] = (img)(_p2##x,_n3##y,_n1##z,v), I[139] = (img)(_p1##x,_n3##y,_n1##z,v), I[140] = (img)(x,_n3##y,_n1##z,v), I[141] = (img)(_n1##x,_n3##y,_n1##z,v), I[142] = (img)(_n2##x,_n3##y,_n1##z,v), I[143] = (img)(_n3##x,_n3##y,_n1##z,v), \ |
philpem@5 | 10633 | I[144] = (img)(_p2##x,_p2##y,_n2##z,v), I[145] = (img)(_p1##x,_p2##y,_n2##z,v), I[146] = (img)(x,_p2##y,_n2##z,v), I[147] = (img)(_n1##x,_p2##y,_n2##z,v), I[148] = (img)(_n2##x,_p2##y,_n2##z,v), I[149] = (img)(_n3##x,_p2##y,_n2##z,v), \ |
philpem@5 | 10634 | I[150] = (img)(_p2##x,_p1##y,_n2##z,v), I[151] = (img)(_p1##x,_p1##y,_n2##z,v), I[152] = (img)(x,_p1##y,_n2##z,v), I[153] = (img)(_n1##x,_p1##y,_n2##z,v), I[154] = (img)(_n2##x,_p1##y,_n2##z,v), I[155] = (img)(_n3##x,_p1##y,_n2##z,v), \ |
philpem@5 | 10635 | I[156] = (img)(_p2##x,y,_n2##z,v), I[157] = (img)(_p1##x,y,_n2##z,v), I[158] = (img)(x,y,_n2##z,v), I[159] = (img)(_n1##x,y,_n2##z,v), I[160] = (img)(_n2##x,y,_n2##z,v), I[161] = (img)(_n3##x,y,_n2##z,v), \ |
philpem@5 | 10636 | I[162] = (img)(_p2##x,_n1##y,_n2##z,v), I[163] = (img)(_p1##x,_n1##y,_n2##z,v), I[164] = (img)(x,_n1##y,_n2##z,v), I[165] = (img)(_n1##x,_n1##y,_n2##z,v), I[166] = (img)(_n2##x,_n1##y,_n2##z,v), I[167] = (img)(_n3##x,_n1##y,_n2##z,v), \ |
philpem@5 | 10637 | I[168] = (img)(_p2##x,_n2##y,_n2##z,v), I[169] = (img)(_p1##x,_n2##y,_n2##z,v), I[170] = (img)(x,_n2##y,_n2##z,v), I[171] = (img)(_n1##x,_n2##y,_n2##z,v), I[172] = (img)(_n2##x,_n2##y,_n2##z,v), I[173] = (img)(_n3##x,_n2##y,_n2##z,v), \ |
philpem@5 | 10638 | I[174] = (img)(_p2##x,_n3##y,_n2##z,v), I[175] = (img)(_p1##x,_n3##y,_n2##z,v), I[176] = (img)(x,_n3##y,_n2##z,v), I[177] = (img)(_n1##x,_n3##y,_n2##z,v), I[178] = (img)(_n2##x,_n3##y,_n2##z,v), I[179] = (img)(_n3##x,_n3##y,_n2##z,v), \ |
philpem@5 | 10639 | I[180] = (img)(_p2##x,_p2##y,_n3##z,v), I[181] = (img)(_p1##x,_p2##y,_n3##z,v), I[182] = (img)(x,_p2##y,_n3##z,v), I[183] = (img)(_n1##x,_p2##y,_n3##z,v), I[184] = (img)(_n2##x,_p2##y,_n3##z,v), I[185] = (img)(_n3##x,_p2##y,_n3##z,v), \ |
philpem@5 | 10640 | I[186] = (img)(_p2##x,_p1##y,_n3##z,v), I[187] = (img)(_p1##x,_p1##y,_n3##z,v), I[188] = (img)(x,_p1##y,_n3##z,v), I[189] = (img)(_n1##x,_p1##y,_n3##z,v), I[190] = (img)(_n2##x,_p1##y,_n3##z,v), I[191] = (img)(_n3##x,_p1##y,_n3##z,v), \ |
philpem@5 | 10641 | I[192] = (img)(_p2##x,y,_n3##z,v), I[193] = (img)(_p1##x,y,_n3##z,v), I[194] = (img)(x,y,_n3##z,v), I[195] = (img)(_n1##x,y,_n3##z,v), I[196] = (img)(_n2##x,y,_n3##z,v), I[197] = (img)(_n3##x,y,_n3##z,v), \ |
philpem@5 | 10642 | I[198] = (img)(_p2##x,_n1##y,_n3##z,v), I[199] = (img)(_p1##x,_n1##y,_n3##z,v), I[200] = (img)(x,_n1##y,_n3##z,v), I[201] = (img)(_n1##x,_n1##y,_n3##z,v), I[202] = (img)(_n2##x,_n1##y,_n3##z,v), I[203] = (img)(_n3##x,_n1##y,_n3##z,v), \ |
philpem@5 | 10643 | I[204] = (img)(_p2##x,_n2##y,_n3##z,v), I[205] = (img)(_p1##x,_n2##y,_n3##z,v), I[206] = (img)(x,_n2##y,_n3##z,v), I[207] = (img)(_n1##x,_n2##y,_n3##z,v), I[208] = (img)(_n2##x,_n2##y,_n3##z,v), I[209] = (img)(_n3##x,_n2##y,_n3##z,v), \ |
philpem@5 | 10644 | I[210] = (img)(_p2##x,_n3##y,_n3##z,v), I[211] = (img)(_p1##x,_n3##y,_n3##z,v), I[212] = (img)(x,_n3##y,_n3##z,v), I[213] = (img)(_n1##x,_n3##y,_n3##z,v), I[214] = (img)(_n2##x,_n3##y,_n3##z,v), I[215] = (img)(_n3##x,_n3##y,_n3##z,v); |
philpem@5 | 10645 | |
philpem@5 | 10646 | // Define 7x7x7 loop macros for CImg |
philpem@5 | 10647 | //------------------------------------- |
philpem@5 | 10648 | #define cimg_for_in7(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \ |
philpem@5 | 10649 | _p3##i = i-3<0?0:i-3, \ |
philpem@5 | 10650 | _p2##i = i-2<0?0:i-2, \ |
philpem@5 | 10651 | _p1##i = i-1<0?0:i-1, \ |
philpem@5 | 10652 | _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \ |
philpem@5 | 10653 | _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \ |
philpem@5 | 10654 | _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3; \ |
philpem@5 | 10655 | i<=(int)(i1) && (_n3##i<(int)(bound) || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 10656 | i==(_n3##i = _n2##i = --_n1##i)); \ |
philpem@5 | 10657 | _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 10658 | ++_n1##i, ++_n2##i, ++_n3##i) |
philpem@5 | 10659 | |
philpem@5 | 10660 | #define cimg_for_in7X(img,x0,x1,x) cimg_for_in7((img).width,x0,x1,x) |
philpem@5 | 10661 | #define cimg_for_in7Y(img,y0,y1,y) cimg_for_in7((img).height,y0,y1,y) |
philpem@5 | 10662 | #define cimg_for_in7Z(img,z0,z1,z) cimg_for_in7((img).depth,z0,z1,z) |
philpem@5 | 10663 | #define cimg_for_in7V(img,v0,v1,v) cimg_for_in7((img).dim,v0,v1,v) |
philpem@5 | 10664 | #define cimg_for_in7XY(img,x0,y0,x1,y1,x,y) cimg_for_in7Y(img,y0,y1,y) cimg_for_in7X(img,x0,x1,x) |
philpem@5 | 10665 | #define cimg_for_in7XZ(img,x0,z0,x1,z1,x,z) cimg_for_in7Z(img,z0,z1,z) cimg_for_in7X(img,x0,x1,x) |
philpem@5 | 10666 | #define cimg_for_in7XV(img,x0,v0,x1,v1,x,v) cimg_for_in7V(img,v0,v1,v) cimg_for_in7X(img,x0,x1,x) |
philpem@5 | 10667 | #define cimg_for_in7YZ(img,y0,z0,y1,z1,y,z) cimg_for_in7Z(img,z0,z1,z) cimg_for_in7Y(img,y0,y1,y) |
philpem@5 | 10668 | #define cimg_for_in7YV(img,y0,v0,y1,v1,y,v) cimg_for_in7V(img,v0,v1,v) cimg_for_in7Y(img,y0,y1,y) |
philpem@5 | 10669 | #define cimg_for_in7ZV(img,z0,v0,z1,v1,z,v) cimg_for_in7V(img,v0,v1,v) cimg_for_in7Z(img,z0,z1,z) |
philpem@5 | 10670 | #define cimg_for_in7XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in7Z(img,z0,z1,z) cimg_for_in7XY(img,x0,y0,x1,y1,x,y) |
philpem@5 | 10671 | #define cimg_for_in7XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in7V(img,v0,v1,v) cimg_for_in7XZ(img,x0,y0,x1,y1,x,z) |
philpem@5 | 10672 | #define cimg_for_in7YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in7V(img,v0,v1,v) cimg_for_in7YZ(img,y0,z0,y1,z1,y,z) |
philpem@5 | 10673 | #define cimg_for_in7XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in7V(img,v0,v1,v) cimg_for_in7XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) |
philpem@5 | 10674 | |
philpem@5 | 10675 | #define cimg_for7x7x7(img,x,y,z,v,I) \ |
philpem@5 | 10676 | cimg_for7((img).depth,z) cimg_for7((img).height,y) for (int x = 0, \ |
philpem@5 | 10677 | _p3##x = 0, _p2##x = 0, _p1##x = 0, \ |
philpem@5 | 10678 | _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \ |
philpem@5 | 10679 | _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \ |
philpem@5 | 10680 | _n3##x = (int)( \ |
philpem@5 | 10681 | (I[0] = I[1] = I[2] = I[3] = (img)(0,_p3##y,_p3##z,v)), \ |
philpem@5 | 10682 | (I[7] = I[8] = I[9] = I[10] = (img)(0,_p2##y,_p3##z,v)), \ |
philpem@5 | 10683 | (I[14] = I[15] = I[16] = I[17] = (img)(0,_p1##y,_p3##z,v)), \ |
philpem@5 | 10684 | (I[21] = I[22] = I[23] = I[24] = (img)(0,y,_p3##z,v)), \ |
philpem@5 | 10685 | (I[28] = I[29] = I[30] = I[31] = (img)(0,_n1##y,_p3##z,v)), \ |
philpem@5 | 10686 | (I[35] = I[36] = I[37] = I[38] = (img)(0,_n2##y,_p3##z,v)), \ |
philpem@5 | 10687 | (I[42] = I[43] = I[44] = I[45] = (img)(0,_n3##y,_p3##z,v)), \ |
philpem@5 | 10688 | (I[49] = I[50] = I[51] = I[52] = (img)(0,_p3##y,_p2##z,v)), \ |
philpem@5 | 10689 | (I[56] = I[57] = I[58] = I[59] = (img)(0,_p2##y,_p2##z,v)), \ |
philpem@5 | 10690 | (I[63] = I[64] = I[65] = I[66] = (img)(0,_p1##y,_p2##z,v)), \ |
philpem@5 | 10691 | (I[70] = I[71] = I[72] = I[73] = (img)(0,y,_p2##z,v)), \ |
philpem@5 | 10692 | (I[77] = I[78] = I[79] = I[80] = (img)(0,_n1##y,_p2##z,v)), \ |
philpem@5 | 10693 | (I[84] = I[85] = I[86] = I[87] = (img)(0,_n2##y,_p2##z,v)), \ |
philpem@5 | 10694 | (I[91] = I[92] = I[93] = I[94] = (img)(0,_n3##y,_p2##z,v)), \ |
philpem@5 | 10695 | (I[98] = I[99] = I[100] = I[101] = (img)(0,_p3##y,_p1##z,v)), \ |
philpem@5 | 10696 | (I[105] = I[106] = I[107] = I[108] = (img)(0,_p2##y,_p1##z,v)), \ |
philpem@5 | 10697 | (I[112] = I[113] = I[114] = I[115] = (img)(0,_p1##y,_p1##z,v)), \ |
philpem@5 | 10698 | (I[119] = I[120] = I[121] = I[122] = (img)(0,y,_p1##z,v)), \ |
philpem@5 | 10699 | (I[126] = I[127] = I[128] = I[129] = (img)(0,_n1##y,_p1##z,v)), \ |
philpem@5 | 10700 | (I[133] = I[134] = I[135] = I[136] = (img)(0,_n2##y,_p1##z,v)), \ |
philpem@5 | 10701 | (I[140] = I[141] = I[142] = I[143] = (img)(0,_n3##y,_p1##z,v)), \ |
philpem@5 | 10702 | (I[147] = I[148] = I[149] = I[150] = (img)(0,_p3##y,z,v)), \ |
philpem@5 | 10703 | (I[154] = I[155] = I[156] = I[157] = (img)(0,_p2##y,z,v)), \ |
philpem@5 | 10704 | (I[161] = I[162] = I[163] = I[164] = (img)(0,_p1##y,z,v)), \ |
philpem@5 | 10705 | (I[168] = I[169] = I[170] = I[171] = (img)(0,y,z,v)), \ |
philpem@5 | 10706 | (I[175] = I[176] = I[177] = I[178] = (img)(0,_n1##y,z,v)), \ |
philpem@5 | 10707 | (I[182] = I[183] = I[184] = I[185] = (img)(0,_n2##y,z,v)), \ |
philpem@5 | 10708 | (I[189] = I[190] = I[191] = I[192] = (img)(0,_n3##y,z,v)), \ |
philpem@5 | 10709 | (I[196] = I[197] = I[198] = I[199] = (img)(0,_p3##y,_n1##z,v)), \ |
philpem@5 | 10710 | (I[203] = I[204] = I[205] = I[206] = (img)(0,_p2##y,_n1##z,v)), \ |
philpem@5 | 10711 | (I[210] = I[211] = I[212] = I[213] = (img)(0,_p1##y,_n1##z,v)), \ |
philpem@5 | 10712 | (I[217] = I[218] = I[219] = I[220] = (img)(0,y,_n1##z,v)), \ |
philpem@5 | 10713 | (I[224] = I[225] = I[226] = I[227] = (img)(0,_n1##y,_n1##z,v)), \ |
philpem@5 | 10714 | (I[231] = I[232] = I[233] = I[234] = (img)(0,_n2##y,_n1##z,v)), \ |
philpem@5 | 10715 | (I[238] = I[239] = I[240] = I[241] = (img)(0,_n3##y,_n1##z,v)), \ |
philpem@5 | 10716 | (I[245] = I[246] = I[247] = I[248] = (img)(0,_p3##y,_n2##z,v)), \ |
philpem@5 | 10717 | (I[252] = I[253] = I[254] = I[255] = (img)(0,_p2##y,_n2##z,v)), \ |
philpem@5 | 10718 | (I[259] = I[260] = I[261] = I[262] = (img)(0,_p1##y,_n2##z,v)), \ |
philpem@5 | 10719 | (I[266] = I[267] = I[268] = I[269] = (img)(0,y,_n2##z,v)), \ |
philpem@5 | 10720 | (I[273] = I[274] = I[275] = I[276] = (img)(0,_n1##y,_n2##z,v)), \ |
philpem@5 | 10721 | (I[280] = I[281] = I[282] = I[283] = (img)(0,_n2##y,_n2##z,v)), \ |
philpem@5 | 10722 | (I[287] = I[288] = I[289] = I[290] = (img)(0,_n3##y,_n2##z,v)), \ |
philpem@5 | 10723 | (I[294] = I[295] = I[296] = I[297] = (img)(0,_p3##y,_n3##z,v)), \ |
philpem@5 | 10724 | (I[301] = I[302] = I[303] = I[304] = (img)(0,_p2##y,_n3##z,v)), \ |
philpem@5 | 10725 | (I[308] = I[309] = I[310] = I[311] = (img)(0,_p1##y,_n3##z,v)), \ |
philpem@5 | 10726 | (I[315] = I[316] = I[317] = I[318] = (img)(0,y,_n3##z,v)), \ |
philpem@5 | 10727 | (I[322] = I[323] = I[324] = I[325] = (img)(0,_n1##y,_n3##z,v)), \ |
philpem@5 | 10728 | (I[329] = I[330] = I[331] = I[332] = (img)(0,_n2##y,_n3##z,v)), \ |
philpem@5 | 10729 | (I[336] = I[337] = I[338] = I[339] = (img)(0,_n3##y,_n3##z,v)), \ |
philpem@5 | 10730 | (I[4] = (img)(_n1##x,_p3##y,_p3##z,v)), \ |
philpem@5 | 10731 | (I[11] = (img)(_n1##x,_p2##y,_p3##z,v)), \ |
philpem@5 | 10732 | (I[18] = (img)(_n1##x,_p1##y,_p3##z,v)), \ |
philpem@5 | 10733 | (I[25] = (img)(_n1##x,y,_p3##z,v)), \ |
philpem@5 | 10734 | (I[32] = (img)(_n1##x,_n1##y,_p3##z,v)), \ |
philpem@5 | 10735 | (I[39] = (img)(_n1##x,_n2##y,_p3##z,v)), \ |
philpem@5 | 10736 | (I[46] = (img)(_n1##x,_n3##y,_p3##z,v)), \ |
philpem@5 | 10737 | (I[53] = (img)(_n1##x,_p3##y,_p2##z,v)), \ |
philpem@5 | 10738 | (I[60] = (img)(_n1##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 10739 | (I[67] = (img)(_n1##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 10740 | (I[74] = (img)(_n1##x,y,_p2##z,v)), \ |
philpem@5 | 10741 | (I[81] = (img)(_n1##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 10742 | (I[88] = (img)(_n1##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 10743 | (I[95] = (img)(_n1##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 10744 | (I[102] = (img)(_n1##x,_p3##y,_p1##z,v)), \ |
philpem@5 | 10745 | (I[109] = (img)(_n1##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 10746 | (I[116] = (img)(_n1##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 10747 | (I[123] = (img)(_n1##x,y,_p1##z,v)), \ |
philpem@5 | 10748 | (I[130] = (img)(_n1##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 10749 | (I[137] = (img)(_n1##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 10750 | (I[144] = (img)(_n1##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 10751 | (I[151] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 10752 | (I[158] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 10753 | (I[165] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 10754 | (I[172] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 10755 | (I[179] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 10756 | (I[186] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 10757 | (I[193] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 10758 | (I[200] = (img)(_n1##x,_p3##y,_n1##z,v)), \ |
philpem@5 | 10759 | (I[207] = (img)(_n1##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 10760 | (I[214] = (img)(_n1##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 10761 | (I[221] = (img)(_n1##x,y,_n1##z,v)), \ |
philpem@5 | 10762 | (I[228] = (img)(_n1##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 10763 | (I[235] = (img)(_n1##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 10764 | (I[242] = (img)(_n1##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 10765 | (I[249] = (img)(_n1##x,_p3##y,_n2##z,v)), \ |
philpem@5 | 10766 | (I[256] = (img)(_n1##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 10767 | (I[263] = (img)(_n1##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 10768 | (I[270] = (img)(_n1##x,y,_n2##z,v)), \ |
philpem@5 | 10769 | (I[277] = (img)(_n1##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 10770 | (I[284] = (img)(_n1##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 10771 | (I[291] = (img)(_n1##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 10772 | (I[298] = (img)(_n1##x,_p3##y,_n3##z,v)), \ |
philpem@5 | 10773 | (I[305] = (img)(_n1##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 10774 | (I[312] = (img)(_n1##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 10775 | (I[319] = (img)(_n1##x,y,_n3##z,v)), \ |
philpem@5 | 10776 | (I[326] = (img)(_n1##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 10777 | (I[333] = (img)(_n1##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 10778 | (I[340] = (img)(_n1##x,_n3##y,_n3##z,v)), \ |
philpem@5 | 10779 | (I[5] = (img)(_n2##x,_p3##y,_p3##z,v)), \ |
philpem@5 | 10780 | (I[12] = (img)(_n2##x,_p2##y,_p3##z,v)), \ |
philpem@5 | 10781 | (I[19] = (img)(_n2##x,_p1##y,_p3##z,v)), \ |
philpem@5 | 10782 | (I[26] = (img)(_n2##x,y,_p3##z,v)), \ |
philpem@5 | 10783 | (I[33] = (img)(_n2##x,_n1##y,_p3##z,v)), \ |
philpem@5 | 10784 | (I[40] = (img)(_n2##x,_n2##y,_p3##z,v)), \ |
philpem@5 | 10785 | (I[47] = (img)(_n2##x,_n3##y,_p3##z,v)), \ |
philpem@5 | 10786 | (I[54] = (img)(_n2##x,_p3##y,_p2##z,v)), \ |
philpem@5 | 10787 | (I[61] = (img)(_n2##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 10788 | (I[68] = (img)(_n2##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 10789 | (I[75] = (img)(_n2##x,y,_p2##z,v)), \ |
philpem@5 | 10790 | (I[82] = (img)(_n2##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 10791 | (I[89] = (img)(_n2##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 10792 | (I[96] = (img)(_n2##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 10793 | (I[103] = (img)(_n2##x,_p3##y,_p1##z,v)), \ |
philpem@5 | 10794 | (I[110] = (img)(_n2##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 10795 | (I[117] = (img)(_n2##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 10796 | (I[124] = (img)(_n2##x,y,_p1##z,v)), \ |
philpem@5 | 10797 | (I[131] = (img)(_n2##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 10798 | (I[138] = (img)(_n2##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 10799 | (I[145] = (img)(_n2##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 10800 | (I[152] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 10801 | (I[159] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 10802 | (I[166] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 10803 | (I[173] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 10804 | (I[180] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 10805 | (I[187] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 10806 | (I[194] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 10807 | (I[201] = (img)(_n2##x,_p3##y,_n1##z,v)), \ |
philpem@5 | 10808 | (I[208] = (img)(_n2##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 10809 | (I[215] = (img)(_n2##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 10810 | (I[222] = (img)(_n2##x,y,_n1##z,v)), \ |
philpem@5 | 10811 | (I[229] = (img)(_n2##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 10812 | (I[236] = (img)(_n2##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 10813 | (I[243] = (img)(_n2##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 10814 | (I[250] = (img)(_n2##x,_p3##y,_n2##z,v)), \ |
philpem@5 | 10815 | (I[257] = (img)(_n2##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 10816 | (I[264] = (img)(_n2##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 10817 | (I[271] = (img)(_n2##x,y,_n2##z,v)), \ |
philpem@5 | 10818 | (I[278] = (img)(_n2##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 10819 | (I[285] = (img)(_n2##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 10820 | (I[292] = (img)(_n2##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 10821 | (I[299] = (img)(_n2##x,_p3##y,_n3##z,v)), \ |
philpem@5 | 10822 | (I[306] = (img)(_n2##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 10823 | (I[313] = (img)(_n2##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 10824 | (I[320] = (img)(_n2##x,y,_n3##z,v)), \ |
philpem@5 | 10825 | (I[327] = (img)(_n2##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 10826 | (I[334] = (img)(_n2##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 10827 | (I[341] = (img)(_n2##x,_n3##y,_n3##z,v)), \ |
philpem@5 | 10828 | 3>=((img).width)?(int)((img).width)-1:3); \ |
philpem@5 | 10829 | (_n3##x<(int)((img).width) && ( \ |
philpem@5 | 10830 | (I[6] = (img)(_n3##x,_p3##y,_p3##z,v)), \ |
philpem@5 | 10831 | (I[13] = (img)(_n3##x,_p2##y,_p3##z,v)), \ |
philpem@5 | 10832 | (I[20] = (img)(_n3##x,_p1##y,_p3##z,v)), \ |
philpem@5 | 10833 | (I[27] = (img)(_n3##x,y,_p3##z,v)), \ |
philpem@5 | 10834 | (I[34] = (img)(_n3##x,_n1##y,_p3##z,v)), \ |
philpem@5 | 10835 | (I[41] = (img)(_n3##x,_n2##y,_p3##z,v)), \ |
philpem@5 | 10836 | (I[48] = (img)(_n3##x,_n3##y,_p3##z,v)), \ |
philpem@5 | 10837 | (I[55] = (img)(_n3##x,_p3##y,_p2##z,v)), \ |
philpem@5 | 10838 | (I[62] = (img)(_n3##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 10839 | (I[69] = (img)(_n3##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 10840 | (I[76] = (img)(_n3##x,y,_p2##z,v)), \ |
philpem@5 | 10841 | (I[83] = (img)(_n3##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 10842 | (I[90] = (img)(_n3##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 10843 | (I[97] = (img)(_n3##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 10844 | (I[104] = (img)(_n3##x,_p3##y,_p1##z,v)), \ |
philpem@5 | 10845 | (I[111] = (img)(_n3##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 10846 | (I[118] = (img)(_n3##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 10847 | (I[125] = (img)(_n3##x,y,_p1##z,v)), \ |
philpem@5 | 10848 | (I[132] = (img)(_n3##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 10849 | (I[139] = (img)(_n3##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 10850 | (I[146] = (img)(_n3##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 10851 | (I[153] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 10852 | (I[160] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 10853 | (I[167] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 10854 | (I[174] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 10855 | (I[181] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 10856 | (I[188] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 10857 | (I[195] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 10858 | (I[202] = (img)(_n3##x,_p3##y,_n1##z,v)), \ |
philpem@5 | 10859 | (I[209] = (img)(_n3##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 10860 | (I[216] = (img)(_n3##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 10861 | (I[223] = (img)(_n3##x,y,_n1##z,v)), \ |
philpem@5 | 10862 | (I[230] = (img)(_n3##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 10863 | (I[237] = (img)(_n3##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 10864 | (I[244] = (img)(_n3##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 10865 | (I[251] = (img)(_n3##x,_p3##y,_n2##z,v)), \ |
philpem@5 | 10866 | (I[258] = (img)(_n3##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 10867 | (I[265] = (img)(_n3##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 10868 | (I[272] = (img)(_n3##x,y,_n2##z,v)), \ |
philpem@5 | 10869 | (I[279] = (img)(_n3##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 10870 | (I[286] = (img)(_n3##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 10871 | (I[293] = (img)(_n3##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 10872 | (I[300] = (img)(_n3##x,_p3##y,_n3##z,v)), \ |
philpem@5 | 10873 | (I[307] = (img)(_n3##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 10874 | (I[314] = (img)(_n3##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 10875 | (I[321] = (img)(_n3##x,y,_n3##z,v)), \ |
philpem@5 | 10876 | (I[328] = (img)(_n3##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 10877 | (I[335] = (img)(_n3##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 10878 | (I[342] = (img)(_n3##x,_n3##y,_n3##z,v)),1)) || \ |
philpem@5 | 10879 | _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3##x = _n2##x = --_n1##x); \ |
philpem@5 | 10880 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], \ |
philpem@5 | 10881 | I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \ |
philpem@5 | 10882 | I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], \ |
philpem@5 | 10883 | I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \ |
philpem@5 | 10884 | I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], \ |
philpem@5 | 10885 | I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \ |
philpem@5 | 10886 | I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], \ |
philpem@5 | 10887 | I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \ |
philpem@5 | 10888 | I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], \ |
philpem@5 | 10889 | I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \ |
philpem@5 | 10890 | I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], \ |
philpem@5 | 10891 | I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \ |
philpem@5 | 10892 | I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], \ |
philpem@5 | 10893 | I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], \ |
philpem@5 | 10894 | I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \ |
philpem@5 | 10895 | I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \ |
philpem@5 | 10896 | I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], \ |
philpem@5 | 10897 | I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \ |
philpem@5 | 10898 | I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], \ |
philpem@5 | 10899 | I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \ |
philpem@5 | 10900 | I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], \ |
philpem@5 | 10901 | I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], \ |
philpem@5 | 10902 | I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], \ |
philpem@5 | 10903 | I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \ |
philpem@5 | 10904 | I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], \ |
philpem@5 | 10905 | I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], \ |
philpem@5 | 10906 | I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], \ |
philpem@5 | 10907 | I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], \ |
philpem@5 | 10908 | I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], \ |
philpem@5 | 10909 | I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \ |
philpem@5 | 10910 | I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], \ |
philpem@5 | 10911 | I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \ |
philpem@5 | 10912 | I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], \ |
philpem@5 | 10913 | I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], \ |
philpem@5 | 10914 | I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], \ |
philpem@5 | 10915 | I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \ |
philpem@5 | 10916 | I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], \ |
philpem@5 | 10917 | I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], \ |
philpem@5 | 10918 | I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], \ |
philpem@5 | 10919 | I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \ |
philpem@5 | 10920 | I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], \ |
philpem@5 | 10921 | I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], \ |
philpem@5 | 10922 | I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], \ |
philpem@5 | 10923 | I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], \ |
philpem@5 | 10924 | I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], \ |
philpem@5 | 10925 | I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], \ |
philpem@5 | 10926 | I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], \ |
philpem@5 | 10927 | I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \ |
philpem@5 | 10928 | I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], \ |
philpem@5 | 10929 | _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x) |
philpem@5 | 10930 | |
philpem@5 | 10931 | #define cimg_for_in7x7x7(img,x0,y0,z0,x1,y1,z1,x,y,z,v,I) \ |
philpem@5 | 10932 | cimg_for_in7((img).depth,z0,z1,z) cimg_for_in7((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ |
philpem@5 | 10933 | _p3##x = x-3<0?0:x-3, \ |
philpem@5 | 10934 | _p2##x = x-2<0?0:x-2, \ |
philpem@5 | 10935 | _p1##x = x-1<0?0:x-1, \ |
philpem@5 | 10936 | _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \ |
philpem@5 | 10937 | _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \ |
philpem@5 | 10938 | _n3##x = (int)( \ |
philpem@5 | 10939 | (I[0] = (img)(_p3##x,_p3##y,_p3##z,v)), \ |
philpem@5 | 10940 | (I[7] = (img)(_p3##x,_p2##y,_p3##z,v)), \ |
philpem@5 | 10941 | (I[14] = (img)(_p3##x,_p1##y,_p3##z,v)), \ |
philpem@5 | 10942 | (I[21] = (img)(_p3##x,y,_p3##z,v)), \ |
philpem@5 | 10943 | (I[28] = (img)(_p3##x,_n1##y,_p3##z,v)), \ |
philpem@5 | 10944 | (I[35] = (img)(_p3##x,_n2##y,_p3##z,v)), \ |
philpem@5 | 10945 | (I[42] = (img)(_p3##x,_n3##y,_p3##z,v)), \ |
philpem@5 | 10946 | (I[49] = (img)(_p3##x,_p3##y,_p2##z,v)), \ |
philpem@5 | 10947 | (I[56] = (img)(_p3##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 10948 | (I[63] = (img)(_p3##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 10949 | (I[70] = (img)(_p3##x,y,_p2##z,v)), \ |
philpem@5 | 10950 | (I[77] = (img)(_p3##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 10951 | (I[84] = (img)(_p3##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 10952 | (I[91] = (img)(_p3##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 10953 | (I[98] = (img)(_p3##x,_p3##y,_p1##z,v)), \ |
philpem@5 | 10954 | (I[105] = (img)(_p3##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 10955 | (I[112] = (img)(_p3##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 10956 | (I[119] = (img)(_p3##x,y,_p1##z,v)), \ |
philpem@5 | 10957 | (I[126] = (img)(_p3##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 10958 | (I[133] = (img)(_p3##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 10959 | (I[140] = (img)(_p3##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 10960 | (I[147] = (img)(_p3##x,_p3##y,z,v)), \ |
philpem@5 | 10961 | (I[154] = (img)(_p3##x,_p2##y,z,v)), \ |
philpem@5 | 10962 | (I[161] = (img)(_p3##x,_p1##y,z,v)), \ |
philpem@5 | 10963 | (I[168] = (img)(_p3##x,y,z,v)), \ |
philpem@5 | 10964 | (I[175] = (img)(_p3##x,_n1##y,z,v)), \ |
philpem@5 | 10965 | (I[182] = (img)(_p3##x,_n2##y,z,v)), \ |
philpem@5 | 10966 | (I[189] = (img)(_p3##x,_n3##y,z,v)), \ |
philpem@5 | 10967 | (I[196] = (img)(_p3##x,_p3##y,_n1##z,v)), \ |
philpem@5 | 10968 | (I[203] = (img)(_p3##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 10969 | (I[210] = (img)(_p3##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 10970 | (I[217] = (img)(_p3##x,y,_n1##z,v)), \ |
philpem@5 | 10971 | (I[224] = (img)(_p3##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 10972 | (I[231] = (img)(_p3##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 10973 | (I[238] = (img)(_p3##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 10974 | (I[245] = (img)(_p3##x,_p3##y,_n2##z,v)), \ |
philpem@5 | 10975 | (I[252] = (img)(_p3##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 10976 | (I[259] = (img)(_p3##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 10977 | (I[266] = (img)(_p3##x,y,_n2##z,v)), \ |
philpem@5 | 10978 | (I[273] = (img)(_p3##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 10979 | (I[280] = (img)(_p3##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 10980 | (I[287] = (img)(_p3##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 10981 | (I[294] = (img)(_p3##x,_p3##y,_n3##z,v)), \ |
philpem@5 | 10982 | (I[301] = (img)(_p3##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 10983 | (I[308] = (img)(_p3##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 10984 | (I[315] = (img)(_p3##x,y,_n3##z,v)), \ |
philpem@5 | 10985 | (I[322] = (img)(_p3##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 10986 | (I[329] = (img)(_p3##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 10987 | (I[336] = (img)(_p3##x,_n3##y,_n3##z,v)), \ |
philpem@5 | 10988 | (I[1] = (img)(_p2##x,_p3##y,_p3##z,v)), \ |
philpem@5 | 10989 | (I[8] = (img)(_p2##x,_p2##y,_p3##z,v)), \ |
philpem@5 | 10990 | (I[15] = (img)(_p2##x,_p1##y,_p3##z,v)), \ |
philpem@5 | 10991 | (I[22] = (img)(_p2##x,y,_p3##z,v)), \ |
philpem@5 | 10992 | (I[29] = (img)(_p2##x,_n1##y,_p3##z,v)), \ |
philpem@5 | 10993 | (I[36] = (img)(_p2##x,_n2##y,_p3##z,v)), \ |
philpem@5 | 10994 | (I[43] = (img)(_p2##x,_n3##y,_p3##z,v)), \ |
philpem@5 | 10995 | (I[50] = (img)(_p2##x,_p3##y,_p2##z,v)), \ |
philpem@5 | 10996 | (I[57] = (img)(_p2##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 10997 | (I[64] = (img)(_p2##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 10998 | (I[71] = (img)(_p2##x,y,_p2##z,v)), \ |
philpem@5 | 10999 | (I[78] = (img)(_p2##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 11000 | (I[85] = (img)(_p2##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 11001 | (I[92] = (img)(_p2##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 11002 | (I[99] = (img)(_p2##x,_p3##y,_p1##z,v)), \ |
philpem@5 | 11003 | (I[106] = (img)(_p2##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 11004 | (I[113] = (img)(_p2##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 11005 | (I[120] = (img)(_p2##x,y,_p1##z,v)), \ |
philpem@5 | 11006 | (I[127] = (img)(_p2##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 11007 | (I[134] = (img)(_p2##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 11008 | (I[141] = (img)(_p2##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 11009 | (I[148] = (img)(_p2##x,_p3##y,z,v)), \ |
philpem@5 | 11010 | (I[155] = (img)(_p2##x,_p2##y,z,v)), \ |
philpem@5 | 11011 | (I[162] = (img)(_p2##x,_p1##y,z,v)), \ |
philpem@5 | 11012 | (I[169] = (img)(_p2##x,y,z,v)), \ |
philpem@5 | 11013 | (I[176] = (img)(_p2##x,_n1##y,z,v)), \ |
philpem@5 | 11014 | (I[183] = (img)(_p2##x,_n2##y,z,v)), \ |
philpem@5 | 11015 | (I[190] = (img)(_p2##x,_n3##y,z,v)), \ |
philpem@5 | 11016 | (I[197] = (img)(_p2##x,_p3##y,_n1##z,v)), \ |
philpem@5 | 11017 | (I[204] = (img)(_p2##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 11018 | (I[211] = (img)(_p2##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 11019 | (I[218] = (img)(_p2##x,y,_n1##z,v)), \ |
philpem@5 | 11020 | (I[225] = (img)(_p2##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 11021 | (I[232] = (img)(_p2##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 11022 | (I[239] = (img)(_p2##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 11023 | (I[246] = (img)(_p2##x,_p3##y,_n2##z,v)), \ |
philpem@5 | 11024 | (I[253] = (img)(_p2##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 11025 | (I[260] = (img)(_p2##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 11026 | (I[267] = (img)(_p2##x,y,_n2##z,v)), \ |
philpem@5 | 11027 | (I[274] = (img)(_p2##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 11028 | (I[281] = (img)(_p2##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 11029 | (I[288] = (img)(_p2##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 11030 | (I[295] = (img)(_p2##x,_p3##y,_n3##z,v)), \ |
philpem@5 | 11031 | (I[302] = (img)(_p2##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 11032 | (I[309] = (img)(_p2##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 11033 | (I[316] = (img)(_p2##x,y,_n3##z,v)), \ |
philpem@5 | 11034 | (I[323] = (img)(_p2##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 11035 | (I[330] = (img)(_p2##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 11036 | (I[337] = (img)(_p2##x,_n3##y,_n3##z,v)), \ |
philpem@5 | 11037 | (I[2] = (img)(_p1##x,_p3##y,_p3##z,v)), \ |
philpem@5 | 11038 | (I[9] = (img)(_p1##x,_p2##y,_p3##z,v)), \ |
philpem@5 | 11039 | (I[16] = (img)(_p1##x,_p1##y,_p3##z,v)), \ |
philpem@5 | 11040 | (I[23] = (img)(_p1##x,y,_p3##z,v)), \ |
philpem@5 | 11041 | (I[30] = (img)(_p1##x,_n1##y,_p3##z,v)), \ |
philpem@5 | 11042 | (I[37] = (img)(_p1##x,_n2##y,_p3##z,v)), \ |
philpem@5 | 11043 | (I[44] = (img)(_p1##x,_n3##y,_p3##z,v)), \ |
philpem@5 | 11044 | (I[51] = (img)(_p1##x,_p3##y,_p2##z,v)), \ |
philpem@5 | 11045 | (I[58] = (img)(_p1##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 11046 | (I[65] = (img)(_p1##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 11047 | (I[72] = (img)(_p1##x,y,_p2##z,v)), \ |
philpem@5 | 11048 | (I[79] = (img)(_p1##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 11049 | (I[86] = (img)(_p1##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 11050 | (I[93] = (img)(_p1##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 11051 | (I[100] = (img)(_p1##x,_p3##y,_p1##z,v)), \ |
philpem@5 | 11052 | (I[107] = (img)(_p1##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 11053 | (I[114] = (img)(_p1##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 11054 | (I[121] = (img)(_p1##x,y,_p1##z,v)), \ |
philpem@5 | 11055 | (I[128] = (img)(_p1##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 11056 | (I[135] = (img)(_p1##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 11057 | (I[142] = (img)(_p1##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 11058 | (I[149] = (img)(_p1##x,_p3##y,z,v)), \ |
philpem@5 | 11059 | (I[156] = (img)(_p1##x,_p2##y,z,v)), \ |
philpem@5 | 11060 | (I[163] = (img)(_p1##x,_p1##y,z,v)), \ |
philpem@5 | 11061 | (I[170] = (img)(_p1##x,y,z,v)), \ |
philpem@5 | 11062 | (I[177] = (img)(_p1##x,_n1##y,z,v)), \ |
philpem@5 | 11063 | (I[184] = (img)(_p1##x,_n2##y,z,v)), \ |
philpem@5 | 11064 | (I[191] = (img)(_p1##x,_n3##y,z,v)), \ |
philpem@5 | 11065 | (I[198] = (img)(_p1##x,_p3##y,_n1##z,v)), \ |
philpem@5 | 11066 | (I[205] = (img)(_p1##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 11067 | (I[212] = (img)(_p1##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 11068 | (I[219] = (img)(_p1##x,y,_n1##z,v)), \ |
philpem@5 | 11069 | (I[226] = (img)(_p1##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 11070 | (I[233] = (img)(_p1##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 11071 | (I[240] = (img)(_p1##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 11072 | (I[247] = (img)(_p1##x,_p3##y,_n2##z,v)), \ |
philpem@5 | 11073 | (I[254] = (img)(_p1##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 11074 | (I[261] = (img)(_p1##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 11075 | (I[268] = (img)(_p1##x,y,_n2##z,v)), \ |
philpem@5 | 11076 | (I[275] = (img)(_p1##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 11077 | (I[282] = (img)(_p1##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 11078 | (I[289] = (img)(_p1##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 11079 | (I[296] = (img)(_p1##x,_p3##y,_n3##z,v)), \ |
philpem@5 | 11080 | (I[303] = (img)(_p1##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 11081 | (I[310] = (img)(_p1##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 11082 | (I[317] = (img)(_p1##x,y,_n3##z,v)), \ |
philpem@5 | 11083 | (I[324] = (img)(_p1##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 11084 | (I[331] = (img)(_p1##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 11085 | (I[338] = (img)(_p1##x,_n3##y,_n3##z,v)), \ |
philpem@5 | 11086 | (I[3] = (img)(x,_p3##y,_p3##z,v)), \ |
philpem@5 | 11087 | (I[10] = (img)(x,_p2##y,_p3##z,v)), \ |
philpem@5 | 11088 | (I[17] = (img)(x,_p1##y,_p3##z,v)), \ |
philpem@5 | 11089 | (I[24] = (img)(x,y,_p3##z,v)), \ |
philpem@5 | 11090 | (I[31] = (img)(x,_n1##y,_p3##z,v)), \ |
philpem@5 | 11091 | (I[38] = (img)(x,_n2##y,_p3##z,v)), \ |
philpem@5 | 11092 | (I[45] = (img)(x,_n3##y,_p3##z,v)), \ |
philpem@5 | 11093 | (I[52] = (img)(x,_p3##y,_p2##z,v)), \ |
philpem@5 | 11094 | (I[59] = (img)(x,_p2##y,_p2##z,v)), \ |
philpem@5 | 11095 | (I[66] = (img)(x,_p1##y,_p2##z,v)), \ |
philpem@5 | 11096 | (I[73] = (img)(x,y,_p2##z,v)), \ |
philpem@5 | 11097 | (I[80] = (img)(x,_n1##y,_p2##z,v)), \ |
philpem@5 | 11098 | (I[87] = (img)(x,_n2##y,_p2##z,v)), \ |
philpem@5 | 11099 | (I[94] = (img)(x,_n3##y,_p2##z,v)), \ |
philpem@5 | 11100 | (I[101] = (img)(x,_p3##y,_p1##z,v)), \ |
philpem@5 | 11101 | (I[108] = (img)(x,_p2##y,_p1##z,v)), \ |
philpem@5 | 11102 | (I[115] = (img)(x,_p1##y,_p1##z,v)), \ |
philpem@5 | 11103 | (I[122] = (img)(x,y,_p1##z,v)), \ |
philpem@5 | 11104 | (I[129] = (img)(x,_n1##y,_p1##z,v)), \ |
philpem@5 | 11105 | (I[136] = (img)(x,_n2##y,_p1##z,v)), \ |
philpem@5 | 11106 | (I[143] = (img)(x,_n3##y,_p1##z,v)), \ |
philpem@5 | 11107 | (I[150] = (img)(x,_p3##y,z,v)), \ |
philpem@5 | 11108 | (I[157] = (img)(x,_p2##y,z,v)), \ |
philpem@5 | 11109 | (I[164] = (img)(x,_p1##y,z,v)), \ |
philpem@5 | 11110 | (I[171] = (img)(x,y,z,v)), \ |
philpem@5 | 11111 | (I[178] = (img)(x,_n1##y,z,v)), \ |
philpem@5 | 11112 | (I[185] = (img)(x,_n2##y,z,v)), \ |
philpem@5 | 11113 | (I[192] = (img)(x,_n3##y,z,v)), \ |
philpem@5 | 11114 | (I[199] = (img)(x,_p3##y,_n1##z,v)), \ |
philpem@5 | 11115 | (I[206] = (img)(x,_p2##y,_n1##z,v)), \ |
philpem@5 | 11116 | (I[213] = (img)(x,_p1##y,_n1##z,v)), \ |
philpem@5 | 11117 | (I[220] = (img)(x,y,_n1##z,v)), \ |
philpem@5 | 11118 | (I[227] = (img)(x,_n1##y,_n1##z,v)), \ |
philpem@5 | 11119 | (I[234] = (img)(x,_n2##y,_n1##z,v)), \ |
philpem@5 | 11120 | (I[241] = (img)(x,_n3##y,_n1##z,v)), \ |
philpem@5 | 11121 | (I[248] = (img)(x,_p3##y,_n2##z,v)), \ |
philpem@5 | 11122 | (I[255] = (img)(x,_p2##y,_n2##z,v)), \ |
philpem@5 | 11123 | (I[262] = (img)(x,_p1##y,_n2##z,v)), \ |
philpem@5 | 11124 | (I[269] = (img)(x,y,_n2##z,v)), \ |
philpem@5 | 11125 | (I[276] = (img)(x,_n1##y,_n2##z,v)), \ |
philpem@5 | 11126 | (I[283] = (img)(x,_n2##y,_n2##z,v)), \ |
philpem@5 | 11127 | (I[290] = (img)(x,_n3##y,_n2##z,v)), \ |
philpem@5 | 11128 | (I[297] = (img)(x,_p3##y,_n3##z,v)), \ |
philpem@5 | 11129 | (I[304] = (img)(x,_p2##y,_n3##z,v)), \ |
philpem@5 | 11130 | (I[311] = (img)(x,_p1##y,_n3##z,v)), \ |
philpem@5 | 11131 | (I[318] = (img)(x,y,_n3##z,v)), \ |
philpem@5 | 11132 | (I[325] = (img)(x,_n1##y,_n3##z,v)), \ |
philpem@5 | 11133 | (I[332] = (img)(x,_n2##y,_n3##z,v)), \ |
philpem@5 | 11134 | (I[339] = (img)(x,_n3##y,_n3##z,v)), \ |
philpem@5 | 11135 | (I[4] = (img)(_n1##x,_p3##y,_p3##z,v)), \ |
philpem@5 | 11136 | (I[11] = (img)(_n1##x,_p2##y,_p3##z,v)), \ |
philpem@5 | 11137 | (I[18] = (img)(_n1##x,_p1##y,_p3##z,v)), \ |
philpem@5 | 11138 | (I[25] = (img)(_n1##x,y,_p3##z,v)), \ |
philpem@5 | 11139 | (I[32] = (img)(_n1##x,_n1##y,_p3##z,v)), \ |
philpem@5 | 11140 | (I[39] = (img)(_n1##x,_n2##y,_p3##z,v)), \ |
philpem@5 | 11141 | (I[46] = (img)(_n1##x,_n3##y,_p3##z,v)), \ |
philpem@5 | 11142 | (I[53] = (img)(_n1##x,_p3##y,_p2##z,v)), \ |
philpem@5 | 11143 | (I[60] = (img)(_n1##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 11144 | (I[67] = (img)(_n1##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 11145 | (I[74] = (img)(_n1##x,y,_p2##z,v)), \ |
philpem@5 | 11146 | (I[81] = (img)(_n1##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 11147 | (I[88] = (img)(_n1##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 11148 | (I[95] = (img)(_n1##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 11149 | (I[102] = (img)(_n1##x,_p3##y,_p1##z,v)), \ |
philpem@5 | 11150 | (I[109] = (img)(_n1##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 11151 | (I[116] = (img)(_n1##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 11152 | (I[123] = (img)(_n1##x,y,_p1##z,v)), \ |
philpem@5 | 11153 | (I[130] = (img)(_n1##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 11154 | (I[137] = (img)(_n1##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 11155 | (I[144] = (img)(_n1##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 11156 | (I[151] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 11157 | (I[158] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 11158 | (I[165] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 11159 | (I[172] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 11160 | (I[179] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 11161 | (I[186] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 11162 | (I[193] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 11163 | (I[200] = (img)(_n1##x,_p3##y,_n1##z,v)), \ |
philpem@5 | 11164 | (I[207] = (img)(_n1##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 11165 | (I[214] = (img)(_n1##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 11166 | (I[221] = (img)(_n1##x,y,_n1##z,v)), \ |
philpem@5 | 11167 | (I[228] = (img)(_n1##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 11168 | (I[235] = (img)(_n1##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 11169 | (I[242] = (img)(_n1##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 11170 | (I[249] = (img)(_n1##x,_p3##y,_n2##z,v)), \ |
philpem@5 | 11171 | (I[256] = (img)(_n1##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 11172 | (I[263] = (img)(_n1##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 11173 | (I[270] = (img)(_n1##x,y,_n2##z,v)), \ |
philpem@5 | 11174 | (I[277] = (img)(_n1##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 11175 | (I[284] = (img)(_n1##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 11176 | (I[291] = (img)(_n1##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 11177 | (I[298] = (img)(_n1##x,_p3##y,_n3##z,v)), \ |
philpem@5 | 11178 | (I[305] = (img)(_n1##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 11179 | (I[312] = (img)(_n1##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 11180 | (I[319] = (img)(_n1##x,y,_n3##z,v)), \ |
philpem@5 | 11181 | (I[326] = (img)(_n1##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 11182 | (I[333] = (img)(_n1##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 11183 | (I[340] = (img)(_n1##x,_n3##y,_n3##z,v)), \ |
philpem@5 | 11184 | (I[5] = (img)(_n2##x,_p3##y,_p3##z,v)), \ |
philpem@5 | 11185 | (I[12] = (img)(_n2##x,_p2##y,_p3##z,v)), \ |
philpem@5 | 11186 | (I[19] = (img)(_n2##x,_p1##y,_p3##z,v)), \ |
philpem@5 | 11187 | (I[26] = (img)(_n2##x,y,_p3##z,v)), \ |
philpem@5 | 11188 | (I[33] = (img)(_n2##x,_n1##y,_p3##z,v)), \ |
philpem@5 | 11189 | (I[40] = (img)(_n2##x,_n2##y,_p3##z,v)), \ |
philpem@5 | 11190 | (I[47] = (img)(_n2##x,_n3##y,_p3##z,v)), \ |
philpem@5 | 11191 | (I[54] = (img)(_n2##x,_p3##y,_p2##z,v)), \ |
philpem@5 | 11192 | (I[61] = (img)(_n2##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 11193 | (I[68] = (img)(_n2##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 11194 | (I[75] = (img)(_n2##x,y,_p2##z,v)), \ |
philpem@5 | 11195 | (I[82] = (img)(_n2##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 11196 | (I[89] = (img)(_n2##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 11197 | (I[96] = (img)(_n2##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 11198 | (I[103] = (img)(_n2##x,_p3##y,_p1##z,v)), \ |
philpem@5 | 11199 | (I[110] = (img)(_n2##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 11200 | (I[117] = (img)(_n2##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 11201 | (I[124] = (img)(_n2##x,y,_p1##z,v)), \ |
philpem@5 | 11202 | (I[131] = (img)(_n2##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 11203 | (I[138] = (img)(_n2##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 11204 | (I[145] = (img)(_n2##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 11205 | (I[152] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 11206 | (I[159] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 11207 | (I[166] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 11208 | (I[173] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 11209 | (I[180] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 11210 | (I[187] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 11211 | (I[194] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 11212 | (I[201] = (img)(_n2##x,_p3##y,_n1##z,v)), \ |
philpem@5 | 11213 | (I[208] = (img)(_n2##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 11214 | (I[215] = (img)(_n2##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 11215 | (I[222] = (img)(_n2##x,y,_n1##z,v)), \ |
philpem@5 | 11216 | (I[229] = (img)(_n2##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 11217 | (I[236] = (img)(_n2##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 11218 | (I[243] = (img)(_n2##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 11219 | (I[250] = (img)(_n2##x,_p3##y,_n2##z,v)), \ |
philpem@5 | 11220 | (I[257] = (img)(_n2##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 11221 | (I[264] = (img)(_n2##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 11222 | (I[271] = (img)(_n2##x,y,_n2##z,v)), \ |
philpem@5 | 11223 | (I[278] = (img)(_n2##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 11224 | (I[285] = (img)(_n2##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 11225 | (I[292] = (img)(_n2##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 11226 | (I[299] = (img)(_n2##x,_p3##y,_n3##z,v)), \ |
philpem@5 | 11227 | (I[306] = (img)(_n2##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 11228 | (I[313] = (img)(_n2##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 11229 | (I[320] = (img)(_n2##x,y,_n3##z,v)), \ |
philpem@5 | 11230 | (I[327] = (img)(_n2##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 11231 | (I[334] = (img)(_n2##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 11232 | (I[341] = (img)(_n2##x,_n3##y,_n3##z,v)), \ |
philpem@5 | 11233 | x+3>=(int)((img).width)?(int)((img).width)-1:x+3); \ |
philpem@5 | 11234 | x<=(int)(x1) && ((_n3##x<(int)((img).width) && ( \ |
philpem@5 | 11235 | (I[6] = (img)(_n3##x,_p3##y,_p3##z,v)), \ |
philpem@5 | 11236 | (I[13] = (img)(_n3##x,_p2##y,_p3##z,v)), \ |
philpem@5 | 11237 | (I[20] = (img)(_n3##x,_p1##y,_p3##z,v)), \ |
philpem@5 | 11238 | (I[27] = (img)(_n3##x,y,_p3##z,v)), \ |
philpem@5 | 11239 | (I[34] = (img)(_n3##x,_n1##y,_p3##z,v)), \ |
philpem@5 | 11240 | (I[41] = (img)(_n3##x,_n2##y,_p3##z,v)), \ |
philpem@5 | 11241 | (I[48] = (img)(_n3##x,_n3##y,_p3##z,v)), \ |
philpem@5 | 11242 | (I[55] = (img)(_n3##x,_p3##y,_p2##z,v)), \ |
philpem@5 | 11243 | (I[62] = (img)(_n3##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 11244 | (I[69] = (img)(_n3##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 11245 | (I[76] = (img)(_n3##x,y,_p2##z,v)), \ |
philpem@5 | 11246 | (I[83] = (img)(_n3##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 11247 | (I[90] = (img)(_n3##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 11248 | (I[97] = (img)(_n3##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 11249 | (I[104] = (img)(_n3##x,_p3##y,_p1##z,v)), \ |
philpem@5 | 11250 | (I[111] = (img)(_n3##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 11251 | (I[118] = (img)(_n3##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 11252 | (I[125] = (img)(_n3##x,y,_p1##z,v)), \ |
philpem@5 | 11253 | (I[132] = (img)(_n3##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 11254 | (I[139] = (img)(_n3##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 11255 | (I[146] = (img)(_n3##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 11256 | (I[153] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 11257 | (I[160] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 11258 | (I[167] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 11259 | (I[174] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 11260 | (I[181] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 11261 | (I[188] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 11262 | (I[195] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 11263 | (I[202] = (img)(_n3##x,_p3##y,_n1##z,v)), \ |
philpem@5 | 11264 | (I[209] = (img)(_n3##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 11265 | (I[216] = (img)(_n3##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 11266 | (I[223] = (img)(_n3##x,y,_n1##z,v)), \ |
philpem@5 | 11267 | (I[230] = (img)(_n3##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 11268 | (I[237] = (img)(_n3##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 11269 | (I[244] = (img)(_n3##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 11270 | (I[251] = (img)(_n3##x,_p3##y,_n2##z,v)), \ |
philpem@5 | 11271 | (I[258] = (img)(_n3##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 11272 | (I[265] = (img)(_n3##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 11273 | (I[272] = (img)(_n3##x,y,_n2##z,v)), \ |
philpem@5 | 11274 | (I[279] = (img)(_n3##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 11275 | (I[286] = (img)(_n3##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 11276 | (I[293] = (img)(_n3##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 11277 | (I[300] = (img)(_n3##x,_p3##y,_n3##z,v)), \ |
philpem@5 | 11278 | (I[307] = (img)(_n3##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 11279 | (I[314] = (img)(_n3##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 11280 | (I[321] = (img)(_n3##x,y,_n3##z,v)), \ |
philpem@5 | 11281 | (I[328] = (img)(_n3##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 11282 | (I[335] = (img)(_n3##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 11283 | (I[342] = (img)(_n3##x,_n3##y,_n3##z,v)),1)) || \ |
philpem@5 | 11284 | _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3##x = _n2##x = --_n1##x)); \ |
philpem@5 | 11285 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], \ |
philpem@5 | 11286 | I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \ |
philpem@5 | 11287 | I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], \ |
philpem@5 | 11288 | I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \ |
philpem@5 | 11289 | I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], \ |
philpem@5 | 11290 | I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \ |
philpem@5 | 11291 | I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], \ |
philpem@5 | 11292 | I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \ |
philpem@5 | 11293 | I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], \ |
philpem@5 | 11294 | I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \ |
philpem@5 | 11295 | I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], \ |
philpem@5 | 11296 | I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \ |
philpem@5 | 11297 | I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], \ |
philpem@5 | 11298 | I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], \ |
philpem@5 | 11299 | I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \ |
philpem@5 | 11300 | I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \ |
philpem@5 | 11301 | I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], \ |
philpem@5 | 11302 | I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \ |
philpem@5 | 11303 | I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], \ |
philpem@5 | 11304 | I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \ |
philpem@5 | 11305 | I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], \ |
philpem@5 | 11306 | I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], \ |
philpem@5 | 11307 | I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], \ |
philpem@5 | 11308 | I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \ |
philpem@5 | 11309 | I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], \ |
philpem@5 | 11310 | I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], \ |
philpem@5 | 11311 | I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], \ |
philpem@5 | 11312 | I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], \ |
philpem@5 | 11313 | I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], \ |
philpem@5 | 11314 | I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \ |
philpem@5 | 11315 | I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], \ |
philpem@5 | 11316 | I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \ |
philpem@5 | 11317 | I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], \ |
philpem@5 | 11318 | I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], \ |
philpem@5 | 11319 | I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], \ |
philpem@5 | 11320 | I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \ |
philpem@5 | 11321 | I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], \ |
philpem@5 | 11322 | I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], \ |
philpem@5 | 11323 | I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], \ |
philpem@5 | 11324 | I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \ |
philpem@5 | 11325 | I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], \ |
philpem@5 | 11326 | I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], \ |
philpem@5 | 11327 | I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], \ |
philpem@5 | 11328 | I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], \ |
philpem@5 | 11329 | I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], \ |
philpem@5 | 11330 | I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], \ |
philpem@5 | 11331 | I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], \ |
philpem@5 | 11332 | I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \ |
philpem@5 | 11333 | I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], \ |
philpem@5 | 11334 | _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x) |
philpem@5 | 11335 | |
philpem@5 | 11336 | #define cimg_get7x7x7(img,x,y,z,v,I) \ |
philpem@5 | 11337 | I[0] = (img)(_p3##x,_p3##y,_p3##z,v), I[1] = (img)(_p2##x,_p3##y,_p3##z,v), I[2] = (img)(_p1##x,_p3##y,_p3##z,v), I[3] = (img)(x,_p3##y,_p3##z,v), I[4] = (img)(_n1##x,_p3##y,_p3##z,v), I[5] = (img)(_n2##x,_p3##y,_p3##z,v), I[6] = (img)(_n3##x,_p3##y,_p3##z,v), \ |
philpem@5 | 11338 | I[7] = (img)(_p3##x,_p2##y,_p3##z,v), I[8] = (img)(_p2##x,_p2##y,_p3##z,v), I[9] = (img)(_p1##x,_p2##y,_p3##z,v), I[10] = (img)(x,_p2##y,_p3##z,v), I[11] = (img)(_n1##x,_p2##y,_p3##z,v), I[12] = (img)(_n2##x,_p2##y,_p3##z,v), I[13] = (img)(_n3##x,_p2##y,_p3##z,v), \ |
philpem@5 | 11339 | I[14] = (img)(_p3##x,_p1##y,_p3##z,v), I[15] = (img)(_p2##x,_p1##y,_p3##z,v), I[16] = (img)(_p1##x,_p1##y,_p3##z,v), I[17] = (img)(x,_p1##y,_p3##z,v), I[18] = (img)(_n1##x,_p1##y,_p3##z,v), I[19] = (img)(_n2##x,_p1##y,_p3##z,v), I[20] = (img)(_n3##x,_p1##y,_p3##z,v), \ |
philpem@5 | 11340 | I[21] = (img)(_p3##x,y,_p3##z,v), I[22] = (img)(_p2##x,y,_p3##z,v), I[23] = (img)(_p1##x,y,_p3##z,v), I[24] = (img)(x,y,_p3##z,v), I[25] = (img)(_n1##x,y,_p3##z,v), I[26] = (img)(_n2##x,y,_p3##z,v), I[27] = (img)(_n3##x,y,_p3##z,v), \ |
philpem@5 | 11341 | I[28] = (img)(_p3##x,_n1##y,_p3##z,v), I[29] = (img)(_p2##x,_n1##y,_p3##z,v), I[30] = (img)(_p1##x,_n1##y,_p3##z,v), I[31] = (img)(x,_n1##y,_p3##z,v), I[32] = (img)(_n1##x,_n1##y,_p3##z,v), I[33] = (img)(_n2##x,_n1##y,_p3##z,v), I[34] = (img)(_n3##x,_n1##y,_p3##z,v), \ |
philpem@5 | 11342 | I[35] = (img)(_p3##x,_n2##y,_p3##z,v), I[36] = (img)(_p2##x,_n2##y,_p3##z,v), I[37] = (img)(_p1##x,_n2##y,_p3##z,v), I[38] = (img)(x,_n2##y,_p3##z,v), I[39] = (img)(_n1##x,_n2##y,_p3##z,v), I[40] = (img)(_n2##x,_n2##y,_p3##z,v), I[41] = (img)(_n3##x,_n2##y,_p3##z,v), \ |
philpem@5 | 11343 | I[42] = (img)(_p3##x,_n3##y,_p3##z,v), I[43] = (img)(_p2##x,_n3##y,_p3##z,v), I[44] = (img)(_p1##x,_n3##y,_p3##z,v), I[45] = (img)(x,_n3##y,_p3##z,v), I[46] = (img)(_n1##x,_n3##y,_p3##z,v), I[47] = (img)(_n2##x,_n3##y,_p3##z,v), I[48] = (img)(_n3##x,_n3##y,_p3##z,v), \ |
philpem@5 | 11344 | I[49] = (img)(_p3##x,_p3##y,_p2##z,v), I[50] = (img)(_p2##x,_p3##y,_p2##z,v), I[51] = (img)(_p1##x,_p3##y,_p2##z,v), I[52] = (img)(x,_p3##y,_p2##z,v), I[53] = (img)(_n1##x,_p3##y,_p2##z,v), I[54] = (img)(_n2##x,_p3##y,_p2##z,v), I[55] = (img)(_n3##x,_p3##y,_p2##z,v), \ |
philpem@5 | 11345 | I[56] = (img)(_p3##x,_p2##y,_p2##z,v), I[57] = (img)(_p2##x,_p2##y,_p2##z,v), I[58] = (img)(_p1##x,_p2##y,_p2##z,v), I[59] = (img)(x,_p2##y,_p2##z,v), I[60] = (img)(_n1##x,_p2##y,_p2##z,v), I[61] = (img)(_n2##x,_p2##y,_p2##z,v), I[62] = (img)(_n3##x,_p2##y,_p2##z,v), \ |
philpem@5 | 11346 | I[63] = (img)(_p3##x,_p1##y,_p2##z,v), I[64] = (img)(_p2##x,_p1##y,_p2##z,v), I[65] = (img)(_p1##x,_p1##y,_p2##z,v), I[66] = (img)(x,_p1##y,_p2##z,v), I[67] = (img)(_n1##x,_p1##y,_p2##z,v), I[68] = (img)(_n2##x,_p1##y,_p2##z,v), I[69] = (img)(_n3##x,_p1##y,_p2##z,v), \ |
philpem@5 | 11347 | I[70] = (img)(_p3##x,y,_p2##z,v), I[71] = (img)(_p2##x,y,_p2##z,v), I[72] = (img)(_p1##x,y,_p2##z,v), I[73] = (img)(x,y,_p2##z,v), I[74] = (img)(_n1##x,y,_p2##z,v), I[75] = (img)(_n2##x,y,_p2##z,v), I[76] = (img)(_n3##x,y,_p2##z,v), \ |
philpem@5 | 11348 | I[77] = (img)(_p3##x,_n1##y,_p2##z,v), I[78] = (img)(_p2##x,_n1##y,_p2##z,v), I[79] = (img)(_p1##x,_n1##y,_p2##z,v), I[80] = (img)(x,_n1##y,_p2##z,v), I[81] = (img)(_n1##x,_n1##y,_p2##z,v), I[82] = (img)(_n2##x,_n1##y,_p2##z,v), I[83] = (img)(_n3##x,_n1##y,_p2##z,v), \ |
philpem@5 | 11349 | I[84] = (img)(_p3##x,_n2##y,_p2##z,v), I[85] = (img)(_p2##x,_n2##y,_p2##z,v), I[86] = (img)(_p1##x,_n2##y,_p2##z,v), I[87] = (img)(x,_n2##y,_p2##z,v), I[88] = (img)(_n1##x,_n2##y,_p2##z,v), I[89] = (img)(_n2##x,_n2##y,_p2##z,v), I[90] = (img)(_n3##x,_n2##y,_p2##z,v), \ |
philpem@5 | 11350 | I[91] = (img)(_p3##x,_n3##y,_p2##z,v), I[92] = (img)(_p2##x,_n3##y,_p2##z,v), I[93] = (img)(_p1##x,_n3##y,_p2##z,v), I[94] = (img)(x,_n3##y,_p2##z,v), I[95] = (img)(_n1##x,_n3##y,_p2##z,v), I[96] = (img)(_n2##x,_n3##y,_p2##z,v), I[97] = (img)(_n3##x,_n3##y,_p2##z,v), \ |
philpem@5 | 11351 | I[98] = (img)(_p3##x,_p3##y,_p1##z,v), I[99] = (img)(_p2##x,_p3##y,_p1##z,v), I[100] = (img)(_p1##x,_p3##y,_p1##z,v), I[101] = (img)(x,_p3##y,_p1##z,v), I[102] = (img)(_n1##x,_p3##y,_p1##z,v), I[103] = (img)(_n2##x,_p3##y,_p1##z,v), I[104] = (img)(_n3##x,_p3##y,_p1##z,v), \ |
philpem@5 | 11352 | I[105] = (img)(_p3##x,_p2##y,_p1##z,v), I[106] = (img)(_p2##x,_p2##y,_p1##z,v), I[107] = (img)(_p1##x,_p2##y,_p1##z,v), I[108] = (img)(x,_p2##y,_p1##z,v), I[109] = (img)(_n1##x,_p2##y,_p1##z,v), I[110] = (img)(_n2##x,_p2##y,_p1##z,v), I[111] = (img)(_n3##x,_p2##y,_p1##z,v), \ |
philpem@5 | 11353 | I[112] = (img)(_p3##x,_p1##y,_p1##z,v), I[113] = (img)(_p2##x,_p1##y,_p1##z,v), I[114] = (img)(_p1##x,_p1##y,_p1##z,v), I[115] = (img)(x,_p1##y,_p1##z,v), I[116] = (img)(_n1##x,_p1##y,_p1##z,v), I[117] = (img)(_n2##x,_p1##y,_p1##z,v), I[118] = (img)(_n3##x,_p1##y,_p1##z,v), \ |
philpem@5 | 11354 | I[119] = (img)(_p3##x,y,_p1##z,v), I[120] = (img)(_p2##x,y,_p1##z,v), I[121] = (img)(_p1##x,y,_p1##z,v), I[122] = (img)(x,y,_p1##z,v), I[123] = (img)(_n1##x,y,_p1##z,v), I[124] = (img)(_n2##x,y,_p1##z,v), I[125] = (img)(_n3##x,y,_p1##z,v), \ |
philpem@5 | 11355 | I[126] = (img)(_p3##x,_n1##y,_p1##z,v), I[127] = (img)(_p2##x,_n1##y,_p1##z,v), I[128] = (img)(_p1##x,_n1##y,_p1##z,v), I[129] = (img)(x,_n1##y,_p1##z,v), I[130] = (img)(_n1##x,_n1##y,_p1##z,v), I[131] = (img)(_n2##x,_n1##y,_p1##z,v), I[132] = (img)(_n3##x,_n1##y,_p1##z,v), \ |
philpem@5 | 11356 | I[133] = (img)(_p3##x,_n2##y,_p1##z,v), I[134] = (img)(_p2##x,_n2##y,_p1##z,v), I[135] = (img)(_p1##x,_n2##y,_p1##z,v), I[136] = (img)(x,_n2##y,_p1##z,v), I[137] = (img)(_n1##x,_n2##y,_p1##z,v), I[138] = (img)(_n2##x,_n2##y,_p1##z,v), I[139] = (img)(_n3##x,_n2##y,_p1##z,v), \ |
philpem@5 | 11357 | I[140] = (img)(_p3##x,_n3##y,_p1##z,v), I[141] = (img)(_p2##x,_n3##y,_p1##z,v), I[142] = (img)(_p1##x,_n3##y,_p1##z,v), I[143] = (img)(x,_n3##y,_p1##z,v), I[144] = (img)(_n1##x,_n3##y,_p1##z,v), I[145] = (img)(_n2##x,_n3##y,_p1##z,v), I[146] = (img)(_n3##x,_n3##y,_p1##z,v), \ |
philpem@5 | 11358 | I[147] = (img)(_p3##x,_p3##y,z,v), I[148] = (img)(_p2##x,_p3##y,z,v), I[149] = (img)(_p1##x,_p3##y,z,v), I[150] = (img)(x,_p3##y,z,v), I[151] = (img)(_n1##x,_p3##y,z,v), I[152] = (img)(_n2##x,_p3##y,z,v), I[153] = (img)(_n3##x,_p3##y,z,v), \ |
philpem@5 | 11359 | I[154] = (img)(_p3##x,_p2##y,z,v), I[155] = (img)(_p2##x,_p2##y,z,v), I[156] = (img)(_p1##x,_p2##y,z,v), I[157] = (img)(x,_p2##y,z,v), I[158] = (img)(_n1##x,_p2##y,z,v), I[159] = (img)(_n2##x,_p2##y,z,v), I[160] = (img)(_n3##x,_p2##y,z,v), \ |
philpem@5 | 11360 | I[161] = (img)(_p3##x,_p1##y,z,v), I[162] = (img)(_p2##x,_p1##y,z,v), I[163] = (img)(_p1##x,_p1##y,z,v), I[164] = (img)(x,_p1##y,z,v), I[165] = (img)(_n1##x,_p1##y,z,v), I[166] = (img)(_n2##x,_p1##y,z,v), I[167] = (img)(_n3##x,_p1##y,z,v), \ |
philpem@5 | 11361 | I[168] = (img)(_p3##x,y,z,v), I[169] = (img)(_p2##x,y,z,v), I[170] = (img)(_p1##x,y,z,v), I[171] = (img)(x,y,z,v), I[172] = (img)(_n1##x,y,z,v), I[173] = (img)(_n2##x,y,z,v), I[174] = (img)(_n3##x,y,z,v), \ |
philpem@5 | 11362 | I[175] = (img)(_p3##x,_n1##y,z,v), I[176] = (img)(_p2##x,_n1##y,z,v), I[177] = (img)(_p1##x,_n1##y,z,v), I[178] = (img)(x,_n1##y,z,v), I[179] = (img)(_n1##x,_n1##y,z,v), I[180] = (img)(_n2##x,_n1##y,z,v), I[181] = (img)(_n3##x,_n1##y,z,v), \ |
philpem@5 | 11363 | I[182] = (img)(_p3##x,_n2##y,z,v), I[183] = (img)(_p2##x,_n2##y,z,v), I[184] = (img)(_p1##x,_n2##y,z,v), I[185] = (img)(x,_n2##y,z,v), I[186] = (img)(_n1##x,_n2##y,z,v), I[187] = (img)(_n2##x,_n2##y,z,v), I[188] = (img)(_n3##x,_n2##y,z,v), \ |
philpem@5 | 11364 | I[189] = (img)(_p3##x,_n3##y,z,v), I[190] = (img)(_p2##x,_n3##y,z,v), I[191] = (img)(_p1##x,_n3##y,z,v), I[192] = (img)(x,_n3##y,z,v), I[193] = (img)(_n1##x,_n3##y,z,v), I[194] = (img)(_n2##x,_n3##y,z,v), I[195] = (img)(_n3##x,_n3##y,z,v), \ |
philpem@5 | 11365 | I[196] = (img)(_p3##x,_p3##y,_n1##z,v), I[197] = (img)(_p2##x,_p3##y,_n1##z,v), I[198] = (img)(_p1##x,_p3##y,_n1##z,v), I[199] = (img)(x,_p3##y,_n1##z,v), I[200] = (img)(_n1##x,_p3##y,_n1##z,v), I[201] = (img)(_n2##x,_p3##y,_n1##z,v), I[202] = (img)(_n3##x,_p3##y,_n1##z,v), \ |
philpem@5 | 11366 | I[203] = (img)(_p3##x,_p2##y,_n1##z,v), I[204] = (img)(_p2##x,_p2##y,_n1##z,v), I[205] = (img)(_p1##x,_p2##y,_n1##z,v), I[206] = (img)(x,_p2##y,_n1##z,v), I[207] = (img)(_n1##x,_p2##y,_n1##z,v), I[208] = (img)(_n2##x,_p2##y,_n1##z,v), I[209] = (img)(_n3##x,_p2##y,_n1##z,v), \ |
philpem@5 | 11367 | I[210] = (img)(_p3##x,_p1##y,_n1##z,v), I[211] = (img)(_p2##x,_p1##y,_n1##z,v), I[212] = (img)(_p1##x,_p1##y,_n1##z,v), I[213] = (img)(x,_p1##y,_n1##z,v), I[214] = (img)(_n1##x,_p1##y,_n1##z,v), I[215] = (img)(_n2##x,_p1##y,_n1##z,v), I[216] = (img)(_n3##x,_p1##y,_n1##z,v), \ |
philpem@5 | 11368 | I[217] = (img)(_p3##x,y,_n1##z,v), I[218] = (img)(_p2##x,y,_n1##z,v), I[219] = (img)(_p1##x,y,_n1##z,v), I[220] = (img)(x,y,_n1##z,v), I[221] = (img)(_n1##x,y,_n1##z,v), I[222] = (img)(_n2##x,y,_n1##z,v), I[223] = (img)(_n3##x,y,_n1##z,v), \ |
philpem@5 | 11369 | I[224] = (img)(_p3##x,_n1##y,_n1##z,v), I[225] = (img)(_p2##x,_n1##y,_n1##z,v), I[226] = (img)(_p1##x,_n1##y,_n1##z,v), I[227] = (img)(x,_n1##y,_n1##z,v), I[228] = (img)(_n1##x,_n1##y,_n1##z,v), I[229] = (img)(_n2##x,_n1##y,_n1##z,v), I[230] = (img)(_n3##x,_n1##y,_n1##z,v), \ |
philpem@5 | 11370 | I[231] = (img)(_p3##x,_n2##y,_n1##z,v), I[232] = (img)(_p2##x,_n2##y,_n1##z,v), I[233] = (img)(_p1##x,_n2##y,_n1##z,v), I[234] = (img)(x,_n2##y,_n1##z,v), I[235] = (img)(_n1##x,_n2##y,_n1##z,v), I[236] = (img)(_n2##x,_n2##y,_n1##z,v), I[237] = (img)(_n3##x,_n2##y,_n1##z,v), \ |
philpem@5 | 11371 | I[238] = (img)(_p3##x,_n3##y,_n1##z,v), I[239] = (img)(_p2##x,_n3##y,_n1##z,v), I[240] = (img)(_p1##x,_n3##y,_n1##z,v), I[241] = (img)(x,_n3##y,_n1##z,v), I[242] = (img)(_n1##x,_n3##y,_n1##z,v), I[243] = (img)(_n2##x,_n3##y,_n1##z,v), I[244] = (img)(_n3##x,_n3##y,_n1##z,v), \ |
philpem@5 | 11372 | I[245] = (img)(_p3##x,_p3##y,_n2##z,v), I[246] = (img)(_p2##x,_p3##y,_n2##z,v), I[247] = (img)(_p1##x,_p3##y,_n2##z,v), I[248] = (img)(x,_p3##y,_n2##z,v), I[249] = (img)(_n1##x,_p3##y,_n2##z,v), I[250] = (img)(_n2##x,_p3##y,_n2##z,v), I[251] = (img)(_n3##x,_p3##y,_n2##z,v), \ |
philpem@5 | 11373 | I[252] = (img)(_p3##x,_p2##y,_n2##z,v), I[253] = (img)(_p2##x,_p2##y,_n2##z,v), I[254] = (img)(_p1##x,_p2##y,_n2##z,v), I[255] = (img)(x,_p2##y,_n2##z,v), I[256] = (img)(_n1##x,_p2##y,_n2##z,v), I[257] = (img)(_n2##x,_p2##y,_n2##z,v), I[258] = (img)(_n3##x,_p2##y,_n2##z,v), \ |
philpem@5 | 11374 | I[259] = (img)(_p3##x,_p1##y,_n2##z,v), I[260] = (img)(_p2##x,_p1##y,_n2##z,v), I[261] = (img)(_p1##x,_p1##y,_n2##z,v), I[262] = (img)(x,_p1##y,_n2##z,v), I[263] = (img)(_n1##x,_p1##y,_n2##z,v), I[264] = (img)(_n2##x,_p1##y,_n2##z,v), I[265] = (img)(_n3##x,_p1##y,_n2##z,v), \ |
philpem@5 | 11375 | I[266] = (img)(_p3##x,y,_n2##z,v), I[267] = (img)(_p2##x,y,_n2##z,v), I[268] = (img)(_p1##x,y,_n2##z,v), I[269] = (img)(x,y,_n2##z,v), I[270] = (img)(_n1##x,y,_n2##z,v), I[271] = (img)(_n2##x,y,_n2##z,v), I[272] = (img)(_n3##x,y,_n2##z,v), \ |
philpem@5 | 11376 | I[273] = (img)(_p3##x,_n1##y,_n2##z,v), I[274] = (img)(_p2##x,_n1##y,_n2##z,v), I[275] = (img)(_p1##x,_n1##y,_n2##z,v), I[276] = (img)(x,_n1##y,_n2##z,v), I[277] = (img)(_n1##x,_n1##y,_n2##z,v), I[278] = (img)(_n2##x,_n1##y,_n2##z,v), I[279] = (img)(_n3##x,_n1##y,_n2##z,v), \ |
philpem@5 | 11377 | I[280] = (img)(_p3##x,_n2##y,_n2##z,v), I[281] = (img)(_p2##x,_n2##y,_n2##z,v), I[282] = (img)(_p1##x,_n2##y,_n2##z,v), I[283] = (img)(x,_n2##y,_n2##z,v), I[284] = (img)(_n1##x,_n2##y,_n2##z,v), I[285] = (img)(_n2##x,_n2##y,_n2##z,v), I[286] = (img)(_n3##x,_n2##y,_n2##z,v), \ |
philpem@5 | 11378 | I[287] = (img)(_p3##x,_n3##y,_n2##z,v), I[288] = (img)(_p2##x,_n3##y,_n2##z,v), I[289] = (img)(_p1##x,_n3##y,_n2##z,v), I[290] = (img)(x,_n3##y,_n2##z,v), I[291] = (img)(_n1##x,_n3##y,_n2##z,v), I[292] = (img)(_n2##x,_n3##y,_n2##z,v), I[293] = (img)(_n3##x,_n3##y,_n2##z,v), \ |
philpem@5 | 11379 | I[294] = (img)(_p3##x,_p3##y,_n3##z,v), I[295] = (img)(_p2##x,_p3##y,_n3##z,v), I[296] = (img)(_p1##x,_p3##y,_n3##z,v), I[297] = (img)(x,_p3##y,_n3##z,v), I[298] = (img)(_n1##x,_p3##y,_n3##z,v), I[299] = (img)(_n2##x,_p3##y,_n3##z,v), I[300] = (img)(_n3##x,_p3##y,_n3##z,v), \ |
philpem@5 | 11380 | I[301] = (img)(_p3##x,_p2##y,_n3##z,v), I[302] = (img)(_p2##x,_p2##y,_n3##z,v), I[303] = (img)(_p1##x,_p2##y,_n3##z,v), I[304] = (img)(x,_p2##y,_n3##z,v), I[305] = (img)(_n1##x,_p2##y,_n3##z,v), I[306] = (img)(_n2##x,_p2##y,_n3##z,v), I[307] = (img)(_n3##x,_p2##y,_n3##z,v), \ |
philpem@5 | 11381 | I[308] = (img)(_p3##x,_p1##y,_n3##z,v), I[309] = (img)(_p2##x,_p1##y,_n3##z,v), I[310] = (img)(_p1##x,_p1##y,_n3##z,v), I[311] = (img)(x,_p1##y,_n3##z,v), I[312] = (img)(_n1##x,_p1##y,_n3##z,v), I[313] = (img)(_n2##x,_p1##y,_n3##z,v), I[314] = (img)(_n3##x,_p1##y,_n3##z,v), \ |
philpem@5 | 11382 | I[315] = (img)(_p3##x,y,_n3##z,v), I[316] = (img)(_p2##x,y,_n3##z,v), I[317] = (img)(_p1##x,y,_n3##z,v), I[318] = (img)(x,y,_n3##z,v), I[319] = (img)(_n1##x,y,_n3##z,v), I[320] = (img)(_n2##x,y,_n3##z,v), I[321] = (img)(_n3##x,y,_n3##z,v), \ |
philpem@5 | 11383 | I[322] = (img)(_p3##x,_n1##y,_n3##z,v), I[323] = (img)(_p2##x,_n1##y,_n3##z,v), I[324] = (img)(_p1##x,_n1##y,_n3##z,v), I[325] = (img)(x,_n1##y,_n3##z,v), I[326] = (img)(_n1##x,_n1##y,_n3##z,v), I[327] = (img)(_n2##x,_n1##y,_n3##z,v), I[328] = (img)(_n3##x,_n1##y,_n3##z,v), \ |
philpem@5 | 11384 | I[329] = (img)(_p3##x,_n2##y,_n3##z,v), I[330] = (img)(_p2##x,_n2##y,_n3##z,v), I[331] = (img)(_p1##x,_n2##y,_n3##z,v), I[332] = (img)(x,_n2##y,_n3##z,v), I[333] = (img)(_n1##x,_n2##y,_n3##z,v), I[334] = (img)(_n2##x,_n2##y,_n3##z,v), I[335] = (img)(_n3##x,_n2##y,_n3##z,v), \ |
philpem@5 | 11385 | I[336] = (img)(_p3##x,_n3##y,_n3##z,v), I[337] = (img)(_p2##x,_n3##y,_n3##z,v), I[338] = (img)(_p1##x,_n3##y,_n3##z,v), I[339] = (img)(x,_n3##y,_n3##z,v), I[340] = (img)(_n1##x,_n3##y,_n3##z,v), I[341] = (img)(_n2##x,_n3##y,_n3##z,v), I[342] = (img)(_n3##x,_n3##y,_n3##z,v); |
philpem@5 | 11386 | |
philpem@5 | 11387 | // Define 8x8x8 loop macros for CImg |
philpem@5 | 11388 | //------------------------------------- |
philpem@5 | 11389 | #define cimg_for_in8(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \ |
philpem@5 | 11390 | _p3##i = i-3<0?0:i-3, \ |
philpem@5 | 11391 | _p2##i = i-2<0?0:i-2, \ |
philpem@5 | 11392 | _p1##i = i-1<0?0:i-1, \ |
philpem@5 | 11393 | _n1##i = i+1>=(int)(bound)?(int)(bound)-1:i+1, \ |
philpem@5 | 11394 | _n2##i = i+2>=(int)(bound)?(int)(bound)-1:i+2, \ |
philpem@5 | 11395 | _n3##i = i+3>=(int)(bound)?(int)(bound)-1:i+3, \ |
philpem@5 | 11396 | _n4##i = i+4>=(int)(bound)?(int)(bound)-1:i+4; \ |
philpem@5 | 11397 | i<=(int)(i1) && (_n4##i<(int)(bound) || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ |
philpem@5 | 11398 | i==(_n4##i = _n3##i = _n2##i = --_n1##i)); \ |
philpem@5 | 11399 | _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \ |
philpem@5 | 11400 | ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i) |
philpem@5 | 11401 | |
philpem@5 | 11402 | #define cimg_for_in8X(img,x0,x1,x) cimg_for_in8((img).width,x0,x1,x) |
philpem@5 | 11403 | #define cimg_for_in8Y(img,y0,y1,y) cimg_for_in8((img).height,y0,y1,y) |
philpem@5 | 11404 | #define cimg_for_in8Z(img,z0,z1,z) cimg_for_in8((img).depth,z0,z1,z) |
philpem@5 | 11405 | #define cimg_for_in8V(img,v0,v1,v) cimg_for_in8((img).dim,v0,v1,v) |
philpem@5 | 11406 | #define cimg_for_in8XY(img,x0,y0,x1,y1,x,y) cimg_for_in8Y(img,y0,y1,y) cimg_for_in8X(img,x0,x1,x) |
philpem@5 | 11407 | #define cimg_for_in8XZ(img,x0,z0,x1,z1,x,z) cimg_for_in8Z(img,z0,z1,z) cimg_for_in8X(img,x0,x1,x) |
philpem@5 | 11408 | #define cimg_for_in8XV(img,x0,v0,x1,v1,x,v) cimg_for_in8V(img,v0,v1,v) cimg_for_in8X(img,x0,x1,x) |
philpem@5 | 11409 | #define cimg_for_in8YZ(img,y0,z0,y1,z1,y,z) cimg_for_in8Z(img,z0,z1,z) cimg_for_in8Y(img,y0,y1,y) |
philpem@5 | 11410 | #define cimg_for_in8YV(img,y0,v0,y1,v1,y,v) cimg_for_in8V(img,v0,v1,v) cimg_for_in8Y(img,y0,y1,y) |
philpem@5 | 11411 | #define cimg_for_in8ZV(img,z0,v0,z1,v1,z,v) cimg_for_in8V(img,v0,v1,v) cimg_for_in8Z(img,z0,z1,z) |
philpem@5 | 11412 | #define cimg_for_in8XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in8Z(img,z0,z1,z) cimg_for_in8XY(img,x0,y0,x1,y1,x,y) |
philpem@5 | 11413 | #define cimg_for_in8XZV(img,x0,z0,v0,x1,y1,v1,x,z,v) cimg_for_in8V(img,v0,v1,v) cimg_for_in8XZ(img,x0,y0,x1,y1,x,z) |
philpem@5 | 11414 | #define cimg_for_in8YZV(img,y0,z0,v0,y1,z1,v1,y,z,v) cimg_for_in8V(img,v0,v1,v) cimg_for_in8YZ(img,y0,z0,y1,z1,y,z) |
philpem@5 | 11415 | #define cimg_for_in8XYZV(img,x0,y0,z0,v0,x1,y1,z1,v1,x,y,z,v) cimg_for_in8V(img,v0,v1,v) cimg_for_in8XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) |
philpem@5 | 11416 | |
philpem@5 | 11417 | #define cimg_for8x8x8(img,x,y,z,v,I) \ |
philpem@5 | 11418 | cimg_for8((img).depth,z) cimg_for8((img).height,y) for (int x = 0, \ |
philpem@5 | 11419 | _p3##x = 0, _p2##x = 0, _p1##x = 0, \ |
philpem@5 | 11420 | _n1##x = 1>=((img).width)?(int)((img).width)-1:1, \ |
philpem@5 | 11421 | _n2##x = 2>=((img).width)?(int)((img).width)-1:2, \ |
philpem@5 | 11422 | _n3##x = 3>=((img).width)?(int)((img).width)-1:3, \ |
philpem@5 | 11423 | _n4##x = (int)( \ |
philpem@5 | 11424 | (I[0] = I[1] = I[2] = I[3] = (img)(0,_p3##y,_p3##z,v)), \ |
philpem@5 | 11425 | (I[8] = I[9] = I[10] = I[11] = (img)(0,_p2##y,_p3##z,v)), \ |
philpem@5 | 11426 | (I[16] = I[17] = I[18] = I[19] = (img)(0,_p1##y,_p3##z,v)), \ |
philpem@5 | 11427 | (I[24] = I[25] = I[26] = I[27] = (img)(0,y,_p3##z,v)), \ |
philpem@5 | 11428 | (I[32] = I[33] = I[34] = I[35] = (img)(0,_n1##y,_p3##z,v)), \ |
philpem@5 | 11429 | (I[40] = I[41] = I[42] = I[43] = (img)(0,_n2##y,_p3##z,v)), \ |
philpem@5 | 11430 | (I[48] = I[49] = I[50] = I[51] = (img)(0,_n3##y,_p3##z,v)), \ |
philpem@5 | 11431 | (I[56] = I[57] = I[58] = I[59] = (img)(0,_n4##y,_p3##z,v)), \ |
philpem@5 | 11432 | (I[64] = I[65] = I[66] = I[67] = (img)(0,_p3##y,_p2##z,v)), \ |
philpem@5 | 11433 | (I[72] = I[73] = I[74] = I[75] = (img)(0,_p2##y,_p2##z,v)), \ |
philpem@5 | 11434 | (I[80] = I[81] = I[82] = I[83] = (img)(0,_p1##y,_p2##z,v)), \ |
philpem@5 | 11435 | (I[88] = I[89] = I[90] = I[91] = (img)(0,y,_p2##z,v)), \ |
philpem@5 | 11436 | (I[96] = I[97] = I[98] = I[99] = (img)(0,_n1##y,_p2##z,v)), \ |
philpem@5 | 11437 | (I[104] = I[105] = I[106] = I[107] = (img)(0,_n2##y,_p2##z,v)), \ |
philpem@5 | 11438 | (I[112] = I[113] = I[114] = I[115] = (img)(0,_n3##y,_p2##z,v)), \ |
philpem@5 | 11439 | (I[120] = I[121] = I[122] = I[123] = (img)(0,_n4##y,_p2##z,v)), \ |
philpem@5 | 11440 | (I[128] = I[129] = I[130] = I[131] = (img)(0,_p3##y,_p1##z,v)), \ |
philpem@5 | 11441 | (I[136] = I[137] = I[138] = I[139] = (img)(0,_p2##y,_p1##z,v)), \ |
philpem@5 | 11442 | (I[144] = I[145] = I[146] = I[147] = (img)(0,_p1##y,_p1##z,v)), \ |
philpem@5 | 11443 | (I[152] = I[153] = I[154] = I[155] = (img)(0,y,_p1##z,v)), \ |
philpem@5 | 11444 | (I[160] = I[161] = I[162] = I[163] = (img)(0,_n1##y,_p1##z,v)), \ |
philpem@5 | 11445 | (I[168] = I[169] = I[170] = I[171] = (img)(0,_n2##y,_p1##z,v)), \ |
philpem@5 | 11446 | (I[176] = I[177] = I[178] = I[179] = (img)(0,_n3##y,_p1##z,v)), \ |
philpem@5 | 11447 | (I[184] = I[185] = I[186] = I[187] = (img)(0,_n4##y,_p1##z,v)), \ |
philpem@5 | 11448 | (I[192] = I[193] = I[194] = I[195] = (img)(0,_p3##y,z,v)), \ |
philpem@5 | 11449 | (I[200] = I[201] = I[202] = I[203] = (img)(0,_p2##y,z,v)), \ |
philpem@5 | 11450 | (I[208] = I[209] = I[210] = I[211] = (img)(0,_p1##y,z,v)), \ |
philpem@5 | 11451 | (I[216] = I[217] = I[218] = I[219] = (img)(0,y,z,v)), \ |
philpem@5 | 11452 | (I[224] = I[225] = I[226] = I[227] = (img)(0,_n1##y,z,v)), \ |
philpem@5 | 11453 | (I[232] = I[233] = I[234] = I[235] = (img)(0,_n2##y,z,v)), \ |
philpem@5 | 11454 | (I[240] = I[241] = I[242] = I[243] = (img)(0,_n3##y,z,v)), \ |
philpem@5 | 11455 | (I[248] = I[249] = I[250] = I[251] = (img)(0,_n4##y,z,v)), \ |
philpem@5 | 11456 | (I[256] = I[257] = I[258] = I[259] = (img)(0,_p3##y,_n1##z,v)), \ |
philpem@5 | 11457 | (I[264] = I[265] = I[266] = I[267] = (img)(0,_p2##y,_n1##z,v)), \ |
philpem@5 | 11458 | (I[272] = I[273] = I[274] = I[275] = (img)(0,_p1##y,_n1##z,v)), \ |
philpem@5 | 11459 | (I[280] = I[281] = I[282] = I[283] = (img)(0,y,_n1##z,v)), \ |
philpem@5 | 11460 | (I[288] = I[289] = I[290] = I[291] = (img)(0,_n1##y,_n1##z,v)), \ |
philpem@5 | 11461 | (I[296] = I[297] = I[298] = I[299] = (img)(0,_n2##y,_n1##z,v)), \ |
philpem@5 | 11462 | (I[304] = I[305] = I[306] = I[307] = (img)(0,_n3##y,_n1##z,v)), \ |
philpem@5 | 11463 | (I[312] = I[313] = I[314] = I[315] = (img)(0,_n4##y,_n1##z,v)), \ |
philpem@5 | 11464 | (I[320] = I[321] = I[322] = I[323] = (img)(0,_p3##y,_n2##z,v)), \ |
philpem@5 | 11465 | (I[328] = I[329] = I[330] = I[331] = (img)(0,_p2##y,_n2##z,v)), \ |
philpem@5 | 11466 | (I[336] = I[337] = I[338] = I[339] = (img)(0,_p1##y,_n2##z,v)), \ |
philpem@5 | 11467 | (I[344] = I[345] = I[346] = I[347] = (img)(0,y,_n2##z,v)), \ |
philpem@5 | 11468 | (I[352] = I[353] = I[354] = I[355] = (img)(0,_n1##y,_n2##z,v)), \ |
philpem@5 | 11469 | (I[360] = I[361] = I[362] = I[363] = (img)(0,_n2##y,_n2##z,v)), \ |
philpem@5 | 11470 | (I[368] = I[369] = I[370] = I[371] = (img)(0,_n3##y,_n2##z,v)), \ |
philpem@5 | 11471 | (I[376] = I[377] = I[378] = I[379] = (img)(0,_n4##y,_n2##z,v)), \ |
philpem@5 | 11472 | (I[384] = I[385] = I[386] = I[387] = (img)(0,_p3##y,_n3##z,v)), \ |
philpem@5 | 11473 | (I[392] = I[393] = I[394] = I[395] = (img)(0,_p2##y,_n3##z,v)), \ |
philpem@5 | 11474 | (I[400] = I[401] = I[402] = I[403] = (img)(0,_p1##y,_n3##z,v)), \ |
philpem@5 | 11475 | (I[408] = I[409] = I[410] = I[411] = (img)(0,y,_n3##z,v)), \ |
philpem@5 | 11476 | (I[416] = I[417] = I[418] = I[419] = (img)(0,_n1##y,_n3##z,v)), \ |
philpem@5 | 11477 | (I[424] = I[425] = I[426] = I[427] = (img)(0,_n2##y,_n3##z,v)), \ |
philpem@5 | 11478 | (I[432] = I[433] = I[434] = I[435] = (img)(0,_n3##y,_n3##z,v)), \ |
philpem@5 | 11479 | (I[440] = I[441] = I[442] = I[443] = (img)(0,_n4##y,_n3##z,v)), \ |
philpem@5 | 11480 | (I[448] = I[449] = I[450] = I[451] = (img)(0,_p3##y,_n4##z,v)), \ |
philpem@5 | 11481 | (I[456] = I[457] = I[458] = I[459] = (img)(0,_p2##y,_n4##z,v)), \ |
philpem@5 | 11482 | (I[464] = I[465] = I[466] = I[467] = (img)(0,_p1##y,_n4##z,v)), \ |
philpem@5 | 11483 | (I[472] = I[473] = I[474] = I[475] = (img)(0,y,_n4##z,v)), \ |
philpem@5 | 11484 | (I[480] = I[481] = I[482] = I[483] = (img)(0,_n1##y,_n4##z,v)), \ |
philpem@5 | 11485 | (I[488] = I[489] = I[490] = I[491] = (img)(0,_n2##y,_n4##z,v)), \ |
philpem@5 | 11486 | (I[496] = I[497] = I[498] = I[499] = (img)(0,_n3##y,_n4##z,v)), \ |
philpem@5 | 11487 | (I[504] = I[505] = I[506] = I[507] = (img)(0,_n4##y,_n4##z,v)), \ |
philpem@5 | 11488 | (I[4] = (img)(_n1##x,_p3##y,_p3##z,v)), \ |
philpem@5 | 11489 | (I[12] = (img)(_n1##x,_p2##y,_p3##z,v)), \ |
philpem@5 | 11490 | (I[20] = (img)(_n1##x,_p1##y,_p3##z,v)), \ |
philpem@5 | 11491 | (I[28] = (img)(_n1##x,y,_p3##z,v)), \ |
philpem@5 | 11492 | (I[36] = (img)(_n1##x,_n1##y,_p3##z,v)), \ |
philpem@5 | 11493 | (I[44] = (img)(_n1##x,_n2##y,_p3##z,v)), \ |
philpem@5 | 11494 | (I[52] = (img)(_n1##x,_n3##y,_p3##z,v)), \ |
philpem@5 | 11495 | (I[60] = (img)(_n1##x,_n4##y,_p3##z,v)), \ |
philpem@5 | 11496 | (I[68] = (img)(_n1##x,_p3##y,_p2##z,v)), \ |
philpem@5 | 11497 | (I[76] = (img)(_n1##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 11498 | (I[84] = (img)(_n1##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 11499 | (I[92] = (img)(_n1##x,y,_p2##z,v)), \ |
philpem@5 | 11500 | (I[100] = (img)(_n1##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 11501 | (I[108] = (img)(_n1##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 11502 | (I[116] = (img)(_n1##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 11503 | (I[124] = (img)(_n1##x,_n4##y,_p2##z,v)), \ |
philpem@5 | 11504 | (I[132] = (img)(_n1##x,_p3##y,_p1##z,v)), \ |
philpem@5 | 11505 | (I[140] = (img)(_n1##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 11506 | (I[148] = (img)(_n1##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 11507 | (I[156] = (img)(_n1##x,y,_p1##z,v)), \ |
philpem@5 | 11508 | (I[164] = (img)(_n1##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 11509 | (I[172] = (img)(_n1##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 11510 | (I[180] = (img)(_n1##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 11511 | (I[188] = (img)(_n1##x,_n4##y,_p1##z,v)), \ |
philpem@5 | 11512 | (I[196] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 11513 | (I[204] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 11514 | (I[212] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 11515 | (I[220] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 11516 | (I[228] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 11517 | (I[236] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 11518 | (I[244] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 11519 | (I[252] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 11520 | (I[260] = (img)(_n1##x,_p3##y,_n1##z,v)), \ |
philpem@5 | 11521 | (I[268] = (img)(_n1##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 11522 | (I[276] = (img)(_n1##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 11523 | (I[284] = (img)(_n1##x,y,_n1##z,v)), \ |
philpem@5 | 11524 | (I[292] = (img)(_n1##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 11525 | (I[300] = (img)(_n1##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 11526 | (I[308] = (img)(_n1##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 11527 | (I[316] = (img)(_n1##x,_n4##y,_n1##z,v)), \ |
philpem@5 | 11528 | (I[324] = (img)(_n1##x,_p3##y,_n2##z,v)), \ |
philpem@5 | 11529 | (I[332] = (img)(_n1##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 11530 | (I[340] = (img)(_n1##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 11531 | (I[348] = (img)(_n1##x,y,_n2##z,v)), \ |
philpem@5 | 11532 | (I[356] = (img)(_n1##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 11533 | (I[364] = (img)(_n1##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 11534 | (I[372] = (img)(_n1##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 11535 | (I[380] = (img)(_n1##x,_n4##y,_n2##z,v)), \ |
philpem@5 | 11536 | (I[388] = (img)(_n1##x,_p3##y,_n3##z,v)), \ |
philpem@5 | 11537 | (I[396] = (img)(_n1##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 11538 | (I[404] = (img)(_n1##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 11539 | (I[412] = (img)(_n1##x,y,_n3##z,v)), \ |
philpem@5 | 11540 | (I[420] = (img)(_n1##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 11541 | (I[428] = (img)(_n1##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 11542 | (I[436] = (img)(_n1##x,_n3##y,_n3##z,v)), \ |
philpem@5 | 11543 | (I[444] = (img)(_n1##x,_n4##y,_n3##z,v)), \ |
philpem@5 | 11544 | (I[452] = (img)(_n1##x,_p3##y,_n4##z,v)), \ |
philpem@5 | 11545 | (I[460] = (img)(_n1##x,_p2##y,_n4##z,v)), \ |
philpem@5 | 11546 | (I[468] = (img)(_n1##x,_p1##y,_n4##z,v)), \ |
philpem@5 | 11547 | (I[476] = (img)(_n1##x,y,_n4##z,v)), \ |
philpem@5 | 11548 | (I[484] = (img)(_n1##x,_n1##y,_n4##z,v)), \ |
philpem@5 | 11549 | (I[492] = (img)(_n1##x,_n2##y,_n4##z,v)), \ |
philpem@5 | 11550 | (I[500] = (img)(_n1##x,_n3##y,_n4##z,v)), \ |
philpem@5 | 11551 | (I[508] = (img)(_n1##x,_n4##y,_n4##z,v)), \ |
philpem@5 | 11552 | (I[5] = (img)(_n2##x,_p3##y,_p3##z,v)), \ |
philpem@5 | 11553 | (I[13] = (img)(_n2##x,_p2##y,_p3##z,v)), \ |
philpem@5 | 11554 | (I[21] = (img)(_n2##x,_p1##y,_p3##z,v)), \ |
philpem@5 | 11555 | (I[29] = (img)(_n2##x,y,_p3##z,v)), \ |
philpem@5 | 11556 | (I[37] = (img)(_n2##x,_n1##y,_p3##z,v)), \ |
philpem@5 | 11557 | (I[45] = (img)(_n2##x,_n2##y,_p3##z,v)), \ |
philpem@5 | 11558 | (I[53] = (img)(_n2##x,_n3##y,_p3##z,v)), \ |
philpem@5 | 11559 | (I[61] = (img)(_n2##x,_n4##y,_p3##z,v)), \ |
philpem@5 | 11560 | (I[69] = (img)(_n2##x,_p3##y,_p2##z,v)), \ |
philpem@5 | 11561 | (I[77] = (img)(_n2##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 11562 | (I[85] = (img)(_n2##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 11563 | (I[93] = (img)(_n2##x,y,_p2##z,v)), \ |
philpem@5 | 11564 | (I[101] = (img)(_n2##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 11565 | (I[109] = (img)(_n2##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 11566 | (I[117] = (img)(_n2##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 11567 | (I[125] = (img)(_n2##x,_n4##y,_p2##z,v)), \ |
philpem@5 | 11568 | (I[133] = (img)(_n2##x,_p3##y,_p1##z,v)), \ |
philpem@5 | 11569 | (I[141] = (img)(_n2##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 11570 | (I[149] = (img)(_n2##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 11571 | (I[157] = (img)(_n2##x,y,_p1##z,v)), \ |
philpem@5 | 11572 | (I[165] = (img)(_n2##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 11573 | (I[173] = (img)(_n2##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 11574 | (I[181] = (img)(_n2##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 11575 | (I[189] = (img)(_n2##x,_n4##y,_p1##z,v)), \ |
philpem@5 | 11576 | (I[197] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 11577 | (I[205] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 11578 | (I[213] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 11579 | (I[221] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 11580 | (I[229] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 11581 | (I[237] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 11582 | (I[245] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 11583 | (I[253] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 11584 | (I[261] = (img)(_n2##x,_p3##y,_n1##z,v)), \ |
philpem@5 | 11585 | (I[269] = (img)(_n2##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 11586 | (I[277] = (img)(_n2##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 11587 | (I[285] = (img)(_n2##x,y,_n1##z,v)), \ |
philpem@5 | 11588 | (I[293] = (img)(_n2##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 11589 | (I[301] = (img)(_n2##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 11590 | (I[309] = (img)(_n2##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 11591 | (I[317] = (img)(_n2##x,_n4##y,_n1##z,v)), \ |
philpem@5 | 11592 | (I[325] = (img)(_n2##x,_p3##y,_n2##z,v)), \ |
philpem@5 | 11593 | (I[333] = (img)(_n2##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 11594 | (I[341] = (img)(_n2##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 11595 | (I[349] = (img)(_n2##x,y,_n2##z,v)), \ |
philpem@5 | 11596 | (I[357] = (img)(_n2##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 11597 | (I[365] = (img)(_n2##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 11598 | (I[373] = (img)(_n2##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 11599 | (I[381] = (img)(_n2##x,_n4##y,_n2##z,v)), \ |
philpem@5 | 11600 | (I[389] = (img)(_n2##x,_p3##y,_n3##z,v)), \ |
philpem@5 | 11601 | (I[397] = (img)(_n2##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 11602 | (I[405] = (img)(_n2##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 11603 | (I[413] = (img)(_n2##x,y,_n3##z,v)), \ |
philpem@5 | 11604 | (I[421] = (img)(_n2##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 11605 | (I[429] = (img)(_n2##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 11606 | (I[437] = (img)(_n2##x,_n3##y,_n3##z,v)), \ |
philpem@5 | 11607 | (I[445] = (img)(_n2##x,_n4##y,_n3##z,v)), \ |
philpem@5 | 11608 | (I[453] = (img)(_n2##x,_p3##y,_n4##z,v)), \ |
philpem@5 | 11609 | (I[461] = (img)(_n2##x,_p2##y,_n4##z,v)), \ |
philpem@5 | 11610 | (I[469] = (img)(_n2##x,_p1##y,_n4##z,v)), \ |
philpem@5 | 11611 | (I[477] = (img)(_n2##x,y,_n4##z,v)), \ |
philpem@5 | 11612 | (I[485] = (img)(_n2##x,_n1##y,_n4##z,v)), \ |
philpem@5 | 11613 | (I[493] = (img)(_n2##x,_n2##y,_n4##z,v)), \ |
philpem@5 | 11614 | (I[501] = (img)(_n2##x,_n3##y,_n4##z,v)), \ |
philpem@5 | 11615 | (I[509] = (img)(_n2##x,_n4##y,_n4##z,v)), \ |
philpem@5 | 11616 | (I[6] = (img)(_n3##x,_p3##y,_p3##z,v)), \ |
philpem@5 | 11617 | (I[14] = (img)(_n3##x,_p2##y,_p3##z,v)), \ |
philpem@5 | 11618 | (I[22] = (img)(_n3##x,_p1##y,_p3##z,v)), \ |
philpem@5 | 11619 | (I[30] = (img)(_n3##x,y,_p3##z,v)), \ |
philpem@5 | 11620 | (I[38] = (img)(_n3##x,_n1##y,_p3##z,v)), \ |
philpem@5 | 11621 | (I[46] = (img)(_n3##x,_n2##y,_p3##z,v)), \ |
philpem@5 | 11622 | (I[54] = (img)(_n3##x,_n3##y,_p3##z,v)), \ |
philpem@5 | 11623 | (I[62] = (img)(_n3##x,_n4##y,_p3##z,v)), \ |
philpem@5 | 11624 | (I[70] = (img)(_n3##x,_p3##y,_p2##z,v)), \ |
philpem@5 | 11625 | (I[78] = (img)(_n3##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 11626 | (I[86] = (img)(_n3##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 11627 | (I[94] = (img)(_n3##x,y,_p2##z,v)), \ |
philpem@5 | 11628 | (I[102] = (img)(_n3##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 11629 | (I[110] = (img)(_n3##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 11630 | (I[118] = (img)(_n3##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 11631 | (I[126] = (img)(_n3##x,_n4##y,_p2##z,v)), \ |
philpem@5 | 11632 | (I[134] = (img)(_n3##x,_p3##y,_p1##z,v)), \ |
philpem@5 | 11633 | (I[142] = (img)(_n3##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 11634 | (I[150] = (img)(_n3##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 11635 | (I[158] = (img)(_n3##x,y,_p1##z,v)), \ |
philpem@5 | 11636 | (I[166] = (img)(_n3##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 11637 | (I[174] = (img)(_n3##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 11638 | (I[182] = (img)(_n3##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 11639 | (I[190] = (img)(_n3##x,_n4##y,_p1##z,v)), \ |
philpem@5 | 11640 | (I[198] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 11641 | (I[206] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 11642 | (I[214] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 11643 | (I[222] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 11644 | (I[230] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 11645 | (I[238] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 11646 | (I[246] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 11647 | (I[254] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 11648 | (I[262] = (img)(_n3##x,_p3##y,_n1##z,v)), \ |
philpem@5 | 11649 | (I[270] = (img)(_n3##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 11650 | (I[278] = (img)(_n3##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 11651 | (I[286] = (img)(_n3##x,y,_n1##z,v)), \ |
philpem@5 | 11652 | (I[294] = (img)(_n3##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 11653 | (I[302] = (img)(_n3##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 11654 | (I[310] = (img)(_n3##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 11655 | (I[318] = (img)(_n3##x,_n4##y,_n1##z,v)), \ |
philpem@5 | 11656 | (I[326] = (img)(_n3##x,_p3##y,_n2##z,v)), \ |
philpem@5 | 11657 | (I[334] = (img)(_n3##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 11658 | (I[342] = (img)(_n3##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 11659 | (I[350] = (img)(_n3##x,y,_n2##z,v)), \ |
philpem@5 | 11660 | (I[358] = (img)(_n3##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 11661 | (I[366] = (img)(_n3##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 11662 | (I[374] = (img)(_n3##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 11663 | (I[382] = (img)(_n3##x,_n4##y,_n2##z,v)), \ |
philpem@5 | 11664 | (I[390] = (img)(_n3##x,_p3##y,_n3##z,v)), \ |
philpem@5 | 11665 | (I[398] = (img)(_n3##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 11666 | (I[406] = (img)(_n3##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 11667 | (I[414] = (img)(_n3##x,y,_n3##z,v)), \ |
philpem@5 | 11668 | (I[422] = (img)(_n3##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 11669 | (I[430] = (img)(_n3##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 11670 | (I[438] = (img)(_n3##x,_n3##y,_n3##z,v)), \ |
philpem@5 | 11671 | (I[446] = (img)(_n3##x,_n4##y,_n3##z,v)), \ |
philpem@5 | 11672 | (I[454] = (img)(_n3##x,_p3##y,_n4##z,v)), \ |
philpem@5 | 11673 | (I[462] = (img)(_n3##x,_p2##y,_n4##z,v)), \ |
philpem@5 | 11674 | (I[470] = (img)(_n3##x,_p1##y,_n4##z,v)), \ |
philpem@5 | 11675 | (I[478] = (img)(_n3##x,y,_n4##z,v)), \ |
philpem@5 | 11676 | (I[486] = (img)(_n3##x,_n1##y,_n4##z,v)), \ |
philpem@5 | 11677 | (I[494] = (img)(_n3##x,_n2##y,_n4##z,v)), \ |
philpem@5 | 11678 | (I[502] = (img)(_n3##x,_n3##y,_n4##z,v)), \ |
philpem@5 | 11679 | (I[510] = (img)(_n3##x,_n4##y,_n4##z,v)), \ |
philpem@5 | 11680 | 4>=((img).width)?(int)((img).width)-1:4); \ |
philpem@5 | 11681 | (_n4##x<(int)((img).width) && ( \ |
philpem@5 | 11682 | (I[7] = (img)(_n4##x,_p3##y,_p3##z,v)), \ |
philpem@5 | 11683 | (I[15] = (img)(_n4##x,_p2##y,_p3##z,v)), \ |
philpem@5 | 11684 | (I[23] = (img)(_n4##x,_p1##y,_p3##z,v)), \ |
philpem@5 | 11685 | (I[31] = (img)(_n4##x,y,_p3##z,v)), \ |
philpem@5 | 11686 | (I[39] = (img)(_n4##x,_n1##y,_p3##z,v)), \ |
philpem@5 | 11687 | (I[47] = (img)(_n4##x,_n2##y,_p3##z,v)), \ |
philpem@5 | 11688 | (I[55] = (img)(_n4##x,_n3##y,_p3##z,v)), \ |
philpem@5 | 11689 | (I[63] = (img)(_n4##x,_n4##y,_p3##z,v)), \ |
philpem@5 | 11690 | (I[71] = (img)(_n4##x,_p3##y,_p2##z,v)), \ |
philpem@5 | 11691 | (I[79] = (img)(_n4##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 11692 | (I[87] = (img)(_n4##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 11693 | (I[95] = (img)(_n4##x,y,_p2##z,v)), \ |
philpem@5 | 11694 | (I[103] = (img)(_n4##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 11695 | (I[111] = (img)(_n4##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 11696 | (I[119] = (img)(_n4##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 11697 | (I[127] = (img)(_n4##x,_n4##y,_p2##z,v)), \ |
philpem@5 | 11698 | (I[135] = (img)(_n4##x,_p3##y,_p1##z,v)), \ |
philpem@5 | 11699 | (I[143] = (img)(_n4##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 11700 | (I[151] = (img)(_n4##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 11701 | (I[159] = (img)(_n4##x,y,_p1##z,v)), \ |
philpem@5 | 11702 | (I[167] = (img)(_n4##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 11703 | (I[175] = (img)(_n4##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 11704 | (I[183] = (img)(_n4##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 11705 | (I[191] = (img)(_n4##x,_n4##y,_p1##z,v)), \ |
philpem@5 | 11706 | (I[199] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 11707 | (I[207] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 11708 | (I[215] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 11709 | (I[223] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 11710 | (I[231] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 11711 | (I[239] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 11712 | (I[247] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 11713 | (I[255] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 11714 | (I[263] = (img)(_n4##x,_p3##y,_n1##z,v)), \ |
philpem@5 | 11715 | (I[271] = (img)(_n4##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 11716 | (I[279] = (img)(_n4##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 11717 | (I[287] = (img)(_n4##x,y,_n1##z,v)), \ |
philpem@5 | 11718 | (I[295] = (img)(_n4##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 11719 | (I[303] = (img)(_n4##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 11720 | (I[311] = (img)(_n4##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 11721 | (I[319] = (img)(_n4##x,_n4##y,_n1##z,v)), \ |
philpem@5 | 11722 | (I[327] = (img)(_n4##x,_p3##y,_n2##z,v)), \ |
philpem@5 | 11723 | (I[335] = (img)(_n4##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 11724 | (I[343] = (img)(_n4##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 11725 | (I[351] = (img)(_n4##x,y,_n2##z,v)), \ |
philpem@5 | 11726 | (I[359] = (img)(_n4##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 11727 | (I[367] = (img)(_n4##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 11728 | (I[375] = (img)(_n4##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 11729 | (I[383] = (img)(_n4##x,_n4##y,_n2##z,v)), \ |
philpem@5 | 11730 | (I[391] = (img)(_n4##x,_p3##y,_n3##z,v)), \ |
philpem@5 | 11731 | (I[399] = (img)(_n4##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 11732 | (I[407] = (img)(_n4##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 11733 | (I[415] = (img)(_n4##x,y,_n3##z,v)), \ |
philpem@5 | 11734 | (I[423] = (img)(_n4##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 11735 | (I[431] = (img)(_n4##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 11736 | (I[439] = (img)(_n4##x,_n3##y,_n3##z,v)), \ |
philpem@5 | 11737 | (I[447] = (img)(_n4##x,_n4##y,_n3##z,v)), \ |
philpem@5 | 11738 | (I[455] = (img)(_n4##x,_p3##y,_n4##z,v)), \ |
philpem@5 | 11739 | (I[463] = (img)(_n4##x,_p2##y,_n4##z,v)), \ |
philpem@5 | 11740 | (I[471] = (img)(_n4##x,_p1##y,_n4##z,v)), \ |
philpem@5 | 11741 | (I[479] = (img)(_n4##x,y,_n4##z,v)), \ |
philpem@5 | 11742 | (I[487] = (img)(_n4##x,_n1##y,_n4##z,v)), \ |
philpem@5 | 11743 | (I[495] = (img)(_n4##x,_n2##y,_n4##z,v)), \ |
philpem@5 | 11744 | (I[503] = (img)(_n4##x,_n3##y,_n4##z,v)), \ |
philpem@5 | 11745 | (I[511] = (img)(_n4##x,_n4##y,_n4##z,v)),1)) || \ |
philpem@5 | 11746 | _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n4##x = _n3##x = _n2##x = --_n1##x); \ |
philpem@5 | 11747 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], \ |
philpem@5 | 11748 | I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], \ |
philpem@5 | 11749 | I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \ |
philpem@5 | 11750 | I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \ |
philpem@5 | 11751 | I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \ |
philpem@5 | 11752 | I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \ |
philpem@5 | 11753 | I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \ |
philpem@5 | 11754 | I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \ |
philpem@5 | 11755 | I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \ |
philpem@5 | 11756 | I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \ |
philpem@5 | 11757 | I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], \ |
philpem@5 | 11758 | I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \ |
philpem@5 | 11759 | I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], \ |
philpem@5 | 11760 | I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \ |
philpem@5 | 11761 | I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \ |
philpem@5 | 11762 | I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], \ |
philpem@5 | 11763 | I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], \ |
philpem@5 | 11764 | I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \ |
philpem@5 | 11765 | I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], \ |
philpem@5 | 11766 | I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \ |
philpem@5 | 11767 | I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \ |
philpem@5 | 11768 | I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], \ |
philpem@5 | 11769 | I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], \ |
philpem@5 | 11770 | I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \ |
philpem@5 | 11771 | I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], \ |
philpem@5 | 11772 | I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], \ |
philpem@5 | 11773 | I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \ |
philpem@5 | 11774 | I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \ |
philpem@5 | 11775 | I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], \ |
philpem@5 | 11776 | I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \ |
philpem@5 | 11777 | I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], \ |
philpem@5 | 11778 | I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], \ |
philpem@5 | 11779 | I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], \ |
philpem@5 | 11780 | I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], \ |
philpem@5 | 11781 | I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \ |
philpem@5 | 11782 | I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \ |
philpem@5 | 11783 | I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], \ |
philpem@5 | 11784 | I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], \ |
philpem@5 | 11785 | I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], \ |
philpem@5 | 11786 | I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], \ |
philpem@5 | 11787 | I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], \ |
philpem@5 | 11788 | I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \ |
philpem@5 | 11789 | I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], \ |
philpem@5 | 11790 | I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], \ |
philpem@5 | 11791 | I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \ |
philpem@5 | 11792 | I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], \ |
philpem@5 | 11793 | I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], \ |
philpem@5 | 11794 | I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], \ |
philpem@5 | 11795 | I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], \ |
philpem@5 | 11796 | I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], \ |
philpem@5 | 11797 | I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], \ |
philpem@5 | 11798 | I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], \ |
philpem@5 | 11799 | I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], \ |
philpem@5 | 11800 | I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], \ |
philpem@5 | 11801 | I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], \ |
philpem@5 | 11802 | I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], \ |
philpem@5 | 11803 | I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], \ |
philpem@5 | 11804 | I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], \ |
philpem@5 | 11805 | I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], \ |
philpem@5 | 11806 | I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], \ |
philpem@5 | 11807 | I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], \ |
philpem@5 | 11808 | I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], \ |
philpem@5 | 11809 | I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], \ |
philpem@5 | 11810 | I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], \ |
philpem@5 | 11811 | _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x) |
philpem@5 | 11812 | |
philpem@5 | 11813 | #define cimg_for_in8x8x8(img,x0,y0,z0,x1,y1,z1,x,y,z,v,I) \ |
philpem@5 | 11814 | cimg_for_in8((img).depth,z0,z1,z) cimg_for_in8((img).height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ |
philpem@5 | 11815 | _p3##x = x-3<0?0:x-3, \ |
philpem@5 | 11816 | _p2##x = x-2<0?0:x-2, \ |
philpem@5 | 11817 | _p1##x = x-1<0?0:x-1, \ |
philpem@5 | 11818 | _n1##x = x+1>=(int)((img).width)?(int)((img).width)-1:x+1, \ |
philpem@5 | 11819 | _n2##x = x+2>=(int)((img).width)?(int)((img).width)-1:x+2, \ |
philpem@5 | 11820 | _n3##x = x+3>=(int)((img).width)?(int)((img).width)-1:x+3, \ |
philpem@5 | 11821 | _n4##x = (int)( \ |
philpem@5 | 11822 | (I[0] = (img)(_p3##x,_p3##y,_p3##z,v)), \ |
philpem@5 | 11823 | (I[8] = (img)(_p3##x,_p2##y,_p3##z,v)), \ |
philpem@5 | 11824 | (I[16] = (img)(_p3##x,_p1##y,_p3##z,v)), \ |
philpem@5 | 11825 | (I[24] = (img)(_p3##x,y,_p3##z,v)), \ |
philpem@5 | 11826 | (I[32] = (img)(_p3##x,_n1##y,_p3##z,v)), \ |
philpem@5 | 11827 | (I[40] = (img)(_p3##x,_n2##y,_p3##z,v)), \ |
philpem@5 | 11828 | (I[48] = (img)(_p3##x,_n3##y,_p3##z,v)), \ |
philpem@5 | 11829 | (I[56] = (img)(_p3##x,_n4##y,_p3##z,v)), \ |
philpem@5 | 11830 | (I[64] = (img)(_p3##x,_p3##y,_p2##z,v)), \ |
philpem@5 | 11831 | (I[72] = (img)(_p3##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 11832 | (I[80] = (img)(_p3##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 11833 | (I[88] = (img)(_p3##x,y,_p2##z,v)), \ |
philpem@5 | 11834 | (I[96] = (img)(_p3##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 11835 | (I[104] = (img)(_p3##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 11836 | (I[112] = (img)(_p3##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 11837 | (I[120] = (img)(_p3##x,_n4##y,_p2##z,v)), \ |
philpem@5 | 11838 | (I[128] = (img)(_p3##x,_p3##y,_p1##z,v)), \ |
philpem@5 | 11839 | (I[136] = (img)(_p3##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 11840 | (I[144] = (img)(_p3##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 11841 | (I[152] = (img)(_p3##x,y,_p1##z,v)), \ |
philpem@5 | 11842 | (I[160] = (img)(_p3##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 11843 | (I[168] = (img)(_p3##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 11844 | (I[176] = (img)(_p3##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 11845 | (I[184] = (img)(_p3##x,_n4##y,_p1##z,v)), \ |
philpem@5 | 11846 | (I[192] = (img)(_p3##x,_p3##y,z,v)), \ |
philpem@5 | 11847 | (I[200] = (img)(_p3##x,_p2##y,z,v)), \ |
philpem@5 | 11848 | (I[208] = (img)(_p3##x,_p1##y,z,v)), \ |
philpem@5 | 11849 | (I[216] = (img)(_p3##x,y,z,v)), \ |
philpem@5 | 11850 | (I[224] = (img)(_p3##x,_n1##y,z,v)), \ |
philpem@5 | 11851 | (I[232] = (img)(_p3##x,_n2##y,z,v)), \ |
philpem@5 | 11852 | (I[240] = (img)(_p3##x,_n3##y,z,v)), \ |
philpem@5 | 11853 | (I[248] = (img)(_p3##x,_n4##y,z,v)), \ |
philpem@5 | 11854 | (I[256] = (img)(_p3##x,_p3##y,_n1##z,v)), \ |
philpem@5 | 11855 | (I[264] = (img)(_p3##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 11856 | (I[272] = (img)(_p3##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 11857 | (I[280] = (img)(_p3##x,y,_n1##z,v)), \ |
philpem@5 | 11858 | (I[288] = (img)(_p3##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 11859 | (I[296] = (img)(_p3##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 11860 | (I[304] = (img)(_p3##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 11861 | (I[312] = (img)(_p3##x,_n4##y,_n1##z,v)), \ |
philpem@5 | 11862 | (I[320] = (img)(_p3##x,_p3##y,_n2##z,v)), \ |
philpem@5 | 11863 | (I[328] = (img)(_p3##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 11864 | (I[336] = (img)(_p3##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 11865 | (I[344] = (img)(_p3##x,y,_n2##z,v)), \ |
philpem@5 | 11866 | (I[352] = (img)(_p3##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 11867 | (I[360] = (img)(_p3##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 11868 | (I[368] = (img)(_p3##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 11869 | (I[376] = (img)(_p3##x,_n4##y,_n2##z,v)), \ |
philpem@5 | 11870 | (I[384] = (img)(_p3##x,_p3##y,_n3##z,v)), \ |
philpem@5 | 11871 | (I[392] = (img)(_p3##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 11872 | (I[400] = (img)(_p3##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 11873 | (I[408] = (img)(_p3##x,y,_n3##z,v)), \ |
philpem@5 | 11874 | (I[416] = (img)(_p3##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 11875 | (I[424] = (img)(_p3##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 11876 | (I[432] = (img)(_p3##x,_n3##y,_n3##z,v)), \ |
philpem@5 | 11877 | (I[440] = (img)(_p3##x,_n4##y,_n3##z,v)), \ |
philpem@5 | 11878 | (I[448] = (img)(_p3##x,_p3##y,_n4##z,v)), \ |
philpem@5 | 11879 | (I[456] = (img)(_p3##x,_p2##y,_n4##z,v)), \ |
philpem@5 | 11880 | (I[464] = (img)(_p3##x,_p1##y,_n4##z,v)), \ |
philpem@5 | 11881 | (I[472] = (img)(_p3##x,y,_n4##z,v)), \ |
philpem@5 | 11882 | (I[480] = (img)(_p3##x,_n1##y,_n4##z,v)), \ |
philpem@5 | 11883 | (I[488] = (img)(_p3##x,_n2##y,_n4##z,v)), \ |
philpem@5 | 11884 | (I[496] = (img)(_p3##x,_n3##y,_n4##z,v)), \ |
philpem@5 | 11885 | (I[504] = (img)(_p3##x,_n4##y,_n4##z,v)), \ |
philpem@5 | 11886 | (I[1] = (img)(_p2##x,_p3##y,_p3##z,v)), \ |
philpem@5 | 11887 | (I[9] = (img)(_p2##x,_p2##y,_p3##z,v)), \ |
philpem@5 | 11888 | (I[17] = (img)(_p2##x,_p1##y,_p3##z,v)), \ |
philpem@5 | 11889 | (I[25] = (img)(_p2##x,y,_p3##z,v)), \ |
philpem@5 | 11890 | (I[33] = (img)(_p2##x,_n1##y,_p3##z,v)), \ |
philpem@5 | 11891 | (I[41] = (img)(_p2##x,_n2##y,_p3##z,v)), \ |
philpem@5 | 11892 | (I[49] = (img)(_p2##x,_n3##y,_p3##z,v)), \ |
philpem@5 | 11893 | (I[57] = (img)(_p2##x,_n4##y,_p3##z,v)), \ |
philpem@5 | 11894 | (I[65] = (img)(_p2##x,_p3##y,_p2##z,v)), \ |
philpem@5 | 11895 | (I[73] = (img)(_p2##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 11896 | (I[81] = (img)(_p2##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 11897 | (I[89] = (img)(_p2##x,y,_p2##z,v)), \ |
philpem@5 | 11898 | (I[97] = (img)(_p2##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 11899 | (I[105] = (img)(_p2##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 11900 | (I[113] = (img)(_p2##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 11901 | (I[121] = (img)(_p2##x,_n4##y,_p2##z,v)), \ |
philpem@5 | 11902 | (I[129] = (img)(_p2##x,_p3##y,_p1##z,v)), \ |
philpem@5 | 11903 | (I[137] = (img)(_p2##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 11904 | (I[145] = (img)(_p2##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 11905 | (I[153] = (img)(_p2##x,y,_p1##z,v)), \ |
philpem@5 | 11906 | (I[161] = (img)(_p2##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 11907 | (I[169] = (img)(_p2##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 11908 | (I[177] = (img)(_p2##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 11909 | (I[185] = (img)(_p2##x,_n4##y,_p1##z,v)), \ |
philpem@5 | 11910 | (I[193] = (img)(_p2##x,_p3##y,z,v)), \ |
philpem@5 | 11911 | (I[201] = (img)(_p2##x,_p2##y,z,v)), \ |
philpem@5 | 11912 | (I[209] = (img)(_p2##x,_p1##y,z,v)), \ |
philpem@5 | 11913 | (I[217] = (img)(_p2##x,y,z,v)), \ |
philpem@5 | 11914 | (I[225] = (img)(_p2##x,_n1##y,z,v)), \ |
philpem@5 | 11915 | (I[233] = (img)(_p2##x,_n2##y,z,v)), \ |
philpem@5 | 11916 | (I[241] = (img)(_p2##x,_n3##y,z,v)), \ |
philpem@5 | 11917 | (I[249] = (img)(_p2##x,_n4##y,z,v)), \ |
philpem@5 | 11918 | (I[257] = (img)(_p2##x,_p3##y,_n1##z,v)), \ |
philpem@5 | 11919 | (I[265] = (img)(_p2##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 11920 | (I[273] = (img)(_p2##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 11921 | (I[281] = (img)(_p2##x,y,_n1##z,v)), \ |
philpem@5 | 11922 | (I[289] = (img)(_p2##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 11923 | (I[297] = (img)(_p2##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 11924 | (I[305] = (img)(_p2##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 11925 | (I[313] = (img)(_p2##x,_n4##y,_n1##z,v)), \ |
philpem@5 | 11926 | (I[321] = (img)(_p2##x,_p3##y,_n2##z,v)), \ |
philpem@5 | 11927 | (I[329] = (img)(_p2##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 11928 | (I[337] = (img)(_p2##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 11929 | (I[345] = (img)(_p2##x,y,_n2##z,v)), \ |
philpem@5 | 11930 | (I[353] = (img)(_p2##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 11931 | (I[361] = (img)(_p2##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 11932 | (I[369] = (img)(_p2##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 11933 | (I[377] = (img)(_p2##x,_n4##y,_n2##z,v)), \ |
philpem@5 | 11934 | (I[385] = (img)(_p2##x,_p3##y,_n3##z,v)), \ |
philpem@5 | 11935 | (I[393] = (img)(_p2##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 11936 | (I[401] = (img)(_p2##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 11937 | (I[409] = (img)(_p2##x,y,_n3##z,v)), \ |
philpem@5 | 11938 | (I[417] = (img)(_p2##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 11939 | (I[425] = (img)(_p2##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 11940 | (I[433] = (img)(_p2##x,_n3##y,_n3##z,v)), \ |
philpem@5 | 11941 | (I[441] = (img)(_p2##x,_n4##y,_n3##z,v)), \ |
philpem@5 | 11942 | (I[449] = (img)(_p2##x,_p3##y,_n4##z,v)), \ |
philpem@5 | 11943 | (I[457] = (img)(_p2##x,_p2##y,_n4##z,v)), \ |
philpem@5 | 11944 | (I[465] = (img)(_p2##x,_p1##y,_n4##z,v)), \ |
philpem@5 | 11945 | (I[473] = (img)(_p2##x,y,_n4##z,v)), \ |
philpem@5 | 11946 | (I[481] = (img)(_p2##x,_n1##y,_n4##z,v)), \ |
philpem@5 | 11947 | (I[489] = (img)(_p2##x,_n2##y,_n4##z,v)), \ |
philpem@5 | 11948 | (I[497] = (img)(_p2##x,_n3##y,_n4##z,v)), \ |
philpem@5 | 11949 | (I[505] = (img)(_p2##x,_n4##y,_n4##z,v)), \ |
philpem@5 | 11950 | (I[2] = (img)(_p1##x,_p3##y,_p3##z,v)), \ |
philpem@5 | 11951 | (I[10] = (img)(_p1##x,_p2##y,_p3##z,v)), \ |
philpem@5 | 11952 | (I[18] = (img)(_p1##x,_p1##y,_p3##z,v)), \ |
philpem@5 | 11953 | (I[26] = (img)(_p1##x,y,_p3##z,v)), \ |
philpem@5 | 11954 | (I[34] = (img)(_p1##x,_n1##y,_p3##z,v)), \ |
philpem@5 | 11955 | (I[42] = (img)(_p1##x,_n2##y,_p3##z,v)), \ |
philpem@5 | 11956 | (I[50] = (img)(_p1##x,_n3##y,_p3##z,v)), \ |
philpem@5 | 11957 | (I[58] = (img)(_p1##x,_n4##y,_p3##z,v)), \ |
philpem@5 | 11958 | (I[66] = (img)(_p1##x,_p3##y,_p2##z,v)), \ |
philpem@5 | 11959 | (I[74] = (img)(_p1##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 11960 | (I[82] = (img)(_p1##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 11961 | (I[90] = (img)(_p1##x,y,_p2##z,v)), \ |
philpem@5 | 11962 | (I[98] = (img)(_p1##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 11963 | (I[106] = (img)(_p1##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 11964 | (I[114] = (img)(_p1##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 11965 | (I[122] = (img)(_p1##x,_n4##y,_p2##z,v)), \ |
philpem@5 | 11966 | (I[130] = (img)(_p1##x,_p3##y,_p1##z,v)), \ |
philpem@5 | 11967 | (I[138] = (img)(_p1##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 11968 | (I[146] = (img)(_p1##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 11969 | (I[154] = (img)(_p1##x,y,_p1##z,v)), \ |
philpem@5 | 11970 | (I[162] = (img)(_p1##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 11971 | (I[170] = (img)(_p1##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 11972 | (I[178] = (img)(_p1##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 11973 | (I[186] = (img)(_p1##x,_n4##y,_p1##z,v)), \ |
philpem@5 | 11974 | (I[194] = (img)(_p1##x,_p3##y,z,v)), \ |
philpem@5 | 11975 | (I[202] = (img)(_p1##x,_p2##y,z,v)), \ |
philpem@5 | 11976 | (I[210] = (img)(_p1##x,_p1##y,z,v)), \ |
philpem@5 | 11977 | (I[218] = (img)(_p1##x,y,z,v)), \ |
philpem@5 | 11978 | (I[226] = (img)(_p1##x,_n1##y,z,v)), \ |
philpem@5 | 11979 | (I[234] = (img)(_p1##x,_n2##y,z,v)), \ |
philpem@5 | 11980 | (I[242] = (img)(_p1##x,_n3##y,z,v)), \ |
philpem@5 | 11981 | (I[250] = (img)(_p1##x,_n4##y,z,v)), \ |
philpem@5 | 11982 | (I[258] = (img)(_p1##x,_p3##y,_n1##z,v)), \ |
philpem@5 | 11983 | (I[266] = (img)(_p1##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 11984 | (I[274] = (img)(_p1##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 11985 | (I[282] = (img)(_p1##x,y,_n1##z,v)), \ |
philpem@5 | 11986 | (I[290] = (img)(_p1##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 11987 | (I[298] = (img)(_p1##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 11988 | (I[306] = (img)(_p1##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 11989 | (I[314] = (img)(_p1##x,_n4##y,_n1##z,v)), \ |
philpem@5 | 11990 | (I[322] = (img)(_p1##x,_p3##y,_n2##z,v)), \ |
philpem@5 | 11991 | (I[330] = (img)(_p1##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 11992 | (I[338] = (img)(_p1##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 11993 | (I[346] = (img)(_p1##x,y,_n2##z,v)), \ |
philpem@5 | 11994 | (I[354] = (img)(_p1##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 11995 | (I[362] = (img)(_p1##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 11996 | (I[370] = (img)(_p1##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 11997 | (I[378] = (img)(_p1##x,_n4##y,_n2##z,v)), \ |
philpem@5 | 11998 | (I[386] = (img)(_p1##x,_p3##y,_n3##z,v)), \ |
philpem@5 | 11999 | (I[394] = (img)(_p1##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 12000 | (I[402] = (img)(_p1##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 12001 | (I[410] = (img)(_p1##x,y,_n3##z,v)), \ |
philpem@5 | 12002 | (I[418] = (img)(_p1##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 12003 | (I[426] = (img)(_p1##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 12004 | (I[434] = (img)(_p1##x,_n3##y,_n3##z,v)), \ |
philpem@5 | 12005 | (I[442] = (img)(_p1##x,_n4##y,_n3##z,v)), \ |
philpem@5 | 12006 | (I[450] = (img)(_p1##x,_p3##y,_n4##z,v)), \ |
philpem@5 | 12007 | (I[458] = (img)(_p1##x,_p2##y,_n4##z,v)), \ |
philpem@5 | 12008 | (I[466] = (img)(_p1##x,_p1##y,_n4##z,v)), \ |
philpem@5 | 12009 | (I[474] = (img)(_p1##x,y,_n4##z,v)), \ |
philpem@5 | 12010 | (I[482] = (img)(_p1##x,_n1##y,_n4##z,v)), \ |
philpem@5 | 12011 | (I[490] = (img)(_p1##x,_n2##y,_n4##z,v)), \ |
philpem@5 | 12012 | (I[498] = (img)(_p1##x,_n3##y,_n4##z,v)), \ |
philpem@5 | 12013 | (I[506] = (img)(_p1##x,_n4##y,_n4##z,v)), \ |
philpem@5 | 12014 | (I[3] = (img)(x,_p3##y,_p3##z,v)), \ |
philpem@5 | 12015 | (I[11] = (img)(x,_p2##y,_p3##z,v)), \ |
philpem@5 | 12016 | (I[19] = (img)(x,_p1##y,_p3##z,v)), \ |
philpem@5 | 12017 | (I[27] = (img)(x,y,_p3##z,v)), \ |
philpem@5 | 12018 | (I[35] = (img)(x,_n1##y,_p3##z,v)), \ |
philpem@5 | 12019 | (I[43] = (img)(x,_n2##y,_p3##z,v)), \ |
philpem@5 | 12020 | (I[51] = (img)(x,_n3##y,_p3##z,v)), \ |
philpem@5 | 12021 | (I[59] = (img)(x,_n4##y,_p3##z,v)), \ |
philpem@5 | 12022 | (I[67] = (img)(x,_p3##y,_p2##z,v)), \ |
philpem@5 | 12023 | (I[75] = (img)(x,_p2##y,_p2##z,v)), \ |
philpem@5 | 12024 | (I[83] = (img)(x,_p1##y,_p2##z,v)), \ |
philpem@5 | 12025 | (I[91] = (img)(x,y,_p2##z,v)), \ |
philpem@5 | 12026 | (I[99] = (img)(x,_n1##y,_p2##z,v)), \ |
philpem@5 | 12027 | (I[107] = (img)(x,_n2##y,_p2##z,v)), \ |
philpem@5 | 12028 | (I[115] = (img)(x,_n3##y,_p2##z,v)), \ |
philpem@5 | 12029 | (I[123] = (img)(x,_n4##y,_p2##z,v)), \ |
philpem@5 | 12030 | (I[131] = (img)(x,_p3##y,_p1##z,v)), \ |
philpem@5 | 12031 | (I[139] = (img)(x,_p2##y,_p1##z,v)), \ |
philpem@5 | 12032 | (I[147] = (img)(x,_p1##y,_p1##z,v)), \ |
philpem@5 | 12033 | (I[155] = (img)(x,y,_p1##z,v)), \ |
philpem@5 | 12034 | (I[163] = (img)(x,_n1##y,_p1##z,v)), \ |
philpem@5 | 12035 | (I[171] = (img)(x,_n2##y,_p1##z,v)), \ |
philpem@5 | 12036 | (I[179] = (img)(x,_n3##y,_p1##z,v)), \ |
philpem@5 | 12037 | (I[187] = (img)(x,_n4##y,_p1##z,v)), \ |
philpem@5 | 12038 | (I[195] = (img)(x,_p3##y,z,v)), \ |
philpem@5 | 12039 | (I[203] = (img)(x,_p2##y,z,v)), \ |
philpem@5 | 12040 | (I[211] = (img)(x,_p1##y,z,v)), \ |
philpem@5 | 12041 | (I[219] = (img)(x,y,z,v)), \ |
philpem@5 | 12042 | (I[227] = (img)(x,_n1##y,z,v)), \ |
philpem@5 | 12043 | (I[235] = (img)(x,_n2##y,z,v)), \ |
philpem@5 | 12044 | (I[243] = (img)(x,_n3##y,z,v)), \ |
philpem@5 | 12045 | (I[251] = (img)(x,_n4##y,z,v)), \ |
philpem@5 | 12046 | (I[259] = (img)(x,_p3##y,_n1##z,v)), \ |
philpem@5 | 12047 | (I[267] = (img)(x,_p2##y,_n1##z,v)), \ |
philpem@5 | 12048 | (I[275] = (img)(x,_p1##y,_n1##z,v)), \ |
philpem@5 | 12049 | (I[283] = (img)(x,y,_n1##z,v)), \ |
philpem@5 | 12050 | (I[291] = (img)(x,_n1##y,_n1##z,v)), \ |
philpem@5 | 12051 | (I[299] = (img)(x,_n2##y,_n1##z,v)), \ |
philpem@5 | 12052 | (I[307] = (img)(x,_n3##y,_n1##z,v)), \ |
philpem@5 | 12053 | (I[315] = (img)(x,_n4##y,_n1##z,v)), \ |
philpem@5 | 12054 | (I[323] = (img)(x,_p3##y,_n2##z,v)), \ |
philpem@5 | 12055 | (I[331] = (img)(x,_p2##y,_n2##z,v)), \ |
philpem@5 | 12056 | (I[339] = (img)(x,_p1##y,_n2##z,v)), \ |
philpem@5 | 12057 | (I[347] = (img)(x,y,_n2##z,v)), \ |
philpem@5 | 12058 | (I[355] = (img)(x,_n1##y,_n2##z,v)), \ |
philpem@5 | 12059 | (I[363] = (img)(x,_n2##y,_n2##z,v)), \ |
philpem@5 | 12060 | (I[371] = (img)(x,_n3##y,_n2##z,v)), \ |
philpem@5 | 12061 | (I[379] = (img)(x,_n4##y,_n2##z,v)), \ |
philpem@5 | 12062 | (I[387] = (img)(x,_p3##y,_n3##z,v)), \ |
philpem@5 | 12063 | (I[395] = (img)(x,_p2##y,_n3##z,v)), \ |
philpem@5 | 12064 | (I[403] = (img)(x,_p1##y,_n3##z,v)), \ |
philpem@5 | 12065 | (I[411] = (img)(x,y,_n3##z,v)), \ |
philpem@5 | 12066 | (I[419] = (img)(x,_n1##y,_n3##z,v)), \ |
philpem@5 | 12067 | (I[427] = (img)(x,_n2##y,_n3##z,v)), \ |
philpem@5 | 12068 | (I[435] = (img)(x,_n3##y,_n3##z,v)), \ |
philpem@5 | 12069 | (I[443] = (img)(x,_n4##y,_n3##z,v)), \ |
philpem@5 | 12070 | (I[451] = (img)(x,_p3##y,_n4##z,v)), \ |
philpem@5 | 12071 | (I[459] = (img)(x,_p2##y,_n4##z,v)), \ |
philpem@5 | 12072 | (I[467] = (img)(x,_p1##y,_n4##z,v)), \ |
philpem@5 | 12073 | (I[475] = (img)(x,y,_n4##z,v)), \ |
philpem@5 | 12074 | (I[483] = (img)(x,_n1##y,_n4##z,v)), \ |
philpem@5 | 12075 | (I[491] = (img)(x,_n2##y,_n4##z,v)), \ |
philpem@5 | 12076 | (I[499] = (img)(x,_n3##y,_n4##z,v)), \ |
philpem@5 | 12077 | (I[507] = (img)(x,_n4##y,_n4##z,v)), \ |
philpem@5 | 12078 | (I[4] = (img)(_n1##x,_p3##y,_p3##z,v)), \ |
philpem@5 | 12079 | (I[12] = (img)(_n1##x,_p2##y,_p3##z,v)), \ |
philpem@5 | 12080 | (I[20] = (img)(_n1##x,_p1##y,_p3##z,v)), \ |
philpem@5 | 12081 | (I[28] = (img)(_n1##x,y,_p3##z,v)), \ |
philpem@5 | 12082 | (I[36] = (img)(_n1##x,_n1##y,_p3##z,v)), \ |
philpem@5 | 12083 | (I[44] = (img)(_n1##x,_n2##y,_p3##z,v)), \ |
philpem@5 | 12084 | (I[52] = (img)(_n1##x,_n3##y,_p3##z,v)), \ |
philpem@5 | 12085 | (I[60] = (img)(_n1##x,_n4##y,_p3##z,v)), \ |
philpem@5 | 12086 | (I[68] = (img)(_n1##x,_p3##y,_p2##z,v)), \ |
philpem@5 | 12087 | (I[76] = (img)(_n1##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 12088 | (I[84] = (img)(_n1##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 12089 | (I[92] = (img)(_n1##x,y,_p2##z,v)), \ |
philpem@5 | 12090 | (I[100] = (img)(_n1##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 12091 | (I[108] = (img)(_n1##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 12092 | (I[116] = (img)(_n1##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 12093 | (I[124] = (img)(_n1##x,_n4##y,_p2##z,v)), \ |
philpem@5 | 12094 | (I[132] = (img)(_n1##x,_p3##y,_p1##z,v)), \ |
philpem@5 | 12095 | (I[140] = (img)(_n1##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 12096 | (I[148] = (img)(_n1##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 12097 | (I[156] = (img)(_n1##x,y,_p1##z,v)), \ |
philpem@5 | 12098 | (I[164] = (img)(_n1##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 12099 | (I[172] = (img)(_n1##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 12100 | (I[180] = (img)(_n1##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 12101 | (I[188] = (img)(_n1##x,_n4##y,_p1##z,v)), \ |
philpem@5 | 12102 | (I[196] = (img)(_n1##x,_p3##y,z,v)), \ |
philpem@5 | 12103 | (I[204] = (img)(_n1##x,_p2##y,z,v)), \ |
philpem@5 | 12104 | (I[212] = (img)(_n1##x,_p1##y,z,v)), \ |
philpem@5 | 12105 | (I[220] = (img)(_n1##x,y,z,v)), \ |
philpem@5 | 12106 | (I[228] = (img)(_n1##x,_n1##y,z,v)), \ |
philpem@5 | 12107 | (I[236] = (img)(_n1##x,_n2##y,z,v)), \ |
philpem@5 | 12108 | (I[244] = (img)(_n1##x,_n3##y,z,v)), \ |
philpem@5 | 12109 | (I[252] = (img)(_n1##x,_n4##y,z,v)), \ |
philpem@5 | 12110 | (I[260] = (img)(_n1##x,_p3##y,_n1##z,v)), \ |
philpem@5 | 12111 | (I[268] = (img)(_n1##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 12112 | (I[276] = (img)(_n1##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 12113 | (I[284] = (img)(_n1##x,y,_n1##z,v)), \ |
philpem@5 | 12114 | (I[292] = (img)(_n1##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 12115 | (I[300] = (img)(_n1##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 12116 | (I[308] = (img)(_n1##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 12117 | (I[316] = (img)(_n1##x,_n4##y,_n1##z,v)), \ |
philpem@5 | 12118 | (I[324] = (img)(_n1##x,_p3##y,_n2##z,v)), \ |
philpem@5 | 12119 | (I[332] = (img)(_n1##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 12120 | (I[340] = (img)(_n1##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 12121 | (I[348] = (img)(_n1##x,y,_n2##z,v)), \ |
philpem@5 | 12122 | (I[356] = (img)(_n1##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 12123 | (I[364] = (img)(_n1##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 12124 | (I[372] = (img)(_n1##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 12125 | (I[380] = (img)(_n1##x,_n4##y,_n2##z,v)), \ |
philpem@5 | 12126 | (I[388] = (img)(_n1##x,_p3##y,_n3##z,v)), \ |
philpem@5 | 12127 | (I[396] = (img)(_n1##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 12128 | (I[404] = (img)(_n1##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 12129 | (I[412] = (img)(_n1##x,y,_n3##z,v)), \ |
philpem@5 | 12130 | (I[420] = (img)(_n1##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 12131 | (I[428] = (img)(_n1##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 12132 | (I[436] = (img)(_n1##x,_n3##y,_n3##z,v)), \ |
philpem@5 | 12133 | (I[444] = (img)(_n1##x,_n4##y,_n3##z,v)), \ |
philpem@5 | 12134 | (I[452] = (img)(_n1##x,_p3##y,_n4##z,v)), \ |
philpem@5 | 12135 | (I[460] = (img)(_n1##x,_p2##y,_n4##z,v)), \ |
philpem@5 | 12136 | (I[468] = (img)(_n1##x,_p1##y,_n4##z,v)), \ |
philpem@5 | 12137 | (I[476] = (img)(_n1##x,y,_n4##z,v)), \ |
philpem@5 | 12138 | (I[484] = (img)(_n1##x,_n1##y,_n4##z,v)), \ |
philpem@5 | 12139 | (I[492] = (img)(_n1##x,_n2##y,_n4##z,v)), \ |
philpem@5 | 12140 | (I[500] = (img)(_n1##x,_n3##y,_n4##z,v)), \ |
philpem@5 | 12141 | (I[508] = (img)(_n1##x,_n4##y,_n4##z,v)), \ |
philpem@5 | 12142 | (I[5] = (img)(_n2##x,_p3##y,_p3##z,v)), \ |
philpem@5 | 12143 | (I[13] = (img)(_n2##x,_p2##y,_p3##z,v)), \ |
philpem@5 | 12144 | (I[21] = (img)(_n2##x,_p1##y,_p3##z,v)), \ |
philpem@5 | 12145 | (I[29] = (img)(_n2##x,y,_p3##z,v)), \ |
philpem@5 | 12146 | (I[37] = (img)(_n2##x,_n1##y,_p3##z,v)), \ |
philpem@5 | 12147 | (I[45] = (img)(_n2##x,_n2##y,_p3##z,v)), \ |
philpem@5 | 12148 | (I[53] = (img)(_n2##x,_n3##y,_p3##z,v)), \ |
philpem@5 | 12149 | (I[61] = (img)(_n2##x,_n4##y,_p3##z,v)), \ |
philpem@5 | 12150 | (I[69] = (img)(_n2##x,_p3##y,_p2##z,v)), \ |
philpem@5 | 12151 | (I[77] = (img)(_n2##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 12152 | (I[85] = (img)(_n2##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 12153 | (I[93] = (img)(_n2##x,y,_p2##z,v)), \ |
philpem@5 | 12154 | (I[101] = (img)(_n2##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 12155 | (I[109] = (img)(_n2##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 12156 | (I[117] = (img)(_n2##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 12157 | (I[125] = (img)(_n2##x,_n4##y,_p2##z,v)), \ |
philpem@5 | 12158 | (I[133] = (img)(_n2##x,_p3##y,_p1##z,v)), \ |
philpem@5 | 12159 | (I[141] = (img)(_n2##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 12160 | (I[149] = (img)(_n2##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 12161 | (I[157] = (img)(_n2##x,y,_p1##z,v)), \ |
philpem@5 | 12162 | (I[165] = (img)(_n2##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 12163 | (I[173] = (img)(_n2##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 12164 | (I[181] = (img)(_n2##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 12165 | (I[189] = (img)(_n2##x,_n4##y,_p1##z,v)), \ |
philpem@5 | 12166 | (I[197] = (img)(_n2##x,_p3##y,z,v)), \ |
philpem@5 | 12167 | (I[205] = (img)(_n2##x,_p2##y,z,v)), \ |
philpem@5 | 12168 | (I[213] = (img)(_n2##x,_p1##y,z,v)), \ |
philpem@5 | 12169 | (I[221] = (img)(_n2##x,y,z,v)), \ |
philpem@5 | 12170 | (I[229] = (img)(_n2##x,_n1##y,z,v)), \ |
philpem@5 | 12171 | (I[237] = (img)(_n2##x,_n2##y,z,v)), \ |
philpem@5 | 12172 | (I[245] = (img)(_n2##x,_n3##y,z,v)), \ |
philpem@5 | 12173 | (I[253] = (img)(_n2##x,_n4##y,z,v)), \ |
philpem@5 | 12174 | (I[261] = (img)(_n2##x,_p3##y,_n1##z,v)), \ |
philpem@5 | 12175 | (I[269] = (img)(_n2##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 12176 | (I[277] = (img)(_n2##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 12177 | (I[285] = (img)(_n2##x,y,_n1##z,v)), \ |
philpem@5 | 12178 | (I[293] = (img)(_n2##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 12179 | (I[301] = (img)(_n2##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 12180 | (I[309] = (img)(_n2##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 12181 | (I[317] = (img)(_n2##x,_n4##y,_n1##z,v)), \ |
philpem@5 | 12182 | (I[325] = (img)(_n2##x,_p3##y,_n2##z,v)), \ |
philpem@5 | 12183 | (I[333] = (img)(_n2##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 12184 | (I[341] = (img)(_n2##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 12185 | (I[349] = (img)(_n2##x,y,_n2##z,v)), \ |
philpem@5 | 12186 | (I[357] = (img)(_n2##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 12187 | (I[365] = (img)(_n2##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 12188 | (I[373] = (img)(_n2##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 12189 | (I[381] = (img)(_n2##x,_n4##y,_n2##z,v)), \ |
philpem@5 | 12190 | (I[389] = (img)(_n2##x,_p3##y,_n3##z,v)), \ |
philpem@5 | 12191 | (I[397] = (img)(_n2##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 12192 | (I[405] = (img)(_n2##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 12193 | (I[413] = (img)(_n2##x,y,_n3##z,v)), \ |
philpem@5 | 12194 | (I[421] = (img)(_n2##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 12195 | (I[429] = (img)(_n2##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 12196 | (I[437] = (img)(_n2##x,_n3##y,_n3##z,v)), \ |
philpem@5 | 12197 | (I[445] = (img)(_n2##x,_n4##y,_n3##z,v)), \ |
philpem@5 | 12198 | (I[453] = (img)(_n2##x,_p3##y,_n4##z,v)), \ |
philpem@5 | 12199 | (I[461] = (img)(_n2##x,_p2##y,_n4##z,v)), \ |
philpem@5 | 12200 | (I[469] = (img)(_n2##x,_p1##y,_n4##z,v)), \ |
philpem@5 | 12201 | (I[477] = (img)(_n2##x,y,_n4##z,v)), \ |
philpem@5 | 12202 | (I[485] = (img)(_n2##x,_n1##y,_n4##z,v)), \ |
philpem@5 | 12203 | (I[493] = (img)(_n2##x,_n2##y,_n4##z,v)), \ |
philpem@5 | 12204 | (I[501] = (img)(_n2##x,_n3##y,_n4##z,v)), \ |
philpem@5 | 12205 | (I[509] = (img)(_n2##x,_n4##y,_n4##z,v)), \ |
philpem@5 | 12206 | (I[6] = (img)(_n3##x,_p3##y,_p3##z,v)), \ |
philpem@5 | 12207 | (I[14] = (img)(_n3##x,_p2##y,_p3##z,v)), \ |
philpem@5 | 12208 | (I[22] = (img)(_n3##x,_p1##y,_p3##z,v)), \ |
philpem@5 | 12209 | (I[30] = (img)(_n3##x,y,_p3##z,v)), \ |
philpem@5 | 12210 | (I[38] = (img)(_n3##x,_n1##y,_p3##z,v)), \ |
philpem@5 | 12211 | (I[46] = (img)(_n3##x,_n2##y,_p3##z,v)), \ |
philpem@5 | 12212 | (I[54] = (img)(_n3##x,_n3##y,_p3##z,v)), \ |
philpem@5 | 12213 | (I[62] = (img)(_n3##x,_n4##y,_p3##z,v)), \ |
philpem@5 | 12214 | (I[70] = (img)(_n3##x,_p3##y,_p2##z,v)), \ |
philpem@5 | 12215 | (I[78] = (img)(_n3##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 12216 | (I[86] = (img)(_n3##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 12217 | (I[94] = (img)(_n3##x,y,_p2##z,v)), \ |
philpem@5 | 12218 | (I[102] = (img)(_n3##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 12219 | (I[110] = (img)(_n3##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 12220 | (I[118] = (img)(_n3##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 12221 | (I[126] = (img)(_n3##x,_n4##y,_p2##z,v)), \ |
philpem@5 | 12222 | (I[134] = (img)(_n3##x,_p3##y,_p1##z,v)), \ |
philpem@5 | 12223 | (I[142] = (img)(_n3##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 12224 | (I[150] = (img)(_n3##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 12225 | (I[158] = (img)(_n3##x,y,_p1##z,v)), \ |
philpem@5 | 12226 | (I[166] = (img)(_n3##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 12227 | (I[174] = (img)(_n3##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 12228 | (I[182] = (img)(_n3##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 12229 | (I[190] = (img)(_n3##x,_n4##y,_p1##z,v)), \ |
philpem@5 | 12230 | (I[198] = (img)(_n3##x,_p3##y,z,v)), \ |
philpem@5 | 12231 | (I[206] = (img)(_n3##x,_p2##y,z,v)), \ |
philpem@5 | 12232 | (I[214] = (img)(_n3##x,_p1##y,z,v)), \ |
philpem@5 | 12233 | (I[222] = (img)(_n3##x,y,z,v)), \ |
philpem@5 | 12234 | (I[230] = (img)(_n3##x,_n1##y,z,v)), \ |
philpem@5 | 12235 | (I[238] = (img)(_n3##x,_n2##y,z,v)), \ |
philpem@5 | 12236 | (I[246] = (img)(_n3##x,_n3##y,z,v)), \ |
philpem@5 | 12237 | (I[254] = (img)(_n3##x,_n4##y,z,v)), \ |
philpem@5 | 12238 | (I[262] = (img)(_n3##x,_p3##y,_n1##z,v)), \ |
philpem@5 | 12239 | (I[270] = (img)(_n3##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 12240 | (I[278] = (img)(_n3##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 12241 | (I[286] = (img)(_n3##x,y,_n1##z,v)), \ |
philpem@5 | 12242 | (I[294] = (img)(_n3##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 12243 | (I[302] = (img)(_n3##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 12244 | (I[310] = (img)(_n3##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 12245 | (I[318] = (img)(_n3##x,_n4##y,_n1##z,v)), \ |
philpem@5 | 12246 | (I[326] = (img)(_n3##x,_p3##y,_n2##z,v)), \ |
philpem@5 | 12247 | (I[334] = (img)(_n3##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 12248 | (I[342] = (img)(_n3##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 12249 | (I[350] = (img)(_n3##x,y,_n2##z,v)), \ |
philpem@5 | 12250 | (I[358] = (img)(_n3##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 12251 | (I[366] = (img)(_n3##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 12252 | (I[374] = (img)(_n3##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 12253 | (I[382] = (img)(_n3##x,_n4##y,_n2##z,v)), \ |
philpem@5 | 12254 | (I[390] = (img)(_n3##x,_p3##y,_n3##z,v)), \ |
philpem@5 | 12255 | (I[398] = (img)(_n3##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 12256 | (I[406] = (img)(_n3##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 12257 | (I[414] = (img)(_n3##x,y,_n3##z,v)), \ |
philpem@5 | 12258 | (I[422] = (img)(_n3##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 12259 | (I[430] = (img)(_n3##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 12260 | (I[438] = (img)(_n3##x,_n3##y,_n3##z,v)), \ |
philpem@5 | 12261 | (I[446] = (img)(_n3##x,_n4##y,_n3##z,v)), \ |
philpem@5 | 12262 | (I[454] = (img)(_n3##x,_p3##y,_n4##z,v)), \ |
philpem@5 | 12263 | (I[462] = (img)(_n3##x,_p2##y,_n4##z,v)), \ |
philpem@5 | 12264 | (I[470] = (img)(_n3##x,_p1##y,_n4##z,v)), \ |
philpem@5 | 12265 | (I[478] = (img)(_n3##x,y,_n4##z,v)), \ |
philpem@5 | 12266 | (I[486] = (img)(_n3##x,_n1##y,_n4##z,v)), \ |
philpem@5 | 12267 | (I[494] = (img)(_n3##x,_n2##y,_n4##z,v)), \ |
philpem@5 | 12268 | (I[502] = (img)(_n3##x,_n3##y,_n4##z,v)), \ |
philpem@5 | 12269 | (I[510] = (img)(_n3##x,_n4##y,_n4##z,v)), \ |
philpem@5 | 12270 | x+4>=(int)((img).width)?(int)((img).width)-1:x+4); \ |
philpem@5 | 12271 | x<=(int)(x1) && ((_n4##x<(int)((img).width) && ( \ |
philpem@5 | 12272 | (I[7] = (img)(_n4##x,_p3##y,_p3##z,v)), \ |
philpem@5 | 12273 | (I[15] = (img)(_n4##x,_p2##y,_p3##z,v)), \ |
philpem@5 | 12274 | (I[23] = (img)(_n4##x,_p1##y,_p3##z,v)), \ |
philpem@5 | 12275 | (I[31] = (img)(_n4##x,y,_p3##z,v)), \ |
philpem@5 | 12276 | (I[39] = (img)(_n4##x,_n1##y,_p3##z,v)), \ |
philpem@5 | 12277 | (I[47] = (img)(_n4##x,_n2##y,_p3##z,v)), \ |
philpem@5 | 12278 | (I[55] = (img)(_n4##x,_n3##y,_p3##z,v)), \ |
philpem@5 | 12279 | (I[63] = (img)(_n4##x,_n4##y,_p3##z,v)), \ |
philpem@5 | 12280 | (I[71] = (img)(_n4##x,_p3##y,_p2##z,v)), \ |
philpem@5 | 12281 | (I[79] = (img)(_n4##x,_p2##y,_p2##z,v)), \ |
philpem@5 | 12282 | (I[87] = (img)(_n4##x,_p1##y,_p2##z,v)), \ |
philpem@5 | 12283 | (I[95] = (img)(_n4##x,y,_p2##z,v)), \ |
philpem@5 | 12284 | (I[103] = (img)(_n4##x,_n1##y,_p2##z,v)), \ |
philpem@5 | 12285 | (I[111] = (img)(_n4##x,_n2##y,_p2##z,v)), \ |
philpem@5 | 12286 | (I[119] = (img)(_n4##x,_n3##y,_p2##z,v)), \ |
philpem@5 | 12287 | (I[127] = (img)(_n4##x,_n4##y,_p2##z,v)), \ |
philpem@5 | 12288 | (I[135] = (img)(_n4##x,_p3##y,_p1##z,v)), \ |
philpem@5 | 12289 | (I[143] = (img)(_n4##x,_p2##y,_p1##z,v)), \ |
philpem@5 | 12290 | (I[151] = (img)(_n4##x,_p1##y,_p1##z,v)), \ |
philpem@5 | 12291 | (I[159] = (img)(_n4##x,y,_p1##z,v)), \ |
philpem@5 | 12292 | (I[167] = (img)(_n4##x,_n1##y,_p1##z,v)), \ |
philpem@5 | 12293 | (I[175] = (img)(_n4##x,_n2##y,_p1##z,v)), \ |
philpem@5 | 12294 | (I[183] = (img)(_n4##x,_n3##y,_p1##z,v)), \ |
philpem@5 | 12295 | (I[191] = (img)(_n4##x,_n4##y,_p1##z,v)), \ |
philpem@5 | 12296 | (I[199] = (img)(_n4##x,_p3##y,z,v)), \ |
philpem@5 | 12297 | (I[207] = (img)(_n4##x,_p2##y,z,v)), \ |
philpem@5 | 12298 | (I[215] = (img)(_n4##x,_p1##y,z,v)), \ |
philpem@5 | 12299 | (I[223] = (img)(_n4##x,y,z,v)), \ |
philpem@5 | 12300 | (I[231] = (img)(_n4##x,_n1##y,z,v)), \ |
philpem@5 | 12301 | (I[239] = (img)(_n4##x,_n2##y,z,v)), \ |
philpem@5 | 12302 | (I[247] = (img)(_n4##x,_n3##y,z,v)), \ |
philpem@5 | 12303 | (I[255] = (img)(_n4##x,_n4##y,z,v)), \ |
philpem@5 | 12304 | (I[263] = (img)(_n4##x,_p3##y,_n1##z,v)), \ |
philpem@5 | 12305 | (I[271] = (img)(_n4##x,_p2##y,_n1##z,v)), \ |
philpem@5 | 12306 | (I[279] = (img)(_n4##x,_p1##y,_n1##z,v)), \ |
philpem@5 | 12307 | (I[287] = (img)(_n4##x,y,_n1##z,v)), \ |
philpem@5 | 12308 | (I[295] = (img)(_n4##x,_n1##y,_n1##z,v)), \ |
philpem@5 | 12309 | (I[303] = (img)(_n4##x,_n2##y,_n1##z,v)), \ |
philpem@5 | 12310 | (I[311] = (img)(_n4##x,_n3##y,_n1##z,v)), \ |
philpem@5 | 12311 | (I[319] = (img)(_n4##x,_n4##y,_n1##z,v)), \ |
philpem@5 | 12312 | (I[327] = (img)(_n4##x,_p3##y,_n2##z,v)), \ |
philpem@5 | 12313 | (I[335] = (img)(_n4##x,_p2##y,_n2##z,v)), \ |
philpem@5 | 12314 | (I[343] = (img)(_n4##x,_p1##y,_n2##z,v)), \ |
philpem@5 | 12315 | (I[351] = (img)(_n4##x,y,_n2##z,v)), \ |
philpem@5 | 12316 | (I[359] = (img)(_n4##x,_n1##y,_n2##z,v)), \ |
philpem@5 | 12317 | (I[367] = (img)(_n4##x,_n2##y,_n2##z,v)), \ |
philpem@5 | 12318 | (I[375] = (img)(_n4##x,_n3##y,_n2##z,v)), \ |
philpem@5 | 12319 | (I[383] = (img)(_n4##x,_n4##y,_n2##z,v)), \ |
philpem@5 | 12320 | (I[391] = (img)(_n4##x,_p3##y,_n3##z,v)), \ |
philpem@5 | 12321 | (I[399] = (img)(_n4##x,_p2##y,_n3##z,v)), \ |
philpem@5 | 12322 | (I[407] = (img)(_n4##x,_p1##y,_n3##z,v)), \ |
philpem@5 | 12323 | (I[415] = (img)(_n4##x,y,_n3##z,v)), \ |
philpem@5 | 12324 | (I[423] = (img)(_n4##x,_n1##y,_n3##z,v)), \ |
philpem@5 | 12325 | (I[431] = (img)(_n4##x,_n2##y,_n3##z,v)), \ |
philpem@5 | 12326 | (I[439] = (img)(_n4##x,_n3##y,_n3##z,v)), \ |
philpem@5 | 12327 | (I[447] = (img)(_n4##x,_n4##y,_n3##z,v)), \ |
philpem@5 | 12328 | (I[455] = (img)(_n4##x,_p3##y,_n4##z,v)), \ |
philpem@5 | 12329 | (I[463] = (img)(_n4##x,_p2##y,_n4##z,v)), \ |
philpem@5 | 12330 | (I[471] = (img)(_n4##x,_p1##y,_n4##z,v)), \ |
philpem@5 | 12331 | (I[479] = (img)(_n4##x,y,_n4##z,v)), \ |
philpem@5 | 12332 | (I[487] = (img)(_n4##x,_n1##y,_n4##z,v)), \ |
philpem@5 | 12333 | (I[495] = (img)(_n4##x,_n2##y,_n4##z,v)), \ |
philpem@5 | 12334 | (I[503] = (img)(_n4##x,_n3##y,_n4##z,v)), \ |
philpem@5 | 12335 | (I[511] = (img)(_n4##x,_n4##y,_n4##z,v)),1)) || \ |
philpem@5 | 12336 | _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n4##x = _n3##x = _n2##x = --_n1##x)); \ |
philpem@5 | 12337 | I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], \ |
philpem@5 | 12338 | I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], \ |
philpem@5 | 12339 | I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \ |
philpem@5 | 12340 | I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \ |
philpem@5 | 12341 | I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \ |
philpem@5 | 12342 | I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \ |
philpem@5 | 12343 | I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \ |
philpem@5 | 12344 | I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \ |
philpem@5 | 12345 | I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \ |
philpem@5 | 12346 | I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \ |
philpem@5 | 12347 | I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], \ |
philpem@5 | 12348 | I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \ |
philpem@5 | 12349 | I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], \ |
philpem@5 | 12350 | I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \ |
philpem@5 | 12351 | I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \ |
philpem@5 | 12352 | I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], \ |
philpem@5 | 12353 | I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], \ |
philpem@5 | 12354 | I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \ |
philpem@5 | 12355 | I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], \ |
philpem@5 | 12356 | I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \ |
philpem@5 | 12357 | I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \ |
philpem@5 | 12358 | I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], \ |
philpem@5 | 12359 | I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], \ |
philpem@5 | 12360 | I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \ |
philpem@5 | 12361 | I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], \ |
philpem@5 | 12362 | I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], \ |
philpem@5 | 12363 | I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \ |
philpem@5 | 12364 | I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \ |
philpem@5 | 12365 | I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], \ |
philpem@5 | 12366 | I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \ |
philpem@5 | 12367 | I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], \ |
philpem@5 | 12368 | I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], \ |
philpem@5 | 12369 | I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], \ |
philpem@5 | 12370 | I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], \ |
philpem@5 | 12371 | I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \ |
philpem@5 | 12372 | I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \ |
philpem@5 | 12373 | I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], \ |
philpem@5 | 12374 | I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], \ |
philpem@5 | 12375 | I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], \ |
philpem@5 | 12376 | I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], \ |
philpem@5 | 12377 | I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], \ |
philpem@5 | 12378 | I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \ |
philpem@5 | 12379 | I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], \ |
philpem@5 | 12380 | I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], \ |
philpem@5 | 12381 | I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \ |
philpem@5 | 12382 | I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], \ |
philpem@5 | 12383 | I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], \ |
philpem@5 | 12384 | I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], \ |
philpem@5 | 12385 | I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], \ |
philpem@5 | 12386 | I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], \ |
philpem@5 | 12387 | I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], \ |
philpem@5 | 12388 | I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], \ |
philpem@5 | 12389 | I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], \ |
philpem@5 | 12390 | I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], \ |
philpem@5 | 12391 | I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], \ |
philpem@5 | 12392 | I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], \ |
philpem@5 | 12393 | I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], \ |
philpem@5 | 12394 | I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], \ |
philpem@5 | 12395 | I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], \ |
philpem@5 | 12396 | I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], \ |
philpem@5 | 12397 | I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], \ |
philpem@5 | 12398 | I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], \ |
philpem@5 | 12399 | I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], \ |
philpem@5 | 12400 | I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], \ |
philpem@5 | 12401 | _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x) |
philpem@5 | 12402 | |
philpem@5 | 12403 | #define cimg_get8x8x8(img,x,y,z,v,I) \ |
philpem@5 | 12404 | I[0] = (img)(_p3##x,_p3##y,_p3##z,v), I[1] = (img)(_p2##x,_p3##y,_p3##z,v), I[2] = (img)(_p1##x,_p3##y,_p3##z,v), I[3] = (img)(x,_p3##y,_p3##z,v), I[4] = (img)(_n1##x,_p3##y,_p3##z,v), I[5] = (img)(_n2##x,_p3##y,_p3##z,v), I[6] = (img)(_n3##x,_p3##y,_p3##z,v), I[7] = (img)(_n4##x,_p3##y,_p3##z,v), \ |
philpem@5 | 12405 | I[8] = (img)(_p3##x,_p2##y,_p3##z,v), I[9] = (img)(_p2##x,_p2##y,_p3##z,v), I[10] = (img)(_p1##x,_p2##y,_p3##z,v), I[11] = (img)(x,_p2##y,_p3##z,v), I[12] = (img)(_n1##x,_p2##y,_p3##z,v), I[13] = (img)(_n2##x,_p2##y,_p3##z,v), I[14] = (img)(_n3##x,_p2##y,_p3##z,v), I[15] = (img)(_n4##x,_p2##y,_p3##z,v), \ |
philpem@5 | 12406 | I[16] = (img)(_p3##x,_p1##y,_p3##z,v), I[17] = (img)(_p2##x,_p1##y,_p3##z,v), I[18] = (img)(_p1##x,_p1##y,_p3##z,v), I[19] = (img)(x,_p1##y,_p3##z,v), I[20] = (img)(_n1##x,_p1##y,_p3##z,v), I[21] = (img)(_n2##x,_p1##y,_p3##z,v), I[22] = (img)(_n3##x,_p1##y,_p3##z,v), I[23] = (img)(_n4##x,_p1##y,_p3##z,v), \ |
philpem@5 | 12407 | I[24] = (img)(_p3##x,y,_p3##z,v), I[25] = (img)(_p2##x,y,_p3##z,v), I[26] = (img)(_p1##x,y,_p3##z,v), I[27] = (img)(x,y,_p3##z,v), I[28] = (img)(_n1##x,y,_p3##z,v), I[29] = (img)(_n2##x,y,_p3##z,v), I[30] = (img)(_n3##x,y,_p3##z,v), I[31] = (img)(_n4##x,y,_p3##z,v), \ |
philpem@5 | 12408 | I[32] = (img)(_p3##x,_n1##y,_p3##z,v), I[33] = (img)(_p2##x,_n1##y,_p3##z,v), I[34] = (img)(_p1##x,_n1##y,_p3##z,v), I[35] = (img)(x,_n1##y,_p3##z,v), I[36] = (img)(_n1##x,_n1##y,_p3##z,v), I[37] = (img)(_n2##x,_n1##y,_p3##z,v), I[38] = (img)(_n3##x,_n1##y,_p3##z,v), I[39] = (img)(_n4##x,_n1##y,_p3##z,v), \ |
philpem@5 | 12409 | I[40] = (img)(_p3##x,_n2##y,_p3##z,v), I[41] = (img)(_p2##x,_n2##y,_p3##z,v), I[42] = (img)(_p1##x,_n2##y,_p3##z,v), I[43] = (img)(x,_n2##y,_p3##z,v), I[44] = (img)(_n1##x,_n2##y,_p3##z,v), I[45] = (img)(_n2##x,_n2##y,_p3##z,v), I[46] = (img)(_n3##x,_n2##y,_p3##z,v), I[47] = (img)(_n4##x,_n2##y,_p3##z,v), \ |
philpem@5 | 12410 | I[48] = (img)(_p3##x,_n3##y,_p3##z,v), I[49] = (img)(_p2##x,_n3##y,_p3##z,v), I[50] = (img)(_p1##x,_n3##y,_p3##z,v), I[51] = (img)(x,_n3##y,_p3##z,v), I[52] = (img)(_n1##x,_n3##y,_p3##z,v), I[53] = (img)(_n2##x,_n3##y,_p3##z,v), I[54] = (img)(_n3##x,_n3##y,_p3##z,v), I[55] = (img)(_n4##x,_n3##y,_p3##z,v), \ |
philpem@5 | 12411 | I[56] = (img)(_p3##x,_n4##y,_p3##z,v), I[57] = (img)(_p2##x,_n4##y,_p3##z,v), I[58] = (img)(_p1##x,_n4##y,_p3##z,v), I[59] = (img)(x,_n4##y,_p3##z,v), I[60] = (img)(_n1##x,_n4##y,_p3##z,v), I[61] = (img)(_n2##x,_n4##y,_p3##z,v), I[62] = (img)(_n3##x,_n4##y,_p3##z,v), I[63] = (img)(_n4##x,_n4##y,_p3##z,v), \ |
philpem@5 | 12412 | I[64] = (img)(_p3##x,_p3##y,_p2##z,v), I[65] = (img)(_p2##x,_p3##y,_p2##z,v), I[66] = (img)(_p1##x,_p3##y,_p2##z,v), I[67] = (img)(x,_p3##y,_p2##z,v), I[68] = (img)(_n1##x,_p3##y,_p2##z,v), I[69] = (img)(_n2##x,_p3##y,_p2##z,v), I[70] = (img)(_n3##x,_p3##y,_p2##z,v), I[71] = (img)(_n4##x,_p3##y,_p2##z,v), \ |
philpem@5 | 12413 | I[72] = (img)(_p3##x,_p2##y,_p2##z,v), I[73] = (img)(_p2##x,_p2##y,_p2##z,v), I[74] = (img)(_p1##x,_p2##y,_p2##z,v), I[75] = (img)(x,_p2##y,_p2##z,v), I[76] = (img)(_n1##x,_p2##y,_p2##z,v), I[77] = (img)(_n2##x,_p2##y,_p2##z,v), I[78] = (img)(_n3##x,_p2##y,_p2##z,v), I[79] = (img)(_n4##x,_p2##y,_p2##z,v), \ |
philpem@5 | 12414 | I[80] = (img)(_p3##x,_p1##y,_p2##z,v), I[81] = (img)(_p2##x,_p1##y,_p2##z,v), I[82] = (img)(_p1##x,_p1##y,_p2##z,v), I[83] = (img)(x,_p1##y,_p2##z,v), I[84] = (img)(_n1##x,_p1##y,_p2##z,v), I[85] = (img)(_n2##x,_p1##y,_p2##z,v), I[86] = (img)(_n3##x,_p1##y,_p2##z,v), I[87] = (img)(_n4##x,_p1##y,_p2##z,v), \ |
philpem@5 | 12415 | I[88] = (img)(_p3##x,y,_p2##z,v), I[89] = (img)(_p2##x,y,_p2##z,v), I[90] = (img)(_p1##x,y,_p2##z,v), I[91] = (img)(x,y,_p2##z,v), I[92] = (img)(_n1##x,y,_p2##z,v), I[93] = (img)(_n2##x,y,_p2##z,v), I[94] = (img)(_n3##x,y,_p2##z,v), I[95] = (img)(_n4##x,y,_p2##z,v), \ |
philpem@5 | 12416 | I[96] = (img)(_p3##x,_n1##y,_p2##z,v), I[97] = (img)(_p2##x,_n1##y,_p2##z,v), I[98] = (img)(_p1##x,_n1##y,_p2##z,v), I[99] = (img)(x,_n1##y,_p2##z,v), I[100] = (img)(_n1##x,_n1##y,_p2##z,v), I[101] = (img)(_n2##x,_n1##y,_p2##z,v), I[102] = (img)(_n3##x,_n1##y,_p2##z,v), I[103] = (img)(_n4##x,_n1##y,_p2##z,v), \ |
philpem@5 | 12417 | I[104] = (img)(_p3##x,_n2##y,_p2##z,v), I[105] = (img)(_p2##x,_n2##y,_p2##z,v), I[106] = (img)(_p1##x,_n2##y,_p2##z,v), I[107] = (img)(x,_n2##y,_p2##z,v), I[108] = (img)(_n1##x,_n2##y,_p2##z,v), I[109] = (img)(_n2##x,_n2##y,_p2##z,v), I[110] = (img)(_n3##x,_n2##y,_p2##z,v), I[111] = (img)(_n4##x,_n2##y,_p2##z,v), \ |
philpem@5 | 12418 | I[112] = (img)(_p3##x,_n3##y,_p2##z,v), I[113] = (img)(_p2##x,_n3##y,_p2##z,v), I[114] = (img)(_p1##x,_n3##y,_p2##z,v), I[115] = (img)(x,_n3##y,_p2##z,v), I[116] = (img)(_n1##x,_n3##y,_p2##z,v), I[117] = (img)(_n2##x,_n3##y,_p2##z,v), I[118] = (img)(_n3##x,_n3##y,_p2##z,v), I[119] = (img)(_n4##x,_n3##y,_p2##z,v), \ |
philpem@5 | 12419 | I[120] = (img)(_p3##x,_n4##y,_p2##z,v), I[121] = (img)(_p2##x,_n4##y,_p2##z,v), I[122] = (img)(_p1##x,_n4##y,_p2##z,v), I[123] = (img)(x,_n4##y,_p2##z,v), I[124] = (img)(_n1##x,_n4##y,_p2##z,v), I[125] = (img)(_n2##x,_n4##y,_p2##z,v), I[126] = (img)(_n3##x,_n4##y,_p2##z,v), I[127] = (img)(_n4##x,_n4##y,_p2##z,v), \ |
philpem@5 | 12420 | I[128] = (img)(_p3##x,_p3##y,_p1##z,v), I[129] = (img)(_p2##x,_p3##y,_p1##z,v), I[130] = (img)(_p1##x,_p3##y,_p1##z,v), I[131] = (img)(x,_p3##y,_p1##z,v), I[132] = (img)(_n1##x,_p3##y,_p1##z,v), I[133] = (img)(_n2##x,_p3##y,_p1##z,v), I[134] = (img)(_n3##x,_p3##y,_p1##z,v), I[135] = (img)(_n4##x,_p3##y,_p1##z,v), \ |
philpem@5 | 12421 | I[136] = (img)(_p3##x,_p2##y,_p1##z,v), I[137] = (img)(_p2##x,_p2##y,_p1##z,v), I[138] = (img)(_p1##x,_p2##y,_p1##z,v), I[139] = (img)(x,_p2##y,_p1##z,v), I[140] = (img)(_n1##x,_p2##y,_p1##z,v), I[141] = (img)(_n2##x,_p2##y,_p1##z,v), I[142] = (img)(_n3##x,_p2##y,_p1##z,v), I[143] = (img)(_n4##x,_p2##y,_p1##z,v), \ |
philpem@5 | 12422 | I[144] = (img)(_p3##x,_p1##y,_p1##z,v), I[145] = (img)(_p2##x,_p1##y,_p1##z,v), I[146] = (img)(_p1##x,_p1##y,_p1##z,v), I[147] = (img)(x,_p1##y,_p1##z,v), I[148] = (img)(_n1##x,_p1##y,_p1##z,v), I[149] = (img)(_n2##x,_p1##y,_p1##z,v), I[150] = (img)(_n3##x,_p1##y,_p1##z,v), I[151] = (img)(_n4##x,_p1##y,_p1##z,v), \ |
philpem@5 | 12423 | I[152] = (img)(_p3##x,y,_p1##z,v), I[153] = (img)(_p2##x,y,_p1##z,v), I[154] = (img)(_p1##x,y,_p1##z,v), I[155] = (img)(x,y,_p1##z,v), I[156] = (img)(_n1##x,y,_p1##z,v), I[157] = (img)(_n2##x,y,_p1##z,v), I[158] = (img)(_n3##x,y,_p1##z,v), I[159] = (img)(_n4##x,y,_p1##z,v), \ |
philpem@5 | 12424 | I[160] = (img)(_p3##x,_n1##y,_p1##z,v), I[161] = (img)(_p2##x,_n1##y,_p1##z,v), I[162] = (img)(_p1##x,_n1##y,_p1##z,v), I[163] = (img)(x,_n1##y,_p1##z,v), I[164] = (img)(_n1##x,_n1##y,_p1##z,v), I[165] = (img)(_n2##x,_n1##y,_p1##z,v), I[166] = (img)(_n3##x,_n1##y,_p1##z,v), I[167] = (img)(_n4##x,_n1##y,_p1##z,v), \ |
philpem@5 | 12425 | I[168] = (img)(_p3##x,_n2##y,_p1##z,v), I[169] = (img)(_p2##x,_n2##y,_p1##z,v), I[170] = (img)(_p1##x,_n2##y,_p1##z,v), I[171] = (img)(x,_n2##y,_p1##z,v), I[172] = (img)(_n1##x,_n2##y,_p1##z,v), I[173] = (img)(_n2##x,_n2##y,_p1##z,v), I[174] = (img)(_n3##x,_n2##y,_p1##z,v), I[175] = (img)(_n4##x,_n2##y,_p1##z,v), \ |
philpem@5 | 12426 | I[176] = (img)(_p3##x,_n3##y,_p1##z,v), I[177] = (img)(_p2##x,_n3##y,_p1##z,v), I[178] = (img)(_p1##x,_n3##y,_p1##z,v), I[179] = (img)(x,_n3##y,_p1##z,v), I[180] = (img)(_n1##x,_n3##y,_p1##z,v), I[181] = (img)(_n2##x,_n3##y,_p1##z,v), I[182] = (img)(_n3##x,_n3##y,_p1##z,v), I[183] = (img)(_n4##x,_n3##y,_p1##z,v), \ |
philpem@5 | 12427 | I[184] = (img)(_p3##x,_n4##y,_p1##z,v), I[185] = (img)(_p2##x,_n4##y,_p1##z,v), I[186] = (img)(_p1##x,_n4##y,_p1##z,v), I[187] = (img)(x,_n4##y,_p1##z,v), I[188] = (img)(_n1##x,_n4##y,_p1##z,v), I[189] = (img)(_n2##x,_n4##y,_p1##z,v), I[190] = (img)(_n3##x,_n4##y,_p1##z,v), I[191] = (img)(_n4##x,_n4##y,_p1##z,v), \ |
philpem@5 | 12428 | I[192] = (img)(_p3##x,_p3##y,z,v), I[193] = (img)(_p2##x,_p3##y,z,v), I[194] = (img)(_p1##x,_p3##y,z,v), I[195] = (img)(x,_p3##y,z,v), I[196] = (img)(_n1##x,_p3##y,z,v), I[197] = (img)(_n2##x,_p3##y,z,v), I[198] = (img)(_n3##x,_p3##y,z,v), I[199] = (img)(_n4##x,_p3##y,z,v), \ |
philpem@5 | 12429 | I[200] = (img)(_p3##x,_p2##y,z,v), I[201] = (img)(_p2##x,_p2##y,z,v), I[202] = (img)(_p1##x,_p2##y,z,v), I[203] = (img)(x,_p2##y,z,v), I[204] = (img)(_n1##x,_p2##y,z,v), I[205] = (img)(_n2##x,_p2##y,z,v), I[206] = (img)(_n3##x,_p2##y,z,v), I[207] = (img)(_n4##x,_p2##y,z,v), \ |
philpem@5 | 12430 | I[208] = (img)(_p3##x,_p1##y,z,v), I[209] = (img)(_p2##x,_p1##y,z,v), I[210] = (img)(_p1##x,_p1##y,z,v), I[211] = (img)(x,_p1##y,z,v), I[212] = (img)(_n1##x,_p1##y,z,v), I[213] = (img)(_n2##x,_p1##y,z,v), I[214] = (img)(_n3##x,_p1##y,z,v), I[215] = (img)(_n4##x,_p1##y,z,v), \ |
philpem@5 | 12431 | I[216] = (img)(_p3##x,y,z,v), I[217] = (img)(_p2##x,y,z,v), I[218] = (img)(_p1##x,y,z,v), I[219] = (img)(x,y,z,v), I[220] = (img)(_n1##x,y,z,v), I[221] = (img)(_n2##x,y,z,v), I[222] = (img)(_n3##x,y,z,v), I[223] = (img)(_n4##x,y,z,v), \ |
philpem@5 | 12432 | I[224] = (img)(_p3##x,_n1##y,z,v), I[225] = (img)(_p2##x,_n1##y,z,v), I[226] = (img)(_p1##x,_n1##y,z,v), I[227] = (img)(x,_n1##y,z,v), I[228] = (img)(_n1##x,_n1##y,z,v), I[229] = (img)(_n2##x,_n1##y,z,v), I[230] = (img)(_n3##x,_n1##y,z,v), I[231] = (img)(_n4##x,_n1##y,z,v), \ |
philpem@5 | 12433 | I[232] = (img)(_p3##x,_n2##y,z,v), I[233] = (img)(_p2##x,_n2##y,z,v), I[234] = (img)(_p1##x,_n2##y,z,v), I[235] = (img)(x,_n2##y,z,v), I[236] = (img)(_n1##x,_n2##y,z,v), I[237] = (img)(_n2##x,_n2##y,z,v), I[238] = (img)(_n3##x,_n2##y,z,v), I[239] = (img)(_n4##x,_n2##y,z,v), \ |
philpem@5 | 12434 | I[240] = (img)(_p3##x,_n3##y,z,v), I[241] = (img)(_p2##x,_n3##y,z,v), I[242] = (img)(_p1##x,_n3##y,z,v), I[243] = (img)(x,_n3##y,z,v), I[244] = (img)(_n1##x,_n3##y,z,v), I[245] = (img)(_n2##x,_n3##y,z,v), I[246] = (img)(_n3##x,_n3##y,z,v), I[247] = (img)(_n4##x,_n3##y,z,v), \ |
philpem@5 | 12435 | I[248] = (img)(_p3##x,_n4##y,z,v), I[249] = (img)(_p2##x,_n4##y,z,v), I[250] = (img)(_p1##x,_n4##y,z,v), I[251] = (img)(x,_n4##y,z,v), I[252] = (img)(_n1##x,_n4##y,z,v), I[253] = (img)(_n2##x,_n4##y,z,v), I[254] = (img)(_n3##x,_n4##y,z,v), I[255] = (img)(_n4##x,_n4##y,z,v), \ |
philpem@5 | 12436 | I[256] = (img)(_p3##x,_p3##y,_n1##z,v), I[257] = (img)(_p2##x,_p3##y,_n1##z,v), I[258] = (img)(_p1##x,_p3##y,_n1##z,v), I[259] = (img)(x,_p3##y,_n1##z,v), I[260] = (img)(_n1##x,_p3##y,_n1##z,v), I[261] = (img)(_n2##x,_p3##y,_n1##z,v), I[262] = (img)(_n3##x,_p3##y,_n1##z,v), I[263] = (img)(_n4##x,_p3##y,_n1##z,v), \ |
philpem@5 | 12437 | I[264] = (img)(_p3##x,_p2##y,_n1##z,v), I[265] = (img)(_p2##x,_p2##y,_n1##z,v), I[266] = (img)(_p1##x,_p2##y,_n1##z,v), I[267] = (img)(x,_p2##y,_n1##z,v), I[268] = (img)(_n1##x,_p2##y,_n1##z,v), I[269] = (img)(_n2##x,_p2##y,_n1##z,v), I[270] = (img)(_n3##x,_p2##y,_n1##z,v), I[271] = (img)(_n4##x,_p2##y,_n1##z,v), \ |
philpem@5 | 12438 | I[272] = (img)(_p3##x,_p1##y,_n1##z,v), I[273] = (img)(_p2##x,_p1##y,_n1##z,v), I[274] = (img)(_p1##x,_p1##y,_n1##z,v), I[275] = (img)(x,_p1##y,_n1##z,v), I[276] = (img)(_n1##x,_p1##y,_n1##z,v), I[277] = (img)(_n2##x,_p1##y,_n1##z,v), I[278] = (img)(_n3##x,_p1##y,_n1##z,v), I[279] = (img)(_n4##x,_p1##y,_n1##z,v), \ |
philpem@5 | 12439 | I[280] = (img)(_p3##x,y,_n1##z,v), I[281] = (img)(_p2##x,y,_n1##z,v), I[282] = (img)(_p1##x,y,_n1##z,v), I[283] = (img)(x,y,_n1##z,v), I[284] = (img)(_n1##x,y,_n1##z,v), I[285] = (img)(_n2##x,y,_n1##z,v), I[286] = (img)(_n3##x,y,_n1##z,v), I[287] = (img)(_n4##x,y,_n1##z,v), \ |
philpem@5 | 12440 | I[288] = (img)(_p3##x,_n1##y,_n1##z,v), I[289] = (img)(_p2##x,_n1##y,_n1##z,v), I[290] = (img)(_p1##x,_n1##y,_n1##z,v), I[291] = (img)(x,_n1##y,_n1##z,v), I[292] = (img)(_n1##x,_n1##y,_n1##z,v), I[293] = (img)(_n2##x,_n1##y,_n1##z,v), I[294] = (img)(_n3##x,_n1##y,_n1##z,v), I[295] = (img)(_n4##x,_n1##y,_n1##z,v), \ |
philpem@5 | 12441 | I[296] = (img)(_p3##x,_n2##y,_n1##z,v), I[297] = (img)(_p2##x,_n2##y,_n1##z,v), I[298] = (img)(_p1##x,_n2##y,_n1##z,v), I[299] = (img)(x,_n2##y,_n1##z,v), I[300] = (img)(_n1##x,_n2##y,_n1##z,v), I[301] = (img)(_n2##x,_n2##y,_n1##z,v), I[302] = (img)(_n3##x,_n2##y,_n1##z,v), I[303] = (img)(_n4##x,_n2##y,_n1##z,v), \ |
philpem@5 | 12442 | I[304] = (img)(_p3##x,_n3##y,_n1##z,v), I[305] = (img)(_p2##x,_n3##y,_n1##z,v), I[306] = (img)(_p1##x,_n3##y,_n1##z,v), I[307] = (img)(x,_n3##y,_n1##z,v), I[308] = (img)(_n1##x,_n3##y,_n1##z,v), I[309] = (img)(_n2##x,_n3##y,_n1##z,v), I[310] = (img)(_n3##x,_n3##y,_n1##z,v), I[311] = (img)(_n4##x,_n3##y,_n1##z,v), \ |
philpem@5 | 12443 | I[312] = (img)(_p3##x,_n4##y,_n1##z,v), I[313] = (img)(_p2##x,_n4##y,_n1##z,v), I[314] = (img)(_p1##x,_n4##y,_n1##z,v), I[315] = (img)(x,_n4##y,_n1##z,v), I[316] = (img)(_n1##x,_n4##y,_n1##z,v), I[317] = (img)(_n2##x,_n4##y,_n1##z,v), I[318] = (img)(_n3##x,_n4##y,_n1##z,v), I[319] = (img)(_n4##x,_n4##y,_n1##z,v), \ |
philpem@5 | 12444 | I[320] = (img)(_p3##x,_p3##y,_n2##z,v), I[321] = (img)(_p2##x,_p3##y,_n2##z,v), I[322] = (img)(_p1##x,_p3##y,_n2##z,v), I[323] = (img)(x,_p3##y,_n2##z,v), I[324] = (img)(_n1##x,_p3##y,_n2##z,v), I[325] = (img)(_n2##x,_p3##y,_n2##z,v), I[326] = (img)(_n3##x,_p3##y,_n2##z,v), I[327] = (img)(_n4##x,_p3##y,_n2##z,v), \ |
philpem@5 | 12445 | I[328] = (img)(_p3##x,_p2##y,_n2##z,v), I[329] = (img)(_p2##x,_p2##y,_n2##z,v), I[330] = (img)(_p1##x,_p2##y,_n2##z,v), I[331] = (img)(x,_p2##y,_n2##z,v), I[332] = (img)(_n1##x,_p2##y,_n2##z,v), I[333] = (img)(_n2##x,_p2##y,_n2##z,v), I[334] = (img)(_n3##x,_p2##y,_n2##z,v), I[335] = (img)(_n4##x,_p2##y,_n2##z,v), \ |
philpem@5 | 12446 | I[336] = (img)(_p3##x,_p1##y,_n2##z,v), I[337] = (img)(_p2##x,_p1##y,_n2##z,v), I[338] = (img)(_p1##x,_p1##y,_n2##z,v), I[339] = (img)(x,_p1##y,_n2##z,v), I[340] = (img)(_n1##x,_p1##y,_n2##z,v), I[341] = (img)(_n2##x,_p1##y,_n2##z,v), I[342] = (img)(_n3##x,_p1##y,_n2##z,v), I[343] = (img)(_n4##x,_p1##y,_n2##z,v), \ |
philpem@5 | 12447 | I[344] = (img)(_p3##x,y,_n2##z,v), I[345] = (img)(_p2##x,y,_n2##z,v), I[346] = (img)(_p1##x,y,_n2##z,v), I[347] = (img)(x,y,_n2##z,v), I[348] = (img)(_n1##x,y,_n2##z,v), I[349] = (img)(_n2##x,y,_n2##z,v), I[350] = (img)(_n3##x,y,_n2##z,v), I[351] = (img)(_n4##x,y,_n2##z,v), \ |
philpem@5 | 12448 | I[352] = (img)(_p3##x,_n1##y,_n2##z,v), I[353] = (img)(_p2##x,_n1##y,_n2##z,v), I[354] = (img)(_p1##x,_n1##y,_n2##z,v), I[355] = (img)(x,_n1##y,_n2##z,v), I[356] = (img)(_n1##x,_n1##y,_n2##z,v), I[357] = (img)(_n2##x,_n1##y,_n2##z,v), I[358] = (img)(_n3##x,_n1##y,_n2##z,v), I[359] = (img)(_n4##x,_n1##y,_n2##z,v), \ |
philpem@5 | 12449 | I[360] = (img)(_p3##x,_n2##y,_n2##z,v), I[361] = (img)(_p2##x,_n2##y,_n2##z,v), I[362] = (img)(_p1##x,_n2##y,_n2##z,v), I[363] = (img)(x,_n2##y,_n2##z,v), I[364] = (img)(_n1##x,_n2##y,_n2##z,v), I[365] = (img)(_n2##x,_n2##y,_n2##z,v), I[366] = (img)(_n3##x,_n2##y,_n2##z,v), I[367] = (img)(_n4##x,_n2##y,_n2##z,v), \ |
philpem@5 | 12450 | I[368] = (img)(_p3##x,_n3##y,_n2##z,v), I[369] = (img)(_p2##x,_n3##y,_n2##z,v), I[370] = (img)(_p1##x,_n3##y,_n2##z,v), I[371] = (img)(x,_n3##y,_n2##z,v), I[372] = (img)(_n1##x,_n3##y,_n2##z,v), I[373] = (img)(_n2##x,_n3##y,_n2##z,v), I[374] = (img)(_n3##x,_n3##y,_n2##z,v), I[375] = (img)(_n4##x,_n3##y,_n2##z,v), \ |
philpem@5 | 12451 | I[376] = (img)(_p3##x,_n4##y,_n2##z,v), I[377] = (img)(_p2##x,_n4##y,_n2##z,v), I[378] = (img)(_p1##x,_n4##y,_n2##z,v), I[379] = (img)(x,_n4##y,_n2##z,v), I[380] = (img)(_n1##x,_n4##y,_n2##z,v), I[381] = (img)(_n2##x,_n4##y,_n2##z,v), I[382] = (img)(_n3##x,_n4##y,_n2##z,v), I[383] = (img)(_n4##x,_n4##y,_n2##z,v), \ |
philpem@5 | 12452 | I[384] = (img)(_p3##x,_p3##y,_n3##z,v), I[385] = (img)(_p2##x,_p3##y,_n3##z,v), I[386] = (img)(_p1##x,_p3##y,_n3##z,v), I[387] = (img)(x,_p3##y,_n3##z,v), I[388] = (img)(_n1##x,_p3##y,_n3##z,v), I[389] = (img)(_n2##x,_p3##y,_n3##z,v), I[390] = (img)(_n3##x,_p3##y,_n3##z,v), I[391] = (img)(_n4##x,_p3##y,_n3##z,v), \ |
philpem@5 | 12453 | I[392] = (img)(_p3##x,_p2##y,_n3##z,v), I[393] = (img)(_p2##x,_p2##y,_n3##z,v), I[394] = (img)(_p1##x,_p2##y,_n3##z,v), I[395] = (img)(x,_p2##y,_n3##z,v), I[396] = (img)(_n1##x,_p2##y,_n3##z,v), I[397] = (img)(_n2##x,_p2##y,_n3##z,v), I[398] = (img)(_n3##x,_p2##y,_n3##z,v), I[399] = (img)(_n4##x,_p2##y,_n3##z,v), \ |
philpem@5 | 12454 | I[400] = (img)(_p3##x,_p1##y,_n3##z,v), I[401] = (img)(_p2##x,_p1##y,_n3##z,v), I[402] = (img)(_p1##x,_p1##y,_n3##z,v), I[403] = (img)(x,_p1##y,_n3##z,v), I[404] = (img)(_n1##x,_p1##y,_n3##z,v), I[405] = (img)(_n2##x,_p1##y,_n3##z,v), I[406] = (img)(_n3##x,_p1##y,_n3##z,v), I[407] = (img)(_n4##x,_p1##y,_n3##z,v), \ |
philpem@5 | 12455 | I[408] = (img)(_p3##x,y,_n3##z,v), I[409] = (img)(_p2##x,y,_n3##z,v), I[410] = (img)(_p1##x,y,_n3##z,v), I[411] = (img)(x,y,_n3##z,v), I[412] = (img)(_n1##x,y,_n3##z,v), I[413] = (img)(_n2##x,y,_n3##z,v), I[414] = (img)(_n3##x,y,_n3##z,v), I[415] = (img)(_n4##x,y,_n3##z,v), \ |
philpem@5 | 12456 | I[416] = (img)(_p3##x,_n1##y,_n3##z,v), I[417] = (img)(_p2##x,_n1##y,_n3##z,v), I[418] = (img)(_p1##x,_n1##y,_n3##z,v), I[419] = (img)(x,_n1##y,_n3##z,v), I[420] = (img)(_n1##x,_n1##y,_n3##z,v), I[421] = (img)(_n2##x,_n1##y,_n3##z,v), I[422] = (img)(_n3##x,_n1##y,_n3##z,v), I[423] = (img)(_n4##x,_n1##y,_n3##z,v), \ |
philpem@5 | 12457 | I[424] = (img)(_p3##x,_n2##y,_n3##z,v), I[425] = (img)(_p2##x,_n2##y,_n3##z,v), I[426] = (img)(_p1##x,_n2##y,_n3##z,v), I[427] = (img)(x,_n2##y,_n3##z,v), I[428] = (img)(_n1##x,_n2##y,_n3##z,v), I[429] = (img)(_n2##x,_n2##y,_n3##z,v), I[430] = (img)(_n3##x,_n2##y,_n3##z,v), I[431] = (img)(_n4##x,_n2##y,_n3##z,v), \ |
philpem@5 | 12458 | I[432] = (img)(_p3##x,_n3##y,_n3##z,v), I[433] = (img)(_p2##x,_n3##y,_n3##z,v), I[434] = (img)(_p1##x,_n3##y,_n3##z,v), I[435] = (img)(x,_n3##y,_n3##z,v), I[436] = (img)(_n1##x,_n3##y,_n3##z,v), I[437] = (img)(_n2##x,_n3##y,_n3##z,v), I[438] = (img)(_n3##x,_n3##y,_n3##z,v), I[439] = (img)(_n4##x,_n3##y,_n3##z,v), \ |
philpem@5 | 12459 | I[440] = (img)(_p3##x,_n4##y,_n3##z,v), I[441] = (img)(_p2##x,_n4##y,_n3##z,v), I[442] = (img)(_p1##x,_n4##y,_n3##z,v), I[443] = (img)(x,_n4##y,_n3##z,v), I[444] = (img)(_n1##x,_n4##y,_n3##z,v), I[445] = (img)(_n2##x,_n4##y,_n3##z,v), I[446] = (img)(_n3##x,_n4##y,_n3##z,v), I[447] = (img)(_n4##x,_n4##y,_n3##z,v), \ |
philpem@5 | 12460 | I[448] = (img)(_p3##x,_p3##y,_n4##z,v), I[449] = (img)(_p2##x,_p3##y,_n4##z,v), I[450] = (img)(_p1##x,_p3##y,_n4##z,v), I[451] = (img)(x,_p3##y,_n4##z,v), I[452] = (img)(_n1##x,_p3##y,_n4##z,v), I[453] = (img)(_n2##x,_p3##y,_n4##z,v), I[454] = (img)(_n3##x,_p3##y,_n4##z,v), I[455] = (img)(_n4##x,_p3##y,_n4##z,v), \ |
philpem@5 | 12461 | I[456] = (img)(_p3##x,_p2##y,_n4##z,v), I[457] = (img)(_p2##x,_p2##y,_n4##z,v), I[458] = (img)(_p1##x,_p2##y,_n4##z,v), I[459] = (img)(x,_p2##y,_n4##z,v), I[460] = (img)(_n1##x,_p2##y,_n4##z,v), I[461] = (img)(_n2##x,_p2##y,_n4##z,v), I[462] = (img)(_n3##x,_p2##y,_n4##z,v), I[463] = (img)(_n4##x,_p2##y,_n4##z,v), \ |
philpem@5 | 12462 | I[464] = (img)(_p3##x,_p1##y,_n4##z,v), I[465] = (img)(_p2##x,_p1##y,_n4##z,v), I[466] = (img)(_p1##x,_p1##y,_n4##z,v), I[467] = (img)(x,_p1##y,_n4##z,v), I[468] = (img)(_n1##x,_p1##y,_n4##z,v), I[469] = (img)(_n2##x,_p1##y,_n4##z,v), I[470] = (img)(_n3##x,_p1##y,_n4##z,v), I[471] = (img)(_n4##x,_p1##y,_n4##z,v), \ |
philpem@5 | 12463 | I[472] = (img)(_p3##x,y,_n4##z,v), I[473] = (img)(_p2##x,y,_n4##z,v), I[474] = (img)(_p1##x,y,_n4##z,v), I[475] = (img)(x,y,_n4##z,v), I[476] = (img)(_n1##x,y,_n4##z,v), I[477] = (img)(_n2##x,y,_n4##z,v), I[478] = (img)(_n3##x,y,_n4##z,v), I[479] = (img)(_n4##x,y,_n4##z,v), \ |
philpem@5 | 12464 | I[480] = (img)(_p3##x,_n1##y,_n4##z,v), I[481] = (img)(_p2##x,_n1##y,_n4##z,v), I[482] = (img)(_p1##x,_n1##y,_n4##z,v), I[483] = (img)(x,_n1##y,_n4##z,v), I[484] = (img)(_n1##x,_n1##y,_n4##z,v), I[485] = (img)(_n2##x,_n1##y,_n4##z,v), I[486] = (img)(_n3##x,_n1##y,_n4##z,v), I[487] = (img)(_n4##x,_n1##y,_n4##z,v), \ |
philpem@5 | 12465 | I[488] = (img)(_p3##x,_n2##y,_n4##z,v), I[489] = (img)(_p2##x,_n2##y,_n4##z,v), I[490] = (img)(_p1##x,_n2##y,_n4##z,v), I[491] = (img)(x,_n2##y,_n4##z,v), I[492] = (img)(_n1##x,_n2##y,_n4##z,v), I[493] = (img)(_n2##x,_n2##y,_n4##z,v), I[494] = (img)(_n3##x,_n2##y,_n4##z,v), I[495] = (img)(_n4##x,_n2##y,_n4##z,v), \ |
philpem@5 | 12466 | I[496] = (img)(_p3##x,_n3##y,_n4##z,v), I[497] = (img)(_p2##x,_n3##y,_n4##z,v), I[498] = (img)(_p1##x,_n3##y,_n4##z,v), I[499] = (img)(x,_n3##y,_n4##z,v), I[500] = (img)(_n1##x,_n3##y,_n4##z,v), I[501] = (img)(_n2##x,_n3##y,_n4##z,v), I[502] = (img)(_n3##x,_n3##y,_n4##z,v), I[503] = (img)(_n4##x,_n3##y,_n4##z,v), \ |
philpem@5 | 12467 | I[504] = (img)(_p3##x,_n4##y,_n4##z,v), I[505] = (img)(_p2##x,_n4##y,_n4##z,v), I[506] = (img)(_p1##x,_n4##y,_n4##z,v), I[507] = (img)(x,_n4##y,_n4##z,v), I[508] = (img)(_n1##x,_n4##y,_n4##z,v), I[509] = (img)(_n2##x,_n4##y,_n4##z,v), I[510] = (img)(_n3##x,_n4##y,_n4##z,v), I[511] = (img)(_n4##x,_n4##y,_n4##z,v); |
philpem@5 | 12468 | |
philpem@5 | 12469 | #endif |